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Abstract
We study a system of N trapped bosons in the Thomas–Fermi regime with an inter-
acting pair potential of the form gN N 3β−1V (Nβ x), for some β ∈ (0, 1/3) and gN

diverging as N → ∞. We prove that there is complete Bose–Einstein condensation
at the level of the ground state and, furthermore, that, if β ∈ (0, 1/6), condensation is
preserved by the time evolution.

Keywords Quantum gases · Bose–Einstein condensates · Quantum many-body
systems

1 Introduction andMain Results

In recent years, the analysis of quantum systems of interacting particles, in particu-
lar bosons, in suitable scaling regimes (mean-field, Gross–Pitaevskii, thermodynamic,
etc.) has represented a very flourishing line of research in mathematical physics. Start-
ing from the pioneering works [27, 30, 53], several results have been obtained along
this research line about the ground state behavior of interacting bosons and Bose–
Einstein condensation (BEC) [38, 40–42] in both the mean-field (see [28, 34–36, 49,
52] and references therein), in theGross–Pitaevskii (GP) regimes (see [6, 7, 29, 43–45]
and references therein) and in the thermodynamic limit (see [3, 25, 54] and references
therein), as well as about the many-body dynamics in the mean-field (see [22, 33, 47]
and references therein) and in the GP (see [5, 11, 23, 48] and references therein) set-
tings. As we are going to see in more details later, in both these regimes, the effective
behavior of the many-body system is shown to be suitably approximated studying an
effective one-particle nonlinear problem.

In the typical setting, a large number N of bosonic particles is confined in a box
or, more generally, by a trapping potential, and the bottom of the spectrum of the
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corresponding Hamiltonian, or its unitary evolution, is investigated as N → ∞. The
many-body Schrödinger operator has the form

H trap
N :=

N∑

j=1

(−� j + Vext(x j )
) + gN N 3β−1

∑

1� j<k�N

v(Nβ(x j − xk)), (1.1)

and it is supposed to act on L2
s (R

3N ), which is the subspace of L2(R3N ) consisting of
all functions which are symmetric with respect to permutations of the N particles in
3 dimensions. Here, Vext is the trapping potential, which for simplicity is assumed to
be homogeneous of order1 s (see also Remark 1.2), i.e.,

Vext(x) = λ|x |s, with s � 2 and λ > 0, (1.2)

while N 3βv(Nβ x) (with β > 0) is the pair interaction potential, which is suitably
rescaled by the prefactor gN /N . In the following we use the notation vN (x) :=
N 3βv(Nβ x). The parameter β > 0 varies in [0, 1] and, with gN = g = const.,
identifies different scaling regimes: mean-field for β = 0, mean-field and zero-range
for β ∈ (0, 1) and GP for β = 1. In fact, β is also a measure of the diluteness of
the system: indeed, denoting by ρ̄ the average density, we have ρ̄ � N

∥∥ρGP
N

∥∥∞ (see
[16]), where ρGP

N is the density associated to the condensate wave function.
In this paper we will investigate the Thomas–Fermi (TF) limit, where gN → ∞.

In the TF regime, one thus has (see Remark 1.3)

ρ̄R3
N ∝ N 1−3β

g
3

s+3
N

,

where RN ∼ N−β is the effective range of the interaction potential and g
1

s+3
N is the

size of the TF radius, i.e., the characteristic length scale of the condensate (see Remark
1.3). Hence, since gN → +∞ as N → ∞, the above quantity certainly tends to 0 for
β > 1/3, so that the gas is dilute and only binary scattering events are relevant; on the
opposite, for β < 1/3, the quantity may diverge, depending on the how fast gN tends
to +∞, so that any particle in the gas can interact with all the others, as in the typical
mean-field picture.

The final outcome in terms of effective description is physically different but it is
remarkable that, for any β ∈ (0, 1], a one-particle Schrödinger operator with cubic
nonlinearity is recovered as N → ∞, giving rise to the GP functional

E trap
GP (u) := 〈u, hu〉 + 4πg

∫

R3

dx |u(x)|4 (1.3)

1 The condition s � 2 is actually assumed only to simplify the presentation of the result, which holds true
with different (more involved) estimates of the error terms also for s � 0.
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in the stationary setting, where h is the one-body operator

h := −� + Vext, (1.4)

and to the GP time-dependent equation

i∂tψt = (−� + 8πg|ψt |2)ψt , (1.5)

in the dynamical one: note the absence of the trapping potential in the above evolution
equation, which is usually switched-off after the occurrence of BEC to observe the gas
dynamics. Only the coefficient g of such a nonlinear term changes for different values
of β: for β ∈ (0, 1) the coefficient is proportional to the integral of the interaction
potential (which has then to be assumed finite), while, for β = 1, its scattering length
appears. In both cases the coefficient g is assumed to be constant as N → ∞.

The physical motivation behind the choice of letting gN grow with N is that in
physical heuristics, the effective coefficient g is very often assumed to be large and
the asymptotics g → +∞ considered, which goes under the name of Thomas–
Fermi regime, because of a similarity at the level of the one-particle density with
the Thomas–Fermi theory of electrons. The main reason behind such a choice is that
in real experiments g ∝ aN , a being the measured scattering length of the interaction
potential, and therefore, even in presence of few thousands of atoms, the quantity
might be quite large compared to the other characteristic lengths of the system.

Another important motivation to let g = gN diverge is to take into account other
settings and, in particular, the thermodynamic limit, i.e., the regime in which N , L →
∞, but ρ := N/L3 is kept fixed: after rescaling the lengths this limit can be recast
in the form above and recovered for β = 1/3, gN = N 2/3. Finally, it is remarkable
that a quite consistent literature is available about the ground state behavior of the GP
functional in the asymptotic regime g → +∞, in particular in presence of rotation
(see [17, 18] and references therein), when vortices might appear as a manifestation
of the superfluidity of the system.

In this very same setting, the effective dynamics of vortices can also be studied [31]
and shown to be driven by the trapping potential: if at initial time a trapped bosonic
system is set in a condensate state with finitely many vortices (e.g., by putting it under
sufficiently fast rotation) and then it is let to evolve (switching off the rotation), it is
possible to follow the trajectories of vortex points and prove that they are determined
by an ODE depending only on the external trap. We are going to comment further on
this result below but we point out here that two key ingredients are needed in its proof:
the system is assumed to be in the TF regime and the effective evolution equation for
the condensate is given by the time-dependent GP equation. Here, we are precisely
concerned with proving that such assumptions make sense. More precisely, we show
that

1. in the TF regime (for β < 1/3, gN 
 N ) Bose–Einstein condensation takes place
at the level of the ground state of a system of interacting bosons;

2. in the same TF limit, the effective time-evolution of a state with sufficiently low
energy is governed by the time-dependent GP equation.
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A similar regime has indeed been studied so far at the many-body level only in [2,
13, 16]. However, in [16] the focus is different: the object of the study is the interplay
between the TF regime and the presence of a rapid rotation and its effect to the ground
state energy is investigated to leading order. We comment later on the similarities
between [2, 13] and our work.

Let us now provide some more details about the setting we are going to consider.
The main object under investigation is the many-body Hamiltonian (1.1) and its time
evolution, acting on bosonic (i.e., symmetric) wave functions in L2

s (R
3N ). We restrict

our analysis to interaction potentials satisfying the assumptions below.

Assumption 1 The potential v �= 0 is of positive type, i.e., v̂ � 0 and spherically
symmetric. Furthermore, we assume that |x |v ∈ L1(R3), v ∈ L2(R2).

Let us comment further about the characteristic length scales of the system. The
most important one is indeed the range of the interaction potential ∝ N−β and, if gN

is not too large, we claim that it is the only relevant one to be compared with the mean
free path of the particles ∝ N−1/3. This yields the threshold at β = 1/3 mentioned
above. Another important length scale is provided by the scattering length associated
to vN : for a potential v the scattering length is defined through the solution of the zero
energy scattering equation, i.e.,

(−� + 1
2v

)
f = 0, (1.6)

with the boundary condition f (x) → 1 as |x | → ∞. The scattering length a is then
given by

8πa =
∫

R3

dx v(x) f (x). (1.7)

If we denote by aN the scattering length of the potential gN N 3β−1v(Nβ x) =
gN vN (x)N−1 then one can go through the Born approximation of aN to write

aN = gN

8π N

∫

R3

dx vN (x) fN (x) ∼ gN

8π N

∫

R3

dx v(x), (1.8)

where fN is the solutionof the related scattering equation, i.e.,−� fN +(gN /2)vN fN =
0. In order for the expansion to make sense, one has to require that v is integrable and

gN 
 N 1−β, (1.9)

which we always do, but at the same this implies that

aN 
 RN ∼ N−β, (1.10)

for any β ∈ [0, 1). In other words, aN is always much smaller than the range of the
potential in the regime we are going to consider and plays no role in the picture. A
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transition is expected to occur when gN ∼ N 1−β , for β � 1/3, which is precisely the
case considered2 in [13]. The last characteristic length of the problem is the healing
length ξN , which is given by (see [24, Sect. 4.1])

ξN = 1√
N

∥∥ρGP
N

∥∥∞
∼ N− 1

2 g
− 3

2(s+3)
N . (1.11)

Hence, one can readily check that under the conditions of next Theorem 1.1

aN 
 ξN 
 RN . (1.12)

We denote by E0(N ) the ground state energy of the system, i.e.,

E0(N ) := inf σ
(

H trap
N

)
≡ inf

{〈
ψ, H trap

N ψ
〉

| ψ ∈ L2
s (R

3N ), ‖ψ‖L2
s (R3N ) = 1

}
.

(1.13)

Moreover, 
0 ∈ L2
s (R

3N ) is the unique (up to an overall phase) ground state of HN

and we denote by γ
0 the associated reduced density matrix, i.e.,

γ
0 := Tr2,...,N |ψ0〉〈ψ0|, (1.14)

where with Tr2,...,N we denoted the partial trace on all particles but one.
It is well known that in themean-field regime (β = 0, gN = g constant), the ground

state energy per particle is well approximated, in the limit N → ∞, by the infimum
of the Hartree functional, which approximately coincides with the restriction of the
quadratic form associated to HN to functions of the formψ = u⊗N , with u ∈ L2(R3),
‖u‖L2(R3) = 1, i.e.,

E trap
H (u) := 〈u, hu〉 + 1

2 〈u ⊗ u, vu ⊗ u〉. (1.15)

More precisely, in [34], it is shown that

lim
N→∞

E0(N )

N
= inf

{
E trap
H (u)| ‖u‖L2(R3) = 1

}
=: EH. (1.16)

For trapped bosons in the mean field regime, it has been proven that the system
exhibits BEC and its excitation spectrum can be approximated via the well-known
Bogoliubov approximation [28], with corrections that can be explicitly identified [9,
10]. Analogous results are proven for a system of bosons in a box in the same regime
[19, 35, 52].

Similarly, it is also known that in the GP regime (β = 1, gN = g constant), the
ground state energy per particle can be approximated, in the limit N → ∞, by the

2 In the notation of [13], β = 1 − κ and gN = Nκ , so that gN = N1−β .
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infimum of the GP effective energy (1.3). Indeed, in [43] it is proven that, in the limit
N → ∞, it holds (recall (1.3))

lim
N→∞

E0(N )

N
= inf

{
E trap
GP (u)| ‖u‖L2(R3) = 1

}
=: E trap

GP . (1.17)

Theoccurrence ofBEC in this case has beenproven [15, 44] aswell as the validity of the
Bogoliubov approximation [14, 45]. Similar results both on BEC and the excitation
spectrum are available in (see [7, 29, 30] and references therein) for N interacting
bosons in a box.

Concerning the intermediate regimes, we have to distinguish between two different
cases. The first interesting regime is studied in [8] and it is characterized by taking
β ∈ (0, 1) and gN = g > 0 small enough. In [8] the validity of the Bogoliubov
theory is proven in the aforementioned regime, studying both the ground state energy
and the excitation spectrum of the system. More recently another regime has been
investigated, which can be thought as an interpolation between the GP regime and the
thermodynamic limit and it is described by β ∈ (0, 1) small enough and gN = N 1−β .
In [2, 13] it is proven that, in such regime, the low-energy states exhibit BEC and
the low-energy excitation spectrum is studied. Note that, according to the discussion
above on the characteristic length scales of the problem, this choice corresponds to a
scattering length of the interaction of the same order of its effective range.

In the presentwork, on the other hand,we aremostly interested in the time-evolution
of condensates in the TF regime (gN � 1). For the sake of completeness, we also show
that BEC occurs in the same setting, at least at the level of the ground state or of any
approximate ground state, as it can be easily obtained by a suitable adaptation of the
arguments in [28, 52] and with a much simpler proof (thanks to stronger assumption
on β and gN ) than the ones in [2, 13]. More precisely, we prove that the ground state
energy of (1.1), as long as β < 1/3, exhibits BEC in the (unique) minimizer of the
GP functional, which in our setting reads as

E trap
GP,N (ψ) := 〈ψ, hψ〉 + gN

2
(∫ v)

∫

R3

dx |ψ(x)|4. (1.18)

Theorem 1.1 (BEC in the ground state) Let HN be the Hamiltonian defined in (1.1)
and let vN be an interaction potential such that v satisfies Assumption 1. Assume that

β <
1

3
, and gN 
 min

{
N

(1−3β)(s+3)
s+5 , N

(s+3)β
2(s+1)

}
. (1.19)

Let 
 be any normalized many-body state such that 〈
, HN 
〉 � EN + o(N ) and let
γψ be the associated reduced density matrix defined as in (1.14). Then,

1 − 〈ϕGP
N , γ
ϕGP

N 〉 � Cg
s+5
s+3
N N 3β−1 + Cg

2(s+1)
s+3

N N−β, (1.20)

where ϕGP
N ∈ L2(R3) is the unique (up to a phase) normalized minimizer of (1.18).
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Remark 1.2 (Homogeneous trapping potential) For the sake of simplicity, we assumed
that the trapping potential Vext in (1.2) is homogeneous of order s > 0. As it is cus-
tomary in the TF regime, such an assumption can be relaxed and replaced with the
weaker condition that Vext is asymptotically homogeneous, i.e., Vext(x) ∼ |x |s , as
|x | → +∞, because only the behavior at large |x | matters to leading order. This how-
ever makes the estimates of the error terms as well as the conditions on the parameters
more implicit.

Remark 1.3 (GP minimizer) We point out that, since the GP functional in (1.18)
depends on N , the same holds for its minimizer ϕGP

N . Indeed, it is very well known
that the density |ϕGP

N |2 is pointwise close as N → ∞ to the minimizer of the TF
functional

E trap
TF,gN

(ρ) =
∫

R3

dx
{

Vext(x)ρ + gN

2
(∫ v)ρ2

}
(1.21)

among positive densities ρ normalized in L1. More precisely, one has (see, e.g., [41,
Thm. 2.2])

inf‖ψ‖2=1
E trap
GP,N (ψ) = inf

ρ�0,‖ρ‖1=1
E trap
TF,gN

(ρ) (1 + o(1))

= g
s

s+3
N inf

ρ�0,‖ρ‖1=1
E trap
TF,1(ρ) + O

(
g

− 2
s+3

N log gN

)
, (1.22)

as gN → +∞, and, denoting by ρTF
gN

the unique TF minimizer,

g
3

s+3
N ρTF

gN

(
g

1
s+3
N x

)
= ρTF

1 (x),

∥∥∥∥∥g
3

s+3
N

∣∣∣∣ϕ
GP
N

(
g

1
s+3
N ·

)∣∣∣∣
2

− ρTF
1

∥∥∥∥∥∞
= o(1),

(1.23)

i.e., both the GP and TF minimizers spread over a length scale g
1

s+3
N (TF radius) and

tend pointwise to 0 as N → +∞.

Remark 1.4 (Excitation spectrum) In the present paper we do not investigate the exci-
tation spectrum in the TF regime, but we remark that for a system of N bosons confined
in a box, it is possible to study it with similar techniques as in [52]. The extension to
the case of trapped bosons is however not completely trivial and beyond the scope of
the present paper.

Remark 1.5 (Rotating systems) It would be interesting to generalize our result to rotat-
ing systems. It is indeedwell-know that if the rotational velocity�rot of the condensate
is not too large, i.e., it is below a critical threshold�c(N ), the GPminimizer is unique.
In this case, the proof of BEC is expected to hold with minor modifications. For faster
rotation however the GP functional is known to have more than one minimizer. In that
case the proof of BEC is more involved and one expects BEC in the mixed state given
by convex combination of the GP minimizers (see [39, 43]).
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As already anticipated above, after having proven that there is BEC in the ground
state, a natural question that arises iswhetherBEC is preservedor not by time evolution.
More explicitly, the questionwewould like to answer iswhetherwecanfindan effective
dynamics for a single particle state that well describes the evolution of the condensed
state. We consider a system of N trapped identical bosons, as described before, and
we suppose that at the initial time the state is condensed. After a while, we remove
the trap, thus the Hamiltonian of the system becomes

HN =
N∑

j=1

(−� j ) + gN N 3β−1
∑

1� j<k�N

v(Nβ(x j − xk)),

with domain D(HN ) := L2
s (R

3N ) ∩ H2(R3N ). The dynamics of the system is then
encoded in the fact that the state at time t , ψt ∈ L2

s (R
3N ), is a solution of the

Schrödinger equation

{
i∂tψt = HN ψt ,

ψt |t=0 = ψ0.
(1.24)

We prove that, up to some conditions onβ and gN , we can find an effective equation,
i.e., the time-dependent GP equation in the TF limit, which reads

i∂tϕt = ( − � + gN |ϕt |2
)
ϕt (1.25)

such that ψt converges to the solution of the effective problem. Although we need
some technical assumptions on the solution ψt , we are able to provide an explicit rate
of convergence.

In the case of dilute limits, this question already has some answers. For example,
it is well known [21, 22, 26, 47, 51] that in the mean-field limit, if the initial state ψ0
exhibits BEC on ϕ0, then ψt exhibits BEC on a family of single particle states {ϕt }t∈R
which solve the nonlinear Hartree equation:

i∂tϕt =
(
−� + v ∗ |ϕt |2

)
ϕt . (1.26)

A similar result for theGP regime iswell know (see [4, 11, 22, 23, 48] and references
therein). Meaning that if the initial datum exhibits BEC, then BEC is preserved also
at later times on a family of single particle states {ϕt }t∈R which solve the nonlinear
GP equation:

i∂tϕt = ( − � + 8πg |ϕt |2
)
ϕt , (1.27)

where g is a constant which is defined, in the limit as N → ∞, as N times the
scattering length of the system, i.e., Na → g as N → ∞.

As we already discussed for the ground state energy, also for the dynamical frame-
work there are different intermediate regimes corresponding to β ∈ (0, 1). Also in
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this case [48] if there is BEC at the initial state, there is still BEC in the many-body
state of the system at later times on a family of single particle states {ϕt }t∈R which
solve the following nonlinear equation:

i∂tϕt = ( − � + (∫ v) |ϕt |2
)
ϕt . (1.28)

Moreover, for the same regime, a norm approximation for the evolution of an initial
state exhibiting BEC is also available (see [12]). This last nonlinear equation is rather
similar to the GP equation, with the major difference being that instead of having the
constant g here we find

∫
v. This is what one should expect since in this regime, N

times the scattering length of the pair potential goes to
∫

v in the limit N → ∞.
Thus, if we now look at our setting in which Na = O(gN ), we can expect that

the effective dynamics is a cubic nonlinear Schrödinger equation. Since the effective
scattering length of our potential grows as gN as N → ∞, such an equation can not
be independent of N .

Moreover, we have that, in the sense of distributions, N 3βv
(
Nβ x

) → (∫
v
)
δ0 (x)

as N → ∞. Using this, one could also see equation (1.28) as a limit for N → ∞ of an
Hartree equation as in (1.26) with the substitution v → N 3βv

(
Nβ ·). Notice also that

this sort-of intermediate equation is still N dependent, but has now the advantage of
being a good candidate for the equation governing the dynamics of the single particle
state for our system.

Our discussion above led us to guess that we can expect condensation at later times
only on a state which is still N−dependent. For this purpose we will need to consider
two different differential equations. In analogy to the GP limit, from now on we define
the GP equation as

i∂tϕ
GP
t =

(
−� + gN (∫ v)

∣∣∣ϕGP
t

∣∣∣
2
)

ϕGP
t . (1.29)

In what follows we will need to work with the associated GP functional. Since to
study the dynamics we switch off the trap, to distinguish this functional from the one
introduced before, we define

E free
GP (u) :=

∫

R3
dx |∇u(x)|2 + gN

2
(∫ v)

∫

R3
dx |u(x)|4. (1.30)

Theorem 1.6 (Dynamics) Let β ∈ (0, 1/6) and λ ∈ (3β, 1 − 3β). Let ψt be the
solution of (1.24) and ϕGP

t be the solution of (1.29) with initial data respectively ψ0
and ϕ0, both with norm equal to 1. Suppose that v satisfies Assumption 1. It holds true
that

∥∥∥γ (1)
ψt

− |ϕGP
t 〉〈ϕGP

t |
∥∥∥ �

√
2

(
N

1−λ
2

∥∥∥γ
(1)
ψ0

− |ϕ0〉〈ϕ0|
∥∥∥

1
2 + N

3β−λ
2

)
eCvCN (ϕ0,t)gN |t |

+C
√

gN N−β
(
1 + E free

GP (ϕ0) + gN N−β‖ϕ0‖2L∞
)

eCvCN (ϕ0,t)2gN |t |,

(1.31)
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where ‖·‖ denotes the operator norm and the constant Cv only depends on the potential
v and CN (ϕ0, t) is given by

CN (ϕ0, t) := ‖ϕ0‖H2(R3) e
Cg2N

(
[E free

GP (ϕ0)]2+g2N N−2β‖ϕ0‖4L∞(R3)

)
|t |

. (1.32)

Remark 1.7 (Time-scale of the GP approximation) The initial datum determines the
maximal time-scale on which the GP approximation makes sense through the quantity
CN (ϕ0, t) and in particular the exponential appearing in (1.32). This in turn depends
on the GP energy of the initial datum via (1.32), which, according to (1.22), can not
be smaller than Cgs/(s+3)

N . We stress that, although we switch off the trap in studying
the dynamics, heuristically ϕ0 is the initial state of the trapped system: this is why
here we suppose that E free

GP (ϕ0) ∼ Cgs/(s+3)
N . Now, the exponential on the right hand

side of (1.32) is bounded by a constant as long as

t < t� ∼ g
− 2(2s+3)

s+3
N . (1.33)

Note indeed that, assuming the H2 norm of ϕ0 to be bounded uniformly, the second
summand in the exponent in (1.32) ismuch smaller than the first, i.e., of order g2

N N−2β ,
which vanishes because of the factor N−2β (see also below). For a time shorter than
t� now, CN (ϕ0, t) can be bounded by a constant. Plugging this bound into (1.31) and
using similar arguments as above, one gets

∥∥∥γ (1)
ψt

− |ϕGP
t 〉〈ϕGP

t |
∥∥∥ ≤ C

(
N

1−λ
2

∥∥∥γ (1)
ψ0

− |ϕ0〉〈ϕ0|
∥∥∥

1
2 + N

3β−λ
2 + g

2s+3
2(s+3)
N N− β

2

)
,

(1.34)

which tends to 0 as N → +∞ provided the initial datum is not too far from a
condensate on ϕ0 and assuming

gN 
 N
β(s+3)
2s+3 . (1.35)

Note that, due to the kinetic energy being sub-leading with respect to the potential
energy in the Thomas Fermi regime, to determine the optimal time scale for the
validity of the GP approximation is not an easy task.

Remark 1.8 (Hartree vs GP approximation) The estimate (1.31) is obtained via the
following inequality

∥∥∥γ (1)
ψt

− |ϕGP
t 〉〈ϕGP

t |
∥∥∥ �

∥∥∥γ (1)
ψt

− |ϕH
t 〉〈ϕH

t |
∥∥∥ + 2

∥∥∥ϕGP
t − ϕH

t

∥∥∥
2
,

wherewe denote byϕH
t the solution of theHartree equation (see (3.1)).More precisely,

the first line in the right hand side of (1.31) is the estimate of
∥∥∥γ (1)

ψt
− |ϕH

t 〉〈ϕH
t |

∥∥∥ and

the second line is a bound for 2
∥∥ϕGP

t − ϕH
t

∥∥
2. Note then that our result suggests
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that β = 1/7 is the threshold from Hartree to GP. More precisely, if we assume
condensation on the initial state ϕ0 and gN N−β 
 1 (see Remarks 1.7 and 1.9), then
for β < 1/7 we see that for values of λ arbitrarily close to 1 − 3β, Hartree gives

a better estimates. However, if β > 1/7, the term
∥∥∥γ (1)

ψt
− |ϕH

t 〉〈ϕH
t |

∥∥∥ gives a worse

approximation than
∥∥ϕGP

t − ϕH
t

∥∥
2. Note also that the interval of times we can cover

in Theorem 1.6 is the same for both the Hartree and the GP approximations since the
constant CN (ϕ0, t) in (1.32) is appearing in both of them.

Remark 1.9 (Time-scale of the vortex dynamics)As anticipated, it would be interesting
to compare our result with the findings of [31], concerning the effective dynamics of
vortices.3

However, a first major difference with the setting considered there is the absence of
the trapping potential, which is mostly due to a technical obstruction for the propaga-
tion in time of suitable bounds along the nonlinear dynamics. This difference makes a
naive comparison (i.e., for Vext = 0) not so meaningful, but in absence of an external
trap, t� in (1.33) is always much smaller than the characteristic time-scale of the vortex
dynamics in [31], i.e., tvortex ∼ g2/(s+3)

N log gN . However, if gN is chosen to grow very
slowly with respect to N , i.e. g3

N 
 log log N , then the time of the vortices can be
achieved.

1.1 Outline and Sketch of the Proofs

The paper is organized as follows. In Sect. 2 we prove Theorem 1.1, whose goal is to
prove BEC of the ground state 
0 of HN on the one-particle state ϕGP

N . The proof’s
strategy is very similar to the one about the mean-field scaling studied in [28, 52].
More precisely,

• We first approximate the GP interaction with respect to the Hartree one, using
some uniform bounds on ϕGP

N (see Proposition 2.4).
• Then, we follow the ideas already developed in [28, 52] to get a bound on the
expected number of particles in the ground state which are not in ϕGP

N (see Propo-
sition 2.5).

• Finally, we use the aforementioned bound to prove the condensation estimate. To
do that we need to study, in the limit N → +∞, the bottom of the spectrum of the
effective GP Hamiltonian as well as its spectral gap, this is done in Proposition
2.1.

In Sect. 3 we prove Theorem 1.6. The main ideas are the following:

• First we approximate the many body dynamics with the Hartree evolution. In this
part we follow the ideas developed in [47] using also some Sobolev bounds on the
Hartree state at time t which are proved in Proposition 3.1.

• Then, we compare the Hartree dynamics with the GP one using Grönwall’s lemma
(see Proposition 3.5).

3 Note that, differently to the one of our paper, the setting in [31] is two-dimensional. This is indeed a
natural framework to study the motion of vortices as two-dimensional objects. However, this setting can be
thought as a system with a cylindrical trap. This justifies our comparison.
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In general, we consider a scaling limit in which the coupling constant, gN , is N -
dependent. This choice requires a careful analysis to keep track of the N -dependence
in all the bounds we need to prove both Theorems 1.1 and 1.6.

2 Ground State Energy

The aim of this section is to prove Theorem 1.1. We start by recalling that, under our
assumptions, the GP functional in (1.18) admits a unique positive minimizer, which
for short we denote in this section by ϕGP (in place of ϕGP

N ) and which satisfies the
Euler-Lagrange equation

(−� + Vext)ϕ
GP + gN (∫ v)|ϕGP|2ϕGP = μGPϕ

GP, (2.1)

where

μGP := E trap
GP,N + gN

2
(∫ v)‖ϕGP‖4L4(R3)

. (2.2)

Because of the uniqueness of the solution to (2.1), ϕGP is also the ground state of the
GP operator hGP, defined as

hGP := −� + Vext + gN (∫ v)|ϕGP|2. (2.3)

One can find a complete set of normalized eigenfunctions {ϕn}n∈N for the GP operator
hGP, where we identify ϕ0 ≡ ϕGP. Given that the spectrum of hGP is discrete, we
can assume that the corresponding eigenvalues are ordered in such a way that μGP ≡
μ0 < μ1 and μ j ≤ μ j+1 for any j ≥ 1. In what follows it is very important that the
inequality μGP < μ1 is strict, which is due to the fact that hGP has a unique ground
state (see also Proposition 2.1).

To prove Theorem 1.1 it is convenient to introduce an operator, which we callN+,
that counts the number of particles outsideϕGP, i.e., the number of excited particles. For
short, we now set P := |ϕGP〉〈ϕGP| and Q := 1− P = ∑

n �=0 |ϕn〉〈ϕn|. Furthermore,
Pj and Q j will denote copies of the operators P and Q acting on the j−th particle.
The operator N+ can then be explicitly written as

N+ :=
N∑

j=1

Q j . (2.4)

We now briefly explain the strategy of the proof of Theorem 1.1. In order to prove
BECof the ground state
0 of HN in the one-particle stateϕGP,weprove inProposition
2.5 an upper bound to 〈
0,N+
0〉. To do that, we need to prove a lower bound on
the energy gap μ1 − μGP.
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2.1 Preliminary Estimates

In this section we prove a lower bound for the energy gap μGP − μ1 and we estimate
‖ϕGP‖L∞(R3) and ‖∇ϕGP‖L∞(R3) in terms of gN .

2.1.1 Energy Gap

Acting through the unitary transformation defined by

ϕ(x) = ε
3

s+2 ψ
(
ε

2
s+2 x

)
, ε := (gN (∫ v))

− s+2
2(s+3) (2.5)

one gets

〈ϕ, hGPϕ〉 = ε− 2s
s+2

〈
ψ,

(
−ε2� + Vext + |ψε

0 |2
)

ψ
〉
=: ε− 2s

s+2 〈ψ, hεψ〉, (2.6)

where ψε
0 is the ground state of hε with energy με

0, which is explicitly given by

ϕGP(x) =: ε
3

s+2 ψε
0

(
ε

2
s+2 x

)
. (2.7)

Analogously, we denote by με
1 > με

0 the second lowest eigenvalue
4 of hε, and by ψε

1
the associated normalized eigenstate. It easily follows from (2.6) that

μ1 − μGP = ε
− 2s

(s+2)
(
με
1 − με

0

)
. (2.8)

To study the energy gap, it is then sufficient to find a bound for με
1 − με

0, that is what
we do in the next proposition.

Proposition 2.1 (Energy gap) There exists a constant C > 0 depending only on v and
Vext such that

με
1 − με

0 > Cε2. (2.9)

As a consequence, there exists a constant C > 0 depending only on v and Vext such
that

μ1 − μGP > Cg
− 2

s+3
N . (2.10)

A key ingredient for the proof of Proposition 2.1 is an integral estimate for ψε
1 . This

is the content of the next proposition, whose proof is very similar to [46, Proposition
3.5].

4 Note that the strict inequality με
1 > με

0 follows from the uniqueness of the ground state of hε .
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Proposition 2.2 (Integral decay estimates) Let A(x) be the Agmon distance associated
to Vext(x) = k|x |s (s � 2), i.e.,

A(x) = √
k

|x |1+ s
2

1 + s/2
. (2.11)

Then
∫

R3

dx e
A(x)

ε2 |ψε
1 (x)|2 � (1 + με

1)e
C
ε2

(1+με
1), (2.12)

where C > 0 is a positive constant which depends only on the trapping potential Vext.

In the proof we use the following lemma.

Lemma 2.1 Let W (x) := Vext(x) + |ψε
0 (x)|2 − με

1 and let �(x) := A(x)/2ε2, where
A(x) is as in (2.11). It holds true that

∫

R3

dx
(

W (x) − ε2|∇�(x)|2
)

e2�(x)|ψε
1 (x)|2 � 0. (2.13)

The proof of the lemma above is an adaptation of [46, Lemma 3.6].

Proof of Proposition 2.2 We set

� :=
{

x ∈ R
3 | Vext(x) − 4με

1 < 4
}

(2.14)

and

�(x) := 1

2ε2
A(x), (2.15)

so that

|∇�(x)|2 = 1

4ε2
Vext(x). (2.16)

We then have that for each x ∈ �c ≡ R
3 \ �,

(
Vext(x) + |ψε

0 (x)|2 − με
1

)
− ε2|∇�(x)|2 � 1. (2.17)

Inwhat followswe use W (x) to denote the potential W (x) := Vext(x)+|ψε
0 (x)|2−με

1.
By (2.17), we get

∫

�c

dx e2�(x)|ψε
1 (x)|2 �

∫

�c

dx
(

W (x) − ε2|∇�(x)|2
)

e2�(x)|ψε
1 (x)|2
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� −
∫

�

dx
(

W (x) − ε2|∇�(x)|2
)

e2�(x)|ψε
1 (x)|2,

(2.18)

where in the last inequality we used that

∫

R3

dx
(

W (x) − ε2|∇�(x)|2
)

e2�(x)|ψε
1 (x)|2 � 0, (2.19)

which is what is stated in Lemma 2.1. Using now that W (x)− ε2|∇�|2 � −με
1, from

(2.18), we have

∫

�c

dx e2�(x)|ψε
1 (x)|2 � με

1

∫

�

dx e2�(x)|ψε
1 (x)|2, (2.20)

which implies

∫

R3

dx e2�(x)|ψε
1 (x)|2 � (με

1 + 1)
∫

�

dx e2�(x)|ψε
1 (x)|2. (2.21)

To conclude, we bound the integral in the r.h.s. above. It is then enough to use that
there exists a constant C > 0 which depends only on the trapping potential such that

sup
x∈�

e
�(x)

ε2 � e
C
ε2

(1+με
1). (2.22)

We then get that

∫

R3
dx e2�(x)|ψε

1 (x)|2 � (με
1 + 1)e

C
ε2

(1+με
1). (2.23)

��
Proposition 2.3 (Boundedness of με

j ) There exist a constants C > 0 depending only
on v and Vext such that, for j = 0, 1,

0 < με
j � C . (2.24)

Proof We first prove that με
0 is bounded. It is trivial to see that the energy Eε(ψ),

where we set

Eε(ψ) := 〈ψ, (−ε2� + Vext)ψ〉 + 1

2

∫

R3

dx |ψ(x)|4, (2.25)
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is uniformly bounded, by evaluating it on a suitable trial state. Therefore, being Eε the
energy functional associated to hε and being ψε

0 the corresponding ground state, one
gets

με
0 = Eε(ψε

0 ) + 1

2
‖ψε

0‖44 � 2Eε(ψε
0 ) � C . (2.26)

We now bound με
1. By the min-max principle

με
1 = inf‖ψ‖L2(R3)=1

ψ⊥ψε
0

〈ψ, hεψ〉. (2.27)

Notice that given that Vext is even, then ψε
0 is even. Therefore, for any normalized odd

trial state ψtrial ⊥ ψε
0 , and as a consequence we get

με
1 � 〈ψtrial, hεψtrial〉 � C(1 + ‖ψε

0‖2∞). (2.28)

Furthermore, a direct application of themaximumprinciple to the eigenvalue equation

ε2�ψε
0 =

(
Vext + |ψε

0 |2 − με
0

)
ψε
0 (2.29)

provides an upper bound on ‖ψε
0‖∞: since by elliptic theory ψε

0 is smooth, at any
maximum point x̄ ∈ R

3, one has

0 � ε2�ψε
0 (x̄) �

(
|ψε

0 (x̄)|2 − με
0

)
ψε
0 (x̄), (2.30)

so that (recall that ψε
0 > 0)

|ψε
0 (x̄)|2 � με

0 � C, (2.31)

which in turn implies the uniform boundedness of με
1 via (2.28). ��

Proof of Proposition 2.1 We first prove (2.9) and then deduce from it the estimate
(2.10).

Bound forμε
1 − με

0. Let u(x) := ψε
1 (x)/ψε

0 (x), which is well posed sinceψε
0 (x) >

0. We have that

με
1 = με

0 + ε2
∫

R3

dx |∇u(x)|2|ψε
0 (x)|2,

since, by the eigenvalue equations for ψε
0 ,

∫

R3

dx ε2|∇ψε
1 (x)|2 =

∫

R3

dx ε2|u(x)∇ψε
0 (x) + (∇u(x))ψε

0 (x)|2
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=
∫

R3

dx
{
ε2|∇u(x)|2|ψε

0 (x)|2 − ε2|u(x)|2ψε
0 (x)�ψε

0 (x)
}

=
∫

R3

dx
{
ε2|∇u(x)|2|ψε

0 (x)|2 − Vext(x)|u(x)|2|ψε
0 (x)|2

−|u(x)|2|ψε
0 (x)|4 + με

0|u(x)|2|ψε
0 (x)|2

}
. (2.32)

To find a lower bound for με
1 −με

0, we then use Poincaré’s inequality. More precisely,
let BR := {

x ∈ R
3 | |x | < R

}
for some R > 0 to be fixed later and let

u R :=
∫

BR

u(x)|ψε
0 (x)|2. (2.33)

We can bound

με
1 − με

0 � CRε2
∫

BR

dx |u(x) − u R |2|ψε
0 (x)|2,

by the weighted Poincaré’s inequality (see [50] and references therein) and where
CR > 0 is a finite constant depending only on R. Now, recalling that ψε

1 ⊥ ψε
0 , we

get

∫

BR

dx |u(x) − u R |2|ψε
0 (x)|2 =

∫

BR

dx |ψε
1 (x)|2 +

∣∣∣∣∣∣∣

∫

BR

dx ψε
0 (x)ψε

1 (x)

∣∣∣∣∣∣∣

2

×
(∫

BR

dx |ψε
0 (x)|2 − 2

)

= 1 −
∫

Bc
R

dx |ψε
1 (x)|2 −

∣∣∣∣∣∣∣

∫

Bc
R

dx ψε
0 (x)ψε

1 (x)

∣∣∣∣∣∣∣

2

×
⎛

⎜⎝1 +
∫

Bc
R

dx |ψε
0 (x)|2

⎞

⎟⎠ , (2.34)

where we also used that ‖ψε
j ‖L2(R3) = 1 for j = 0, 1 Using now Cauchy-Schwarz,

we obtain

με
1 − με

0 � CRε2

⎛

⎜⎝1 − 3
∫

Bc
R

dx |ψε
1 (x)|2

⎞

⎟⎠ . (2.35)
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We then have to bound
∫

Bc
R

dx |ψε
1 (x)|2, (2.36)

to do that we use Proposition 2.2. Indeed, from (2.12), we get that there exist two
constants C, C ′ > 0 such that

∫

Bc
R

dx |ψε
1 (x)|2 � (1 + με

1)e
− C

ε2
(C ′ R1+ s

2 −1−με
1). (2.37)

Given that με
1 is uniformly bounded, there exists a constant C ′′ > 0 independent

of ε such that με
1 ≤ C ′′. We can then fix R so that

R1+ s
2 >

1 + C ′′

C ′ � 1 + με
1

C ′ , (2.38)

to get

με
1 − με

0 > Cε2. (2.39)

Bound forμGP − μ1. By (2.9) and (2.8)

μGP − μ1 � Cg
− 2

s+3
N , (2.40)

which implies the result. ��

2.1.2 Estimates for ‖'GP‖L∞(R3), ‖∇'GP‖L∞(R3)

Proposition 2.4 (L∞ bounds) Let ϕGP be the normalized ground state of the operator
hGP defined in (2.3). There exists a positive constant C > 0 such that

‖ϕGP‖L∞(R3) � Cg
− 3

2(s+3)
N , ‖∇ϕGP‖L∞(R3) � Cg

2s−3
2(s+3)
N . (2.41)

Proof Recall that ϕGP is such that 〈ϕGP, hGPϕGP〉 = μGP, it then follows that ϕGP

satisfies the following variational equation

�ϕGP =
(

Vext + gN (∫ v)|ϕGP|2 − μGP

)
ϕGP. (2.42)

Proceeding similarly as in Proposition 2.3, one can prove that

|ϕGP(x0)|2 � μGP

gN (∫ v)
. (2.43)
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From (2.8) together with (2.24), it follows that

μGP � Cg
s

s+3
N , (2.44)

which immediately implies

‖ϕGP‖L∞(R3) � Cg
− 3

2(s+3)
N , s � 2. (2.45)

We now estimate the L∞-norm of ∇ϕGP. For short, we set

f (x) := Vext(x)ϕGP(x) + gN (∫ v)|ϕGP(x)|2ϕGP(x) − μGPϕ
GP(x), (2.46)

so that ϕGP satisfies �ϕGP = f . The bound on the L∞-norm of ∇ϕGP can then be
proven by standard elliptic estimates. More precisely, there exists a constant γ > 0
such that for all x ∈ R

3 it holds

‖∇ϕGP‖L∞(Bρ/2(x0)) � γ ‖ f ‖L∞(Bρ(x0)) + 16γ

ρ4 ‖ϕGP‖L1(Bρ(x0)), (2.47)

where we denote by Br (x0) := {y ∈ R
3 | |y − x0| < r}. For a proof of (2.47) we refer

to (Proposition 11.2, [20]). By Cauchy–Schwarz inequality, we get

|∇ϕGP(x0)| � ‖∇ϕGP‖L∞(Bρ/2(x0)) � C
(
‖ f ‖L∞(R3) + ρ− 5

2 ‖ϕGP‖L2(R3)

)

� C‖ f ‖L∞(R3), (2.48)

where in the last inequality we fix the radius ρ to be ρ = ‖ f ‖−2/5
L∞(R3)

and used that

‖ϕGP‖L2(R3) = 1. We then have to estimate the L∞ norm of f . To do that, we use the
bounds (2.44), (2.45) and we get

‖ f ‖L∞(R3) = ‖Vext(x)ϕGP(x) + gN (∫ v)|ϕGP(x)|2ϕGP(x) − μGPϕ
GP(x)‖L∞(R3)

� Cg
2s−3
2(s+3)
N + ‖Vextϕ

GP‖L∞(R3). (2.49)

Using the exponential decay of ϕGP, which can be deduced from Proposition 2.2
together with the maximum principle for subharmonic functions and which implies
that

|ϕGP(x)| � Cg
− 3

2(s+3)
N e−Cg

s+2
s+3
N (|g− 1

s+3
N x |−C ′) for |x | � g

1
s+3
N R, (2.50)

for some R > 0 big enough, it follows that

‖Vextϕ
GP‖L∞(R3) � Cg

2s−3
2(s+3)
N . (2.51)
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Inserting (2.49) and (2.51) in (2.48), we get

‖∇ϕGP‖L∞(R3) � Cg
2s−3
2(s+3)
N . (2.52)

��

2.2 Bound forN+

Before proving Theorem 1.1, we need a bound onN+. This is the content of the next
Proposition. The proof is very similar to the one of [28, Lemma 1]. In the proof we
will use Lemma 2.2, which is proven below.

Proposition 2.5 (Bound forN+) Let v satisfy Assumption 1. Then, as N → ∞, there
exists a constant C depending only on v such that

〈
0,N+
0〉 � C

(
g

s+5
s+3
N N 3β + g

2(s+1)
s+3

N N 1−β

)
. (2.53)

Proof We first prove an upper bound for E0(N ). As a trial state we choose the one in

which all the particles occupy the GP minimizer, i.e., (ϕGP)
⊗N

, obtaining

E0(N ) � N 〈ϕGP, (−� + Vext)ϕ
GP〉 + gN

(N − 1)

2

∫

R3

dx (vN ∗ |ϕGP|2)(x)|ϕGP(x)|2

� N 〈ϕGP, (−� + Vext)ϕ
GP〉 + gN (∫ v)

N − 1

2

∫

R3

dx |ϕGP(x)|4

+CgN
N − 1

Nβ
‖ϕGP‖L∞(R3)‖∇ϕGP‖L∞(R3)

≤ N E trap
GP,N + CgN N 1−β‖ϕGP‖L∞(R3)‖∇ϕGP‖L∞(R3), (2.54)

where in the second inequality we used Lemma 2.2.
We now prove the lower bound. For any m ∈ N we set ψm(x) := |ϕGP|2(x) −

1
N

∑N
j=1 ηm(x − x j ), where ηm(x) ∈ C∞

c (R3) is a sequence of mollifiers, such that
‖ηm‖2 = 1 for any m ∈ N and (vN ∗ ηm)(x) → vN (x) a.e. as m → ∞. We then have

0 �
∫

R3

dx
∫

R3

dy ψm(x)vN (x − y)ψm(y) =
∫

R3

dx
∫

R3

dy |ϕGP(x)|2vN (x − y)|ϕGP(y)|2

− 2

N

N∑

j=1

∫

R3

dx
∫

R3

dy |ϕGP(x)|2vN (x − y)ηm(y − x j )

+ 1

N 2

N∑

j,k=1

∫

R3

dx
∫

R3

dy ηm(x − x j )vN (x − y)ηm(y − xk), (2.55)
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where the first inequality follows from the fact that v̂ � 0. Taking the limit m → ∞,
by the monotone convergence theorem, we get

0 �
∫

R3

dx (vN ∗ |ϕGP|2)(x)|ϕGP(x)|2 − 2

N

N∑

j=1

(vN ∗ |ϕGP|2)(x j )

+ 1

N 2

N∑

j,k=1

vN (x j − xk), (2.56)

which implies that

gN

N

∑

1� j<k�N

vN (x j − xk) � −gN N

2

∫

R3

dx (vN ∗ |ϕGP|2)(x)|ϕGP(x)|2

+gN

N∑

j=1

(vN ∗ |ϕGP|2)(x j ) − gN N 3βv(0).

(2.57)

From (2.57), we then get

H trap
N �

N∑

j=1

[
−� j + Vext(x j ) + gN (vN ∗ |ϕGP|2)(x j )

]

−gN N

2

∫

R3

dx (vN ∗ |ϕGP|2)(x)|ϕGP(x)|2 − gN N 3βv(0).

Now, using Lemma 2.2 twice and exploiting the normalization of ϕGP, we can replace
both convolutions, obtaining

H trap
N − N E trap

GP,N �
N∑

j=1

(hGP
j − μGP) − gN N 3βv(0) (2.58)

−CgN N 1−β‖ϕGP‖L∞(R3)‖∇ϕGP‖L∞(R3). (2.59)

Hence, recalling the eigenfunctions {ϕn}n∈N of hGP with eigenvalues {μn}n∈N (with
ϕ0 ≡ ϕGP, μ0 ≡ μGP), we have that

N∑

j=1

(hGP
j − μGP) =

∑

j�0

(μ j − μ0)|ϕ j 〉〈ϕ j | � (μ1 − μ0)N+ � 0 (2.60)
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that we plug into (2.58), so obtaining in combination with the upper bound (2.54)

(μ1 − μGP)〈
0,N+
0〉 � gN N 3βv(0) + CgN N 1−β‖ϕGP‖L∞(R3)‖∇ϕGP‖L∞(R3).

(2.61)

Applying Propositions 2.1 and 2.4, we finally get

Cg
− 2

s+3
N 〈
0,N+
0〉 � (μ1 − μGP)〈
0,N+
0〉 � C ′

(
gN N 3β + g

2s
s+3
N N 1−β

)
,

(2.62)

for two positive constant C, C ′. The result immediately follows. ��
Wenowprove aLemmaon the comparisonbetween theHartree andGP interactions.

Lemma 2.2 (Hartree and GP interactions) Let v satisfy Assumption 1. Then, there
exists a constant C > 0 such that

∥∥∥vN ∗ |ϕGP|2(x) − (∫ v) |ϕGP|2(x)

∥∥∥
L∞(R3)

� C

Nβ
‖ϕGP‖L∞(R3)‖∇ϕGP‖L∞(R3)

(2.63)

Proof A direct computation yields

∥∥∥vN ∗ |ϕGP|2(x) − (∫ v) |ϕGP|2(x)

∥∥∥
L∞(R3)

= sup
x∈R3

∣∣∣∣∣∣∣

∫

R3

dy v(y)

(∣∣∣ϕGP(x − N−β y)

∣∣∣
2 − |ϕGP|2(x)

)
∣∣∣∣∣∣∣

(2.64)

= sup
x∈R3

∣∣∣∣∣∣∣

∫

R3

dy v(y)

1∫

0

dλ
2y

Nβ
|ϕGP(x − λN−β y)||∇ϕGP(x − λN−β y)|

∣∣∣∣∣∣∣

� 2

Nβ

⎛

⎜⎝
∫

R3

dy |y||v(y)

⎞

⎟⎠ ‖ϕGP‖L∞(R3)‖∇ϕGP‖L∞(R3). (2.65)

��

2.3 Proof of Theorem 1.1

By Proposition 2.5

〈
0,N+
0〉 � C

(
g

s+5
s+3
N N 3β + g

2(s+1)
s+3

N N 1−β

)
, (2.66)
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so that

1 − 〈ϕGP, γ
0ϕ
GP〉 = 1

N

[
N − 〈
0, a∗(ϕGP)a(ϕGP)
0〉

]
= 1

N
〈
0,N+
0〉

� Cg
s+5
s+3
N N 3β−1 + Cg

2(s+1)
s+3

N N−β, (2.67)

which completes the proof.

3 Dynamics

This section is devoted to the proof of Theorem 1.6. We summarize here the main
steps.

• First, we use the techniques introduced in [47] to approximate the many-body state
at time t , ψt , in terms of ϕH

t , i.e., in terms of the solution of the nonlinear Hartree
equation which reads as

i∂tϕ
H
t =

(
−� + gN vN ∗

∣∣∣ϕH
t

∣∣∣
2
)

ϕH
t , (3.1)

where we recall vN (x) = N 3βv(Nβ x).
• Afterwards, we estimate the distance between ϕH

t and the solution ϕGP
t of the GP

equation introduced in (1.29), i.e.,

i∂tϕ
GP
t = (−� + gN (∫ v)|ϕGP

t |2)ϕGP
t .

In the following we will need to work with the Hartree energy functional, we set here
the notation. We define

E free
H (u) =

∫

R3

dx |∇u(x)|2 + gN

2

∫

R3

dx (vN ∗ |u|2)(x)|u(x)|2. (3.2)

3.1 Sobolev Norms of the Solutions

An important role in the proof of Theorem 1.6 is played the L∞ norms of ϕGP
t and

ϕH
t . We then adapt the proof of [4, Proposition 3.1 (ii)] to our framework to prove a

bound for the H2-norm of ϕGP and ϕH, from which we deduce the estimates for the
L∞-norms.

Proposition 3.1 (Sobolev bound for ϕH
t , ϕ

GP
t ) Let ϕGP

t and ϕH
t be solutions of, respec-

tively, (1.29) and (3.1), both with initial datum ϕ0 ∈ Hn
(
R
3
)
. Assume that v satisfies

Assumption 1.

123



25 Page 24 of 44 D. Dimonte, E. L. Giacomelli

(i) There exists a positive constant C > 0 which depends only on the interaction v

such that

sup
t∈R

∥∥∥ϕGP
t

∥∥∥
H1(R3)

� E free
GP (ϕ0), sup

t∈R
‖∇ϕH

t ‖2
� CE free

GP (ϕ0) + CgN N−β‖ϕ0‖2L∞(R3)
. (3.3)

(ii) There exists a positive constant C such that for any t ∈ R

∥∥∥ϕGP
t

∥∥∥
H2(R3)

≤ C ‖ϕ0‖H2(R3) eCg2N [E free
GP (ϕ0)]2|t |, (3.4)

∥∥∥ϕH
t

∥∥∥
H2(R3)

≤ C ‖ϕ0‖H2(R3) e
Cg2N

(
[E free

GP (ϕ0)]2+g2N N−2β‖ϕ0‖4L∞(R3)

)
|t |

. (3.5)

In the proof of Proposition 3.1, we use some Strichartz estimates. In particular we

use that for any function f ∈ L∞
t L

6
5
x , one has

sup
t∈[0,T ]

∥∥∥∥
∫ t

0
ds ei(t−s)� f (s, ·)

∥∥∥∥
L2(R3)

≤ √
T sup

t∈[0,T ]
‖ f (t, ·)‖

L
6
5 (R3)

. (3.6)

For a proof of (3.6), see [32, Theorem 1.2].

Proof of Proposition 3.1 We start by showing the bounds in (3.3). The estimate for ϕGP
t

directly follows from the fact that v̂ � 0 and that the energy is preserved by the GP
dynamics. We now look at ϕH

t . Notice that, proceeding similarly as in Lemma 2.2 and
using Assumption 1 we get

|〈ϕ0, (vN ∗ |ϕ0|2 − |ϕ0|2)ϕ0〉| ≤ CgN N−β ‖∇ϕ0‖L2(R3) ‖ϕ0‖2L∞(R3)
. (3.7)

Using nowCauchy–Schwartz and the fact that the energy is preserved by theHartree
dynamics, we can write

‖∇ϕH
t ‖2L2(R3)

� 〈ϕ0, (−� + gN

2
vN ∗ |ϕ0|2)ϕ0〉 � E free

GP (ϕ0) + C ‖∇ϕ0‖2L2(R3)

+Cg2
N N−2β‖ϕ0‖4L∞(R3)

. (3.8)

We then get

sup
t∈R

‖∇ϕH
t ‖2 � C

√
E free
GP (ϕ0) + CgN N−β‖ϕ0‖2L∞(R3)

. (3.9)

We now prove (3.5). Being ϕGP
t the solution of (1.29), we can write

ϕGP
t = eit�ϕGP

t0 − igN

t∫

t0

ds ei(t−s)�
(∣∣∣ϕGP

t

∣∣∣
2
ϕGP

t

)
. (3.10)
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Consider now α ∈ N
3 with |α| = 2; we use the notation ∂α = ∂

α1
x1 ∂

α2
x2 ∂

α3
x3 . We have

∂αϕGP
t = eit�∂αϕGP

t0 − igN

t∫

t0

ds ei(t−s)�∂α
(∣∣ϕGP

t

∣∣2 ϕGP
t

)

= eit�∂αϕGP
t0 − igN

t∫

t0

ds ei(t−s)�
∑

γ≤β≤α

(
α

β

)(
β

γ

)(
∂(α−β)ϕGP

t ∂(β−γ )ϕGP
t ∂γ ϕGP

t

)
.

(3.11)

By (3.6), we get

sup
t∈[t0,t0+T ]

∥∥∥∂αϕGP
t

∥∥∥
L2(R3)

≤
∥∥∥∂αϕGP

t0

∥∥∥
L2(R3)

+ gN sup
t∈[t0,t0+T ]

∥∥∥∥∥∥

∫ t

t0
ds ei(t−s)�

∑

γ≤β≤α

(
α

β

)(
β

γ

)(
∂(α−β)ϕGP

t ∂(β−γ )ϕGP
t ∂γ ϕGP

t

)
∥∥∥∥∥∥

L2(R3)

≤
∥∥∥∂αϕGP

t0

∥∥∥
L2(R3)

+ 64gN
√

T
∑

γ≤β≤α

sup
t∈[t0,t0+T ]

∥∥∥∂(α−β)ϕGP
t ∂(β−γ )ϕGP

t ∂γ ϕGP
t

∥∥∥
L

6
5 (R3)

.

(3.12)

As in [4, Proposition 3.1], via Hölder inequality and Sobolev embeddings, we get
that there exists a constant C (which depends only on the Sobolev embeddings) such
that

sup
t∈[t0,t0+T ]

∥∥∥∂αϕGP
t

∥∥∥
L2(R3)

≤
∥∥∥∂αϕGP

t0

∥∥∥
L2(R3)

+ CgN
√

T sup
t∈[t0,t0+T ]

∥∥∥ϕGP
t

∥∥∥
2

H1(R3)

∥∥∥ϕGP
t

∥∥∥
H2(R3)

.

(3.13)

This means, that up to increasing C and using (3.3), we get that for any t ∈
[t0, t0 + T ],

∥∥∥ϕGP
t

∥∥∥
H2(R3)

≤
∥∥∥ϕGP

t0

∥∥∥
H2(R3)

+ C EgN
√

T sup
t∈[t0,t0+T ]

∥∥∥ϕGP
t

∥∥∥
H2(R3)

,

where we denoted by E ≡ E free
GP (ϕ0). We can now fix T small enough so that

C EgN
√

T = 1/2, as a consequence we get for any t ∈ [t0, t0 + T ]

∥∥∥ϕGP
t

∥∥∥
H2(R3)

≤ 2
∥∥∥ϕGP

t0

∥∥∥
H2(R3)

. (3.14)

Repeating the argument, we get that for any t > 0

∥∥∥ϕGP
t+T

∥∥∥
H2(R3)

≤ 2
∥∥∥ϕGP

t

∥∥∥
H2(R3)

. (3.15)
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Fix now t > 0 and let k ∈ N such that t ∈ ((k − 1) T , kT ]; then

∥∥∥ϕGP
t

∥∥∥
H2(R3)

≤ 2
∥∥∥ϕGP

(k−1)T

∥∥∥
H2(R3)

≤ 2k ‖ϕ0‖H2(R3) ≤ 2
t
T +1 ‖ϕ0‖H2(R3)

= 24C2E2g2N t+1 ‖ϕ0‖H2(R3) , (3.16)

which implies (3.4).
The proof for (3.5) can be done in the same way. Proceeding as above, one gets

sup
t∈[t0,t0+T ]

∥∥∥∂αϕH
t

∥∥∥
L2(R3)

≤
∥∥∥∂αϕH

t0

∥∥∥
L2(R3)

+ gN
√

T
∑

γ≤β≤α

(
α

β

)(
β

γ

)

sup
t∈[t0,t0+T ]

∥∥∥vN ∗
(
∂(α−β)ϕH

t ∂(β−γ )ϕH
t

)
∂γ ϕH

t

∥∥∥
L

6
5 (R3)

.

(3.17)

The only difference with respect to before is that to bound the interaction term one
has to use Young’s inequality for the convolution (see [37, Theorem 4.2]). ��

3.2 From theMany-Body Problem to Hartree

In this section we want to compare the many-body problem with the Hartree approx-
imation, the main result is in the proposition below.

Proposition 3.2 (From Many-Body to Hartree) Let β ∈ (
0, 1

6

)
and λ ∈ (3β, 1 − 3β).

Let ψt and ϕH
t be the normalized solution of (1.24) and (3.1) with initial data ψ0 and

ϕ0, respectively. Suppose that v satisfies Assumption 1. We have

∥∥∥|ϕH
t 〉〈ϕH

t | − γ
(1)
ψt

∥∥∥

≤ √
2

(
N

1−λ
2

∥∥∥|ϕ0〉〈ϕ0| − γ
(1)
ψ0

∥∥∥
1
2 + N

3β
2

)
eCv(CN (ϕ0,t)+CN (ϕ0,t)2)gN |t |,

(3.18)

where Cv is a constant depending on the L1 and the L2 norms of v, and CN (ϕ0, t) is
given by

CN (ϕ0, t) = ‖ϕ0‖H2(R3) e
Cg2N

(
[E free

GP (ϕ0)]2+g2N N−2β‖ϕ0‖4L∞(R3)

)
|t |

. (3.19)

The key idea for the proof of Proposition 3.2 is to control the number of bad
particles in the many-body system (i.e. the particles not in the state ϕH

t ), we do that
using methods introduced in [47].

We now fix the notation for the projectors on the spaces of good and bad particles.
We collect and prove the main general properties of these operators in Appendix 1.

Definition 3.1 Let ϕ ∈ L2
(
R
3
)
and ψ ∈ L2

s

(
R
3N

)
.
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1. For any 1 ≤ j ≤ N , the projectors pϕ
j : L2

(
R
3N

) → L2
(
R
3N

)
represent the

probability of the j-th particle of the state ψ of being in the state ϕ, i.e.

pϕ
j ψ (x1, . . . , xN ) := (|ϕ〉〈ϕ|) j ψ (x1, . . . , xN )

≡ϕ
(
x j
) ∫

R3
dz ϕ∗ (z) ψ

(
x1, . . . , x j−1, z, x j+1, . . . , xN

)
.

(3.20)

Analogously, qϕ
j := 1 − pϕ

j represents the probability of the j-th particle of the
state ψ not being in the state ϕ.

2. For any 0 ≤ k ≤ j ≤ N we set

A j
k :=

⎧
⎨

⎩a := (
a1, a2, . . . , a j

) ∈ {0, 1} j :
j∑

l=1

al = k

⎫
⎬

⎭ (3.21)

and define the orthogonal projector Pϕ
j,k on L2

(
R
3N

)
as

Pϕ
j,k :=

∑

a∈A j
k

N∏

l=N− j+1

[(
pϕ

l

)1−al
(
qϕ

l

)al
]
. (3.22)

Note that the rank of Pϕ
j,k is the space of states that in the last j particles have

exactly k that are not in the state ϕ (we sum overA j
k to make the state symmetric).

In the following we denote by Pϕ
k the projector given by Pϕ

N ,k .

3. For any function f : {0, . . . , N } → R we define the operator f̂ ϕ : L2
(
R
3N

) →
L2

(
R
3N

)
as

f̂ ϕ :=
∑

k∈Z
f (k) Pϕ

k . (3.23)

where f (k) = 0 for any k ∈ Z \ {0, . . . , N } .

Similarly, if fd (k) := f (k + d) for any d, k ∈ Z, we define the operator f̂ ϕ
d :

L2
(
R
3N

) → L2
(
R
3N

)
associated to fd as

f̂ ϕ
d :=

∑

k∈Z
f (k + d) Pϕ

k . (3.24)

Throughout the following Section, the hat ·̂ will solely be used in the sense of
Definition 3.1.

Following [47], we now introduce a functional which encodes the fraction of con-
densation within itself.
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Definition 3.2 For any λ ∈ (0, 1)we define theweight functionμλ : {0, . . . , N } → R

as

μλ (k) :=
{ k

Nλ , for k ≤ Nλ

1, otherwise.
, (3.25)

Moreover, for any N ∈ N, we define the functional αλ
N : L2

s

(
R
3N

)× L2
(
R
3N

) →
R as5

αλ
N (ψ, ϕ) :=

〈
ψ, μ̂λ,ϕψ

〉
=

∥∥∥∥
(
μ̂λ,ϕ

)1/2
ψ

∥∥∥∥
2

L2
s (R3N )

. (3.26)

The proof of Proposition 3.2 is based on some Grönwall estimate on the quantity
αλ

N , which we prove in the next proposition.

Proposition 3.3 (Grönwall estimate on αλ
N ) Let β ∈ (

0, 1
6

)
and λ ∈ (3β, 1 − 3β). Let

ψt and ϕH
t be the normalized solution of (1.24) and (3.1) with initial data ψ0 and ϕ0,

respectively. Suppose that v satisfies Assumption 1; we then have

αλ
N

(
ψt , ϕ

H
t

)
≤

(
αλ

N (ψ0, ϕ0) + 1

Nλ−3β

)
eCv(CN (ϕ0,t)+CN (ϕ0,t)2)gN |t |, (3.27)

where Cv is a constant depending on the L1 and the L2 norms of v, and CN (ϕ0, t) is
given by

CN (ϕ0, t) = ‖ϕ0‖H2(R3) e
Cg2N

(
[E free

GP (ϕ0)]2+g2N N−2β‖ϕ0‖4L∞(R3)

)
|t |

. (3.28)

3.2.1 Proof of Proposition 3.3

To prove Proposition 3.3 we need some preliminary results which are stated in Lemma
3.1 and in Proposition 3.4. In the proof of these two intermediate results, we use
some operator estimates proven in Appendix 1. To simplify notation we will use the
following definition.

Definition 3.3 We denote by U j,k the difference between the pair interaction and the
mean-field interactions for two particles j and k, i.e.

U j,k := (N − 1) vN
(
x j − xk

) − NvN ∗ |ϕH
t |2 (x j

) − NvN ∗ |ϕH
t |2 (xk) .

(3.29)

Lemma 3.1 Let λ ∈ (0, 1). Let ψt and ϕH
t be the normalized solution of (1.24) and

(3.1), respectively. Then we have,

∂tα
λ
N

(
ψt , ϕ

H
t

)
= �λ

N

(
ψt , ϕ

H
t

)
, (3.30)

5 For ease of notation we will write μ̂λ,ϕ instead of μ̂λ
ϕ
.
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where �λ
N : L2

s

(
R
3N

) × L2
(
R
3
) → R is defined as

�λ
N (ψ, ϕ) := 2gN Im

(〈
ψ,

(
μ̂λ,ϕ − μ̂

λ,ϕ
1

)
pϕ
1 pϕ

2U1,2 pϕ
1 qϕ

2 ψ
〉)

+gN Im
(〈

ψ,
(
μ̂λ,ϕ − μ̂

λ,ϕ
2

)
pϕ
1 pϕ

2U1,2qϕ
1 qϕ

2 ψ
〉)

+2gN Im
(〈

ψ,
(
μ̂λ,ϕ − μ̂

λ,ϕ
1

)
pϕ
1 qϕ

2 U1,2qϕ
1 qϕ

2 ψ
〉)

. (3.31)

Proof First notice that for any 1 ≤ j ≤ N if we differentiate p
ϕH

t
j we get

∂t p
ϕH

t
j = (|ϕH

t 〉〈∂tϕ
H
t |) j + (|∂tϕ

H
t 〉〈ϕH

t |) j = i

[
p

ϕH
t

j ,−� j + gN vN ∗ ∣∣ϕH
t

∣∣2 (x j
)]

,

(3.32)

and similarly for q
ϕH

t
j

∂t q
ϕH

t
j = i

[
q

ϕH
t

j ,−� j + gN vN ∗
∣∣∣ϕH

t

∣∣∣
2 (

x j
)]

. (3.33)

It is then useful to introduce Hϕ
H defined as

Hϕ
H :=

N∑

j=1

[
−� j + gN vN ∗ |ϕ|2 (x j

)]
. (3.34)

As a consequence, for any 1 ≤ j ≤ N , we can write

∂t p
ϕH

t
j = i

[
p

ϕH
t

j , H
ϕH

t
H

]
, ∂t q

ϕH
t

j = i

[
q

ϕH
t

j , H
ϕH

t
H

]
. (3.35)

Given that for any 0 ≤ k ≤ j ≤ N the operator P
ϕH

t
j,k is just a linear combination

of p
ϕH

t
l ’s and q

ϕH
t

l ’s, we deduce that for any weight f : {0, . . . , N } → R
+ we get

∂t f̂ ϕH
t = i

[
∂t f̂ ϕH

t , H
ϕH

t
H

]
. (3.36)

In order to simplify the notation, for the rest of the proof we will drop the labels ϕH
t

and λ in the formulas involving the weights and the effective many-body nonlinear
operator. If now we differentiate ∂tα

λ
N

(
ψt , ϕ

H
t

)
, using (3.36) and the symmetry of ψt

and μ̂ψt , we get

∂tα
λ
N

(
ψt , ϕ

H
t

)
= −i 〈ψt , [μ̂, HN − HH]ψt 〉 = −i

gN

2

〈
ψt ,

[
μ̂, U1,2

]
ψt

〉

= gN Im
(〈
ψt , μ̂ U1,2ψt

〉)
. (3.37)

123



25 Page 30 of 44 D. Dimonte, E. L. Giacomelli

We want to now decompose the action of the operator μ̂ U1,2 in terms of p1, p2,
q1 and q2. To do so, recall that Pj,k projects on the space of states in which in the last
j particles there are exactly k particles that are not in the state ϕH

t ; we can then write

Pk ≡ PN ,k = p1 p2PN−2,k + (p1q2 + q1 p2) PN−2,k−1 + q1q2PN−2,k−2.

As a consequence, for any weight f : {0, . . . , N } → R we can use the equality above
to get

f̂ =
∑

k∈Z
f (k) Pk =

∑

k∈Z
f (k)

(
p1 p2PN−2,k + (p1q2 + q1 p2) PN−2,k−1 + PN−2,k−2

)

−p1 p2
∑

k∈Z
f (k + 2) PN−2,k − (p1q2 + q1 p2)

∑

k∈Z
f (k + 1) PN−2,k−1

= p1 p2( f̂ − f̂2) + (p1q2 + q1 p2) ( f̂ − f̂1) +
∑

k∈Z
f (k) PN−2,k−2. (3.38)

We can then insert (3.38) in (3.37) and we get

∂tα
λ
N

(
ψt , ϕ

H
t

)
= gN Im

(〈
ψt , (p1 p2 (μ̂ − μ̂2) + 2p1q2 (μ̂ − μ̂1)) U1,2ψt

〉)

=
∑

�1=p1,q1
�2=p2,q2

[
gN Im

(〈ψt , p1 p2(μ̂ − μ̂2)U1,2�1�2ψt 〉
)

+ gN Im
(〈ψt , p1q2(μ̂ − μ̂1)U1,2�1�2ψt 〉

)]
, (3.39)

where we used that the last term in (3.38) is self-adjoint and commutes withU1,2. It
turns out thatmany of those terms are either identical or vanishing. In particular, we can
use (4.3) to have that p1 p2 (μ̂ − μ̂2) U1,2 p1 p2 = (

p1 p2 (μ̂ − μ̂2) U1,2 p1 p2
)†, which

implies that Im
(〈ψt , p1 p2(μ̂ − μ̂2)U1,2 p1 p2ψt 〉

) = 0 and similarly we get that
Im

(〈ψt , p1q2(μ̂ − μ̂1)U1,2 p1q2ψt 〉
) = 0. Moreover, using the symmetry of ψt , an

easy computation shows that 〈ψt , p1q2(μ̂−μ̂1)U1,2q1 p2ψt 〉 ∈ R, therefore the imag-
inary part is vanishing. For the remaining terms, we can use again (4.3) and after some
manipulations we can combine them to get gN Im〈ψt , p1 p2(μ̂− μ̂1)U1,2 p1q2ψt 〉.We
then obtain

∂tα
λ
N

(
ψt , ϕ

H
t

)
= 2gN Im

(〈
ψt , p1 p2 (μ̂ − μ̂1) U1,2 p1q2ψt

〉)

+gN Im
(〈
ψt , p1 p2 (μ̂ − μ̂2) U1,2q1q2ψt

〉)

+2gN Im
(〈
ψt , p1q2 (μ̂ − μ̂1) U1,2q1q2ψt

〉)
, (3.40)

which concludes the proof. ��
The next step is to estimate separately the three terms appearing in �λ

N

(
ψt , ϕ

H
t

)
in

terms of αλ
N λ

(
ψt , ϕ

H
t

)
in order to prove a Grönwall-type estimate for αλ

N λ
(
ψt , ϕ

H
t

)
.

This is the aim of the next Proposition.
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Proposition 3.4 Let λ ∈ (0, 1), let ψt and ϕt be normalized solutions of (1.24) and
(3.1), respectively. The following estimates hold true.

∣∣∣∣Im
(〈

ψt ,

(
μ̂

λ,ϕH
t

1 − μ̂λ,ϕH
t

)
p

ϕH
t

1 p
ϕH

t
2 U1,2 p

ϕH
t

1 q
ϕH

t
2 ψt

〉)∣∣∣∣

≤ ‖v‖L1(R3)

N
1+λ
2

∥∥∥ϕH
t

∥∥∥
2

L∞(R3)

√
αλ

N

(
ψt , ϕ

H
t
)
, (3.41)

∣∣∣∣Im
(〈

ψt ,

(
μ̂

λ,ϕH
t

2 − μ̂λ,ϕH
t

)
p

ϕH
t

1 p
ϕH

t
2 U1,2q

ϕH
t

1 q
ϕH

t
2 ψt

〉)∣∣∣∣ (3.42)

≤ 2max
{‖v‖L1(R) , ‖v‖L2(R)

}
max

{∥∥∥ϕH
t

∥∥∥
L4(R3)

,

∥∥∥ϕH
t

∥∥∥
L∞(R3)

}2

×
(

αλ
N

(
ψt , ϕ

H
t

)
+ N 3β−λ

2

)
, (3.43)

∣∣∣∣Im
(〈

ψt ,

(
μ̂

λ,ϕH
t

1 − μ̂λ,ϕH
t

)
p

ϕH
t

1 q
ϕH

t
2 U1,2q

ϕH
t

1 q
ϕH

t
2 ψt

〉)∣∣∣∣ (3.44)

≤
2max

{
‖v‖L1(R3) , ‖v‖L2(R3)

}

N
1−λ
2

∥∥∥ϕH
t

∥∥∥
L∞(R3)

×
(

N
3β
2 +

∥∥∥ϕH
t

∥∥∥
L∞(R3)

)
αλ

N

(
ψt , ϕ

H
t

)
. (3.45)

Proof In order to simplify the notation, during the proof we shall drop the labels λ

and ϕH
t for short. To start we note that for any function we can rewrite the operator

p1vN (x1 − x2) p1 in the following more convenient form:

p1vN (x1 − x2) p1 =
(
|ϕH

t 〉〈ϕH
t |

)

1
vN (x1 − x2)

(
|ϕH

t 〉〈ϕH
t |

)

1

=
(
vN ∗ |ϕH

t |2
)

(x2) p1. (3.46)

Proof of (3.41). Using the fact p j q j = q j p j = 0 for any 1 ≤ j ≤ N , by (3.46), we
can rewrite

p1 p2U1,2 p1q2 = p1 p2
[
(N − 1) vN (x1 − x2) − NvN ∗ |ϕH

t |2 (x1) − NvN ∗ |ϕH
t |2 (x2)

]
p1q2

−N p1 p2 vN ∗ |ϕH
t |2 (x2) p1q2

= −p1 p2 vN ∗ |ϕH
t |2 (x2) p1q2. (3.47)

As a consequence, using (4.2) and (4.3), we are able to bound the left-hand term in
(3.41) as

∣∣Im
(〈
ψt , (μ̂1 − μ̂) p1 p2 vN ∗ |ϕH

t |2 (x2) p1q2ψt
〉)∣∣ ≤ ∥∥vN ∗ |ϕH

t |2 (x2) p2
∥∥ ‖(μ̂ − μ̂−1) q2ψt‖

≤ ∥∥vN ∗ |ϕH
t |2 (x2) p2

∥∥ ‖(μ̂ − μ̂−1) ν̂ψt‖ .

(3.48)
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We then bound separately these last two terms. To bound the first term, one can easily
show that

∥∥vN ∗ |ϕH
t |2 (x2) p2

∥∥2 ≤ 〈ϕH
t ,

(
vN ∗ |ϕH

t |2 (x2)
)2

ϕH
t 〉 ≤ ∥∥ϕH

t

∥∥2
L6(R3)

∥∥vN ∗ |ϕH
t |2 (x2)

∥∥2
L3(R3)

≤ ∥∥ϕH
t

∥∥6
L6(R3)

‖v‖2L1(R3)
�

∥∥ϕH
t

∥∥4
L∞(R3)

‖v‖2L1(R3)
. (3.49)

To bound the second term we want to use the explicit definition of μ. In particular,
we have that |μ(k) − μ−1(k)| � C N−λ. Moreover, for any k ≤ Nλ, we have

∣∣∣(μ (k) − μ−1 (k))2 ν2 (k)

∣∣∣ ≤ k

N 1+2λ
= 1

N 1+λ
μ (k) . (3.50)

Given that μ(k) − μ−1(k) = 0 if k � Nλ + 1, we get that

‖(μ̂ − μ̂−1) ν̂ψt‖ =
〈
ψt , (μ̂ − μ̂−1)

2 ν̂2ψt

〉 1
2 ≤ 1

N
1+λ
2

〈ψt , μ̂ψt 〉 1
2

= 1

N
1+λ
2

√
αλ

N

(
ψt , ϕ

H
t
)
. (3.51)

The estimates (3.49) and (3.51) imply (3.41).
Proof of (3.42). To prove (3.42), we first look directly at the operator p1 p2U1,2q1q2.
We have

p1 p2U1,2q1q2 = (N − 1) p1 p2vN (x1 − x2) q1q2. (3.52)

We act similarly as before. In order to do so, notice first that the function μ2 − μ is
positive and corresponds still to a weight, so we can consider the square root of the
operator μ̂2 − μ̂ and using (4.3), we get

∣∣∣∣Im
(〈

ψt ,

(
μ̂

λ,ϕH
t

2 − μ̂λ,ϕH
t

)
p

ϕH
t

1 p
ϕH

t
2 U1,2q

ϕH
t

1 q
ϕH

t
2 ψt

〉)∣∣∣∣

≤ (N − 1)
∣∣∣
〈
ψt , (μ̂2 − μ̂)

1
2 p1 p2vN (x1 − x2) q1q2 (μ̂ − μ̂−2)

1
2 ψt

〉∣∣∣ .

We now use that vN (x1 − x2) is nonzero only in a small region where x1 ≈ x2,
because of the quick decay of vN . To exploit this fact is then convenient to symmetrize
(N − 1) vN (x1 − x2) replacing it with

∑N
k=2 vN (x1 − xk) to get, using Cauchy-

Schwarz,

(N − 1)
∣∣∣
〈
ψt , (μ̂2 − μ̂)

1
2 p1 p2vN (x1 − x2) q1q2 (μ̂ − μ̂−2)

1
2 ψt

〉∣∣∣

≤
∥∥∥∥∥∥

N∑

j=2

q jvN
(
x1 − x j

)
p1 p j (μ̂2 − μ̂)1/2 ψt

∥∥∥∥∥∥

∥∥∥(μ̂ − μ̂−2)
1/2 q1ψt

∥∥∥ .

(3.53)
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We now bound those terms separately. For the second term, we can again write explic-
itly the difference μ̂ − μ̂−2:

μ̂ (k) − μ̂−2 (k) =

⎧
⎪⎨

⎪⎩

2
Nλ for k ≤ Nλ,

Nλ+2−k
Nλ for Nλ < k ≤ Nλ + 2,

0 otherwise,

(3.54)

and by (4.2) we then get

∥∥∥(μ̂ − μ̂−2)
1/2 q1ψt

∥∥∥ =
〈
ψt , (μ̂ − μ̂−2) ν̂2ψt

〉 1
2 ≤

√
2

N
〈ψt , μ̂ψt 〉 1

2

=
√

2

N

√
αλ

N

(
ψt , ϕ

H
t
)
. (3.55)

We now take into account the first term in the r.h.s of (3.53). Explicitly, it is

∥∥∥∥∥∥

N∑

j=2

q j vN
(
x1 − x j

)
p1 p j (μ̂2 − μ̂)1/2 ψt

∥∥∥∥∥∥

2

=
N∑

j=2

N∑

�=2

〈
ψt , (μ̂2 − μ̂)1/2 p1 p j vN

(
x1 − x j

)
q j q�vN (x1 − x�) p1 p� (μ̂2 − μ̂)1/2 ψt

〉
,

(3.56)

and now we bound it as a sum of two different terms, one in which j = � and one for
the case j �= �. For the case j �= �, by (4.9) and (4.10), we can write

N 2
〈
ψt , (μ̂2 − μ̂)1/2 p1 p2vN (x1 − x2) q2q3vN (x1 − x3) p1 p3 (μ̂2 − μ̂)1/2 ψt

〉

≤ N 2
∥∥∥
√|vN (x1 − x2)|

√|vN (x1 − x3)|p1 p3 (μ̂2 − μ̂)1/2 q2ψt

∥∥∥
2

≤ N 2
∥∥∥
√|vN (x1 − x2)|p2

∥∥∥
4 ∥∥∥(μ̂2 − μ̂)1/2 q2ψt

∥∥∥
2
.

Moreover, by (4.10), we get

∥∥∥
√|vN (x1 − x2)|p2

∥∥∥
4 = ‖p2 |vN (x1 − x2)| p2‖2 �

∥∥∥ϕH
t

∥∥∥
4

L∞(R3)
‖v‖2L1(R3)

,

and on the other hand proceeding similarly as in (3.55) we can estimate

∥∥∥(μ̂2 − μ̂)1/2 q2ψt

∥∥∥
2 ≤ 2

N
αλ

N

(
ψt , ϕ

H
t

)
. (3.57)
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We then get

∣∣∣N 2
〈
ψt , (μ̂2 − μ̂)1/2 p1 p2vN (x1 − x2) q2q3vN (x1 − x3) p1 p3 (μ̂2 − μ̂)1/2 ψt

〉∣∣∣

≤ 2N ‖v‖2L1(R3)

∥∥∥ϕH
t

∥∥∥
4

L∞(R3)
αλ

N

(
ψt , ϕ

H
t

)
. (3.58)

We then look at the second term, i.e., the case j = �, in the right hand side of (3.56):
for this termwe cannot bring any q close to the stateψt , and is therefore not possible to
exploit the state ψt . We then bound every operator in it directly in norm using (4.11),
we get

N
〈
ψt , (μ̂2 − μ̂)1/2 p1 p2vN (x1 − x2) q2vN (x1 − x2) p1 p2 (μ̂2 − μ̂)1/2 ψt

〉

≤ N ‖vN (x1 − x2) p1 p2‖2
∥∥∥(μ̂2 − μ̂)

1
2

∥∥∥
2

� 2N 1+3β−λ
∥∥∥ϕH

t

∥∥∥
4

L4(R3)
‖v‖2L2(R3)

.

(3.59)

Combining (3.58) and (3.59), we can conclude that

∥∥∥∥∥∥

N∑

j=2

q jvN
(
x1 − x j

)
p1 p j (μ̂2 − μ̂)1/2 ψt

∥∥∥∥∥∥

≤
√
2N ‖v‖2

L1(R)

∥∥ϕH
t

∥∥4
L∞(R3)

αλ
N

(
ψt , ϕ

H
t
) + 2N 1+3β−λ

∥∥ϕH
t

∥∥4
L4(R3)

‖v‖2
L2(R3)

.

(3.60)

Moreover, the estimates (3.55) and (3.60), imply (3.42).
Proof of (3.44). We start the proof of (3.44) by writing

∣∣∣∣Im
(〈

ψt ,

(
μ̂

λ,ϕH
t

1 − μ̂λ,ϕH
t

)
p

ϕH
t

1 q
ϕH

t
2 U1,2q

ϕH
t

1 q
ϕH

t
2 ψt

〉)∣∣∣∣

≤
∥∥∥(μ̂1 − μ̂)

1
2 q2ψt

∥∥∥
∥∥U1,2 p1

∥∥
∥∥∥(μ̂ − μ̂−1)

1/2 q1q2ψt

∥∥∥

≤
√

N

N − 1

∥∥∥(μ̂1 − μ̂)
1
2 ν̂ψt

∥∥∥
∥∥U1,2 p1

∥∥
∥∥∥(μ̂ − μ̂−1)

1
2 ν̂2ψt

∥∥∥ . (3.61)

Proceeding as abovewe can estimate directly (μ̂1 − μ̂) ν̂2 ≤ 1
N μ̂ and (μ̂ − μ̂−1) ν̂4

≤ 1
N2−λ μ̂.
We now bound the potential term. We have, using (4.9), that

∥∥U1,2 p1
∥∥ ≤ N

∥∥∥ϕH
t

∥∥∥
L∞(R3)

max
{
‖v‖L1(R3) , ‖v‖L2(R3)

}(
N

3β
2 +

∥∥∥ϕH
t

∥∥∥
L∞(R3)

)
.

(3.62)

Inserting (3.62) in (3.61), we get (3.44). ��
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Combining Lemma 3.1 and Proposition 3.4, we can prove Proposition 3.3.

Proof of Proposition 3.3 As stated before, the key idea of the proof is to exploit a
Grönwall-type argument. In order to do that, we use Lemma 3.1 and Proposition 3.4
to write

∂tα
λ
N

(
ψt , ϕ

H
t

)
= �λ

N

(
ψt , ϕ

H
t

)

� CvgN

(
‖ϕH

t ‖L∞(R3)

[
1 + 1

N
1−λ−3β

2

]
+ ‖ϕH

t ‖2L∞(R3)

[
1 + 1

N
1−λ
2

])
αλ

N (ψy, ϕ
H
t )

+ CvgN

∥∥ϕH
t

∥∥2
L∞(R3)

N
1+λ
2

√
αλ

N

(
ψt , ϕ

H
t
)

+ CvgN

Nλ−3β

(∥∥∥ϕH
t

∥∥∥
L∞(R3)

+
∥∥∥ϕH

t

∥∥∥
2

L∞(R3)

)
, (3.63)

where Cv is a constant that depends only on the L1 and L2 norms of v. We can now
do Cauchy-Schwarz in the next to the last term and discard some terms which are
subleading for any λ ∈ (0, 1 − 3β), to get

∂tα
λ
N

(
ψt , ϕ

H
t

)
� CvgN

(
‖ϕH

t ‖L∞(R3) + ‖ϕH
t ‖2L∞(R3)

)
αλ

N (ψy, ϕ
H
t )

+CvgN

N 1+λ
‖ϕH

t ‖2L∞(R3)
+ CvgN

Nλ−3β

(∥∥∥ϕH
t

∥∥∥
L∞(R3)

+
∥∥∥ϕH

t

∥∥∥
2

L∞(R3)

)
.

(3.64)

Being λ ∈ (3β, 1 − 3β), we get

∂tα
λ
N

(
ψt , ϕ

H
t

)
� CvgN

(
‖ϕH

t ‖L∞(R3) + ‖ϕH
t ‖2L∞(R3)

)(
αλ

N (ψy, ϕ
H
t ) + 1

Nλ−3β

)
.

(3.65)

To bound ‖ϕH
t ‖L∞(R3), we use Proposition 3.1. We find

‖ϕH
t ‖L∞(R3) � ‖ϕH

t ‖H2(R3) � ‖ϕ0‖H2(R3) e
Cg2N

(
[E free

GP (ϕ0)]2+g2N N−2β‖ϕ0‖4L∞(R3)

)
|t |

= CN (ϕ0, t). (3.66)

By Grönwall, we can then conclude that

αλ
N

(
ψt , ϕ

H
t

)
≤

(
αλ

N (ψ0, ϕ0) + 1

Nλ−3β

)
eCv(CN (ϕ0,t)+CN (ϕ0,t)2)gN |t |. (3.67)

��
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3.2.2 Proof of Proposition 3.2

The proof of Proposition 3.2 is split in two parts:

• First, we prove that

∥∥∥|ϕH
t 〉〈ϕH

t | − γ
(1)
ψt

∥∥∥
2

� 2αλ
N (ψt , ϕ

H
t ). (3.68)

• Secondly, we prove that for some λ ∈ (0, 1), for any ψ ∈ L2
s (R

3N ) with
‖ψ‖L2

s (R3N ) = 1 and for any normalized ϕ ∈ L2(R3), one has

αλ
N (ψ, ϕ) � N 1−λ

∥∥∥|ϕ〉〈ϕ| − γ
(1)
ψ

∥∥∥ . (3.69)

Combining the estimates in (3.68) and in (3.69) with the result in Proposition 3.3 we
get the result.

Proof of Proposition 3.2 We start by proving (3.68). Being |ϕH
t 〉〈ϕH

t | − γ
(1)
ψt

∈
S2

(
L2

(
R
3
))
, where with S2 we denote the p Schatten space with p = 2, we have,

∥∥∥|ϕH
t 〉〈ϕH

t | − γ
(1)
ψt

∥∥∥ ≤
∥∥∥|ϕH

t 〉〈ϕH
t | − γ

(1)
ψt

∥∥∥
S2(L2(R3))

. (3.70)

Moreover, using (4.2), we can write

∥∥∥|ϕH
t 〉〈ϕH

t | − γ
(1)
ψt

∥∥∥
2

S2(L2(R3))
≤ 2

(
1 − tr

[
|ϕH

t 〉〈ϕH
t |γ (1)

ψt

])
= 2

(
1 −

∥∥∥∥p
ϕH

t
1 ψt

∥∥∥∥
2

L2
s (R3N )

)

= 2

∥∥∥∥q
ϕH

t
1 ψt

∥∥∥∥
2

L2
s (R3N )

= 2
∥∥∥̂νϕH

t ψt

∥∥∥
2

L2
s (R3N )

. (3.71)

Given that ν2 ≤ μλ we can write

∥∥∥|ϕH
t 〉〈ϕH

t | − γ
(1)
ψt

∥∥∥ ≤ √
2
∥∥∥̂νϕH

t ψt

∥∥∥
L2
s (R3N )

≤
√
2αλ

N

(
ψt , ϕ

H
t
)
. (3.72)

Consider now αλ
N (ψ, ϕ) = 〈ψμ̂λ,ϕψ〉, we have

αλ
N (ψ, ϕ) ≤ N 1−λ

〈
ψ,

(
ν̂ϕ

)2
ψ
〉
= N 1−λ

∥∥qϕ
1 ψ

∥∥2
L2
s (R3N )

≤ N 1−λ
∥∥∥|ϕ〉〈ϕ| − γ

(1)
ψ

∥∥∥ ,

(3.73)

where we used that μλ(k) � N 1−λν2 and where the last inequality follows from the
definition of qϕ

1 . If we now apply (3.69) toψ0 ∈ L2(R3N ) and ϕ0 ∈ L2(R3), by (3.68)
and Proposition 3.3, we get
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∥∥∥|ϕH
t 〉〈ϕH

t | − γ
(1)
ψt

∥∥∥
2≤ 2

(
N1−λ

∥∥∥|ϕ0〉〈ϕ0| − γ
(1)
ψ0

∥∥∥ + 1

Nλ−3β

)
eCv(CN (ϕ0,t)+CN (ϕ0,t)2)gN |t |.

(3.74)

��

3.3 FromHartree to Gross–Pitaevskii

The main goal of this section is to prove the following proposition.

Proposition 3.5 (From Hartree to Gross–Pitaevskii) Let β ∈ (0, 1/3). Let ϕGP
t and

ϕH
t be the normalized solution of (1.29) and (3.1), respectively, both with initial data

ϕ0 ∈ L2(R3) Suppose that v satisfies Assumption 1. We have

‖ϕGP
t − ϕH

t ‖L2(R3) � C
√

gN
1 + [E free

GP (ϕ0)]2 + gN N−β‖ϕ0‖2L∞

N
β
2

eCvCN (ϕ0,t)2gN |t |,

(3.75)

where Cv is a constant which depends only on v and CN (ϕ0, t) is given by

CN (ϕ0, t) = ‖ϕ0‖H2(R3) e
Cg2N

(
[E free

GP (ϕ0)]2+g2N N−2β‖ϕ0‖4L∞(R3)

)
|t |

. (3.76)

Proof We prove (3.75) using Grönwall estimate. To do that we want to bound the
following quantity

∂t‖ϕGP
t − ϕH

t ‖2L2(R3)
= 2Re 〈ϕGP

t − ϕH
t , ∂t (ϕ

GP
t − ϕH

t )〉
= 2gN (∫ v)Im 〈ϕH

t , (|ϕH
t |2 − |ϕGP

t |2)ϕGP
t 〉

+ 2gN (∫ v)Im 〈ϕGP
t , (|ϕH

t |2 − vN ∗ |ϕH
t |2)ϕH

t 〉.

We now estimate the two quantities above separately. For the first one, we have

∣∣∣2gN Im 〈ϕH
t , (|ϕH

t |2 − |ϕGP
t |2)ϕGP

t 〉
∣∣∣

� CgN ‖ϕGP
t ‖L∞(R3)(‖ϕGP

t ‖L∞(R3) + ‖ϕH
t ‖L∞(R3))‖ϕGP

t − ϕH
t ‖2L2(R3)

� CgN (‖ϕGP
t ‖2L∞(R3)

+ ‖ϕH
t ‖2L∞(R3)

)‖ϕGP
t − ϕH

t ‖2L2(R3)
. (3.77)

We now estimate the second one, we have

|2gN Im 〈ϕGP
t , (|ϕH

t |2 − vN ∗ |ϕH
t |2)ϕH

t 〉| (3.78)

� 2gN

∫

R3
dx |ϕGP

t (x)||ϕH
t (x)|

∫

R3
dy v(y)

(
|ϕH

t (x)|2 −
∣∣∣ϕH

t

(
x − y

Nβ

)∣∣∣
2
)

= 2gN

∫

R3
dx

∫

R3
dy v(y)|ϕGP

t (x)||ϕH
t (x)|

∫ 1

0
dλ

d

dλ

∣∣∣∣ϕ
H
t

(
x − λy

Nβ

)∣∣∣∣
2
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� 4
gN

Nβ

∫

R3
dx

∫

R3
dy

∫ 1

0
dλ |y|v(y)|ϕGP

t (x)||ϕH
t (x)|

∣∣∣∣ϕ
H
t

(
x − λy

Nβ

)∣∣∣∣

∣∣∣∣∇ϕH
t

(
x − λy

Nβ

)∣∣∣∣

� C
gN

Nβ
‖xv‖L1(R3)‖ϕH

t ‖2L∞(R3)
(1 + ‖∇ϕH

t ‖2L2(R3)
). (3.79)

Then we find

∂t‖ϕGP
t − ϕH

t ‖2L2(R3)
� CgN

(
‖ϕGP

t ‖2L∞(R3)
+ ‖ϕH

t ‖2L∞(R3)

)

×
(

‖ϕGP
t − ϕH

t ‖2L2(R3)
+

1 + ‖∇ϕH
t ‖2

L2(R3)

Nβ

)
. (3.80)

We can bound for any time t the L∞ norms of ϕGP
t , ϕH

t , using the bound for the
H2 norms proved in Proposition 3.1, i.e.,

‖ϕGP
t ‖L∞(R3) � ‖ϕ0‖H2(R3)e

Cg2N [E free
GP (ϕ0)]2|t |, (3.81)

‖ϕH
t ‖L∞(R3) � C ‖ϕ0‖H2(R3) e

Cg2N

(
[E free

GP (ϕ0)]2+g2N N−2β‖ϕ0‖4L∞(R3)

)
|t |

. (3.82)

Moreover,by Proposition 3.1, we also can bound uniformly in time

‖∇ϕH
t ‖L2(R3) � CE free

GP (ϕ0) + CgN N−β‖ϕ0‖2L∞ . (3.83)

Thus, by Grönwall, we find

‖ϕGP
t − ϕH

t ‖L2(R3) � C
√

gN
1 + E free

GP (ϕ0) + gN N−β‖ϕ0‖2L∞

N
β
2

eCvCN (ϕ0,t)2gN |t |,

(3.84)

whereCv is a constant which depends on ‖xv‖L1(R3) andC(ϕ0) is defined as in (3.66),
i.e.,

CN (ϕ0, t) = ‖ϕ0‖H2(R3) e
Cg2N

(
[E free

GP (ϕ0)]2+g2N N−2β‖ϕ0‖4L∞(R3)

)
|t |

. (3.85)

��

3.4 Proof of Theorem 1.6

In this last section we combine the results of Proposition 3.3 and Proposition 3.5 to
prove (1.31). We start by writing

∥∥∥γ
(1)
ψt

− PϕGP
t

∥∥∥ ≤
∥∥∥γ (1)

ψt
− PϕH

t

∥∥∥ +
∥∥∥PϕH

t
− PϕGP

t

∥∥∥

≤
∥∥∥γ (1)

ψt
− PϕH

t

∥∥∥ + 2
∥∥∥ϕH

t − ϕGP
t

∥∥∥
L2(R3)

. (3.86)
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By Proposition 3.2, we get

∥∥∥γ (1)
ψt

− PϕH
t

∥∥∥ ≤ √
2

(
N

1−λ
2

∥∥∥γ (1)
ψ0

− Pϕ0

∥∥∥
1
2 + 1

N
λ−3β

2

)
eCv(CN (ϕ0,t)+CN (ϕ0,t)2)gN |t |.

(3.87)

On the other hand, from Proposition 3.5 we have

2
∥∥∥ϕH

t − ϕGP
t

∥∥∥
L2(R3)

≤ C
√

gN
1 + E free

GP (ϕ0) + gN N−β‖ϕ0‖2L∞

N
β
2

eCvCN (ϕ0,t)2gN |t |.

(3.88)

Combining the two previous results we then get

∥∥∥γ (1)
ψt

− PϕGP
t

∥∥∥ ≤ √
2

(
N

1−λ
2

∥∥∥γ (1)
ψ0

− Pϕ0

∥∥∥
1
2 + 1

N
λ−3β

2

)
eCv(CN (ϕ0,t)+CN (ϕ0,t)2)gN |t |

+ C
√

gN
1 + E free

GP (ϕ0) + gN N−β‖ϕ0‖2L∞

N
β
2

eCvCN (ϕ0,t)2gN |t |,

(3.89)

where Cv now is a constant which depends on ‖v‖L1(R3), ‖v‖L2(R3) and ‖xv‖L1(R3).
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Appendix A: Properties of the projectors p'j , q
'
j

Proposition A.1 Let pϕ
j and qϕ

j be defined as in (3.20).
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(i) Let ν : {0, 1, . . . , N } → R be given by ν (k) :=
√

k
N . Then the square of ν̂ϕ is

the fraction of particles not in the state ϕ, i.e.,

(
ν̂ϕ

)2 = 1

N

N∑

j=1

qϕ
j . (4.1)

(ii) For any f : {0, 1, . . . , N } → R and any symmetric state ψ ∈ L2
s

(
R
3N

)

∥∥ f̂ ϕqϕ
1 ψ

∥∥
L2
s (R3)

= ∥∥ f̂ ϕν̂ϕψ
∥∥

L2
s (R3)

,

∥∥ f̂ ϕqϕ
1 qϕ

2 ψ
∥∥

L2
s (R3)

≤
√

N

N − 1

∥∥∥ f̂ ϕ
(
ν̂ϕ

)2
ψ

∥∥∥
L2
s (R3)

. (4.2)

(iii) For any f : {0, 1, . . . , N } → R, v : R3 × R
3 → R and j, k = 0, 1, 2, we have

f̂ ϕ Qϕ
j v (x1, x2) Qϕ

k = Qϕ
j v (x1, x2) Qϕ

k f̂ ϕ
j−k, (4.3)

where Qϕ
0 := pϕ

1 pϕ
2 , Qϕ

1 := pϕ
1 qϕ

2 and Qϕ
2 := qϕ

1 qϕ
2 .

Proof To prove (i) note that
⋃N

k=0 Ak = {0, 1}N , so that 1 = ∑N
k=0 Pϕ

k . Using also(
qϕ

j

)2 = qϕ
j and qϕ

j pϕ
j = 0, we get

qϕ
j

N∏

l=1

[(
pϕ

l

)1−al
(
qϕ

l

)al
]

=
{∏N

l=1

[(
pϕ

l

)1−al
(
qϕ

l

)al
]
if a j = 1,

0. else

}

= a j

N∏

l=1

[(
pϕ

l

)1−al
(
qϕ

l

)al
]
. (4.4)

Given that for any a ∈ Ak the sum of the a j ’s is k we deduce that

1

N

N∑

j=1

qϕ
j = 1

N

N∑

j=1

qϕ
j

N∑

k=0

Pϕ
k = 1

N

N∑

k=0

N∑

j=1

qϕ
j Pϕ

k = 1

N

N∑

k=0

k Pϕ
k =

N∑

k=0

(ν (k))2 Pϕ
k

(4.5)

and (i) follows.
We now prove (4.2). We can use the symmetry of ψ and the previous point to get

∥∥ f̂ ϕν̂ϕψ
∥∥2

L2
s (R3)

=
〈
ψ,

(
f̂ ϕ

)2 (
ν̂ϕ

)2
ψ
〉
=

〈
ψ,

(
f̂ ϕ

)2
qϕ
1 ψ

〉
= ∥∥ f̂ ϕqϕ

1 ψ
∥∥2

L2
s (R3)

. (4.6)
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Similarly, for the second inequality in (4.2), we have

∥∥∥ f̂ ϕ
(
ν̂ϕ

)2
ψ

∥∥∥
2

L2
s (R3)

= 1

N 2

N∑

j,k=1

〈
ψ,

(
f̂ ϕ

)2
qϕ

j qϕ
k ψ

〉
= N − 1

N

∥∥ f̂ ϕqϕ
1 qϕ

2 ψ
∥∥2

L2
s (R3)

+ 1

N

∥∥ f̂ ϕν̂ϕψ
∥∥2

L2
s (R3)

. (4.7)

To prove (4.3) we use the definition of the Q j ’s and the previous points to get

f̂ ϕ Qϕ
j v (x1, x2) Qϕ

k =
∑

l∈Z
f (l) Pϕ

l Qϕ
j v (x1, x2) Qϕ

k =
∑

l∈Z
f (l) Qϕ

j v (x1, x2) Qϕ
k Pϕ

N−2,l− j

=
∑

l∈Z
f (l) Qϕ

j v (x1, x2) Qϕ
k Pϕ

l− j+k = Qϕ
j v (x1, x2) Qϕ

k f̂ ϕ
j−k . (4.8)

��
Proposition A.2 Let pϕ

j and qϕ
j be defined as in (3.20). Let a, a′ ∈ [1,+∞] such that

1/a + 1/a′ = 1 and let u ∈ L2a′ (
R
3
)
, ϕ ∈ L2a

(
R
3
)
. It holds true that

∥∥u (x1 − x2) pϕ
1

∥∥ ≤ ‖ϕ‖L2a(R3) ‖u‖L2a′
(R3) , (4.9)

∥∥pϕ
1 u (x1 − x2) pϕ

1

∥∥ ≤ ‖ϕ‖2L2a(R3)
‖u‖La′

(R3) . (4.10)

Moreover, if a ∈ [1, 2], one has

∥∥u (x1 − x2) pϕ
1 pϕ

2

∥∥ ≤ ‖ϕ‖2L2a(R3)
‖u‖La′

(R3) . (4.11)

Proof The estimate (4.9) directly follows from Hölder inequality,

∥∥u (x1 − x2) pϕ
1

∥∥2 = sup
‖ψ‖=1

∥∥u (x1 − x2) pϕ
1ψ

∥∥2 � sup
‖ψ‖=1

‖ψ‖ sup
x2∈R3

〈ϕ, u2 (· − x2) ϕ〉

≤ ‖ϕ‖2L2a(R3)
‖u‖2

L2a′
(R3)

. (4.12)

To prove (4.10), we use (4.9). Indeed,

∥∥pϕ
1 u (x1 − x2) pϕ

1

∥∥ ≤
∥∥∥
√|u (x1 − x2)|pϕ

1

∥∥∥
2 ≤ ‖ϕ‖2L2a(R3)

∥∥√u
∥∥2

L2a′
(R3)

≤ ‖ϕ‖2L2a(R3)
‖u‖La′

(R3) . (4.13)

Finally, the estimate (4.11) is a consequence of theYoung inequality for the convolution
(see [37, Theorem 4.2]). More precisely, we have

‖u (x1 − x2) p1 p2‖2 = sup
‖ψ‖=1

〈
ψ, (|ϕ〉〈ϕ|)1 (|ϕ〉〈ϕ|)2 u2 (x1 − x2) (|ϕ〉〈ϕ|)1 (|ϕ〉〈ϕ|)2 ψ

〉

(4.14)
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≤
∫

R6
dx1dx2 u2 (x1 − x2) |ϕ (x1)|2 |ϕ (x2)|2 = 〈|ϕ|2 , u2 ∗ |ϕ|2〉

≤ ‖ϕ‖2L2p(R3)
‖ϕ‖2L2q(R3)

‖u‖2L2r (R3)
. (4.15)

��
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