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Abstract
Weconsider an effective quasi-bosonic Hamiltonian of the electron gaswhich emerges
naturally from the random phase approximation and describes the collective excita-
tions of the gas. By a rigorous argument, we explain how the plasmon modes can be
interpreted as a special class of approximate eigenstates of this model.
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1 Introduction

In a series of four seminal papers [8–10, 19] published in the early 1950s, Bohm
and Pines proposed the random phase approximation (RPA) as an effective theory to
describe the collective excitations of jellium, a homogeneous high-density electron
gas moving in a background of uniform positive charge. In particular, they predicted
that the electron gas will be decoupled into quasi-free electrons which emerge from
the usual mean-field approximation for independent particles, and collective plasmon
excitations which correspond to correlated particle motion.

Although the plasmons were quickly detected by experiments [13, 23] after the
works of Bohm and Pines, their theoretical explanation remains an important open
question in condensed matter and nuclear physics. In 1957, Gell-Mann and Brueckner
[15] gave a microscopic derivation of the RPA using a formal summation of a dia-
grammatic expansion, in which the leading diagrams describe the interaction of pairs
of fermions, one from inside and one from outside the Fermi ball. This approach was
pushed further by Sawada [21] and Sawada–Brueckner–Fukuda–Brout [22] who inter-
preted these pairs of electrons as bosons, obtaining an effective Hamiltonian which is
quadratic with respect to the bosonic particle pairs.

Recently, the bosonization argument in [21, 22] has been made rigorous in [2–4,
6, 11, 18] for bounded interaction potentials in the mean-field regime, in which the
interaction potential is coupled with a small constant such that the interaction energy
and the kinetic energy are comparable. In these works, the non-bosonizable terms
of the interaction energy are negligible and the rest can be diagonalized by adapting
Bogolubov’s method [7] to the quasi-bosonic setting. On the mathematical side, the
main challenge in this approach is to realize the bosonization structure, which only
holds in a very weak sense, making even perturbative results highly nontrivial [18]. In
the first non-perturbative results in [3, 4], the correlation energy was computed exactly
to the leading order by using a patching technique (averaging fermionic pairs in patches
of the Fermi sphere) to enhance the bosonization structure. This approach has been
developed further in [6] to improve the analysis of the ground state energy and in [5]
to address the dynamics. In [11] we proposed an alternative approach where the weak
bosonization structure was used directly (without relying on the patching technique) to
approximately diagonalize the fermionic Hamiltonian. One of the advantages of this
approach is that it allows us to derive an effective quasi-bosonic Hamiltonian which
describes both the correlation energy and the elementary excitations of the system. In
the mean-field regime there are, however, no approximate eigenstates corresponding
to collective plasmon modes.

The aim of the present paper is to give an explanation of the collective plasmon
excitations by taking the quasi-bosonic Hamiltonian derived in [11], extrapolating for
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the Coulomb potential and going beyond the mean-field regime. We hope that our
analysis here will provide useful insights towards the ultimate goal of deriving this
effective Hamiltonian and understanding the plasmons from first principles.

2 Derivation of the effective Hamiltonian

In this sectionwe give a heuristic derivation of the effective quasi-bosonicHamiltonian
from the microscopic theory, by summarizing the approach in [11].

We consider a system of N (spinless) fermions on the torus T
3 = [0, 2π ]3 (with

periodic boundary conditions), interacting via a repulsive potential V : T
3 → R,

which is to say

V (x) = 1

(2π)3

∑

k∈Z3∗

V̂ke
ik·x with

V̂k =
∫

T3
V (x) e−ik·x dx ≥ 0, ∀k ∈ Z

3∗ = Z
3\{0}, (2.1)

and which satisfies the square summability condition on the Fourier transform

∑

k∈Z3∗

V̂ 2
k < ∞. (2.2)

Here we ignore the contribution of the zero-momentum mode (equivalently we set
V̂0 = 0) as it corresponds to a trivial energy shift of the system. (Physically, this is
understood to be compensated for by the uniformly charged background.) The reader
may keep in mind the typical situation of the Coulomb potential where V̂k = g |k|−2

with g > 0, although our analysis applies to a larger class of potentials.
In the many-body Schrödinger theory, the system is described by the Hamiltonian

HN = Hkin + Hint =
N
∑

i=1

(−�i ) +
∑

1≤i< j≤N

V
(

xi − x j
)

(2.3)

which acts on the fermionic space

HN =
N
∧

h, h = L2
(

T
3
)

. (2.4)

Under our assumption, HN is bounded from below and it can be extended to be a self-
adjoint operator onHN with domain D (HN ) = D (Hkin) = ∧N H2

(

T
3
)

.Moreover,
HN has compact resolvent andwe are interested in the low-lying spectrumof HN when
N → ∞.

In general, if V 	≡ 0 and N is large, computing the spectrum of HN directly from
the microscopic formulation (2.3) is impossible, both analytically and numerically.
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Consequently one must turn to efficient approximations. One of the most famous
approximations for fermions is Hartree–Fock theory, where one restricts the consid-
eration to Slater determinants g1 ∧ g2 · · · ∧ gN with {gi }Ni=1 orthonormal in L2

(

T
3
)

,
which are the least correlated states among all fermionic wave functions. The precision
of the Hartree–Fock energy for Coulomb systems can be estimated using general cor-
relation inequalities of Bach [1] and Graf–Solovej [17]. Within Hartree–Fock theory,
it turns out that the ground state energy can be well approximated by the Fermi state,
which is the Slater determinant of the plane waves with momenta inside the Fermi
ball BF , namely

ψFS =
∧

p∈BF

u p, u p (x) = (2π)−
3
2 eip·x , (2.5)

with

BF = B (0, kF ) ∩ Z
3, N = |BF | , (2.6)

for some kF > 0 (the Fermi momentum); see [16] and [4, Appendix A]. Here for
simplicity we assume that the Fermi ball BF is completely filled by N integer points,
which implies that the Fermi state ψFS is the unique, non-degenerate ground state of
the kinetic operator Hkin. Without this simplification, the Fermi state is not uniquely
defined and the degeneracy of the elementary excitation introduced in the next subsec-
tion has to be factored out properly, which complicate the notation but do not improve
the physical insight that we want to discuss.

In order to focus on the correlation structure of the interacting system, we need to
extract the energy of the Fermi state. For this purpose, it is convenient to write the
second-quantized form of the Hamiltonian operator HN in (2.3):

HN = Hkin + Hint =
∑

p∈Z3∗

|p|2 c∗
pcp + 1

2 (2π)3

∑

k∈Z3∗

∑

p,q∈Z3

V̂kc
∗
p+kc

∗
q−kcqcp (2.7)

where

c∗
p = c∗(u p), cp = c(u p), ∀p ∈ Z

3, (2.8)

are the usual Fermionic creation and annihilation operators associated with the plane
wave states u p. Note that although the second-quantized form in (2.7) can be defined
on the fermionic Fock space, we will always consider its restriction to the N particle
space which coincides with the original Hamiltonian in (2.3).

Using the canonical anticommutation relations (CAR)

{

cp, cq
} =

{

c∗
p, c

∗
q

}

= 0,
{

cp, c
∗
q

}

= δp,q , p, q ∈ Z
3, (2.9)

where {A, B} = AB + BA, it is straightforward to compute the energy of the Fermi
state (see, e.g., [11, Eqs. (1.10) and (1.20)])
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EFS = 〈ψFS, HNψFS〉 = 〈ψFS, HkinψFS〉 + 〈ψFS, HintψFS〉
=
∑

p∈BF

|p|2 + 1

2 (2π)3

∑

k∈Z3∗

V̂k (|Lk | − N ) (2.10)

where we define the lune of relative momentum k ∈ Z
3∗ by

Lk = Bc
F ∩ (BF + k) =

{

p ∈ Z
3 | |p − k| ≤ kF < |p|

}

. (2.11)

Now we extract the contribution of the Fermi state on the operator level, namely
we rewrite the operator in (2.7) as

HN = EFS + H ′
kin + H ′

int (2.12)

for suitable operators H ′
kin, H

′
int : D (Hkin) ⊂ HN → HN . To be precise, we define

the localized kinetic operator as

H ′
kin = Hkin − 〈ψFS, HkinψFS〉 ≥ 0 (2.13)

and define the localized interaction operator as

H ′
int = Hint − 〈ψFS, HintψFS〉 =

∑

k∈Z3∗

(

Hk
int −

V̂k
2 (2π)3

|Lk |
)

+ 1

(2π)3

∑

k∈Z3∗

V̂k

⎛

⎝
∑

p∈Lk

b∗
k,pDk + D∗

k

∑

p∈Lk

bk,p + 1

2
D∗
k Dk

⎞

⎠ (2.14)

where

Hk
int =

∑

p,q∈Lk

V̂k
2 (2π)3

(

b∗
k,pbk,q + bk,qb

∗
k,p

)

+
∑

p∈Lk

∑

q∈L−k

V̂k
2 (2π)3

×
(

b∗
k,pb

∗−k,q + b−k,qbk,p
)

(2.15)

for

b∗
k,p = c∗

pcp−k, Dk =
∑

p∈BF∩(BF+k)

c∗
p−kcp +

∑

p∈Bc
F∩(Bc

F+k)

c∗
p−kcp. (2.16)

We interpret b∗
k,p as an excitation operator, since it creates a state with momentum

p ∈ Bc
F and annihilates a state with momentum p − k ∈ BF .
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2.1 The effective quasi-bosonic Hamiltonian

So far, the decomposition of (2.12) is exact, but to proceed further we now make
some simplifications. Roughly speaking, the RPA in the physics literature [15, 21,
22] suggests that the fermionic correlation structure can be described by a bosonic
quadratic Hamiltonian. As explained in [11], this bosonic analogy can be summarized
in three steps:

Step 1 The excitation operators b∗
k,p, bk,p in (2.16) should be treated as bosonic

creation and annihilation operators, where the operators bk,p and bl,q with k 	= l can
be considered as acting on independent Fock spaces.

On the mathematical side, we expect the canonical commutation relations (CCR)
to hold in an appropriate sense:

[

bk,p, bl,q
] =

[

b∗
k,p, b

∗
l,q

]

= 0,
[

bk,p, b
∗
l,q

]

≈ δk,lδp,q . (2.17)

To motivate (2.17), let us consider the simple case k = l where we have the exact
relations

[

bk,p, bk,q
] = [b∗

k,p, b
∗
k,q ] = 0,

[

bk,p, b
∗
k,q

]

= δp,q − δp,q

(

c∗
pcp + cp−kc

∗
p−k

)

(2.18)

for all p, q ∈ Lk . The last error terms in (2.18) are not small individually (as we only
know c∗

pcp, cpc
∗
p ≤ 1 by Pauli’s exclusion principle), but they are small on average.

To make it transparent, let us introduce the excitation number operator

NE :=
∑

p∈Bc
F

c∗
pcp =

∑

p∈BF

cpc
∗
p on HN (2.19)

where the last identity in (2.19) follows from the assumption |BF | = N via the
particle-hole symmetry1. Then it is obvious that

∑

p,q∈Lk

δp,q

(

c∗
pcp + cp−kc

∗
p−k

)

≤ 2NE (2.20)

while for the low-lying eigenfunctions of HN the excitation number operator NE is
expected to be of lower order than

∑

p,q∈Lk

δp,q = |Lk | ∼ min(|k|, kF )k2F . (2.21)

See, e.g., [11, Proposition A.1] for estimates related to (2.21).

1 Namely, the excitation number operator (which counts the number of particles outside the Fermi state)
coincides with the hole number operator (which counts the number of holes inside the Fermi state).
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Step 2 The full operator in (2.12) is approximated by a quadratic Hamiltonian of
b∗
k,p and bk,p. Concretely, the non-bosonizable terms, which are the last sum in (2.14),
are ignored, so that

H ′
int ≈

∑

k∈Z3∗

(

Hk
int −

V̂k
2 (2π)3

|Lk |
)

(2.22)

with Hk
int given in (2.15), and the localized kinetic operator is thought of as

H ′
kin ≈

∑

k∈Z3∗

∑

p∈Lk

2λk,pb
∗
k,pbk,p, λk,p = 1

2

(

|p|2 − |p − k|2
)

. (2.23)

The latter approximation (2.23) is motivated by the commutation relations

[

H ′
kin, b

∗
k,p

]

= 2λk,pb
∗
k,p ≈

⎡

⎣
∑

	∈Z3∗

∑

q∈L	

2λ	,qb
∗
	,qb	,q , b

∗
k,p

⎤

⎦ (2.24)

where the first identity follows from the (exact) CAR (2.9) and the second relation
follows from the (approximate) CCR (2.17).

Step 3 If the effective Hamiltonian

∑

k∈Z3∗

∑

p∈Lk

2λk,pb
∗
k,pbk,p +

∑

k∈Z3∗

(

Hk
int −

V̂k
2 (2π)3

|Lk |
)

(2.25)

were an exact bosonic quadratic operator, then it could be diagonalized by aBogolubov
transformation (see, e.g., [11, Sect. 3.2]), resulting in the effective operator

Ecorr +
∑

k∈Z3∗

2
∑

p,q∈Lk

〈

ep, Ẽkeq
〉

b∗
k,pbk,q . (2.26)

Here we introduced the correlation energy

Ecorr =
∑

k∈Z3∗

(

tr
(

Ẽk − hk
)− V̂k

2 (2π)3
|Lk |

)

=
∑

k∈Z3∗

1

π

∫ ∞

0
F

⎛

⎝
V̂k

(2π)3

∑

p∈Lk

λk,p

λ2k,p + t2

⎞

⎠ dt (2.27)

with F (x) = log (1 + x) − x , and for every k ∈ Z
3∗ we defined the following real,

symmetric operators on 	2 (Lk):
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Ẽk =
(

h
1
2
k

(

hk + 2Pvk

)

h
1
2
k

) 1
2

, hkep = λk,pep, Pv = |vk〉〈vk |,

vk =
√

V̂k
2 (2π)3

∑

p∈Lk

ep, (2.28)

with
(

ep
)

p∈Lk
the standard orthonormal basis of 	2 (Lk). However, the quadratic

kinetic approximation of (2.23) only holds in theweak sense of (2.24), so the difference

H ′
kin −

∑

k∈Z3∗

∑

p∈Lk

2λk,pb
∗
k,pbk,p (2.29)

is only essentially invariant under the Bogolubov transformation, rather than close to
0 in a direct sense. Therefore, adding (2.29) to (2.26) we obtain the more realistic
approximation, up to a unitary transformation, that

HN ≈ EFS + Ecorr + Heff , (2.30)

where we introduced the effective quasi-bosonic Hamiltonian

Heff = H ′
kin + 2

∑

k∈Z3∗

∑

p,q∈Lk

〈

ep,
(

Ẽk − hk
)

eq
〉

b∗
k,pbk,q . (2.31)

which is an operator on the fermionic space HN = ∧N h.
All in all the bosonization procedure of the random phase approximation thus

suggests that (2.30) holds at least for states with few excitations (when NE is not too
large).

For regular potentials in the mean-field regime, i.e., when V is replaced by k−1
F W

for a fixed potential W satisfying
∑

k∈Z3∗ |k||Ŵ (k)| < ∞, the operator approximation
(2.30) has been justified rigorously in [11]. To be precise, we proved in [11, Theorem
1] that there exists a unitary operator U : HN → HN such that

UHNU∗ = EFS + Ecorr + Heff + EU (2.32)

where the error operator satisfies

±EU ≤ Ck
− 1

94+ε

F

(

k−1
F NE H

′
kin + H ′

kin + kF
)

, kF → ∞, (2.33)

for any fixed ε > 0. Moreover, thanks to [11, Theorem 1.2], the bound in (2.33)
suffices to show that EU is negligible when applied to low-lying eigenstates � of
UHNU∗ satisfying 〈�,UHNU∗�〉 = EFS + Ecorr + O(kF ), namely

|〈�, EU�〉| ≤ Ck
1− 1

94+ε

F , kF → ∞, (2.34)
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while both Ecorr and 〈�, Heff�〉 are of order kF .
Note that even in the mean-field regime, the Coulomb potential is still excluded in

[11]. In this case, when V̂k is replaced by gk
−1
F |k|−2, the correlation energy Ecorr is of

order kF log(kF ) instead of kF , and existing techniques seem insufficient to estimate
the error terms for the energy lower bound. We refer to the recent work [12] for a
rigorous upper bound for the correlation energy. The operator approximation (2.30)
for the Coulomb gas in the mean-field regime remains completely open, let alone the
corresponding result beyond the mean-field regime.

In the present paper, we will consider the effective operator Heff in more detail,
without imposing themean-field and regularity restrictions on the interaction. In partic-
ular, we will focus on the most interesting case of the Coulomb potential V̂k = g|k|−2

for which the plasmon modes can be interpreted as a special class of approximate
eigenstates of Heff .

2.2 Elementary excitations and the plasmon frequency

As explained in [11], since the effective Hamiltonian Heff in (2.31) commutes with
NE , we can without loss of generality restrict Heff to the eigenspaces {NE = M}with
M = 0, 1, 2, . . .

The case M = 0 is trivial since the eigenspace {NE = 0} is the one-dimensional
space spanned by the Fermi state. In the first non-trivial case, M = 1, the identity

∑

k∈Z3∗

∑

p∈Lk

2λk,pb
∗
k,pbk,p = NE H

′
kin (2.35)

(see [11, Eq. (1.55)]) implies that the relation of (2.23) is in fact valid, whence

Heff|NE=1 = 2
∑

k∈Z3∗

∑

p,q∈Lk

〈

ep, Ẽkeq
〉

b∗
k,pbk,q . (2.36)

This operator can be diagonalized explicitly on {NE = 1}. More precisely, it was
proved in [11, Theorem 1.4] that by introducing the unitary transformation

Ũ :
⊕

k∈Z3∗

	2 (Lk) → {� ∈ HN | NE� = �} , (2.37)

Ũ
⊕

k∈Z3∗

ϕk =
∑

k∈Z3∗

b∗
k (ϕk) ψFS, (2.38)

where for any ϕ ∈ 	2(Lk) the generalized excitation operator b∗
k (ϕ) is defined by

b∗
k (ϕ) =

∑

p∈Lk

〈

ep, ϕ
〉

b∗
k,p, (2.39)
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we have the identity

Ũ∗ (Heff |NE=1
)

Ũ =
⊕

k∈Z3∗

2Ẽk on
⊕

k∈Z3∗

	2 (Lk) . (2.40)

Consequently, the spectrum of Heff |NE=1 is fully determined by the eigenvalues of

2Ẽk . Note that every eigenvalue ε of 2Ẽk = 2(h
1
2
k

(

hk + 2Pvk

)

h
1
2
k )

1
2 solves the equa-

tion

(

ε2 − 4h2k
)

w = 4Ẽ2
kw − 4h2kw = 8

〈

h
1
2
k vk, w

〉

h
1
2
k vk (2.41)

for a normalized eigenvector w. Therefore, if ε is not an eigenvalue of 2hk , we can

take the inner product with 〈h
1
2
k vk, w〉−1(ε2 − 4h2k)

−1h
1
2
k vk and obtain

1 = 8〈vk, hk
(

ε2 − 4h2k
)−1

vk〉 = 4V̂k
(2π)3

∑

p∈Lk

λk,p

ε2 − 4λ2k,p

= 2V̂k
(2π)3

∑

p∈BF

|k|2
(ε − 2k · p)2 − |k|4 , (2.42)

which coincides with [22, Eq. (6)]. Since the last equality in (2.42) is not obvious, let
us add an explanation for the reader’s convenience. Using the algebraic identity

λk,p

ε2 − 4λ2k,p
= λk,p

(ε − 2λk,p)(ε + 2λk,p)
= 1

4

(
1

ε − 2λk,p
− 1

ε + 2λk,p

)

(2.43)

and the definition Lk = Bc
F ∩ (BF + k) = (BF + k)\BF we can write

∑

p∈Lk

λk,p

ε2 − 4λ2k,p
= 1

4

∑

p∈Lk

(
1

ε − 2λk,p
− 1

ε + 2λk,p

)

(2.44)

= 1

4

∑

p∈(BF+k)

(
1

ε − 2λk,p
− 1

ε + 2λk,p

)

− 1

4

∑

p∈(BF+k)∩BF

(
1

ε − 2λk,p
− 1

ε + 2λk,p

)

.

Using 2λk,p = 2k · (p − k
2 ) and substituting p �→ p − 1

2k in the last sum in (2.44)
we get
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1

4

∑

p∈(BF+k)∩BF

(
1

ε − 2λk,p
− 1

ε + 2λk,p

)

= 1

4

∑

p∈(BF+ k
2 )∩(BF− k

2 )

(
1

ε − 2k · p − 1

ε + 2k · p
)

= 0 (2.45)

where the cancelation comes from the symmetry p �→ −p. On the other hand, by
substituting p �→ p + k in the first sum in (2.44) we can write

1

4

∑

p∈(BF+k)

(
1

ε − 2λk,p
− 1

ε + 2λk,p

)

= 1

4

∑

p∈BF

(
1

ε − 2k · p − |k|2 − 1

ε + 2k · p + |k|2
)

= 1

4

∑

p∈BF

(
1

ε − 2k · p − |k|2 − 1

ε − 2k · p + |k|2
)

= 1

2

∑

p∈BF

|k|2
(ε − 2k · p)2 − |k|4 (2.46)

where we also transformed p �→ −p on the second term. Thus (2.42) holds.

In summary, (2.42) characterizes all eigenvalues of 2Ẽk outside the spectrum of
2hk . In the case of the Coulomb potential V̂k = g |k|−2, with a constant g > 0, the
k-dependence in (2.42) is simplified and we obtain

1 = 2g

(2π)3

∑

p∈BF

1

(ε − 2k · p)2 − |k|4 . (2.47)

In this case, among all eigenvalues described in (2.47), the largest one is special as it
is proportional to k3/2F while the other eigenvalues are bounded from above by

2λk,max := sup
p∈BF

(2k · p + |k|2) ≤ 2|k|kF + |k|2 � k3/2F if |k| � k1/2F . (2.48)

Indeed, note that the function

f (ε) = 2g

(2π)3

∑

p∈BF

1

(ε − 2k · p)2 − |k|4 (2.49)

is strictly decreasing on (2λk,max,∞) and

lim
ε→(2λk,max)

+ f (ε) = ∞, lim
ε→∞ f (ε) = 0. (2.50)
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114 Page 12 of 36 M. R. Christiansen et al.

Therefore, the equation f (ε) = 1 has a unique solution on (2λk,max,∞). Moreover,
this solution satisfies

ε2 = 2g

(2π)3

∑

p∈BF

ε2

(ε − 2k · p)2 − |k|4 ≥ 2g

(2π)3

∑

p∈BF

1 = 2gN

(2π)3
(2.51)

namely

ε ≥
√

2gN

(2π)3
=
√

g

3π2 k
3/2
F (1 + o(1)kF→∞). (2.52)

When |k| � k1/2F , the lower bound in (2.52) implies that

ε2

(ε − 2k · p)2 − |k|4 ≈ 1, (2.53)

and hence (2.52) is asymptotically sharp, namely we have

ε =
√

g

3π2 k
3/2
F (1 + o(1)kF→∞). (2.54)

In summary, if |k| � k1/2F , then the largest eigenvalue ε of 2Ẽk is proportional

to k3/2F , while all other eigenvalues of 2Ẽk , either being characterized by (2.47) or

belonging to the spectrum of 2hk , are always bounded by 2λk,max � k3/2F .
In the physics literature, the largest eigenvalue of 2Ẽk is often computed in the

thermodynamic limit, where we replace Riemann sums by integrals and obtain

ε2 ≈ 2gn (2.55)

where

n = N

V = Vol (B (0, kF ))

(2π)3
= 1

6π2 k
3
F (2.56)

is the number density of the system2. By taking g = 4πe2, and also inserting
�
2

2m = 1, we find that the largest eigenvalue of 2Ẽk is

ε ≈ √

2gn = �

√

4πne2

m
= �ω0 (2.57)

2 Here we consider the spinless fermions for simplicity. If we include a factor of q for the electron spin
states (e.g., q = 2 for electrons), the equality (2.55) is still correct provided that n = q

6π2 k
3
F .
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where ω0 =
√

4πne2
m is exactly the plasmon frequency written in [20, Eqs. (3–90)]

and [14, Eqs. (15.16–15.18)].
In the present paper, we will study Heff in (2.31) for a general M ≥ 1. In this case,

the spectrum of Heff corresponds to not only the elementary excitations but also all
of the collective excitations of the system. Unlike the simple case M = 1 discussed
above, for M ≥ 2 the operator Heff|NE=M can not be diagonalized explicitly as in
(2.40), and hence understanding the spectrum of Heff is both interesting and difficult.
We will focus on the part of the spectrum of Heff|NE=M which can be interpreted as
describing the collective plasmon modes.

3 Main results

Consider the effective Hamiltonian Heff in (2.31), i.e.,

Heff = H ′
kin + 2

∑

k∈Z3∗

∑

p,q∈Lk

〈

ep, (Ẽk − hk)eq
〉

b∗
k,pbk,q , (3.1)

which is an operator on the fermionic N -particle space HN = ∧N L2
(

T
3
)

with

domain D(HN ) = ∧N H2
(

T
3
)

.
As discussed above, for M = 1 the eigenfunctions of Heff are precisely the states of

the form b∗
k (ϕ)ψFS, where ϕ ∈ 	2(Lk) is an eigenvector of 2Ẽk . In the exact bosonic

case, the eigenfunctions of Heff |NE=M would be the states of the form

b∗
k1(ϕ1) · · · b∗

kM (ϕM )ψFS (3.2)

where each ϕi ∈ 	2(Lk) is an eigenvector of 2Ẽki for 1 ≤ i ≤ M .
For the effectiveHamiltonian this is generally no longer truewhenM ≥ 2.However,

we will show that in the case that k1 = · · · = kM =: k, where ϕ1 = · · · = ϕM =: ϕk

is the eigenvector of the greatest eigenvalue of 2Ẽk (and so describes the plasmon
mode), this is nonetheless approximately correct.

For the specific case of the Coulomb potential, we prove the following:

Theorem 1 Let kF > 0 be a large parameter. Let V̂k = g |k|−2 with a constant g > 0.
Let δ ∈ (

0, 1
2

)

, ε ∈ (0, 1), |k| ≤ kδ
F and 1 ≤ M ≤ kε

F be given. Let ϕk ∈ 	2(Lk)

denote the normalized eigenvector corresponding to the greatest eigenvalue, εk , of
2Ẽk , and define �M ∈ {NE = M} by

�M = b∗
k (ϕk)

MψFS.

Then the normalized state �̂M = ‖�M‖−1�M obeys

∥
∥
∥(Heff − Mεk) �̂M

∥
∥
∥ ≤ C |k|−1

√

kFM
5
2
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for a constant C > 0 depending only on δ and ε. Furthermore, it holds that

εk =
√

8 〈vk, hkvk〉 + 4

〈

vk, h3kvk
〉

〈vk, hkvk〉 + O

(

k
− 1

2
F |k|4

)

.

Here O(k
− 1

2
F |k|4) is a quantity that is bounded in absolute value by k− 1

2
F |k|4 times

a constant independent of kF and k.
This theorem shows that we can consider �̂M to be an “approximate eigenfunction”

of Heff with “approximate eigenvalue”Mεk , whenM is not too large. Let us give some
quick remarks on this theorem:

1. The norm estimate implies both a dynamic and a spectral estimate: Owing to the
elementary time evolution estimate ‖(e−i t H − e−i t E )ψ‖ ≤ ‖(H − E)ψ‖t this
shows that

‖(e−i t Heff − e−i tMεk )�̂M‖ � 1 for Mεk t � C
Mεk

|k|−1
√
kFM

5
2

∼ M− 3
2 kF |k|;

(3.3)

note that (Mεk)
−1 is the characteristic timescale of the oscillation of �̂M , so this

is a non-trivial statement for M � (kF |k|) 2
3 .

Spectrally, thanks to the operator inequality |1 − 1[E−δ,E+δ](H)| ≤ δ−1|H − E |,
the norm estimate in Theorem 1 implies that

‖(1 − 1[Mεk−δ,Mεk+δ](Heff))�̂M‖ � 1 for |k|−1
√

kFM
5
2 � δ, (3.4)

namely the state �̂M is essentially localized in the spectral space1[Mεk−δ,Mεk+δ](Heff)

HN . This justifies the interpretation that �̂M is an “approximate eigenfunction”of Heff .

2. The condition |k| ≤ kδ
F with δ < 1/2 is natural since we need |k| � k1/2F to

separate the plasmon frequency from other eigenvalues of 2Ẽk . When |k| ∼ k1/2F ,
the plasmon mode merges into the continuum (the interval [0, 2λk,max] containing
the remaining spectrum of 2Ẽk) as argued already by Bohm and Pines. See Fig. 1
for a numerical computation of the plasmon frequency and the continuum spectrum
of 2Ẽk when |k| increases.

3. The estimate for εk is quite precise. Evidently the error term k−1/2
F |k|4 is much

smaller than k3/2F when |k| � k1/2F ; moreover

εk =
√

8 〈vk, hkvk〉 + 4

〈

vk, h3kvk
〉

〈vk, hkvk〉 + o (1) (3.5)

for |k| � k
1
8
F . To make connections to the physics literature, we note that replacing

the underlying Riemann sums by integrals (and keeping only the leading part of
〈

vk, h3kvk
〉

), and setting g = 4πe2 and n = N
V = 4π

3 k3F we find (with �
2

2m = 1)
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|k|>
0 1 2 3 4 5 6 7 8 9 10 11 12 13

σ(2Ek)

k

2λk,max

Fig. 1 The spectrum of 2Ẽk with V̂k = 4π |k|−2 and kF = 500

εk ≈
√

4πe2

3π2 k3F + 12

5
k2F |k|2 ≈ �ω0 +

6
5k

2
F |k|2

�ω0
= �

(

ω0 + 3

10

v2F

ω0
|k|2

)

,

(3.6)

where ω0 =
√

4πne2
m is the plasmon frequency and vF = 2�

−1kF is the Fermi
velocity. This describes a plasmon dispersion relation of

ω(k) ≈ ω0 + 3

10

v2F

ω0
|k|2, (3.7)

which is in agreement with [20, Eq. (3.90c)], [19, Eq. (5.19) ] and [14, Eq. (15.60)].
See Sect. 6 for a detailed explanation of (3.6).

4. In the mean-field regime, where V = k−1
F W with a fixed potentialW , the bosonic

collective excitations were discussed in [5] on the dynamics and in [2] on the spec-
trum (see, e.g., [2, Eq. (3.38)] for an analogue of (3.6)). In this case, the separation
of the plasmon frequency holds in a weak sense: Although the largest eigenvalue
of 2Ẽk are within the same order of magnitude of many other eigenvalues, i.e., of
order kF , the distance from the plasmon frequency to the next-highest one is also
of order kF while the gaps between other eigenvalues are at most O(|k|) (recall
that we are interested in the case |k| � k1/2F ). This assertion follows easily from
the same argument leading to (2.52).

In contrast, in the present work we focus on the more physical regime where V is
independent of kF . As we go beyond the mean-field regime, the largest eigenvalue is
much larger than the others, and the genuinely large gap of the spectrum ensures the
almost-delocalization of the eigenfunction, which is important for our estimate.

5. Our analysis can be extended to all potentials satisfying V̂k ≥ 0 and
∑

k∈Z3∗ V̂
2
k <

∞. To be precise, for any k ∈ Z
3∗ and M ∈ N such that V̂k � k−1

F and 1 ≤ M �
kF |k| 12 , if we take εk, ϕk and �̂M as in Theorem 1, then we have the norm estimate
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∥
∥
∥(Heff − Mεk) �̂M

∥
∥
∥ ≤ C√

kF |k|

√
√
√
√

∑

l∈2BF

min
{

1, kF V̂l
}

V̂l |l|2 + Ck3F
∑

l∈Z3\2BF

V̂ 2
l M

5
2 .

(3.8)

Note that in the case of the Coulomb potential V̂k = g |k|−2 we may explicitly
estimate

∑

l∈2BF

min
{

1, kF V̂l
}

V̂l |l|2 ∼
∫ √

kF

0
r2dr + kF

∫ 2kF

√
kF

1

r2
r2dr ≤ k

3
2
F + kFkF ≤ k2F ,

k3F
∑

l∈Z3\2BF

V̂ 2
l ∼ k3F

∫ ∞

2kF

1

r4
r2dr ≤ k3Fk

−1
F = k2F , (3.9)

and hence (3.8) boils down to the norm estimate in Theorem 1. We refer to Sect. 6
for further explanation of (3.8).

Outline of the proof The main mathematical difficulty of the proof lies on the fact
that Heff is not a bosonic operator. More precisely, the operators bk (ϕ) only satisfies
the CCR in a weak sense, and controlling the exchange terms (the error terms from the
CCR) requires a careful analysis. In particular, estimating the norm of the approximate
eigenstate b∗

k (ϕ)M ψFS is already nontrivial, and this will be done in Sect. 4, together
with an analysis of the action of Heff on this state. Until this point, we keep the
analysis general and do not use any properties of the one-body operators Ẽk and hk in
the definition of Heff . These one-body operators will be analyzed in detail in Sect. 5.
Finally, we conclude the proof of the main theorem in Sect. 6.

4 Analysis of the approximate eigenstates

Let k ∈ Z
3∗ be given and let ϕ ∈ 	2 (Lk) be the normalized eigenstate of 2Ẽk corre-

sponding to the greatest eigenvalue εk . ForM ∈ N0 we define a state�M ∈ {NE = M}
by

�M = b∗
k (ϕ)M ψFS. (4.1)

In this section, we estimate the norms of �M and (Heff − Mεk)�M/‖�M‖; the
main results are stated in Propositions 1 and 2, respectively.

Before going to the two corresponding subsections, let us recall some basic com-
mutator computations. First, we recall that the generalized excitation operators, given
by

bk (ϕ) =
∑

p∈Lk

〈

ϕ, ep
〉

bk,p, b∗
k (ϕ) =

∑

p∈Lk

〈

ep, ϕ
〉

b∗
k,p, (4.2)
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with bk,p = c∗
p−kcp, obey the commutation relations

[bk (ϕ) , bl (ψ)] = [

b∗
k (ϕ) , b∗

l (ψ)
] = 0

[

bk (ϕ) , b∗
l (ψ)

] = δk,l 〈ϕ,ψ〉 + εk,l (ϕ;ψ) (4.3)

with

εk,l (ϕ;ψ) = −
∑

p∈Lk

∑

q∈Ll

〈

ϕ, ep
〉 〈

eq , ψ
〉 (

δp,qcq−l c
∗
p−k + δp−k,q−l c

∗
qcp

)

. (4.4)

For use below we calculate the commutator
[

εl,k (φ;ϕ) , b∗
k (ψ)

]

: As

[

δp,qcq−kc
∗
p−l + δp−l,q−kc

∗
qcp, b

∗
k,r

]

= δp,q

[

cq−kc
∗
p−l , c

∗
r cr−k

]

+ δp−l,q−k

[

c∗
qcp, c

∗
r cr−k

]

= δp,qc
∗
r cq−k

{

c∗
p−l , cr−k

}

+ δp−l,q−kc
∗
q

{

cp, c
∗
r

}

cr−k

= δp,qδp−l,r−kc
∗
r cq−k + δp,rδp−l,q−kc

∗
qcr−k (4.5)

for p ∈ Ll and q, r ∈ Lk , we find

[

εl,k (φ;ϕ) , b∗
k (ψ)

]

= −
∑

p∈Ll

∑

q,r∈Lk

〈

φ, ep
〉 〈

eq , ϕ
〉 〈er , ψ〉

[

δp,qcq−kc
∗
p−l + δp−l,q−kc

∗
qcp, b

∗
k,r

]

= −
∑

p∈Lk∩Ll

∑

r∈Lk

〈

φ, ep
〉 〈

ep, ϕ
〉 〈er , ψ〉 δp−l,r−kc

∗
r cp−k

−
∑

p∈Lk∩Ll

∑

q∈Lk

〈

φ, ep
〉 〈

eq , ϕ
〉 〈

ep, ψ
〉

δp−l,q−kc
∗
qcp−k

= −
∑

p∈Lk∩Ll

∑

q∈Lk

〈

φ, ep
〉 (〈

ep, ϕ
〉 〈

eq , ψ
〉+ 〈

eq , ϕ
〉 〈

ep, ψ
〉)

δp−l,q−kc
∗
qcp−k

= −
∑

p∈Lk∩Ll

∑

q∈Lk

δp−l,q−k
〈

φ, ep
〉 (〈

ep, ϕ
〉 〈

eq , ψ
〉+ 〈

eq , ϕ
〉 〈

ep, ψ
〉)

b∗
2k−l,q .

(4.6)

In particular

[

εk,k (φ;ϕ) , b∗
k (ψ)

]

= −
∑

p∈Lk

∑

q∈Lk

δp−k,q−k
〈

φ, ep
〉 (〈

ep, ϕ
〉 〈

eq , ψ
〉+ 〈

eq , ϕ
〉 〈

ep, ψ
〉)

b∗
k,q

= −2
∑

p∈Lk

〈

φ, ep
〉 〈

ep, ϕ
〉 〈

ep, ψ
〉

b∗
k,p. (4.7)
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4.1 Estimating the norm of9M

In this subsection we will prove the following:

Proposition 1 It holds that

M ! ≥ ‖�M‖2 ≥ M !
(

1 − M (M − 1)

2
‖ϕ‖36

)

.

Below we will see that ϕ is “almost completely delocalized,” i.e.,
∣
∣
〈

ep, ϕ
〉∣
∣ ∼

dim
(

	2 (Lk)
)− 1

2 = |Lk |− 1
2 , whence

‖ϕ‖36 ∼
√
√
√
√

∑

p∈Lk

1

|Lk |3
= |Lk |−1 (4.8)

and so the proposition implies that

‖�M‖2 ≥ C (M !) , M � |Lk | 12 ∼ kF |k| 12 . (4.9)

We note the following general estimates:

Lemma 1 Let (φk)k∈Z3∗ be a collection of vectors φk ∈ 	2 (Lk). Then for any� ∈ HN

∥
∥
∥
∥
∥
∥

∑

k∈Z3∗

bk (φk)�

∥
∥
∥
∥
∥
∥

≤
√∑

k∈Z3∗

‖φk‖2
∥
∥
∥
∥
N

1
2
E �

∥
∥
∥
∥

,

∥
∥
∥
∥
∥
∥

∑

k∈Z3∗

b∗
k (φk)�

∥
∥
∥
∥
∥
∥

≤
√∑

k∈Z3∗

‖φk‖2
∥
∥
∥(NE + 1)

1
2 �

∥
∥
∥ .

Proof For
∑

k∈Z3∗ bk (φk)� we estimate

∥
∥
∥
∥
∥
∥

∑

k∈Z3∗

bk (φk) �

∥
∥
∥
∥
∥
∥

=
∥
∥
∥
∥
∥
∥

∑

k∈Z3∗

∑

p∈Lk

〈

φk , ep
〉

c∗
p−kcp�

∥
∥
∥
∥
∥
∥

=
∥
∥
∥
∥
∥
∥

∑

p∈Bc
F

∑

k∈Z3∗

1Lk (p)
〈

φk , ep
〉

c∗
p−kcp�

∥
∥
∥
∥
∥
∥

≤
∑

p∈Bc
F

∥
∥
∥
∥
∥
∥

⎛

⎝
∑

k∈Z3∗

1Lk (p)
〈

φk , ep
〉

c∗
p−k

⎞

⎠ cp�

∥
∥
∥
∥
∥
∥

≤
∑

p∈Bc
F

√
∑

k∈Z3∗

1Lk (p)
∣
∣
〈

φk , ep
〉∣
∣2
∥
∥cp�

∥
∥ ≤

√∑

p∈Bc
F

∑

k∈Z3∗

1Lk (p)
∣
∣
〈

φk , ep
〉∣
∣2
√∑

p∈Bc
F

∥
∥cp�

∥
∥2

=
√∑

k∈Z3∗

‖φk‖2
√〈�,NE�〉 =

√∑

k∈Z3∗

‖φk‖2
∥
∥
∥
∥
N

1
2
E �

∥
∥
∥
∥

(4.10)
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by the usual fermionic estimate
∥
∥
∥

∑

p apc
∗
p

∥
∥
∥
Op

≤
√
∑

p

∣
∣ap

∣
∣
2. For the second estimate

we note that by the quasi-bosonic commutation relations of Eq. (4.3)

⎡

⎣
∑

k∈Z3∗

bk (φk) ,
∑

l∈Z3∗

b∗
l (φl)

⎤

⎦ =
∑

k,l∈Z3∗

δk,l 〈φk, φl〉 +
∑

k,l∈Z3∗

εk,l (φk;φl)

=
∑

k∈Z3∗

‖φk‖2 +
∑

k,l∈Z3∗

εk,l (φk;φl) (4.11)

whence the second estimate will follow from the first provided
∑

k,l∈Z3∗ εk,l (φk;φl) ≤
0. This is indeed the case since by definition

∑

k,l∈Z3∗

εk,l (φk;φl) = −
∑

k,l∈Z3∗

∑

p∈Lk

∑

q∈Ll

〈

φk, ep
〉 〈

eq , φl
〉

(

δp,qcq−l c
∗
p−k + δp−k,q−l c

∗
qcp

)

(4.12)

which factorizes as the negative of a sum of squares: Firstly

∑

k,l∈Z3∗

∑

p∈Lk

∑

q∈Ll

〈

φk, ep
〉 〈

eq , φl
〉

δp,qcq−l c
∗
p−k

=
∑

k,l∈Z3∗

∑

p∈Lk∩Ll

〈

φk, ep
〉 〈

ep, φl
〉

cp−l c
∗
p−k

=
∑

p∈Bc
F

⎛

⎝
∑

l∈Z3∗

1Ll (p)
〈

ep, φl
〉

cp−l

⎞

⎠

⎛

⎝
∑

k∈Z3∗

1k (p)
〈

ep, φk
〉

cp−k

⎞

⎠

∗
. (4.13)

Similarly

∑

k,l∈Z3∗

∑

p∈Lk

∑

q∈Ll

〈

φk, ep
〉 〈

eq , φl
〉

δp−k,q−l c
∗
qcp

=
∑

k,l∈Z3∗

∑

p∈(Lk−k)

∑

q∈(Ll−l)

〈

φk, ep+k
〉 〈

eq+l , φl
〉

δp,qc
∗
q+l cp+k (4.14)

=
∑

k,l∈Z3∗

∑

p∈(Lk−k)∩(Ll−l)

〈

φk, ep+k
〉 〈

ep+l , φl
〉

c∗
p+l cp+k

=
∑

p∈BF

⎛

⎝
∑

l∈Z3∗

1Ll−l (p)
〈

φl , ep+l
〉

c∗
p+l

⎞

⎠

∗⎛

⎝
∑

k∈Z3∗

1Lk−k (p)
〈

φk, ep+k
〉

cp+k

⎞

⎠ .

��
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Proof of Proposition 1 (Upper bound): For any � ∈ HN and φ ∈ 	2 (Lk) it holds that

∥
∥b∗

k (φ) �
∥
∥ ≤ ‖φ‖√〈�, (NE + 1) �〉 (4.15)

(this is a special case of Lemma 1). In particular, since ϕ ∈ 	2 (Lk) is normalized and
�M ∈ {NE = M} we have

‖�M‖2 = ∥
∥b∗ (ϕ) �M−1

∥
∥
2 ≤ ‖ϕ‖2 〈�M−1, (NE + 1) �M−1〉 = M ‖�M−1‖2

(4.16)

whence ‖�M‖2 ≤ M ! ‖ψFS‖2 = M !. ��
Obtaining the lower bound will require some additional work. We note the follow-

ing:

Lemma 2 For any l ∈ Z
3∗ and φ ∈ 	2 (Ll) it holds that

bl (φ) �M = δk,l M 〈φ, ϕ〉 �M−1 + M (M − 1)

2

[

εl,k (φ;ϕ) , b∗
k (ϕ)

]

�M−2.

In particular, for k = l,

bk (φ)�M = M 〈φ, ϕ〉 �M−1 − M (M − 1)

⎛

⎝
∑

p∈Lk

〈

φ, ep
〉 〈

ep, ϕ
〉2
b∗
k,p

⎞

⎠�M−2.

Proof We calculate

[

bl (φ) , b∗
k (ϕ)M

]

=
M
∑

j=1

b∗
k (ϕ)M− j [bl (φ) , b∗

k (ϕ)
]

b∗
k (ϕ) j−1

= δk,l 〈φ, ϕ〉
M
∑

j=1

b∗
k (ϕ)M−1 +

M
∑

j=1

b∗
k (ϕ)M− j εl,k (φ;ϕ) b∗

k (ϕ) j−1

= δk,l M 〈φ, ϕ〉 b∗
k (ϕ)M−1 + Mb∗

k (ϕ)M−1 εl,k (φ;ϕ)

+
M
∑

j=1

j−1
∑

j ′=1

b∗
k (ϕ)M− j b∗

k (ϕ) j−1− j ′ [εl,k (φ;ϕ) , b∗
k (ϕ)

]

b∗
k (ϕ) j

′−1 .

(4.17)

Here the third equation in (4.17) is obtained by iterating the second one and com-
muting the operator b∗

k (ϕ) to the left. Note that it follows from Eq. (4.6) that
[

εl,k (φ;ϕ) , b∗
k (ϕ)

]

commutes with b∗
k (ϕ). As bl (φ)ψFS = 0 = εl,k (φ;ϕ) ψFS

we thus find by applying (4.17) to ψFS that

bl (φ) �M = δk,l M 〈φ, ϕ〉 b∗
k (ϕ)M−1 ψFS +

⎛

⎝

M
∑

j=1

j−1
∑

j ′=1

1

⎞

⎠
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[

εl,k (φ;ϕ) , b∗
k (ϕ)

]

b∗
k (ϕ)M−2 ψFS

= δk,l M 〈φ, ϕ〉 �M−1 + M (M − 1)

2

[

εl,k (φ;ϕ) , b∗
k (ϕ)

]

�M−2. (4.18)

The k = l case follows by inserting Eq. (4.7). ��

Proof of Proposition 1 (Lower bound): We define ϕ(3) ∈ 	2 (Lk) by

ϕ(3) =
∑

p∈Lk

∣
∣
〈

ep, ϕ
〉∣
∣
2 〈
ep, ϕ

〉

ep. (4.19)

We then see by Lemma 2 that ‖�M‖2 obeys

‖�M‖2 = 〈

�M−1, bk (ϕ)�M
〉

=
〈

�M−1, M 〈ϕ, ϕ〉 �M−1 − M (M − 1)

⎛

⎝
∑

p∈Lk

〈

ϕ, ep
〉 〈

ep, ϕ
〉2 b∗

k,p

⎞

⎠�M−2

〉

= M
∥
∥�M−1

∥
∥2 − M (M − 1)

〈

�M−1, b
∗
k

(

ϕ(3)
)

�M−2

〉

. (4.20)

From this we can deduce the desired lower bound by induction. For M = 0, 1 we have
equality. Suppose that case M − 1 holds. Then

‖�M‖2 = M
∥
∥�M−1

∥
∥2 − M (M − 1)

〈

�M−1, b
∗
k

(

ϕ(3)
)

�M−2

〉

≥ M
∥
∥�M−1

∥
∥2 − M (M − 1)

∥
∥�M−1

∥
∥

∥
∥
∥b∗

k

(

ϕ(3)
)

�M−2

∥
∥
∥

≥ M
∥
∥�M−1

∥
∥2 − M (M − 1)

3
2

∥
∥
∥ϕ

(3)
∥
∥
∥

∥
∥�M−1

∥
∥
∥
∥�M−2

∥
∥

≥ M

(

(M − 1)!
(

1 − (M − 1) (M − 2)

2
‖ϕ‖36

))

− M (M − 1) ‖ϕ‖36 (M − 1)!

= M !
((

1 − (M − 1) (M − 2)

2
‖ϕ‖36

)

− (M − 1) ‖ϕ‖36
)

= M !
(

1 − M (M − 1)

2
‖ϕ‖36

)

(4.21)

where we recognized that

∥
∥
∥ϕ

(3)
∥
∥
∥ =

√
∑

p∈Lk

∣
∣
〈

ep, ϕ
〉∣
∣6 = ‖ϕ‖36 . (4.22)

The proof of Proposition 1 is complete. ��
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4.2 Action of the effective Hamiltonian on9M

We now consider the action of

Heff = H ′
kin + 2

∑

k∈Z3∗

∑

p,q∈Lk

〈

ep,
(

Ẽk − hk
)

eq
〉

b∗
k,pbk,q

= H ′
kin + 2

∑

k∈Z3∗

∑

p∈Lk

b∗
k

((

Ẽk − hk
)

ep
)

bk,p =: H ′
kin + HQB (4.23)

on �M , and in doing so prove the following:

Proposition 2 For �̂M = ‖�M‖−1 �M it holds that

∥
∥
∥(Heff − Mεk) �̂M

∥
∥
∥ ≤

2 ‖ϕ‖2∞
√
∑

l∈Z3∗
∥
∥Ẽl − hl

∥
∥
2
HS

√

1 − M2 ‖ϕ‖36
M

5
2 .

We start with

Lemma 3 We have

‖(Heff − Mεk)�M‖ ≤ M (M − 1)

2
‖E�M−2‖ (4.24)

where

E =
∑

p,q∈Lk

〈

ep, ϕ
〉 〈

eq , ϕ
〉

⎛

⎝
∑

l∈Z3∗

δp−l,q−k1Ll (p) b
∗
l

(

Alep
)

⎞

⎠ c∗
qcp−k . (4.25)

with Al = 2
(

Ẽl − hl
)

.

Proof From the first identity of Eq. (2.24) it follows that

[

H ′
kin, b

∗
k (ϕ)

] = b∗
k (2hkϕ) (4.26)

whence

[

H ′
kin, b

∗
k (ϕ)M

]

= Mb∗
k (2hkϕ) b∗

k (ϕ)M−1 , (4.27)

implying that

H ′
kin�M = Mb∗

k (2hkϕ)�M−1. (4.28)

For HQB we have by Lemma 2 that (abbreviating Al = 2
(

Ẽl − hl
)

)
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HQB�M

=
∑

l∈Z3∗

∑

p∈Ll
b∗
l
(

Alep
)
(

δk,l M
〈

ep, ϕ
〉

�M−1 + M (M − 1)

2

[

εl,k
(

ep;ϕ
)

, b∗
k (ϕ)

]

�M−2

)

= M
∑

p∈Lk

b∗
k
(

Akep
) 〈

ep, ϕ
〉

�M−1

+ M (M − 1)

2

∑

l∈Z3∗

∑

p∈Ll
b∗
l
(

Alep
) [

εl,k
(

ep; ϕ
)

, b∗
k (ϕ)

]

�M−2

= Mb∗
k (Akϕ) �M−1 + M (M − 1)

2

∑

l∈Z3∗

∑

p∈Ll
b∗
l
(

Alep
) [

εl,k
(

ep;ϕ
)

, b∗
k (ϕ)

]

�M−2.

In all then

Heff�M = Mb∗
k

(

2Ẽkϕ
)

�M−1 + M (M − 1)

2

∑

l∈Z3∗

∑

p∈Ll
b∗
l

(

Alep
)

× [

εl,k
(

ep;ϕ
)

, b∗
k (ϕ)

]

�M−2, (4.29)

so as ϕ is an eigenvector of 2Ẽk with eigenvalue εk ,

‖(Heff − Mεk) �M‖ ≤ M (M − 1)

2
‖E�M−2‖ . (4.30)

Here the error term on the right-hand side is

E = −1

2

∑

l∈Z3∗

∑

p∈Ll
b∗
l

(

Alep
) [

εl,k
(

ep;ϕ
)

, b∗
k (ϕ)

]

=
∑

l∈Z3∗

∑

p∈Lk∩Ll

∑

q∈Lk

δp−l,q−k
〈

ep, ϕ
〉 〈

eq , ϕ
〉

b∗
l

(

Alep
)

c∗
qcp−k, (4.31)

where we inserted the commutator of Eq. (4.6). This term can be rewritten as (4.25).
��

We can now estimate the error term E as follows:

Lemma 4 It holds that

‖E�M−2‖ ≤ 2M
√
M − 1 ‖ϕ‖2∞

√
∑

l∈Z3∗

∥
∥Ẽl − hl

∥
∥
2
HS ‖�M−2‖ .

Proof Write

Bp,q =
∑

l∈Z3∗

δp−l,q−k1Ll (p) bl
(

Alep
)

(4.32)
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for brevity, so that E given by Eq. (4.25) can be written as

E =
∑

p,q∈Lk

〈

ep, ϕ
〉 〈

eq , ϕ
〉

B∗
p,qc

∗
qcp−k . (4.33)

Then E∗E is given by

E∗E =
∑

p,p′,q,q ′∈Lk

〈

ϕ, ep
〉 〈

ϕ, eq
〉 〈

ep′ , ϕ
〉 〈

eq ′ , ϕ
〉

c∗
p−kcq Bp,q B

∗
p′,q ′c∗

q ′cp′−k . (4.34)

Note that by Lemma 1, the operators B∗
p,q obey

∑

p,q∈Lk

∥
∥
∥B∗

p,q�M−2

∥
∥
∥

2 ≤
∑

p,q∈Lk

∑

l∈Z3∗

δp−l,q−k1Ll (p)
∥
∥Alep

∥
∥2
∥
∥
∥(NE + 1)

1
2 �M−2

∥
∥
∥

2

= (M − 1)
∑

l∈Z3∗

∑

p∈Lk∩Ll

⎛

⎝
∑

q∈Lk

δp−l,q−k

⎞

⎠
∥
∥Alep

∥
∥2 ‖�M−2‖2

≤ (M − 1)
∑

l∈Z3∗

∑

p∈Ll

∥
∥Alep

∥
∥
2 ‖�M−2‖2 = (M − 1)

⎛

⎝
∑

l∈Z3∗

‖Al‖2HS
⎞

⎠ ‖�M−2‖2 .

(4.35)

Since
[

c∗
p−kcq , Bp,q

]

= 0 it holds that

c∗
p−kcq Bp,q B

∗
p′,q ′c∗

q ′cp′−k = Bp,qc
∗
p−kcqc

∗
q ′cp′−k B

∗
p′,q ′

= Bp,qc
∗
q ′cp′−kc

∗
p−kcq B

∗
p′,q ′ + Bp,q

[

c∗
p−kcq , c

∗
q ′cp′−k

]

B∗
p′,q ′ (4.36)

so using also that
[

c∗
p−kcq , c

∗
q ′cp′−k

]

= δp,p′δq,q ′ − δp,p′c∗
q ′cq − δq,q ′cp′−kc∗

p−k we

find

‖E�M−2‖2

=
∑

p,p′,q,q ′∈Lk

〈

ϕ, ep
〉 〈

ϕ, eq
〉 〈

ep′ , ϕ
〉 〈

eq ′ , ϕ
〉 〈

c∗
p′−kcq ′ B∗

p,q�M−2, c
∗
p−kcq B

∗
p′,q ′�M−2

〉

−
∑

p,q,q ′∈Lk

∣
∣
〈

ep, ϕ
〉∣
∣2
〈

ϕ, eq
〉 〈

eq ′ , ϕ
〉 〈

cq ′ B∗
p,q�M−2, cq B

∗
p,q ′�M−2

〉

−
∑

p,p′,q∈Lk

∣
∣
〈

eq , ϕ
〉∣
∣2
〈

ϕ, ep
〉 〈

ep′ , ϕ
〉 〈

c∗
p′−k B

∗
p,q�M−2, c

∗
p−k B

∗
p′,q�M−2

〉

+
∑

p,q∈Lk

∣
∣
〈

ep, ϕ
〉∣
∣
2 ∣
∣
〈

eq , ϕ
〉∣
∣
2
∥
∥
∥B∗

p,q�M−2

∥
∥
∥

2 =: T1 + T2 + T3 + T4. (4.37)
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We estimate the separate terms. For T1 we can apply the Cauchy–Schwarz inequality
and Eq. (4.35) to bound

|T1| ≤ ‖ϕ‖4∞
∑

p,p′,q,q ′∈Lk

∥
∥
∥c∗

p′−kcq ′ B∗
p,q�M−2

∥
∥
∥

∥
∥
∥c∗

p−kcq B
∗
p′,q ′�M−2

∥
∥
∥

≤ ‖ϕ‖4∞
∑

p,p′,q,q ′∈Lk

∥
∥
∥c∗

p−kcq B
∗
p′,q ′�M−2

∥
∥
∥

2 ≤ ‖ϕ‖4∞
∑

p′,q ′∈Lk

∥
∥
∥NE B

∗
p′,q ′�M−2

∥
∥
∥

2

≤ (M − 1)2 ‖ϕ‖4∞
∑

p′,q ′∈Lk

∥
∥
∥B∗

p′,q ′�M−2

∥
∥
∥

2 ≤ (M − 1)3 ‖ϕ‖4∞

×
⎛

⎝
∑

l∈Z3∗

‖Al‖2HS
⎞

⎠ ‖�M−2‖2 , (4.38)

and T2 is similarly bounded as

|T2| ≤ ‖ϕ‖4∞
∑

p,q,q ′∈Lk

∥
∥
∥cq ′ B∗

p,q�M−2

∥
∥
∥

∥
∥
∥cq B

∗
p,q ′�M−2

∥
∥
∥

≤ ‖ϕ‖4∞
∑

p∈Lk

√
√
√
√

∑

q,q ′∈Lk

∥
∥
∥cq ′ B∗

p,q�M−2

∥
∥
∥

2
√
√
√
√

∑

q,q ′∈Lk

∥
∥
∥cq B∗

p,q ′�M−2

∥
∥
∥

2

≤ ‖ϕ‖4∞
∑

p,q∈Lk

∥
∥
∥
∥
N

1
2
E B∗

p,q�M−2

∥
∥
∥
∥

2

≤ (M − 1)2 ‖ϕ‖4∞
⎛

⎝
∑

l∈Z3∗

‖Al‖2HS
⎞

⎠ ‖�M−2‖2 ,

(4.39)

the same estimate holding also for T3. Finally T4 is just bounded by

|T4| ≤ (M − 1)2 ‖ϕ‖4∞
⎛

⎝
∑

l∈Z3∗

‖Al‖2HS
⎞

⎠ ‖�M−2‖2 (4.40)

so combining the estimates we find

‖E�M−2‖ ≤ M
√
M − 1 ‖ϕ‖2∞

√∑

l∈Z3∗

‖Al‖2HS ‖�M−2‖

= 2M
√
M − 1 ‖ϕ‖2∞

√
∑

l∈Z3∗

∥
∥Ẽl − hl

∥
∥
2
HS ‖�M−2‖ . (4.41)

��
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Proposition 2 now follows by combiningLemma3with Lemma 4 andProposition 1
to see that

∥
∥
∥(Heff − Mεk) �̂M

∥
∥
∥ ≤ M (M − 1)

‖E�M−2‖
‖�M‖

≤ 2M2 (M − 1)
3
2 ‖ϕ‖2∞

√
∑

l∈Z3∗

∥
∥Ẽl − hl

∥
∥
2
HS

‖�M−2‖
‖�M‖

≤ 2M2 (M − 1)
3
2 ‖ϕ‖2∞

√
∑

l∈Z3∗

∥
∥Ẽl − hl

∥
∥
2
HS

√
√
√
√

(M − 2)!
M !

(

1 − M(M−1)
2 ‖ϕ‖36

)

= 2M
3
2 (M − 1) ‖ϕ‖2∞

√
∑

l∈Z3∗

∥
∥Ẽl − hl

∥
∥
2
HS

1
√

1 − M(M−1)
2 ‖ϕ‖36

≤
2 ‖ϕ‖2∞

√
∑

l∈Z3∗
∥
∥Ẽl − hl

∥
∥
2
HS

√

1 − M2 ‖ϕ‖36
M

5
2 . (4.42)

5 Estimation of one-body quantities

To proceed we must now derive some estimates on the one-body quantities involved -
we need to verify thatϕ is indeed “almost delocalized” and bound

∑

l∈Z3∗
∥
∥Ẽl − hl

∥
∥
2
HS.

We prove the following:

Proposition 3 For |k| � √
kF , it holds that

‖ϕ‖2∞ , ‖ϕ‖36 ≤ C

k2F |k| ,

and

∑

l∈Z3∗

∥
∥Ẽl − hl

∥
∥
2
HS ≤ Ck5F

for C > 0 independent of k and kF .

Note that the condition |k| � √
kF , namely |k| /√kF → 0 as kF → ∞, holds if

|k| ≤ kδ
F with δ < 1/2.

5.1 General estimates

To avoid unnecessary subscripts we consider instead of 	2 (Lk) a general n-
dimensional inner product space (V , 〈·, ·〉), on which a positive symmetric operator
h : V → V acts, with diagonalizing basis (ei )ni=1 and eigenvalues (λi )

n
i=1, and a fixed

v ∈ V such that 〈ei , v〉 > 0 for all 1 ≤ i ≤ n.
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Define Ẽ : V → V by

Ẽ =
(

h
1
2 (h + 2Pv) h

1
2

) 1
2 =

(

h2 + 2P
h
1
2 v

) 1
2
. (5.1)

Let ϕ ∈ V be a normalized eigenvector of Ẽ with greatest eigenvalue ε (> ‖h‖) (note
that we do not include the factor of 2 in this section), with phase chosen such that
〈

h
1
2 v, ϕ

〉

≥ 0. Then as Ẽ squares to h2 + 2P
h
1
2 v
, we have

ε2ϕ = h2ϕ + 2
〈

h
1
2 v, ϕ

〉

h
1
2 v (5.2)

whence

ϕ = 2
〈

h
1
2 v, ϕ

〉 (

ε2 − h2
)−1

h
1
2 v. (5.3)

This identity lets us describe the components of ϕ (with respect to (ei )ni=1) in terms
of the single unknown ε: Taking the inner product with ei yields

〈ei , ϕ〉 = 2
〈

h
1
2 v, ϕ

〉 〈

ei ,
(

ε2 − h2
)−1

h
1
2 v

〉

= 2
〈

h
1
2 v, ϕ

〉
√

λi

ε2 − λ2i

〈ei , v〉 (5.4)

and now we may note that 2
〈

h
1
2 v, ϕ

〉

is simply a constant independent of i . As ϕ is

by assumption normalized, we thus have

〈ei , ϕ〉 = 1
√
∑N

i=1
λi

(

ε2−λ2i

)2 |〈ei , v〉|2
√

λi

ε2 − λ2i

〈ei , v〉 , 1 ≤ i ≤ n. (5.5)

Note that by the variational principle ε2 ≥ Ẽ2 = h2 + 2P
h
1
2 v
, we have

ε2 ≥
〈

h
1
2 v,

(

h2 + 2P
h
1
2 v

)

h
1
2 v
〉

〈

h
1
2 v, h

1
2 v
〉 = 2 〈v, hv〉 +

〈

v, h3v
〉

〈v, hv〉 ≥ 2 〈v, hv〉 . (5.6)

So we immediately obtain the following:

Lemma 5 Let λmax = max1≤i≤n λi . Then provided 2 〈v, hv〉 > λ2max it holds that

|〈ei , ϕ〉| ≤ 2 〈v, hv〉
2 〈v, hv〉 − λ2max

√
λi√〈v, hv〉 |〈ei , v〉| , 1 ≤ i ≤ n.
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Proof We simply estimate

|〈ei , ϕ〉| = 1
√
∑N

i=1
λi

(

ε2−λ2i

)2 |〈ei , v〉|2
√

λi

ε2 − λ2i

|〈ei , v〉|

≤ 1

1
ε2

√
∑N

i=1 λi |〈ei , v〉|2
1

ε2 − λ2max

√

λi |〈ei , v〉|

= ε2

ε2 − λ2max

√
λi

〈v, hv〉 |〈ei , v〉| (5.7)

and note that by (5.6),

ε2

ε2 − λ2max
= 1

1 − λ2max
ε2

≤ 1

1 − λ2max
2〈v,hv〉

= 2 〈v, hv〉
2 〈v, hv〉 − λ2max

. (5.8)

��
For the statement of Theorem 1 it is also interesting to bound ε from above: We

just saw that

ε2 ≥ 2 〈v, hv〉 +
〈

v, h3v
〉

〈v, hv〉 (5.9)

and the right-hand side is in fact the leading contribution to ε2:

Lemma 6 Provided 2 〈v, hv〉 > λ2max it holds that

ε2 ≤ 2 〈v, hv〉 +
〈

v, h3v
〉

〈v, hv〉 + 4
〈

v, h3v
〉

λ2max
(

2 〈v, hv〉 − λ2max

)2 .

Proof By the identity ϕ =
∥
∥
∥

(

ε2 − h2
)−1

h
1
2 v

∥
∥
∥

−1 (
ε2 − h2

)−1
h

1
2 v we have that

〈

ϕ, h2ϕ
〉

=
〈

v, h3
(

ε2 − h2
)−2

v
〉

〈

v, h
(

ε2 − h2
)−2

v
〉 ≤

1

(ε2−λ2max)
2

〈

v, h3v
〉

1
ε4

〈v, hv〉

= ε4

(

ε2 − λ2max

)2

〈

v, h3v
〉

〈v, hv〉 ≤ (2 〈v, hv〉)2
(

2 〈v, hv〉 − λ2max

)2

〈

v, h3v
〉

〈v, hv〉 (5.10)

where we estimated as above. Continuing the estimate we then find

〈

ϕ, h2ϕ
〉

≤
〈

v, h3v
〉

〈v, hv〉 + (2 〈v, hv〉)2 − (

2 〈v, hv〉 − λ2max

)2

(

2 〈v, hv〉 − λ2max

)2

〈

v, h3v
〉

〈v, hv〉
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=
〈

v, h3v
〉

〈v, hv〉 + 4 〈v, hv〉 λ2max − λ4max
(

2 〈v, hv〉 − λ2max

)2

〈

v, h3v
〉

〈v, hv〉 ≤
〈

v, h3v
〉

〈v, hv〉

+ 4
〈

v, h3v
〉

λ2max
(

2 〈v, hv〉 − λ2max

)2 . (5.11)

From the eigenvalue equation for ε2 we can then conclude that

ε2 =
〈

ϕ, h2ϕ
〉

+ 2
∣
∣
∣

〈

h
1
2 v, ϕ

〉∣
∣
∣

2 ≤ 2
∥
∥
∥h

1
2 v

∥
∥
∥

2 ‖ϕ‖2 +
〈

v, h3v
〉

〈v, hv〉 + 4
〈

v, h3v
〉

λ2max
(

2 〈v, hv〉 − λ2max

)2

= 2 〈v, hv〉 +
〈

v, h3v
〉

〈v, hv〉 + 4
〈

v, h3v
〉

λ2max
(

2 〈v, hv〉 − λ2max

)2 . (5.12)

��

Estimating
∥
∥
∥Ẽ− h

∥
∥
∥
HS

Finally we consider
∥
∥Ẽ − h

∥
∥
HS =

∥
∥
∥
∥

(

h2 + 2P
h
1
2 v

) 1
2 − h

∥
∥
∥
∥
HS

. In [11, Eq. (7.22)] we

derived the identity

Ẽ − h = 4

π

∫ ∞

0

t2

1 + 2
〈

v, h
(

h2 + t2
)−1

v
〉 P

(h2+t2)
−1h

1
2 v
dt (5.13)

from which it follows that

0 ≤ 〈

ei ,
(

Ẽ − h
)

e j
〉 ≤ 2

√

λiλ j

λi + λ j
〈ei , v〉 〈v, e j

〉

, 1 ≤ i, j ≤ n. (5.14)

This is asymptotically optimal for “small v,” butwithout themean-field scalingwe also
need to consider “large v.” While a direct elementwise estimate appears to be more
involved in this regime, a good Hilbert–Schmidt estimate is in fact simpler. Covering
both regimes, we have the following:

Lemma 7 It holds that

∥
∥Ẽ − h

∥
∥
2
HS ≤ min

{

2 〈v, hv〉 , 4 ‖v‖4
}

.

Proof We first note that

∥
∥Ẽ − h

∥
∥
2
HS = tr

((

Ẽ − h
)2
)

= tr
(

Ẽ2 + h2 − Ẽh − hẼ
)

= 2 tr
(

h2 + P
h
1
2 v

− h
1
2 Ẽh

1
2

)

(5.15)
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as Ẽ2 = h2+2P
h
1
2 v
. Sincewemay trivially estimate that Ẽ ≥ h we can then conclude

∥
∥Ẽ − h

∥
∥
2
HS ≤ 2 tr

(

h2 + P
h
1
2 v

− h2
)

= 2
∥
∥
∥h

1
2 v

∥
∥
∥

2 = 2 〈v, hv〉 . (5.16)

For the other estimate we simply apply the elementwise estimate:

∥
∥Ẽ − h

∥
∥
2
HS =

n
∑

i, j=1

∣
∣
∣

〈

ei ,
(

Ẽ − h
)

e j
〉∣
∣
∣

2 ≤ 4
n
∑

i, j=1

λiλ j
(

λi + λ j
)2

∣
∣〈ei , v〉 〈v, e j

〉∣
∣2

≤ 4
n
∑

i, j=1

λiλ j
(

λi + λ j
)2

∣
∣〈ei , v〉 〈v, e j

〉∣
∣
2 ≤ 4

(
n
∑

i=1

|〈ei , v〉|2
)2

= 4 ‖v‖4 .

(5.17)

��

5.2 Proof of Proposition 3

To prove Proposition 3 we now only need to insert the specific one-body operators of
our problem; recall that in this case

hkep = λk,pep, λk,p = 1

2

(

|p|2 − |p − k|2
)

(5.18)

and

vk =
√

V̂k
2 (2π)3

∑

p∈Lk

ep. (5.19)

First, for ‖ϕ‖36 and ‖ϕ‖2∞, we trivially have that

‖ϕ‖36 =
√
∑

p∈Lk

∣
∣
〈

ep, ϕ
〉∣
∣6 ≤ √|Lk | ‖ϕ‖3∞ (5.20)

and by Lemma 5 we have the estimate

‖ϕ‖∞ ≤ 2 〈vk, hkvk〉
2 〈vk, hkvk〉 − λ2k,max

√

λk,max√〈vk, hkvk〉 max
p∈Lk

∣
∣
〈

ep, vk
〉∣
∣ (5.21)
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provided 2 〈vk, hkvk〉 − λ2k,max > 0. Moreover, under the condition that |k| � √
kF ,

the k-dependent quantities behave as (recall that V̂k = g |k|−2)

λk,max ∼ kF |k| , max
p∈Lk

∣
∣
〈

ep, vk
〉∣
∣ =

√

V̂k
2 (2π)3

∼
√

V̂k ∼ |k|−1 (5.22)

and

〈vk, hkvk〉 = V̂k
2 (2π)3

∑

p∈Lk

λk,p ∼ k3F . (5.23)

Here note that the behavior λk,max ∼ kF |k| can be deduced easily from (2.48). So the
estimate on ‖ϕ‖∞ in (5.21) boils down to

‖ϕ‖∞ ≤ C
k3F

k3F − C ′k2F |k|2
√
kF |k|
√

k3F

|k|−1 ≤ C
1

√

k2F |k|
. (5.24)

The estimate on ‖ϕ‖6 in (5.20) can be simplified using
√|Lk | ∼

√

k2F |k|. It follows
that

‖ϕ‖2∞ , ‖ϕ‖36 ≤ C

k2F |k| (5.25)

when |k| � √
kF , as claimed.

For
∑

l∈Z3∗
∥
∥Ẽl − h

∥
∥
2
HS we note that by Lemma 7, when |l| ≤ 2kF ,

∥
∥Ẽl − hl

∥
∥
2
HS ≤ min

{

2 〈vl , hlvl〉 , 4 ‖vl‖4
}

≤ C min
{

k3F , k4F |l|−2
}

= Ck3F min
{

1, kF |l|−2
}

(5.26)

and when |l| > 2kF

∥
∥Ẽl − hl

∥
∥
2
HS ≤ 4 ‖vl‖4 ≤ CV̂ 2

k |BF |2 ≤ Ck6F |l|−4 , (5.27)

whence
∑

l∈Z3∗

∥
∥Ẽl − h

∥
∥
2
HS ≤ C

∑

l∈B(0,
√
kF)∩Z3

k3F + C
∑

l∈B(0,2kF )\B(0,
√
kF)∩Z3

k4F |l|−2

+ C
∑

l∈Z3\B(0,2kF )

k6F |l|−4

≤ Ck
4+ 1

2
F + Ck5F + Ck5F ≤ Ck5F (5.28)

as claimed. ��
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6 Conclusion

We can now conclude the proof of the main result.

Proof of Theorem 1: For the first part of Theorem 1, by Proposition 2 and the estimates
of Proposition 3 we have

∥
∥
∥(Heff − Mεk) �̂M

∥
∥
∥ ≤ C

1

k2F |k|

√
∑

l∈Z3∗
∥
∥Ẽl − hl

∥
∥
2
HS

√

1 − M2

k2F |k|

M
5
2

≤ C |k|−1
√

k−4
F

∑

l∈Z3∗

∥
∥Ẽl − hl

∥
∥
2
HSM

5
2

≤ C |k|−1
√

kFM
5
2 (6.1)

where the assumption |k| ≤ kδ
F ensures the applicability of Proposition 3 and the

condition M ≤ kε
F ensures that

(

1 − M2

k2F |k|

)− 1
2 ≤ C .

For the second part of Theorem 1, concerning εk , we have by Lemma 6 that (remem-
bering to include a factor of 2)

εk ≤
√
√
√
√
√8 〈vk, hkvk〉 + 4

〈

vk, h3kvk
〉

〈vk, hkvk〉 + 16
〈

vk, h3kvk
〉

λ2k,max
(

2 〈vk, hkvk〉 − λ2k,max

)2 (6.2)

and

εk ≥
√

8 〈vk, hkvk〉 + 4

〈

vk, h3kvk
〉

〈vk, hkvk〉 ≥ C
√〈vk, hkvk〉 ≥ Ck

3
2
F . (6.3)

As
√
a + b − √

a ≤ b
2
√
a
we may then estimate

εk −
√

8 〈vk, hkvk〉 + 4

〈

vk, h3kvk
〉

〈vk, hkvk〉

≤ 1

2

√

8 〈vk, hkvk〉 + 4
〈

vk ,h3kvk
〉

〈vk ,hkvk 〉

16
〈

vk, h3kvk
〉

λ2k,max
(

2 〈vk, hkvk〉 − λ2k,max

)2

≤ C
1

k
3
2
F

k5F |k|2 (kF |k|)2
k6F

= Ck
− 1

2
F |k|4 (6.4)
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for the claim that

εk =
√

8 〈vk, hkvk〉 + 4

〈

vk, h3kvk
〉

〈vk, hkvk〉 + O

(

k
− 1

2
F |k|4

)

. (6.5)

The proof of Theorem 1 is complete. ��

Further explanation of (3.6) for�k in the Thermodynamic Limit

In the thermodynamic limit, in which we replace Riemann sums by the corresponding
integrals, we have

〈

vk, h
β
k vk

〉

= V̂k
2 (2π)3

∑

p∈Lk

λ
β
k,p ∼ V̂k

2 (2π)3

∫

Lk

(

k · p − 1

2
|k|2

)β

dp (6.6)

where Lk = {

p ∈ R
3 | |p − k| ≤ kF < |p|} is now the “solid” lune. By integrating

along the k · p = constant planes one may reexpress the integral, when |k| ≤ 2kF , as

∫

Lk

f

(

k · p − 1

2
|k|2

)

dp = 2π |k|
∫ kF

1
2 |k|

f

(

|k|
(

t − 1

2
|k|
))(

t − 1

2
|k|
)

dt

+ π

∫ kF+|k|

kF
f

(

|k|
(

t − 1

2
|k|
))(

k2F − (t − |k|)2
)

dt

(6.7)

with f (x) = xβ. It follows that for Coulomb

〈vk, hkvk〉 ∼ V̂k
2 (2π)3

(
2π

3
k3F |k|2

)

= 1

4

g

6π2 k
3
F ,

〈

vk, h
3
kvk

〉

∼ V̂k
2 (2π)3

(
2π

5
k5F |k|4 + π

6
k3F |k|6

)

≈ 1

4

g

10π2 k
5
F |k|2 (6.8)

whence

εk ≈
√
√
√
√

g

3π2 k
3
F + 4

1
4

g
10π2 k

5
F |k|2

1
4

g
6π2 k

3
F

=
√

g

3π2 k
3
F + 12

5
k2F |k|2 (6.9)

which is the previously mentioned Eq. (3.6).
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Further explanation of (3.8) for general potentials

Our analysis can be extended easily to any potential satisfying

V̂k ≥ 0,
∑

k∈Z3∗

V̂ 2
k < ∞. (6.10)

To be precise, let k ∈ Z
3∗ and M ∈ N satisfy V̂k � k−1

F and 1 ≤ M � kF |k| 12 , and
let εk, ϕk and �̂M be as in Theorem 1. The proof of Proposition 2 remains unchanged
and we only need to generalize slightly the one-body estimates in Proposition 3. We
can use exactly (5.21), (5.22) and (5.23), without substituting V̂k = g|k|−2, to get

‖ϕ‖∞ ≤ C
k3F |k|2 V̂k

k3F |k|2 V̂k − Ck2F |k|2
√
kF |k|

√

k3F |k|2 V̂k

√

V̂k

= C
V̂k

V̂k − Ck−1
F

1
√

k2F |k|
≤ C

1
√

k2F |k|
(6.11)

under the condition that V̂k � k−1
F . Using again (5.20) and

√|Lk | ∼
√

k2F |k|, we also
have

‖ϕ‖36 =
√
∑

p∈Lk

∣
∣
〈

ep, ϕ
〉∣
∣
6 ≤ √|Lk | ‖ϕ‖3∞ ≤ C

1

k2F |k| . (6.12)

Moreover, we can split

∑

l∈Z3∗

∥
∥
∥Ẽl − hl

∥
∥
∥

2

HS
=

∑

l∈2BF

∥
∥
∥Ẽl − hl

∥
∥
∥

2

HS
+

∑

l∈Z3\2BF

∥
∥
∥Ẽl − hl

∥
∥
∥

2

HS
(6.13)

and estimate by Lemma 7 that for |l| ≤ 2kF

∥
∥
∥Ẽl − hl

∥
∥
∥

2

HS
≤ min

{

2 〈vl , hlvl〉 , 4 ‖vl‖4
}

≤ C min
{

k3F |l|2 V̂l , k4F |l|2 V̂ 2
l

}

≤ C min
{

1, kF V̂l
}

k3F V̂l |l|2 . (6.14)

For |l| > 2kF we simply estimate

∥
∥
∥Ẽl − hl

∥
∥
∥

2

HS
≤ 4 ‖vl‖4 ≤ C |Ll |2 V̂ 2

l ≤ Ck6F V̂
2
l . (6.15)
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Thus

∑

l∈Z3∗

∥
∥
∥Ẽl − hl

∥
∥
∥

2

HS
≤ Ck3F

⎛

⎝
∑

l∈2BF

min
{

1, kF V̂l
}

V̂l |l|2 + Ck3F
∑

l∈Z3\2BF

V̂ 2
l

⎞

⎠ .

(6.16)

Inserting (6.11), (6.12) and (6.16) in the estimate in Proposition 2, we obtain (3.8).
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