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Abstract
This paper studies topological duals of locally convex function spaces that are natural
generalizations of Fréchet and Banach function spaces. The dual is identified with the
direct sum of another function space, a space of purely finitely additive measures and
the annihilator of L∞. This allows for quick proofs of various classical as well as new
duality results e.g. in Lebesgue, Musielak–Orlicz, Orlicz–Lorentz space and spaces
associated with convex risk measures. Beyond Banach and Fréchet spaces, we obtain
completeness and duality results in general paired spaces of random variables.

Keywords Banach function spaces · Topological duals · Finitely additive measures

Mathematics Subject Classification 46E30 · 46A20 · 28A25

1 Introduction

Banach function spaces (BFS) provide a convenient set up for functional analysis in
spaces of measurable functions. Many well known properties of e.g. Lebesgue spaces
and Orlicz spaces extend to BFS with minor modifications; see e.g. [1, 20, 22, 38].
Extensions to Fréchet function spaces have been studied e.g. in [4]. This paper studies
topological duals of more general locally convex function spaces where the topology
is generated by an arbitrary collection of seminorms satisfying the usual BFS axioms.

Building on the classical result of Yosida and Hewitt [37,Section 2] on the dual of
L∞, we identify the topological dual as the direct sum of another space of random
variables (Köthe dual), a space of purely finitely additive measures and the annihilator
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of L∞. The last two components have a singularity property that has been found
useful, e.g., in the analysis of convex integral functionals by Rockafellar [32] in the
case of L∞ and by Kozek [19] in the case of Orlicz spaces. In the case of L∞, the last
component in the dual vanishes while in other Orlicz spaces, the second one vanishes;
see [28,Chapter IV]. Our result thus unifies the two seemingly complementary cases.

Themain result is illustrated first by simple derivations of various existing aswell as
new duality results in Musielak–Orlicz, Marcinkiewicz, Lorentz and Orlicz–Lorentz
spaces. We go beyond the existing BFS settings by identifying topological duals of the
space of random variables with finite moments, generalized Musielak–Orlicz spaces
as well as spaces of random variables associated with convex risk measures. The last
instance has attracted attention in the recent literature of mathematical finance and
insurance; see e.g. [21, 27] and [11].

Section 5 is concerned with dual pairs of linear spaces of random variables that play
a central role e.g. in stochastic optimization and optimal control; see e.g. [36] and the
examples in [33]. We show that the corresponding Mackey and strong topologies are
generated by (uncountable) collections of seminorms satisfying the usual BFS axioms.
We then obtain duality and completeness results as corollaries of the main results of
the paper.

The rest of the paper is organized as follows. Section 2 reviews the duality theory
for L∞. Section 3 extends the notion of an integral with respect to a finitely additive
measure to measurable not necessarily bounded random variables. Section 4 defines a
general locally convex space of random variables and gives themain result of the paper
by characterizing the topological dual of a space. Section 5 studies spaces of random
variables in separating duality. Section 6 applies the main result to characterize the
topological dual in various known and new settings.

2 Topological dual of L∞

Let (�,F , P) be a probability space with a σ -algebra F and a countably additive
probability measure P . This section reviews the topological dual of the Banach space
L∞ of equivalence classes of essentially bounded measurable functions on a prob-
ability space (�,F , P). We consider Rn-valued functions and endow L∞ with the
norm

‖u‖L∞ := |(‖u1‖L∞ , . . . , ‖un‖L∞)|,

where | · | is a norm on R
n . The dual norm on R

n is denoted by | · |∗.
LetM be the set of P-absolutely continuous finitely additive Rn-valued measures

on (�,F) and let Ms be set of those m ∈ M which are singular (“purely finitely
additive” in the terminology of [37]; see [37,Theorem 1.22]) in the sense that there is
a decreasing sequence (Aν)∞ν=1 ⊂ F with P(Aν)↘0 and |m|∗(� \ Aν) = 0. Given
m ∈ M, the set function |m|∗ : F → R is defined by

|m|∗(A) := |m+(A) + m−(A)|∗,
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Topological duals of locally convex function spaces Page 3 of 38 2

where i th components of m+ ∈ M and m− ∈ M are the positive and negative parts,
respectively, of the i th component mi of m; see [37,Theorem 1.12].

Recall that the space E of Rn-valued simple random variables (i.e. piecewise con-
stant with a finite range) is dense in L∞. Given m ∈ M, the integral of a u ∈ E is
defined by

∫
�

udm :=
J∑

j=1

α jm(A j ),

where A j ∈ F and α j ∈ R
n , j = 1, . . . ,m are such that u = ∑m

j=1 α j1A j On L∞,
the integral is defined as the unique norm continuous linear extension from E to L∞.

The following is from [37,Theorem 2.3] except that we do not assume that the
underlying measure space is complete; see also [2,Sections 4.7 and 10.2]. The proof
uses [9,Theorem 20.35] which does not rely on the completeness but identifies the dual
of L∞ with the space of finitely additive measures that are absolutely continuous with
respect to P . Results of [37,Section 1] on decomposition of finitely additive measures
then complete the proof. The above are concerned with real-valued random variables
but the extension to the vector-valued case is straightforward; see [35,Lemma 1] for
an extension to Banach space-valued random variables. Throughout this paper, the
expectation of a random variable z ∈ L1 is denoted by E[z]. The inner product of two
vectors ξ, η ∈ R

n is denoted by ξ · η.

Theorem 1 (Yosida–Hewitt) The topological dual (L∞)∗ of L∞ can be identified with
M in the sense that for every u∗ ∈ (L∞)∗ there exists a unique m ∈ M such that

〈u, u∗〉 =
∫

�

udm,

where the integral is defined componentwise. The dual norm is given by

‖m‖∗
L∞ = |m|∗(�).

Moreover, M = L1 ⊕ Ms in the sense that for every m ∈ M there exist unique
y ∈ L1 and ms ∈ Ms such that

∫
�

udm = E[u · y] +
∫

�

udms .

We have ms = 0 if and only if 〈u1Aν , u∗〉 → 0 for every u ∈ L∞ and every decreasing
(Aν)∞ν=1 ⊂ F such that P(Aν)↘0.

Proof Assume first that n = 1. By [9,Theorem 20.35], the dual of L∞ can be identified
with the linear space of finitely additive P-absolutely continuous measures m in the
sense that every u∗ ∈ (L∞)∗ can be expressed as

〈u, u∗〉 =
∫

�

udm
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and, conversely, any such integral belongs to (L∞)∗. By [37,Theorem 1.24], there is a
unique decompositionm = ma +ms , wherema is countably additive andms is purely
finitely additive. The construction in [37] also shows that ma and ms are absolutely
continuous with respect to m and thus, absolutely continuous with respect to P as
well. By [37,Theorem 1.22], there is a decreasing sequence (Aν)∞ν=1 ⊂ F such that
P(Aν) ↘ 0 and ms(� \ Aν) = 0. The functional ys ∈ (L∞)∗ given by

〈u, ys〉 :=
∫

�

udms

then has the property in the statement. By Radon-Nikodym, there exists a y ∈ L1 such
that

〈u, u∗〉 := E[u · y] +
∫

�

udms .

To prove the last claim, it is clear that the given condition holds ifms = 0. To prove
the converse, let u∗ ∈ (L∞)∗ and consider the representation in terms of y ∈ L1 and
ms ∈ Ms given by the second claim. Let Aν be the sets in the characterization of the
singularity ofms . By [37,Theorems 1.12 and 1.17],ms = ms+ −ms− for nonnegative
purely finitely additive ms+ and ms−. Given ε > 0, [37,Theorem 1.21] gives the
existence of A ∈ F such that ms+(� \ A) < ε and ms−(A) < ε. We have

〈u1A1Aν , u∗〉 = E[1A1Aνu · y] + ms(A ∩ Aν) → ms(A) > ms+(�) − 2ε.

Under the given condition, the left side converges to zero. Since ε > 0 was arbitrary,
ms+ = 0. By symmetry, ms− = 0 so ms = 0.

By [37,Theorem 2.3], the dual norm of ‖ · ‖L∞ is given by ‖m‖T V := m+(�) +
m−(�). This completes the proof of the case n = 1. The general case follows from
the fact that the dual of a Cartesian product of Banach spaces is the Cartesian product
of the dual spaces with the norm

‖u‖∗
L∞ = |(‖m1‖T V , . . . , ‖mn‖T V )|∗,

which completes the proof. �

3 Extension of the integral

In [37] and in Sect. 2, integrals with respect to an m ∈ M were defined only for
elements of L∞ as norm-continuous extensions of integrals of simple functions.Weak-
ening the topology, it is possible to extend the definition of the integral to a larger space
of measurable functions using Daniell’s construction much as in [3,Chapter II] which
considered countably additive integrals of arbitrary (not necessarily F-measurable)
functions.

Another approach to integration of unbounded functions with respect to finitely
additivemeasures is that ofDunford; seeDunford andSchwartz [6] orLuxemburg [23].
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Abenefit of theDaniell extension adopted here is that it gives rise to a simpler definition
of integrability that is easier to verify for larger classes of measurable functions.

Given m ∈ M, we define ρm : L0 → R by

ρm(u) := sup
u′∈L∞

{∫
�

u′dm
∣∣∣∣ |u′

j | ≤ |u j | ∀ j = 1, . . . , n

}

=
n∑
j=1

ρm j (u j ),

where

ρm j (u j ) = sup
u′∈L∞(R)

{∫
�

u′dm j | |u′| ≤ |u j |
}

.

We denote

dom ρm := {u ∈ L0 | ρm(u) < ∞}.

The extension of the one-dimensional integral in Theorem 29 gives the following.

Theorem 2 Given m ∈ M, the integral

u �→
∫

�

udm

has a unique linear extension from L∞ to dom ρm such that

∣∣∣∣
∫

�

udm

∣∣∣∣ ≤ ρm(u) ∀u ∈ dom ρm .

If m is purely finitely additive, there exists a decreasing (Aν)∞ν=1 ⊂ F with P(Aν) ↘ 0
and

∫
�
u1�\Aνdm = 0 for all u ∈ dom ρm.

Proof The extension is given by

∫
�

udm :=
m∑
j=1

∫
�

u jdm j ,

where the integrals on the right are the extensions of the one-dimensional integrals
given in Theorem 29. We get

∣∣∣∣
∫

�

udm

∣∣∣∣ ≤
m∑
j=1

∣∣∣∣
∫

�

u jdm j

∣∣∣∣ ≤
m∑
j=1

ρm j (u j ) = ρm(u),

where the second inequality comes from Theorem 29. The sets Aν can be taken as the
unions of the componentwise sets given by Theorem 29. �
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We call the extension in Theorem 2 the m-integral of u and denote it by

∫
�

udm.

The elements of dom ρm will be said to be m-integrable. If m is countably additive,
then, by e.g. [34,Theorem 14.60],

ρm(u) =
n∑
j=1

∫
�

|u j |d|m j | =
n∑
j=1

E[|u j ||y j |],

where y is the density of m, and thus,

dom ρm = {u | u j ∈ L1(�,F , |m j |) ∀ j = 1, . . . , n}.

In this case, the integral is the Lebesgue integral.

4 Topological duals of spaces of random variables

This section contains the main result of the paper. The setup extends that of Banach
function spaces by replacing the norm by an arbitrary collection of seminorms thus
covering more general locally convex spaces of random variables. The main result
identifies the topological dual of the space with the direct sum of a space of random
variables and two spaces of singular functionals, the first of which is represented by
finitely additive measures while the second is the orthogonal complement of L∞.

Let L0 be the linear space of Rn-valued random variables. Let P be a collection
of sublinear (i.e. convex and positively homogeneous) functions p : L0 → R with
p(u) = p(−u) for all u ∈ L0, define

LP :=
⋂
p∈P

dom p,

and endow LP with the locally convex topology generated byP . Recall that dom p :=
{u ∈ L0 | p(u) < ∞}. Our aim is to characterize the topological dual L∗

P of LP . To
this end, we will assume that, for each p ∈ P ,

(A1) there exists a constant c > 0 such that p(u) ≤ c‖u‖L∞ for all u ∈ L∞,
(A2) p(u′) ≤ p(u) for every u′, u ∈ L0 with |u′

j | ≤ |u j | ∀ j = 1, . . . , n almost
surely.

Occasionally, we will also assume the following

(A3) p(u1Aν )↘0 for all u ∈ L∞ and decreasing sequence (Aν)∞ν=1 ⊂ F with
P(Aν)↘0.

(A4) p(u1Aν )↘0 for all u ∈ LP and decreasing sequence (Aν)∞ν=1 ⊂ F with
P(Aν)↘0.
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It is clear that (A3) and (A4) are implied by the following

p(uν)↘0 for all (uν) ∈ L∞ such that |uν |↘0,
p(uν)↘0 for all (uν) ∈ LP such that |uν |↘0,

respectively. The case where P is a singleton has been extensively studied ever since
the publication of [22]; see e.g. the monographs [1, 20, 38, 39]. When P is a singleton
satisfying merely (A2), LP is usually called a Banach function space provided it
is complete. A sufficient condition for completeness in the general case is given in
Remark 9 below.

Our approach relies on (A1) which is assumed also e.g. in [1] but avoided in
many other treatments of Banach function spaces. The assumption allows for simple
proofs building on Theorem 1 and it provides more information on the structure of the
topological dual; see Theorem 6 below. Under a mild condition, spaces satisfying (A2)
alone are isomorphic to spaces satisfying both (A1) and (A2).

Remark 3 Let P̃ be a collection of seminorms satisfying (A2) but not necessarily (A1).
If there exists ū ∈ LP̃ such that ū j > 0 almost surely for all j , then LP̃ is linearly
isomorphic to a space LP satisfying (A1) and (A2). The elements of L∗

P̃ can thus be
expressed as

ũ �→ 〈i(ũ), u∗〉,

where i is the isomorphism and u∗ ∈ L∗
P .

Proof Define i : L0 → L0 by i(u) j := u j/ū j and, for every p̃ ∈ P̃ , let p(u) :=
p̃(i−1(u)). By (A2),

p(u) = p̃((ū j u j )
n
j=1) ≤ p̃((‖u j‖L∞ ū j )

n
j=1) ≤ p̃(‖u‖L∞ ū) = p̃(ū)‖u‖L∞ ,

so P := { p̃ ◦ i−1 | p̃ ∈ P̃} satisfies (A1) and (A2). The restriction of A to LP̃ is an
isomorphism between LP̃ and LP . �

A seminorm p is said to be rearrangement invariant (or symmetric) if p(u) = p(ũ)

whenever u and ũ have the same distribution in the sense that P(|u| > τ) = P(|ũ| >

τ) for all τ ≥ 0.

Remark 4 Consider the scalar case n = 1. Given p ∈ P , let

φ̂p(t) := sup
A∈F

{p(1A) | P(A) ≤ t} and φ̌p(t) := inf
A∈F

{p(1A) | P(A) ≥ t}.

Under (A2), condition (A3) is equivalent to limt↘0 φ̂p(t) = 0. If limt↘0 φ̌p(t) > 0,
then dom p = L∞. If p is rearrangement invariant, then, for any A ∈ F with P(A) =
t ,

φ̂p(t) = φ̌p(t) = p(1A),

where the common value is known as the fundamental function; see e.g. [1]. In this
case, LP = L∞ unless (A3) holds.
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Proof Assuming (A3), let tν ↘ 0. There exists (Aν)∞ν=1 such that P(Aν) ≤ tν and
φ̂p(tν) ≤ p(1Aν )+1/ν. Passing to a subsequence if necessary, 1Aν → 0 almost surely.
Defining Âν := ⋃

ν′≥ν Aν , ( Âν)∞ν=1 is decreasing with Aν ⊂ Âν and P( Âν) ↘ 0, so,
by (A3)

φ̂(tν) ≤ p(1 Âν ) + 1/ν ↘ 0.

For the converse, let u ∈ L∞ and (Aν)∞ν=1 ⊂ F with tν := P(Aν) ↘ 0. By (A2),

p(u1Aν ) ≤ p(‖u‖L∞1Aν ) ≤ ‖u‖L∞ φ̂(tν) ↘ 0.

If inf t>0 φ̌p(t) > 0, then

p(u) ≥ p(ν1|u|≥ν) ≥ νφ̌p(P(|u| ≥ ν)) ≥ ν inf
t>0

φ̌p(t) ∀ν

unless u ∈ L∞. �
For each p ∈ P , we define a sublinear symmetric function p◦ on the space M of

P-absolutely continuous finitely additive measures by

p◦(m) := sup
u∈L∞

{∫
�

udm | p(u) ≤ 1

}
.

The following shows, in particular, that every m ∈ dom p◦ decomposes uniquely into
the sum of countably additive and singular measures both in dom p◦.

Lemma 5 Assume that p ∈ P satisfies (A2) and let m ∈ dom p◦. Every u ∈ dom p is
m-integrable and

∫
�

udm ≤ p(u)p◦(m).

There exist unique y ∈ L1 ∩ dom p◦ and ms ∈ Ms ∩ dom p◦ such that

∫
�

udm = E[u · y] +
∫

�

udms ∀u ∈ dom p.

Givenms ∈ Ms∩dom p◦, there exists a decreasing (Aν)∞ν=1 ⊂ F such that P(Aν)↘0
and

∫
u1�\Aνdms = 0 ∀u ∈ dom p.

Under (A3),Ms ∩ dom p◦ = {0}.
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Proof By (A2),

ρm(u) = sup
u′∈L∞

{∫
�

u′dm | |u′
j | ≤ |u j | j = 1, . . . , n

}

≤ sup
u′∈L∞

{∫
�

u′dm | p(u′) ≤ p(u)

}
= p(u)p◦(m),

so every u ∈ dom p is m-integrable. Theorem 2 now gives

|
∫

�

udm| ≤ p(u)p◦(m)

and the existence of the sequence (Aν)∞ν=1 for very ms ∈ Ms ∩ dom p◦.
By Theorem 1, there exist unique y ∈ L1 andms ∈ (L∞)s such thatm = yP+ms .

Let α < p◦(y) and αs < p◦(ms) and u, us ∈ L∞ such that p(u), p(us) ≤ 1 and

∫
�

uydP ≥ α and
∫

�

usdms ≥ αs .

Let (Aν)∞ν=1 ⊂ F be decreasing with P(Aν)↘0 and ms(� \ Aν) = 0 and let uν =
λu1�\Aν + (1 − λ)us1Aν , where λ ∈ (0, 1). By convexity and (A2),

p(uν) ≤ λp(u1�\Aν ) + (1 − λ)p(us1Aν ) ≤ λp(u) + (1 − λ)p(us) ≤ 1

while

lim sup
∫

�

uνdm ≥ λα + (1 − λ)αs .

Thus, p◦(m) ≥ λα + (1 − λ)αs . Since α < p◦(y) and αs < p◦(ms) were arbitrary,
p◦(m) ≥ λp◦(y) + (1 − λ)p◦(ms). Since λ ∈ (0, 1) was arbitrary, we get p◦(y) ≤
p◦(m) and p◦(ms) ≤ p◦(m). Thus, y ∈ dom p◦ and ms ∈ dom p◦.

To prove the last claim, let ms ∈ Ms ∩ dom p◦. By the first claim,

∫
�

u1Adm
s ≤ p(u1A)p◦(ms) ∀u ∈ L∞, A ∈ F

so, by the last claim of Theorem 1, condition (A3) implies ms = 0. �
Let

MP◦ :=
⋃
p∈P

dom p◦,

the set of P-absolutely continuous finitely additive measures m ∈ M such that
p◦(m) < ∞ for some p ∈ P . The set of purely finitely additive elements of MP◦

will be denoted by MP◦
s . The set of densities y = dm/dP of countably additive

123



2 Page 10 of 38 T. Pennanen, A.-P. Perkkiö

m ∈ MP◦
will be denoted by LP◦

. By Lemma 5,MP◦ = LP◦ ⊕MP◦
s . In the setting

of Banach function spaces where P is a singleton, LP◦
is often called the “associate

space” or the Köthe dual of LP ; see e.g. [1, 8, 39] and Lemma 8 below.
The following is the main result of this section. It identifies the topological dual

L∗
P of LP with the direct sum of MP◦ = LP◦ ⊕ MP◦

s and the annihilator

(L∞)⊥ := {w ∈ L∗
P | 〈u, w〉 = 0 ∀u ∈ L∞}

of L∞.

Theorem 6 We have

L∗
P = LP◦ ⊕ MP◦

s ⊕ (L∞)⊥

in the sense that for every u∗ ∈ L∗
P there exist unique y ∈ LP◦

, ms ∈ MP◦
s and

w ∈ (L∞)⊥ such that

〈u, u∗〉 = E[u · y] +
∫

�

udms + 〈u, w〉.

For every u ∈ LP and m ∈ MP◦
,

∫
�

udm ≤ p(u)p◦(m).

In particular, restricted toMP◦
, p◦ coincides with the polar seminorm of p, i.e.

p◦(m) = sup
u∈LP

{〈u,m〉 | p(u) ≤ 1}.

Given w ∈ (L∞)⊥ and u ∈ LP , there exists a decreasing sequence (Aν)∞ν=1 ⊂ F
with P(Aν) ↘ 0 and

〈u, w〉 = 〈u1Aν , w〉 ∀ν = 1, 2, . . . .

Under (A3),MP◦
s = {0} so

L∗
P = LP◦ ⊕ (L∞)⊥,

and under (A4), MP◦
s = {0} and (L∞)⊥ = {0} so

L∗
P = LP◦

.

Proof By Lemma 5, MP◦ ⊂ L∗
P , so MP◦ ⊕ (L∞)⊥ ⊆ L∗

P . To prove the oppo-
site inclusion, let u∗ ∈ L∗

P . There exists p ∈ P and γ > 0 such that u∗ ≤ γ p.
Assumption (A1) implies that u∗ is continuous in L∞. By Theorem 1, there exists
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Topological duals of locally convex function spaces Page 11 of 38 2

a unique m ∈ M such that 〈u, u∗〉 = ∫
�
udm for all u ∈ L∞. Since u∗ ≤ γ p,

we have m ∈ dom p◦, so m is continuous on LP by Lemma 5. Now w := u∗ − m
belongs to (L∞)⊥, so u∗ has the required decomposition. Given another decomposi-
tion u∗ = m̃ + w̃ with w̃ ∈ (L∞)⊥ and m̃ ∈ MP◦

, we have (m − m̃)+ (w − w̃) = 0.
Thus

∫
�
ud(m − m̃) = 0 for all u ∈ L∞, so m − m̃ = 0 and hence also w − w̃ = 0,

so the decomposition is unique.
The inequality follows directly from that of Lemma 5. Let u ∈ LP and Aν :=

{|u| > ν}. Clearly P(Aν) ↘ 0 and u1�\Aν ∈ L∞, so 〈u1�\Aν , w〉 = 0 and thus w is
singular. ThatMP◦ = LP◦

under (A3) is the last claim of Lemma 5. Under (A4), the
truncations uν := u1{|u|≥ν} of any u ∈ LP converge to u so L∞ is dense in LP and
thus, (L∞)⊥ = {0}. �

When P is a singleton, we are in the setting of [38,Theorem 15.70.2], where L∗
P

is decomposed into the direct sum of LP◦
and "singular elements". Theorem 6 gives

a more precise description of the singular elements as the direct sum of MP◦
s and

(L∞)⊥. Applications will be given in the following sections.
Let MP be the closure of L∞ in LP .

Corollary 7 We have

M∗
P = LP◦ ⊕ MP◦

s

in the sense that for every u∗ ∈ M∗
P there exist unique y ∈ LP◦

and m ∈ MP◦
s such

that

〈u, u∗〉 = E[u · y] +
∫

�

udm ∀u ∈ MP

If (A3) holds, then MP◦
s = {0} and M∗

P = LP◦
. If (A4) holds, then MP = LP .

Proof ByHahn-Banach, a continuous linear functional onMP is a restriction toMP of
a continuous linear functional on LP . The first two claims thus follow fromTheorem6.
To prove the last claim, take any u ∈ LP and define uν ∈ L∞ as the pointwise
projection of u on the Euclidean ball of radius ν. Under (A4), p(u − uν)↘0 for all
p ∈ P , so L∞ is dense in LP . �

The we end this section by giving some basic properties of LP◦
. The Köthe dual

of LP is the linear space

L ′
P := {y ∈ L0 | u · y ∈ L1 ∀u ∈ LP }.

By definition, LP◦ ⊆ L ′
P . Lemma 8 below gives sufficient conditions for the converse.

Recall that a locally convex space is barreled if every closed convex absorbing set is
a neighborhood of the origin. By the Baire category theorem, Banach and Fréchet
spaces are barreled.
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Lemma 8 For each p ∈ P ,

1. there is a constant c > 0 such that c‖y‖L1 ≤ p◦(y) for all y ∈ L1,
2. p◦(y′) ≤ p◦(y) for every y′, y ∈ L1 with |y′

j | ≤ |y j | for j = 1, . . . , n,

3. E[u · y] ≤ p(u)p◦(y) for every u ∈ L0 and y ∈ L1 (Hölder’s inequality).

If the P-topology is barreled and stronger than that of L0, then LP◦ = L ′
P .

Proof Assumption (A1) implies 1. Under (A2),

p◦(y′) = sup
u′∈L∞,u∈L∞

{
E[u′ · y′]

∣∣∣∣ |u′
j | ≤ |u j |, p(u) ≤ 1

}

= sup
u∈L∞

⎧⎨
⎩E[

n∑
j=1

|u j ||y′
j |]

∣∣∣∣ p(u) ≤ 1

⎫⎬
⎭

≤ sup
u∈L∞

⎧⎨
⎩E[

n∑
j=1

|u j ||y j |]
∣∣∣∣ p(u) ≤ 1

⎫⎬
⎭

= sup
u′∈L∞,u∈L∞

{
E[u′ · y]

∣∣∣∣ |u′
j | ≤ |u j |, p(u) ≤ 1

}

= p◦(y),

so 2 holds. The inequality in 3 follows from the inequality in Lemma 5.
To prove the last claim, let y ∈ L0 be such that E[u · y] < ∞ for all u ∈ LP .

Then py(u) := E[|u||y|] < ∞ for all u ∈ LP . By Fatou’s lemma, py is lsc in the
L0-topology. By assumption, py is lsc also in theP-topology.When theP-topology is
barreled, py is continuous (see e.g. [33,Corollary 8B]), so y �→ E[u · y] is continuous
as well. By Theorem 6, y ∈ LP◦

. �
In the setting of Banach function spaces where P is a singleton, the last claim of

Lemma 8 recovers [1,Lemma 1.2.6]. The following gives sufficient conditions for the
space LP to be complete and thus, barreled, when the topology is metrizable.

Remark 9 If the P-topology is stronger than that of L0 and p ∈ P are lower semi-
continuous on L0, then LP is complete. In this case, LP is a Banach/Fréchet (and, in
particular, barreled) if P is a singleton/countable.

If p(u) = ρ(|u|) for an nondecreasing ρ : L0 → R, the function p is lsc in
probability if and only if ρ has the Fatou property: for any sequence (ην)∞ν=1 ⊂ L0+
with η ↗η ∈ L0, lim ρ(ην) = ρ(η).

Proof If (uν) is a Cauchy net in LP , it is Cauchy also in L0 so, by completeness of
L0, it L0-converges to an u ∈ L0. Being Cauchy in LP means that for every ε > 0
and p ∈ P , there is a ν̄ such that

p(uν − uμ) ≤ ε ∀ν, μ ≥ ν̄.
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The lower semicontinuity then gives

p(uν − u) ≤ ε ∀ν ≥ ν̄

so u ∈ LP , by triangle inequality, and (uν) converges in LP to u. Thus LP is complete.
If p is lsc, lim inf ρ(ην) ≥ ρ(η) while ρ(ην) ≤ ρ(η) since ρ is nondecreasing. If

Fatou property holds and uν → u in probability, then, passing to a subsequence if
necessary, uν → u almost surely. Then ην := infν′≥ν |uν′ | increases pointwise to |u|,
so p(u) = lim inf ρ(ην) ≤ lim inf p(uν). �

5 Solid spaces of random variables

Axiom (A1) implies that LP contains L∞ while axiom (A2) implies that it is solid in
the sense that it contains every u′ ∈ L0 for which there exists u ∈ LP with |u′

j | ≤ |u j |
for all j = 1, . . . , n. By Lemma 8, LP◦

is solid as well. This section starts with an
arbitrary pair (U ,Y) of solid spaces of random variables in separating duality under
the bilinear form

〈u, y〉 := E[u · y].
We assume that both U and Y contain L∞ and show that the Mackey and the strong
topologies arise from (uncountable) collections of seminorms on L0 satisfying the
axioms of Sect. 4. We then obtain completeness and duality results as corollaries of
the results there.

The weak topology generated by Y on U will be denoted by σ(U ,Y). Similarly on
Y . The Mackey topology τ(U ,Y) on U is generated by the collection of seminorms
defined as the support functions

σC (u) := sup
y∈C

E[u · y]

of symmetric σ(Y,U)-compact sets C ⊂ Y . The strong topology on U is defined
similarly by all the symmetric σ(Y,U)-bounded sets in Y , i.e. symmetric sets C ⊂ Y
such that σC (u) < ∞ for all u ∈ U . By the bipolar theorem, this is the topology
generated by all τ(U ,Y)-lower semicontinuous seminorms on U . By the Mackey–
Arens theorem, the Mackey topology on U is the finest topology under which the
topological dual of U coincides with Y . Since compact sets are bounded, the strong
topology is stronger than τ(U ,Y).

Lemma 11 below does not require solidity but merely decomposability in the sense
that u1A + ū1�\A ∈ U for every u ∈ U , ū ∈ L∞ and A ∈ F .

Example 10 Solid spaces containing L∞ are decomposable but there are decomposable
spaces that are not solid. Indeed, let � = [0, 1], F the Borel sigma algebra and P

the Lebesgue measure. Let u(ω) := ω− 1
4 + ω− 1

2 and U := L∞ + L , where L is the
linear span of functions of the form u1A with A ∈ F . Then U is decomposable, by

construction, but not solid, since it does not contain ū(ω) = ω− 1
4 while 0 < ū < u.
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The following is Lemma 6 from [26].

Lemma 11 If U and Y are decomposable, then L∞ ⊆ U ⊆ L1 and

σ(L1, L∞)|U ⊆ σ(U ,Y), σ (U ,Y)|L∞ ⊆ σ(L∞, L1),

τ (L1, L∞)|U ⊆ τ(U ,Y), τ (U ,Y)|L∞ ⊆ τ(L∞, L1).

Lemma 12 If U is solid, then, for every u ∈ U ,
1. y �→ u · y is continuous from (Y, σ (Y,U)) to (L1, σ (L1, L∞)),
2. η �→ ηu is continuous from (L∞, τ (L∞, L1)) to (U , τ (U ,Y)).

Proof For any u ∈ U , y ∈ Y and η ∈ L∞,

E[(u · y)η] = E[(ηu) · y].

Solidity implies that ηu ∈ U so 1 holds. Let K ⊂ Y be σ(Y,U)-compact. We have

sup
y∈K

〈y, ηu〉 = sup
y∈K

〈u · y, η〉L∞ = sup
ξ∈D

〈ξ, η〉L∞ ,

where D = {u · y | y ∈ K } is σ(L1, L∞)-compact since y �→ u · y is continuous,
by 1. �

Lemma 12 implies, in particular, that axiom (A3) is necessary for the second claim
of Corollary 7.

Corollary 13 In the setting of Corollary 7, (A3) holds if and only if M∗
P = LP◦

.

Proof By Corollary 7, (A3) implies M∗
P = LP◦

. On the other hand, if M∗
P = LP◦

,
the topology of MP cannot be stronger than τ(MP , LP◦

). In that case, Lemma 12
implies that p(uην) → 0 if ην → 0 in τ(L∞, L1). Since 1Aν → 0 in τ(L∞, L1) if
P(Aν) → 0, assumption (A3) holds. �

The following characterization of σ(U ,Y)-compact sets will be useful. In the case
of Orlicz spaces, a similar characterization of relative compactness can be found e.g.
in [5, 28].

Lemma 14 Given C ⊂ U , the following are equivalent.

1. C is σ(U ,Y)-precompact,
2. {u · y | u ∈ C} is σ(L1, L∞)-precompact for every y ∈ Y ,
3. {u j y j | u ∈ C} is σ(L1, L∞)-precompact for every y ∈ Y and j = 1, . . . , n.

Proof Since continuous images of precompact sets are precompact, 3 implies 2, and, by
Lemma 12, 1 implies 3. Clearly, 2 implies 3, so it suffices to show that 2 and 3 imply 1.
Let (uν)be a net inC . SinceY contains constants, the sets {u j | u ∈ C} areσ(L1, L∞)-
precompact by 3. Thus there is a subnet and u ∈ C such that uν → u in σ(L1, L∞).
Let y ∈ Y and ε > 0. By the Dunford–Pettis theorem, 2 implies that {u · y | u ∈ C} is
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uniformly integrable, so there exists n such that |E[(uν − u) · y1|y|>n]| < ε for every
ν. Since uν → u in σ(L1, L∞), there exists ν′ such that |E[(uν − u) · y1|y|≤n]| < ε

for all ν ≥ ν′. Thus, for all ν ≥ ν′,

|E[(uν − u) · y]| ≤ 2ε,

which proves that uν → u in σ(U ,Y). �
The solid hull s(C) of a set C ⊆ U is the smallest solid set containing C . Clearly,

s(C) = {u ∈ U | ∃ū ∈ C : |u j | ≤ |ū j | ∀ j a.s.}.

Corollary 15 The solid hull of a σ(U ,Y)-bounded set is σ(U ,Y)-bounded and the
solid hull of a σ(U ,Y)-precompact set is σ(U ,Y)-precompact.

Proof We have E[u · y] < ∞ if and only if E
∑

j |u j ||y j | < ∞, which implies the
first claim. By Lemma 14 and the Dunford–Pettis theorem, a set C ⊆ U is σ(U ,Y)-
precompact if and only if Cy, j := {u j y j | u ∈ C} is uniformly integrable for every
y ∈ Y and j = 1, . . . , n. Uniform integrability of Cy, j means that, for every ε > 0,
there exists M > 0 such that E |1|ū j y j |≥Mū j y j | < ε for every ū ∈ C . Clearly, uniform
integrability of Cy, j implies that of s(C)y, j . Thus, if C is precompact, then s(C) is
precompact. �

Let Cs be the collection of solid hulls of σ(Y,U)-bounded sets. We define Ps as
the collection of functions pC on L0 defined by

pC (u) := sup
y∈C

E[u · y],

where C ∈ Cs and the expectation is defined as +∞ unless the positive part of u · y
is integrable. Analogously, we define Cτ as the collection of solid hulls of σ(Y,U)-
compact sets and Pτ as the collection of functions pC with C ∈ Cτ . By Corollary 15,
the restrictions of Ps and Pτ to U generate the strong and the Mackey topologies,
respectively. Note that solid hulls of convex sets inU need not be convex. For subsets of
L0+, however, taking the solid hull and convex hull commute; see [18,Proposition 1.1].

Lemma 16 The members of Ps satisfy (A1) and (A2) while the members of Pτ sat-
isfy (A1)–(A4). Both Ps and Pτ contain the L1-norm and their members are L0-lsc.

Proof Since σ(Y,U)-bounded sets are L1-bounded, the functions pC are domi-
nated by the L∞-norm. Thus, Ps satisfies (A1). Since the sets C ⊂ Cs are solid,
[34,Theorem 14.60] gives

pC (u) = sup
y∈C,y′∈L0

{
E[u · y′]

∣∣∣∣ |y′
j | ≤ |y j | ∀ j

}

= sup
y∈C

E
n∑
j=1

|u j ||y j |,
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so pC satisfies (A2). By Fatou’s lemma, each supremand is L0-lsc so pC is L0-lsc as
well.

SincePτ ⊂ Ps , axioms (A1) and (A2) are again satisfied byPτ and its elements are
L0-lsc. Given C ∈ Cτ and u ∈ dom pC , Lemma 14 and the Dunford–Pettis theorem
imply that the set {u · y | y ∈ C} is uniformly integrable so pC (u1Aν )↘0 whenever
(Aν)∞ν=1 is a decreasing sequence with P(Aν)↘0. Thus, Pτ satisfies (A4).

ByBanach–Alaoglu, the unit ball B of L∞ isσ(L∞, L1)-compact so, byLemma11,
it is σ(Y,U)-compact as well. Thus, B ∈ Cτ , so Pτ contains the L1-norm and thus
Ps does as well. �

Recall that the Köthe dual of a space U of measurable functions is the linear space

U ′ := {y ∈ L0 | u · y ∈ L1 ∀u ∈ U}.
Our assumptions onU andY imply that they are contained in each other’s Köthe duals.
The following shows, in particular, that if U is equal to the Köthe dual of Y , then U
and Y arise from the construction of Sect. 4 with the Mackey-seminorms Pτ .

Theorem 17 We have Y = LP◦
τ , U ⊂ LPτ ⊂ Y ′ and the following are equivalent

1. U = Y ′,
2. U = LPτ

,
3. U is τ(U ,Y)-complete,
4. U is sequentially σ(U ,Y)-complete.

Proof Given C ∈ Cτ , let D ⊂ Y be its σ(Y,U)-closed convex hull. By definition,
pD = pC on U and, in particular, on L∞. The σ(Y,U)-precompactness of C implies
that D is σ(Y,U)-compact. By Lemma 11, D is σ(L1, L∞)-compact as well. An
application of the bipolar theorem in the duality pairing (L1, L∞) thus gives

p◦
C (y) = inf{γ > 0 | y/γ ∈ D} ∀y ∈ L1,

so dom p◦
C ⊂ Y . Thus, LP◦

τ ⊆ Y . Any y ∈ Y belongs to someC ∈ Cτ , so y ∈ dom p◦
C .

Thus, Y ⊆ LP◦
τ .

Each p ∈ Pτ is finite on U , so U ⊂ LPτ
. Let u ∈ LPτ

. For every y ∈ Y , there is a
p ∈ Pτ such that p◦(y) < ∞ so, by the Hölder’s inequality in Lemma 8,

E[u · y] ≤ p(u)p◦(y) < ∞.

This proves the second claim.
By the second claim, 1 implies 2. Lemma 16 and Remark 9 imply that LPτ

is
complete. Thus, 2 implies 3. On the other hand, by Lemma 16, Pτ satisfies (A1)–
(A4) so L∞ is dense in LPτ

. Since U is decomposable, it contains L∞. Thus, if U is
complete in the relative topology ofPτ , it has to coincide with LPτ

. Thus, 3 implies 2.
We next show that 4 implies 1. Let u ∈ L1 be in the Köthe dual and let uν ∈ L∞

be the pointwise projection of u to the Euclidean ball with radius ν. By dominated
convergence, E[uν · y] → E[u · y] for all y ∈ Y . Thus, (uν)∞ν=1 is weakly Cauchy so
4 implies that it has a σ(U ,Y)-limit u′ ∈ U . It follows that E[u · y] = E[u′ · y] for
all y ∈ Y so u = u′.
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It remains to show that 2 implies 4. Let (uν)∞ν=1 be a σ(U ,Y)-Cauchy sequence.
Since σ(U ,Y) is stronger than σ(L1, L∞) which, by [6,Theorem IV.8.6], is sequen-
tially complete, there exists u ∈ L1 such that uν → u in σ(L1, L∞). Since
σ(U ,Y)-Cauchy sequences are bounded in any topology compatible with the pairing,
the sequence is also bounded in the Pτ -topology. Thus, for any p ∈ Pτ , there exists
γ ∈ R such that p(uν) ≤ γ . Since level-sets of p are closed in L1 and U = LPτ

, we
get u ∈ U . It suffices to show that uν → u in σ(U ,Y).

Let y ∈ Y . By Lemma 12, (uν · y)∞ν=1 is Cauchy in σ(L1, L∞), so by sequential
completeness of L1 again, it converges in σ(L1, L∞) to some ξ ∈ L1. By Mazur’s
theorem, there is a subsequence of convex combinations ūν such that ūν → u in
L1-norm, and thus ūν · y → u · y in probability. Clearly, ūν · y → ξ in σ(L1, L∞),
so we must have ξ = u · y. Thus, E[uν · y] → E[u · y] which completes the proof. �

The following shows, in particular, that ifU andY areKöthe duals of eachother, then
they arise from the construction of Sect. 4 with the strong seminorms Ps . Theorem 6
then yields a characterization of the strong dual of U .

Theorem 18 If U = Y ′, then U = LPs . If Y = U ′, then Y = LP◦
s . If U = LPs and

Y = LP◦
s , then the strong dual of U may be identified with Y ⊕ MP◦

s
s ⊕ (L∞)⊥, in

the sense that for every u∗ ∈ U∗, there exist u ∈ Y , ms ∈ MP◦
s

s and w ∈ (L∞)⊥ such
that

〈u, u∗〉 = E[u · y] +
∫

�

udms + 〈u, w〉 ∀u ∈ U .

Proof Since U ⊂ LPs ⊂ LPτ
, the first claim follows from Theorem 17. Since LP◦

τ ⊆
LP◦

s , Theorem 17 implies Y ⊆ LP◦
s . On the other hand, since U ⊆ LPs , the Hölder’s

inequality in Lemma 8 implies

E[u · y] < ∞ ∀u ∈ U , ∀y ∈ LP◦
s

so LP◦
s ⊆ U ′. Thus, if Y = U ′, we have LP◦

s ⊆ Y . When U = LPs and Y = LP◦
s ,

we are in the setting of Sect. 4. By Lemma 16, Ps satisfies (A1) and (A2), so the last
claim follows from Theorem 6. �

In the setting of Theorem 6, one may wonder what is the strong topology generated
by LP◦

on LP .

Theorem 19 If LP is barreled and p ∈ P are σ(LP , LP◦
)-lsc, then the strong topol-

ogy generated by LP◦
on LP coincides with the P-topology.

Proof If p is σ(LP , LP◦
)-lsc, Theorem 6 and the bipolar theorem imply that

p(u) = sup
y∈LP◦

{E[u · y] | p◦(y) ≤ 1}.
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It follows that the level sets of the functions p◦ generate the LP -topology. Since
the level sets are bounded, the LP -topology is weaker than the strong topology gen-
erated by LP◦

. On the other hand, if LP is barreled, then the elements of Ps are
LP -continuous. �

6 Applications

This section applies the results of the previous sections to more specific situations. We
obtain quick proofs of many well known as well as new results.

6.1 Random variables with finite moments

Given an increasing sequence S ⊂ [1,∞), let

LS := {u ∈ L1 | ∀p ∈ S : ‖u‖L p < ∞},

If S contains its supremum p̄ := sup S, then LS coincides with the classical Lebesgue
space L p̄. If p̄ /∈ S, LS is the space of random variables with finite pth moments
mp(u) := E[|u|p] for p strictly less than p̄. When S is unbounded, LS is the space
of random variables with finite moments. Let S′ be the set of conjugate exponents of
S, i.e.

S′ :=
{
q ∈ (1,∞] | ∃p ∈ S : 1

p
+ 1

q
= 1

}

and define

LS′ := {y ∈ L1 | ∃q ∈ S′ : ‖y‖Lq < ∞}.

The L p-norms with p < ∞ satisfy (A1)–(A4). The following example is thus a direct
consequence of Corollary 7.

Theorem 20 Equipped with the collection of seminorms ‖ · ‖L p , s ∈ S, the space LS

is Fréchet and its dual may be identified with LS′ under the bilinear form 〈u, y〉 :=
E[u · y].

6.2 Marcinkiewicz and Lorentz spaces

Given a random variable u ∈ L0, we will denote the distribution function of |u| by
nu(τ ) := P(|u| > τ) and its quantile function by

qu(t) := inf{τ ∈ R | nu(τ ) ≤ t}.

In the terminology ofBanach function spaces, the quantile function is usually called the
“decreasing rearrangement of u; see e.g. [1]. Given a nonnegative concave increasing
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function φ on [0, 1] with φ(0) = 0, the associatedMarcinkiewicz space is the set Mφ

of u ∈ L0 with

‖u‖φ := sup
t∈(0,1]

{
1

φ(t)

∫ t

0
qu(s)ds

}
< ∞.

Recall that a probability space is resonant if it is atomless or completely atomic
with all atoms having equal measure.

Theorem 21 Assume that (�,F , P) is resonant. Endowed with the norm ‖ · ‖φ , the
space Mφ is a Banach. If limt↘0 t/φ(t) > 0, we have Mφ = L∞. Assume now that
limt↘0 t/φ(t) = 0. The topological dual of Mφ is

M∗
φ = �� ⊕ (L∞)⊥,

where �� is the Lorentz space

�φ := {y ∈ L1 | ‖y‖∗
φ < ∞},

where

‖y‖∗
φ :=

∫ 1

0
qy(t)dφ(t).

The closure M0
φ of L∞ in Mφ can be expressed as

M0
φ = {u ∈ L1 | lim

t↘0

1

φ(t)

∫ t

0
qu(s)ds = 0}.

The topological dual of M0
φ is �� and the topological dual of �φ is Mφ .

Proof We apply Theorem 6 with P = {p} where p(u) = ‖u‖φ . Since

‖u‖φ ≥ 1

φ(1)

∫ 1

0
qu(s)ds = φ(1)E[|u|],

we have Mφ ⊂ L1 and its topology is stronger than the L0-topology. By Lemma 30,

u �→
∫ t

0
qu(t)dt

is the infimal projection of a sublinear function of s and u and thus, sublinear in u. It
is also continuous in L1. It follows that ‖ · ‖φ is sublinear, symmetric and lsc in L1.

By Remark 9, Mφ is Banach. Since qu ≤ ‖u‖L∞ , we have

‖u‖φ ≤ sup
t∈(0,1]

t

φ(t)
‖u‖L∞ ,
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where supt∈(0,1] t
φ(t) < ∞ sinceφ is concave and strictly positive for t > 0. Thus, (A1)

holds. Property (A2) is clear. Given A ∈ F ,

‖1A‖φ = sup
t

1

φ(t)
min{t, P(A)} = P(A)

φ(P(A))
,

since t �→ t
φ(t) is increasing by concavity. Thus φ̂p(t) := t

φ(t) is the fundamental
function of Mφ . By Remark 4, Mφ = L∞ if limt↘0 t/φ(t) > 0 while (A3) holds if
limt↘0 t/φ(t) = 0. We have

‖y‖∗
φ = sup

u∈L1
{E[uy] | ‖u‖φ ≤ 1}

= sup
u∈L1

{∫ 1

0
qu(t)qy(t)dt |

∫ t

0
qu(s)ds ≤ φ(t) ∀t ∈ [0, 1]

}

=
∫ 1

0
qy(t)φ

′(t)dt

=
∫ 1

0
qy(t)dφ(t),

where the second equality follows from [1,Corollary 2.4.4] and the third fromHardy’s
lemma [1,Proposition 2.3.6]. The representation of the topological dual of Mφ now
follows from Theorem 6.

If u ∈ L∞, qu is bounded, so

lim
t↘0

1

φ(t)

∫ t

0
qu(s)ds = lim

t↘0

t

φ(t)

1

t

∫
[0,t]

qu(s)ds = 0,

by assumption. Thus, L∞ ⊂ M0
φ . Let u ∈ Mφ and M0

φ . We have qu+ũ(s1 + s2) ≤
qu(s1) + qũ(s2), so

lim
t↘0

1

φ(t)

∫ t

0
qu(s)ds ≤ lim

t↘0

1

φ(t)

∫ t

0
(qu−ũ(s/2) + qũ(s/2))ds

= lim
t↘0

1

φ(t)

∫ t

0
qu−ũ(s/2)ds

= lim
t↘0

2

φ(t)

∫ 2t

0
qu−ũ(s)ds

≤ lim
1

φ(2t)

∫ 2t

0
qu−ũ(s)ds

≤ ‖u − ũ‖φ,

where the second last inequality follows from concavity of φ. Thus, M0
φ is closed in

Mφ so M0
φ contains the closure of L∞. To prove the converse, let u ∈ M0

φ and uν =
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u1{|u|≤ν}. We have qu−uν (t) = 0 for t ≥ tν := P(|u| ≥ ν) while qu−uν (t) = qu(t)
for t < tν . Thus,

‖u − uν‖φ = sup
t∈[0,1]

{
1

φ(t)

∫ t

0
qu−uν (s)ds

}
= sup

t∈[0,tν ]

{
1

φ(t)

∫ t

0
qu(s)ds

}
.

Since u ∈ M0
φ , this converges to 0 as ν → ∞. Thus, M0

φ is the closure of L∞ in Mφ .
To prove the last claim, we apply Theorem 6 to p◦. By Lemma 8, the Lorentz

seminorm satisfies (A1) and (A2). If yν ↘0 with ‖yν‖∗
φ < ∞, we have qyν ↘0, so by

monotone convergence, ‖yν‖∗
φ

↘0. Thus, the Lorenz norm satisfies (A4) as well. The
fact that the topological dual of �φ is Mφ now follows from Theorem 6 and the fact
that, by the bipolar theorem, p is the polar of p◦. �

Except for the the characterization of M∗
φ , the statements of Theorem 21 can be

found in Theorem 5.2, Theorem 5.4 and Lemma 5.4 of [20,Chapter II]; see also
[13,Section 1] and the proof of [13,Theorem 1.5]. The general results of Sect. 4 sim-
plifies the proofs and provide the additional characterization of M∗

φ .
Much like in Theorem 20, one could also characterize topological duals of locally

convex (resp. Fréchet) spaces obtained by intersecting Marcinkiewicz spaces associ-
ated with a (resp countable) collection of nonnegative concave increasing functions φ.
One could also use the results of Sect. 4 to study the abstract Lorentz spaces recently
introduced in [17].

6.3 Modular spaces and Luxemburg norms

This section studies a general class of Banach spaces that arise from a positive sym-
metric convex function (a convex modular in the terminology of [25]) on L0 much like
Orlicz spaces arise from the Luxemburg norm associated with a given Young func-
tional; see Sect. 6.4 below. Theorem 22 below allows for quick proofs and various
extensions of existing results in the theory of Banach function spaces.

Given a set C in a linear space, we will use the notation

posC :=
⋃
β>0

(βC) and C∞ :=
⋂
β>0

(βC).

Let H : L0 → R+ be a L0-lsc symmetric convex function such that H(0) = 0 and

(H1) L∞ ⊂ pos(dom H) and {u ∈ L0 | H(u) ≤ 1} is bounded in probability,
(H2) H(u′) ≤ H(u) whenever |u′

j | ≤ |u j | for j = 1, . . . , n.

Consider the space

LH := pos dom H = {u ∈ L1 | ∃β > 0 : H(u/β) < ∞}

endowed with the Luxemburg norm

‖u‖H := inf{β > 0 | H(u/β) ≤ 1}.
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Define H∗ : M → R by

H∗(m) := sup
u∈L∞

{∫
�

udm − H(u)

}
.

and

MH∗ := pos dom H∗ = {m ∈ M | ∃β > 0 : H∗(m/β) < ∞}.

The set of purely finitely additive elements of MH∗
is denoted by MH∗

s and the set
of densities of countably additive measures of MH∗

by LH∗
. Note that

(dom H)∞ = {u ∈ L0 | H(u/β) < ∞ ∀β > 0}.

Theorem 22 Equipped with the norm ‖ · ‖H , the space LH is Banach, its dual may be
identified with

LH∗ ⊕ MH∗
s ⊕ (L∞)⊥

and LH∗
coincides with the Köthe dual of LH . For any m ∈ MH∗

, the dual norm can
be expressed as

‖m‖∗
H = sup

u∈L∞

{∫
�

udm | H(u) ≤ 1

}
= inf

β>0
{βH∗(m/β) + β},

where the infimum is attained. Moreover,

‖m‖H∗ ≤ ‖m‖∗
H ≤ 2‖m‖H∗ ,

where

‖m‖H∗ := inf{β > 0 | H∗(m/β) ≤ 1}.

The dual of the closure MH of L∞ in LH can be identified with LH∗ ⊕ MH∗
s . If

(H3) H(uν)↘0 whenever (uν)∞ν=1 ⊂ L∞ with |uν |↘0 almost surely,

thenMH∗
s = {0}, (LH )∗ = LH∗ ⊕ (L∞)⊥ and (MH )∗ = LH∗

. If L∞ ⊆ dom H and

(H4) H(uν)↘0 whenever (uν)∞ν=1 ⊂ dom H with |uν |↘0 almost surely,

then MH = (dom H)∞ and, in particular, LH = MH if dom H is a cone.

Proof We apply Theorem 6 in the case P = {p}, where

p(u) := inf{β > 0 | H(u/β) ≤ 1}.
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By (H1), p is finite on L∞. Since p is lsc on L0, it is lsc on L∞. Thus, by
[33,Corollary 8B], p is continuous in L∞ and thus (A1) holds. Assumption (A2)
is clear from (H2).

Let uν → u in L0 be such that p(uν) ≤ α. This means that H(uν/α) ≤ 1, so
the L0-lower semicontinuity of H implies that of p. Let O be an L0-neighborhood
of the origin. By the boundedness assumption in (H1), there exists λ > 0 such that
λO ⊃ {u ∈ L0 | H(u) ≤ 1} = {u ∈ LH | p(u) ≤ 1}. Thus O∩LH is a neighborhood
in LH , so the topology of LH is noweaker than the relative L0-topology. ByRemark 9,
LH is Banach. By Lemma 8, LH∗

is the Köthe dual of LH .
Let m ∈ M. Since the infimum in the definition of the p is attained,

p◦(m) = sup
u∈L∞

{∫
�

udm | p(u) ≤ 1

}
= sup

u∈L∞

{∫
�

udm | H(u) ≤ 1

}
.

Lagrangian duality (see e.g. [33,Example 1”]) gives

p◦(m) = inf
β>0

sup
u∈L∞

{∫
�

udm − βH(u) + β

}
= inf

β>0
{βH∗(m/β) + β},

where the infimum is attained. It follows that dom p◦ = pos dom H∗. The first claim
thus follows from Theorem 6.

Clearly, p◦(m) = ‖m‖∗
H for all m ∈ MH∗

and

p◦(m) ≤ inf
β>0

{βH∗(m/β) + β | H∗(m/β) ≤ 1} ≤ 2 inf{β > 0 | H∗(m/β) ≤ 1}.

On the other hand, we have

p◦(m) = inf
β>0

{βH∗(m/β) + β} = inf
α>0

g(αm)

α
,

where g(m) = H∗(m)+1. Since H∗ ≥ 0, we have g(m) ≥ ‖m‖H∗ when ‖m‖H∗ ≤ 1.
When ‖m‖H∗ > 1, convexity and the fact that H∗(0) = 0 give

H∗(m/‖m‖H∗) ≤ H∗(m)/‖m‖H∗ .

By definition of ‖m‖H∗ , the left side equals 1 so ‖m‖H∗ ≤ H∗(m) ≤ g(m). Thus,

p◦(m) ≥ inf
α>0

‖αm‖H∗

α
= ‖m‖H∗ .

The expression for the dual of MH follows from Corollary 7. If (H3) holds and
|uν |↘0 almost surely in L∞, then for all β > 0,

H(uν/β)↘0

so p(uν)↘0. In particular, (A3) holds so, by Corollary 7, MH∗
s = {0}.
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To prove the last claim, let u ∈ (dom H)∞, uν := u1|u|≤ν and β > 0. By (H2),
u − uν = u1�\{|u|≤ν} ∈ β dom H so (H4) implies

H((u − uν)/β)↘0.

Since β > 0 was arbitrary, we get p(u − uν)↘0 so (dom H)∞ ⊆ MH . To prove the
converse, note first that the assumption L∞ ⊂ dom H implies L∞ ⊂ (dom H)∞. It
thus suffices to show that (dom H)∞ is closed in LH . If (uν) is in (dom H)∞ and
converges to u ∈ MH , we have for any β > 0,

H(u/(2β)) ≤ 1

2
H(uν/β) + 1

2
H((u − uν)/β) ≤ 1

2
H(uν/β) + 1

2

for ν large enough, so H(u/2β) < ∞ and thus u ∈ (dom H)∞. �

6.4 Musielak–Orlicz spaces

Let � : R × � → R be a random Young function in the sense that

ω �→ {(ξ, α) | �(ξ, ω) ≤ α}

is a measurable mapping (see [34,Chapter 14]) and for each ω ∈ � the function
�(·, ω) is convex, symmetric, vanishes at the origin and, for P-almost every ω,
dom�(·, ω) �= {0} and �(·, ω) is nonconstant. If � only takes finite real values,
the measurability condition holds if and only if�(ξ, ·) is measurable for every ξ ∈ R;
see [34,Example 14.29].

The associated Musielak–Orlicz space is the normed space

L� := {u ∈ L0 | ‖u‖� < ∞},

where

‖u‖� := inf{β > 0 | E�(|u|/β) ≤ 1}.

Theorem 22 gives a quick proof of the following characterization of the topological
dual of L�. The characterization involves the conjugate function

�∗(η, ω) := sup
ξ∈R

{ξη − �(ξ, ω)}.

By [34,Theorem 14.50], �∗ is a random Young function.

Theorem 23 Assume that �(a, ·) ∈ L1 for some constant a > 0. The space L� is
Banach and its dual (L�)∗ can be identified with

L�∗ ⊕ M�∗
s ⊕ (L∞)⊥,
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where L�∗
coincides with the Köthe dual of L� and

M�∗
s = {m ∈ Ms | σ�(m) < ∞}

with σ�(m) := supu∈L∞{∫
�
udm | E�(|u|) < ∞}. For any y + ms ∈ L�∗ ⊕ M�∗

s ,
the dual norm can be expressed as

‖y + ms‖∗
� = sup

u∈L∞

{
E[u · y] +

∫
�

udms | E�(|u|) ≤ 1

}

= inf
β>0

{βE�∗(|y|∗/β) + β} + σ�(ms),

where the infimum is attained. Moreover,

‖y + ms‖�∗ ≤ ‖y + ms‖∗
� ≤ 2‖y + ms‖�∗ ∀y ∈ L�∗

, ms ∈ M�∗
s ,

where

‖y + ms‖�∗ := inf{β > 0 | E�∗(|y|/β) + σ�(ms/β) ≤ 1}.

The dual of the closure M� of L∞ in L� is

(M�)∗ = L�∗ ⊕ M�∗
s .

If �(a, ·) ∈ L1 for all a > 0, then M�∗
s = {0} and

M� = {ξ ∈ L1 | E�(|ξ |/β) < ∞ ∀β > 0}.

If dom E� is a cone, then L� = M� and their dual is L�∗
. The set dom E� is a

cone, in particular, if � satisfies �2-condition: there exists x0 ∈ dom E� and K > 0
such that �(2x) ≤ K�(x) for all x ≥ x0.

Proof WeapplyTheorem22 to H(u) := E�(|u|). The assumption�(a) ∈ L1 implies
that H(u) < ∞ when ‖u‖L∞ ≤ a so L∞ ⊆ pos(dom H). Defining

η(ω) := sup{r > 0 | �∗(r , ω) ≤ 1},

we have E�∗(η) ≤ 1. Since supa �(a) > 0 almost surely, η > 0 almost surely. By
Fenchel’s inequality,

�(|u|) ≥ η|u| − �∗(η),

so

{u ∈ L0 | H(u) ≤ 1} ⊂ {u ∈ L0 | E[η|u|] ≤ 1 + E�∗(η)}.
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Thus, the left is side is bounded in probability, since the right side is so. Thus, (H1)
holds.

Condition (H2) holds since � is increasing. By [32,Theorem 1] and
[31,Theorem 15.3],

H∗(m) = sup
u∈L∞

{∫
udm − E�(u)

}
= E�∗(|y|∗) + σ�(ms).

If �(a) ∈ L1 for all a > 0, then L∞ ⊂ dom H and (H3) and (H4) hold by monotone
convergence theorem. If dom E� is a cone, then �(a, ·) ∈ L1 for all a > 0. All the
claims except for the last one thus follow from Theorem 22. Assume the�2-condition
and let x ∈ dom E�. We have E�(2x) ≤ E�(2(x ∨ x0)) ≤ K E�(x ∨ x0) =
K E[�(x) ∨ �(x0)] < ∞ so 2x ∈ dom E�. Since dom E� is a convex set, this
implies that it is a cone. �

If � is nonrandom, we recover the classical Orlicz spaces and the last part of
Theorem 23 implies that, if � is finite, thenM�∗

s = {0}, while otherwise, L� = L∞
so (L∞)⊥ = {0}. Extensions to Banach space-valued functions have been studied in
[12]. In [25], the assumption �(a, ·) ∈ L1 for all a > 0 is called "local integrability".
Thus we recover [25,Theorem 13.17] for probability spaces without assuming local
integrability of �∗; see also [24,Theorem 2.4.4]. Our characterization of the dual
without local integrability seems new.

Proposition 24 Assume that the measure P is atomless. In the setting of Theorem 23,
M�∗

s = {0} if and only if �(a, ·) ∈ L1 for all a > 0.

Proof By Theorem 23, �(a, ·) ∈ L1 for all a > 0 implies M�∗
s = {0}, where

M�∗
s = dom σ� ∩ Ms �= {0}. Assume now that �(a, ·) /∈ L1 for some a > 0. It

suffices to show that dom σ� ∩ Ms �= {0}. There exists a′ > a and ε > 0 such that
E�(u) = +∞ for every u ∈ Bε(a′), so the L∞-strong closure of dom E� is strictly
smaller than L∞. Since the strong closure is the domain of the σ(L∞,M)-conjugate
of σ�, dom σ� �= {0}.

By Lemma 31, the σ(L∞, L1)-closure of dom E� equals

{u ∈ L∞ | |u(ω)| ≤ ρ(ω) a.s.},

where

ρ(ω) := inf{a > 0 | �(a, ω) = ∞}.

If ρ = ∞ almost surely, then σ(L∞, L1)-closure of dom E� is the whole L∞, so
σ�(y) = +∞ for every nonzero y ∈ L1, and thus dom σ� ∩ Ms �= {0}.

If P(ρ < ∞) > 0, there exists a constant ā > 0 such that P(A) > 0, where
A := {ρ ≤ ā}. Since P is atomless, there exists Aν ⊂ A such that P(Aν) > 0 and
P(Aν) ↘ 0. There exists a nonzero ms ∈ Ms with ms(� \ Aν) = 0 for every ν (e.g.,
take ms as an accumulation point of the σ(M, L∞)-precompact net (yν)∞ν=1 ⊂ L1,
where yν := 1Aν /P(Aν)). Every u ∈ L∞ ∩ dom E� satisfies |u| ≤ ρ ≤ ā almost
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surely on Aν , so every such u satisfies 〈u,ms〉 ≤ ā|ms |∗. Thus σ�(ms) < ∞ and
dom σ� ∩ Ms �= {0}. �

General Musielak–Orlicz spaces are isomorphic to Musielak–Orlicz spaces whose
Young function satisfies the the assumption in Theorem 23.

Remark 25 Given an arbitrary random Young function �̃,

ρ(ω) := sup{r ∈ R | �̃(r , ω) ≤ 1}

is measurable and takes values in (0,∞) almost surely. The space L�̃ is isomorphic
to L�, where

�(u, ω) := �̃(ρ(ω)u, ω)

satisfies thefirst assumptionofTheorem23.Thedual of L�̃ is thus isomorphic to that of
L� characterized in Theorem 23. Indeed, the isomorphism is (Aũ)(ω) = ũ(ω)/ρ(ω)

so the elements of (L�̃)∗ can be expressed as

ũ �→ 〈Aũ, u∗〉,

where u∗ ∈ (L�)∗.

6.5 GeneralizedMusielak–Orlicz spaces

Let r be an lsc norm on L0 satisfying (A1) and (A2) such that the r -topology is stronger
than that of L0. By Remark 9, the space Lr is Banach. Let � be as in Sect. 6.4 and
define

L�,r := {u ∈ L0 | ‖u‖�,r < ∞},

where

‖u‖�,r := inf{β > 0 | r(�(|u|/β)) ≤ 1)}.

Note that, if r is the L1-norm, then L�,r is the Musielak–Orlicz space studied in
Sect. 6.4. If � is nonrandom and r is the Lorentz-norm

r(x) =
∫ 1

0
qx (t)dφ(t)

associated with a concave function φ (see Sect. 6.2), we get

r(�(|u|)) =
∫ 1

0
q�(|u|)(t)dφ(t) =

∫ 1

0
�(qu(t))dφ(t)

so L�,r becomes the Orlicz–Lorentz space; see e.g. [10] and its references.
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Consider the positively homogeneous function

�(x∗,m) := sup
x∈Lr ,u∈L∞

{〈x, x∗〉 + 〈u,m〉 | �(|u|) + x ≤ 0 a.s.}

on L∗
r × M and let

M� := {m ∈ M | ∃x∗ ∈ L∗
r : �(x∗,m) < ∞}.

Denote the absolutely continuous and singular elements of M� by L� and M�
s ,

respectively. Let

σ(v, y, ω) := sup
x∈R,u∈Rn

{xv + u · y | �(|u|, ω) + x ≤ 0}

=
{

v�∗(|y|/v, ω) if v > 0

(�∗)∞(|y|, ω) otherwise.

The second expression above comes from [31,Theorem 13.3]. It involves the recession
function of the conjugate �∗ defined as

(�∗)∞(η, ω) := lim
v ↘ 0

v�∗(η/v, ω).

Theorem 26 Assume that �(|u|) ∈ Lr for all u ∈ L∞ and that {x ∈ L0 | r(x) ≤ 1}
is bounded in L0. Endowed with the norm ‖u‖�,r , the space L�,r is a Banach, its dual
may be identified with

L� ⊕ M�
s ⊕ (L∞)⊥

and L� is the Köthe dual of L�,r . For any m ∈ M� , the dual norm can be expressed
as

‖m‖∗
�,r = inf

x∗∈L∗
r

{�(x∗,m) + r◦(x∗)},

where the infimum is attained. Moreover,

‖m‖�,r◦ ≤ ‖m‖∗
�,r ≤ 2‖m‖�,r◦ ,

where

‖m‖�,r◦ := inf
x∗∈L∗

r

max{�(x∗,m), r◦(x∗)}.

The dual of the closure M�,r of L∞ in L�,r can be identified with L� ⊕ M�
s .

If (a) r satisfies (A4) or (b) r satisfies (A3) and �(u) ∈ L∞ for every u ∈ L∞, then
M�

s = {0},
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L� = {y ∈ L1 | ∃v ∈ Lr◦ : Eσ(v, y) < ∞},

and the dual of M�,r is L� . If r satisfies (A4), then

M�,r = {u ∈ L0 | r(�(|u|/β)) < ∞ ∀β > 0},

and, M�,r = L�,r if there exists x0 ∈ L0 and K > 0 such that r(�(x0)) < ∞ and
�(2x) ≤ K�(x) for all x ≥ x0.

Proof This fits Theorem 22 with

H(u) :=
{
r(�(|u|)) if �(|u|) ∈ L0,

+∞ otherwise.

Given an L0-converging sequence uν → u, the pointwise lower semicontinuity of �

gives lim inf �(uν) ≥ �(u) so the lower semicontinuity and (A2) of r give

lim inf H(uν) ≥ r(lim inf �(uν)) ≥ H(u),

so H is L0-lsc. As in the proof of Theorem 23, there exists an η ∈ L0 strictly positive
such that �(|u|) ≥ |u|η − �∗(η) almost surely. We have

{u ∈ L0 | H(u) ≤ 1} ⊆ {u ∈ L0 | r(|u|η − �∗(η)) ≤ 1},

where the right side is L0-bounded since {ξ ∈ L0 | r(ξ) ≤ 1} is L0-bounded by
assumption. Since �(u) ∈ Lr for all u ∈ L∞, we have L∞ ⊂ dom H . Thus, H
satisfies (H1)–(H2).

We compute the conjugate H by employing conjugate duality; see [33]. The func-
tion

r+(x) := inf
x ′≥x

r(x ′)

is convex and increasing in the partial order of L0 so the function F(x, u) :=
r+(�(|u|) + x) is convex on Lr × L∞. Clearly, F(0, u) = H(u). The conjugate
F∗ on L∗

r × M has the expression

F∗(x∗,m) := sup
x∈Lr ,u∈L∞

{〈x, x∗〉 + 〈u,m〉 − r+(�(|u|) + x)}

= sup
x,x ′∈Lr ,u∈L∞

{〈x, x∗〉 + 〈u,m〉 − r(x ′) | �(|u|) + x ≤ x ′}

= sup
x ′′,x ′∈Lr ,u∈L∞

{〈x ′ + x ′′, x∗〉 + 〈u,m〉 − r(x ′) | �(|u|) + x ′′ ≤ 0}

= �(x∗,m) + r∗(x∗),
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where, by positive homogeneity of r ,

r∗(x∗) = sup
x∈Lr

{〈x, x∗〉 − r(x)} =
{
0 if r◦(x∗) ≤ 1,

+∞ otherwise,

where r◦(x∗) := sup{〈x, x∗〉 | r(x) ≤ 1}. For any u ∈ L∞, the function F(·, u) is
continuous on Lr , so [33,Theorem 17] gives

H∗(m) = inf
x∗∈L∗

r

F∗(x∗,m) = inf
x∗∈L∗

r

{�(x∗,m) | r◦(x∗) ≤ 1},

where the infimum is attained. Thus, by Theorem 22 and positive homogeneity of �,

‖m‖∗
�,r = inf

β>0
{βH∗(m/β) + β}

= inf
β>0,x∗∈L∗

r

{β�(x∗,m/β) + β | r◦(x∗) ≤ 1}
= inf

β>0,x∗∈L∗
r

{�(x∗,m) + β | r◦(x∗) ≤ β}
= inf

x∗∈L∗
r

{�(x∗,m) + r◦(x∗)}.

The dual Luxemburg norm can be expressed as

‖m‖H∗ = inf{β > 0 | H∗(m/β) ≤ 1}
= inf{β > 0 | ∃x∗ ∈ L∗

r : �(x∗,m/β) ≤ 1, r◦(x∗) ≤ 1}
= inf{β > 0 | ∃x∗ ∈ L∗

r : �(x∗,m) ≤ β, r◦(x∗) ≤ β}
= inf

x∗∈L∗
r

max{�(x∗,m), r◦(x∗)}.

Since � is positively homogeneous, we have

pos dom H∗ = {m ∈ M | ∃x∗ ∈ L∗
r : �(x∗,m) < ∞}.

Thus, the claims concerning the dual space and its norm follow from Theorem 22.
By the first assumption, L∞ ⊂ dom H so both (a) and (b) imply (H3) and then,

M�
s = {0}, by Theorem 22. Let x∗ ∈ L∗

r and y ∈ L� . By Theorem 6, (b) implies
the existence v ∈ L1 and x∗

s ∈ (L∞)⊥ such that x∗ = v + x∗
s . Under (a), x

∗
s = 0.

We have �(x∗, y) = +∞ unless x∗ ≥ 0. Otherwise, the supremum in the definition
of � is attained with x = �(|u|) which belongs to L∞ under (b). We, thus have
�(x∗, y) = �(v, y) for all x∗ ≥ 0. By [34,Theorem 14.60],

�(v, y) = sup
x∈Lr ,u∈L∞

{E[xv + u · y] | �(|u|) + x ≤ 0 a.s.}

= E

[
sup

x∈R,u∈Rn
{xv + u · y | �(|u|) + x ≤ 0}

]
= Eσ(v, y).
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If r satisfies (A4) then both (H3) and (H4) hold, so Theorem 22 gives

M� = (dom H)∞.

The set on the right can be written as {u ∈ L0 | r(�(|u|/β) < ∞ ∀β > 0}. Let
x ∈ L0+ be such that r(�(x)) < ∞. Under the last condition,

�(2x) ≤ �(2(x ∨ x0)) ≤ K�(x ∨ x0) = K [�(x) ∨ �(x0)]

so

r(�(2x)) ≤ Kr(�(x) ∨ �(x0)) ≤ Kr(�(x) + �(x0)) ≤ K [r(�(x)) + r(�(x0))]

and thus, r(�(2x)) < ∞. Since {u ∈ L0 | r(�(|u|)) < ∞} is a convex set, it has to
be a cone so Lr ,� = Mr ,�. �

The proof of Theorem 26 gives also the expression

‖m‖�,r◦ = inf{β > 0 | H∗(m/β) ≤ 1},

where

H∗(m) = inf
x∗∈L∗

r

{�(x∗,m) | r◦(x∗) ≤ 1},

and the infimum is attained. Under condition (b) in the theorem, we have M�
s = {0}

and

L� = {y ∈ L1 | h∗(y/β) ≤ 1},

where

h∗(y) = inf
v∈Lr◦

{Eσ(v, y) | r◦(v) ≤ 1}.

If r is the Lorentz-norm associated with a concave increasing function φ, then, by
Theorem 21, r◦ is the Marcinkiewicz-norm so

h∗(y) = inf
v∈Lr◦

{Eσ(v, y) |
∫ t

0
qv ≤ φ(t) ∀t, v ≥ 0}.

The above characterization of the Köthe dual thus extends that in [16,Corollary 4.12]
and [15,Theorem 2.2] to random � in the case of a finite underlying measure. The
singular components of the dual have been analyzed in the recent article [14].
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6.6 Risk measures

This section studies scalar-valued random variables so n = 1. A function ρ : L0 → R

is a convex risk measure if it is convex, nondecreasing, ρ(0) = 0 and ρ(ξ + r) =
ρ(ξ) + r for all ξ ∈ L0 and r ∈ R; see e.g. [7]. As in [21], we consider the associated
normed space

Lρ := {u ∈ L0 | ‖u‖ρ < ∞},

where

‖u‖ρ := inf{β > 0 | ρ(|u|/β) ≤ 1}.

When ρ is positively homogeneous, we simply get ‖u‖ρ = ρ(|u|) as e.g. in [27].
Theorem 22 gives a quick proof of the following.

Theorem 27 Assume that ρ is L0-lsc and that {u ∈ L0 | ρ(|u|) ≤ 1} is bounded in
L0. The space Lρ is a Banach and its dual can be identified with

Mα ⊕ (L∞)⊥,

where

Mα = {m ∈ M | ∃β > 0 : α(|m|/β) < ∞}

with α : M → R defined by

α(m) := sup
ξ∈L∞+

{∫
�

ξdm − ρ(ξ)

}
.

For any m ∈ Mα , the dual norm can be expressed as

‖m‖∗
ρ = sup

u∈L∞

{∫
�

udm | ρ(u) ≤ 1

}
= inf

β>0
{βα(|m|/β) + β} ,

where the infimum is attained. Moreover,

‖m‖α ≤ ‖m‖∗
ρ ≤ 2‖m‖α,

where

‖m‖α := inf{β > 0 | α(|m|/β) ≤ 1}.

If ρ has the Lebesgue property on L∞: ρ(ξν)↘0 for any decreasing sequence
(ξν) ⊂ L∞ with ξν ↘0 almost surely, then the dual of the closure Mρ of L∞ in Lρ

can be identified with

123



Topological duals of locally convex function spaces Page 33 of 38 2

Lα := {y ∈ L1 | ∃β > 0 : α(|y|/β) < ∞}

and (Lρ)∗ = Lα ⊕ (L∞)⊥. If ρ has the Lebesgue property on dom ρ: ρ(ξν)↘0 for
any decreasing sequence (ξν) ⊂ dom ρ with ξν ↘0 almost surely, then

Mρ = {u ∈ L1 | ρ(|u|/β) < ∞ ∀β > 0},

and, in particular, Lρ = Mρ if dom ρ is a cone.

Proof We apply Theorem 22 to the function H(u) := ρ(|u|). By assumption, (H1)
and (H2) hold. Indeed, by monotonicity and translation invariance, ρ(|u|) ≤
ρ(‖u‖L∞) = ‖u‖L∞ , so L∞ ⊂ dom H . Conditions (H3) and (H4) in Theorem 22
translate directly to 1 and 2. Thus the claims follow from Theorem 22, since here

H∗(m) := sup
u∈L∞

{∫
udm − ρ(|u|)

}

= sup
u∈L∞,ξ∈L∞+

{∫
uξdm − ρ(ξ) | |u| = 1

}

= sup
ξ∈L∞+

{∫
ξd|m| − ρ(ξ)

}

= α(|m|),

where the second last equality follows from [37,Theorem2.3] and the fact that ν(A) :=∫
A ξdm is a finitely additive measure with |ν|(A) = ∫

A ξd|m|. �

The fact that (Lρ)∗ = Lα ⊕ (L∞)⊥ under the Lebesgue property sharpens
[21,Theorem 4.12] which states that each u∗ ∈ (Lρ)∗ can be expressed uniquely
as u∗ = y + us for some y ∈ L1 and us ∈ (L∞)⊥. The other statements seem new.
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Appendix

The first part of this appendix studies integration of measurable not-necessarily
bounded functions with respect to a real-valued finitely additive measure m. Define
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rm : L0+ → R by

rm(η) := sup
u′∈L∞

{∫
�

u′dm | |u′| ≤ η

}
.

Lemma 28 Let m be a real-valued finitely additive measure.

1. For any η ∈ L∞+ ,

rm(η) = sup
u′∈L∞

{∫
�

η(u′dm)

∣∣∣∣ |u′| ≤ 1

}
≤ ||η||L∞||m||T V .

In particular, rm is L∞-norm continuous and sublinear relative to L∞+ .
2. For every η ∈ L0+,

rm(η) = lim
ν↗∞ rm(η ∧ ν)

3. rm is subadditive in the sense that

rm(η1 + η2) ≤ rm(η1) + rm(η2) ∀η1, η2 ∈ dom rm .

Proof The expression in 1 follows from the change of variables ũ = ηu′. As to 2,
the inequality rm(η) ≥ limν rm(η ∧ ν) is clear. To prove the opposite inequality, let
α ∈ R with rm(η) > α. There exists u′ ∈ L∞ with |u′| ≤ η and rm(|u′|) > α. Then
|u′| ∧ ν → |u′| in L∞-norm, so monotonicity and 1 give

lim rm(η ∧ ν) ≥ lim rm(|u′| ∧ ν) > α.

This proves 2.Givenη1, η2 ∈ dom p andη > 0,wehave (η1+η2)∧ν ≤ η1∧ν+η2∧ν.
Indeed, a concave function vanishing at the origin is subadditive on the positive reals.
Thus, by 2 and 1,

rm(η1 + η2) = lim sup
ν

rm((η1 + η2) ∧ ν)

≤ lim sup
ν

(rm(η1 ∧ ν) + rm(η2 ∧ ν))

≤ lim sup
ν

rm(η1 ∧ ν) + lim sup
ν

rm(η2 ∧ ν)

= rm(η1) + rm(η2),

which completes the proof. �
Define ρm : L0 → R by

ρm(u) := rm(|u|).

Theorem 29 For any real-valued finitely additive measure m,
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1. ρm is symmetric and sublinear, and ρm(u′) ≤ ρm(u) whenever |u′| ≤ |u|,
2. for any u ∈ dom ρm and ε > 0, there exists u′ ∈ L∞ with ρm(u − u′) < ε,
3.

∫
�
udm has a unique ρm-continuous linear extension from L∞ to dom ρm,

4. if m is purely finite additive, there exists a decreasing (Aν)∞ν=1 ⊂ F with P(Aν) ↘
0 and

∫
�
u1�\Aνdm = 0 for all u ∈ dom ρm.

Proof Properties in 1 are clear. To prove 2, assume first that m is nonnegative. Given
ui ∈ dom ρm ∩ L0+ and ε > 0, let ũi ∈ L∞ be such that 0 ≤ ũi ≤ ui and ρ j (ui ) ≤
〈ũi ,m〉 + ε. Then ũ1 + ũ2 ≤ u1 + u2 and

ρm(u1) + ρm(u2) ≤ 〈ũ1 + ũ2,m〉 + 2ε ≤ ρm(u1 + u2) + 2ε.

Since ε > 0 was arbitrary, ρm is superlinear on dom ρm ∩ L0+. Given u ∈ dom ρm
and ε > 0, Lemma 28 gives ρm(u+) ≤ ρm(u+ ∧ ν) + ε for ν large enough. By
superlinearity,

ρm(u+ − u+ ∧ ν) + ρm(u+ ∧ ν) ≤ ρm(u+) ≤ ρm(u+ ∧ ν) + ε.

Similarly, ρm(u− − u− ∧ ν) ≤ ε, so ρm(u − πνBu) ≤ 2ε by sublinearity of ρm . By
[37,Theorem 1.12], general m ∈ M can be written as m = m+ −m− for nonnegative
m+,m− ∈ M, so

ρm(u − πνBu) ≤ ρm+(u − πνBu) + ρm−(u − πνBu) ≤ 4ε

for ν large enough.
We have

∫
�
udm ≤ ρm(u) on L∞, so, by Hahn-Banach, there exists a ρm-

continuous linear extension of m to dom ρm . Since L∞ is dense in dom ρm , the
extension is unique. If m is purely finitely additive, there exists (Aν)∞ν=1 ⊂ F with
P(Aν) ↘ 0 and

∫
�
u1�\Aνdm = 0 for all u ∈ L∞. Note that rm inherits this property

so that ρm and the integral does as well. �
The following was used in the proof of Theorem 21. Its proof was given as an

exercise on page 89 of [1].

Lemma 30 We have

∫ t

0
qu(t)dt = inf

s∈R+{ts + E[|u| − s]+}.

Proof By Theorems 23.5 and 24.2 of [31], the functions

f (t) :=
∫ t

0
qu(s)ds

and

f ∗(s) =
∫ s

0
nu(τ )dτ −

∫ ∞

0
nu(τ )dτ = −

∫ ∞

s
nu(τ )dτ
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are concave and conjugate to each other. By Fubini,

f ∗(s) = −E
∫ ∞

s
1{|u|>τ }dτ = −E[|u| − s]+

so

∫ t

0
qu(s)ds = inf

s∈R+
{ts − f ∗(s)} = inf

s∈R+
{ts + E[|u| − s]+},

by the biconjugate theorem (see e.g. [31,Theorem 12.2]). �
The following lemma was used in the proof of Proposition 24. Let� : R×� → R

be a convex normal integrand in the sense that

ω �→ {(ξ, α) | �(ξ, ω) ≤ α}

is a convex-valued measurable mapping (see [34,Chapter 14]). The associated integral
functional E� : L0 → R is defined by

E�(u) :=
∫

�

�(u(ω), ω)dP(ω).

By [34,Theorem 14.50], �∗(y, ω) = supu{u · y − �(u, ω)} is a normal integrand.
The integral functional E�∗ : L0 → R is defined similarly.

Lemma 31 Assume thatU andY are decomposable spaces in separating duality under
the bilinear form

〈u, y〉 := E[u · y].

If E� : U → R and E�∗ : Y → R are finite somewhere, then the σ(U ,Y)-closure
of {u ∈ U | u ∈ dom E�} is {u ∈ U | u ∈ cl dom� a.s.}.
Proof By [30,Theorem 2], (E�)∗(y) = E�∗(y). Thus, by [29,Corollary 3D],
σcl dom E� = (E�∗)∞. By monotone convergence theorem, (E�∗)∞ = E(�∗)∞,
where, by [29,Corollary 3D] again, (�∗)∞ = σcl dom�. By [30,Theorem 2] again,
(Eσcl dom�)∗ = Eδcl dom�, so the claim follows from the biconjugate theorem. �
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