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1 INTRODUCTION

One of the most important results in the study of Riemannian manifolds with nonnegative cur-
vature is Gromov’s Betti number theorem [2], which gives, in every dimension, a universal upper
bound for the Betti numbers of connected nonnegatively curved manifolds, thus bounding the
size of such manifolds. As a corollary, any invariant that can be bounded in terms of Betti num-
bers is bounded on nonnegatively curved manifolds. This applies in particular to the signature
or 𝐿-genus. In sharp contrast with this, all other linear combinations of Pontryagin numbers are
not bounded on nonnegatively curved manifolds. It was proved in [5] that, up to taking multi-
ples, the 𝐿-genus is characterized among all linear combinations of Pontryagin numbers by its
boundedness on connected manifolds of nonnegative curvature.
It is clear that the result of [5] cannot remain true if one restricts the discussion to spin man-

ifolds, since by the Lichnerowicz argument [6] the �̂�-genus vanishes on nonnegatively curved
spin manifolds, and, starting in dimension 8, it is linearly independent of the 𝐿-genus. However,
both the 𝐿-genus and the �̂�-genus are specializations of Ochanine’s elliptic genus [7], and this led
Herrmann and Weisskopf [3] to ask whether linear combinations of Pontryagin numbers which
do not arise from the elliptic genus are unbounded on connected spin manifolds of nonnegative
curvature. It was shown in [3] that the answer to this question is positive up to dimension 20, using
various case by case calculations on suitably chosen examples, which however do not provide a
path towards extending the result to arbitrary dimensions. The question posed by Herrmann and
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UNBOUNDED PONTRYAGIN NUMBERS ON NONNEGATIVELY CURVED SPIN MANIFOLDS 2315

Weiskopf is part of a general philosophy trying to find index-theoretic obstructions for the exis-
tence of positively or nonnegatively curved Riemannian metrics, and suggests that the only such
obstructions should come from the elliptic genus, cf. Dessai [1].
In this paper, we prove a result in the spirit of [5, Theorem 1] for spin manifolds, which in

particular provides a positive answer to [3, Question 1.2]:

Theorem 1. Any rational linear combination of Pontryagin numbers that does not factor
through the elliptic genus is unbounded on connected closed oriented spin manifolds of nonnegative
sectional curvature.

The proof uses the structure of the rational spin bordism ring. We construct sequences of ring
generators with the property that each generator of dimension⩾ 12 belongs to a family of possible
choices onwhich a certain indecomposable Pontryagin number is unbounded.Moreover, with the
same dimension assumption, these generators admit metrics of nonnegative sectional curvature
and are in the kernel of the elliptic genus. In terms of dimensions, this is the best one can hope for,
since in dimensions up to 8 all Pontryagin numbers factor through the elliptic genus. In dimen-
sion 4, because of the Lichnerowicz theorem [6], it is not possible to choose a spin generator with
nonnegative curvature for the bordism group. Thismakes the proof of Theorem 1muchmore com-
plicated than the proof in [5], since one has to work around the lack of a suitable 4-dimensional
generator. This is achieved by uncovering certain polynomial relations between different families
of generators for the bordism ring, see Proposition 12 in Section 4.

2 A FAMILY OF PROJECTIVE BUNDLES OVER COMPLEX
PROJECTIVE SPACES

For integers 𝑐 denote by 𝐻𝑐 the tensor powers of the hyperplane bundle 𝐻⟶ℂ𝑃𝑛. (For nega-
tive 𝑐 these are the |𝑐|-fold tensor products of the dual line bundle.) Consider the complex vector
bundle 𝐸𝑐 ⟶ ℂ𝑃𝑛 of rank 𝑘 + 1 of the form 𝐸𝑐 = 𝐻𝑐 ⊕ ℂ𝑘, and let 𝑋𝑘𝑛(𝑐) = 𝑃(𝐸𝑐) denote its
projectivization. This is a complex manifold of real dimension 2(𝑛 + 𝑘). To have non-trivial Pon-
tryagin numbers, we need manifolds of real dimension divisible by 4, and so we will take 𝑛 and 𝑘
of the same parity.
The total Chern class of 𝐸𝑐 is 𝑐(𝐸𝑐) = 1 + 𝑐 ⋅ 𝑥, where 𝑥 ∈ 𝐻2(ℂ𝑃𝑛; ℤ) is the positive generator.

Therefore, the Leray–Hirsch theorem immediately gives the following statement.

Lemma 2. The cohomology ring of𝑋𝑘𝑛(𝑐) is generated by two classes 𝑥, 𝑦 ∈ 𝐻
2(𝑋𝑘𝑛(𝑐)) subject to the

relations

𝑥𝑛+1 = 0, 𝑦𝑘+1 + 𝑐𝑥𝑦𝑘 = 0. (1)

Here 𝑥 is the generator coming from the base ℂ𝑃𝑛. Next we compute the characteristic classes
of the 𝑋𝑘𝑛(𝑐).

Lemma 3. The total Chern class of 𝑋𝑘𝑛(𝑐) is given by

𝑐(𝑋𝑘𝑛(𝑐)) = (1 + 𝑥)
𝑛+1(1 + 𝑦)𝑘(1 + 𝑦 + 𝑐𝑥). (2)
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2316 HSIAO and KOTSCHICK

Therefore, its total Pontryagin class is

𝑝(𝑋𝑘𝑛(𝑐)) = (1 + 𝑥
2)𝑛+1(1 + 𝑦2)𝑘(1 + (𝑦 + 𝑐𝑥)2). (3)

Proof. Wehave the decomposition𝑇𝑋𝑘𝑛(𝑐) = 𝑇𝜋 ⊕ 𝜋
∗𝑇ℂ𝑃𝑛, where𝑇𝜋 is the tangent bundle along

the fibers, and so

𝑐(𝑋𝑘𝑛(𝑐)) = 𝑐(𝑇𝜋) ⋅ 𝜋
∗𝑐(𝑇ℂ𝑃𝑛)

with the latter factor being 𝜋∗𝑐(ℂ𝑃𝑛) = (1 + 𝑥)𝑛+1. It remains to compute 𝑐(𝑇𝜋). We have the
relative Euler sequence

0 → 𝐿−1 → 𝜋∗𝐸𝑐 → 𝐿
−1 ⊗ 𝑇𝜋 → 0,

where 𝐿 is the fiberwise hyperplane bundle with 𝑐(𝐿) = 1 + 𝑦. Tensoring by 𝐿 yields an
isomorphism of bundles 𝐿 ⊗ 𝜋∗𝐸𝑐 ≅ 𝑇𝜋 ⊕ ℂ, and this shows

𝑐(𝑇𝜋) = 𝑐(𝐿 ⊗ 𝜋∗𝐸𝑐) = (1 + 𝑦)
𝑘(1 + 𝑦 + 𝑐𝑥).

This proves the formula for the total Chern class, which in turn gives the one for the total
Pontryagin class. □

The following lemma tells us under which conditions 𝑋𝑘𝑛(𝑐) is spin.

Lemma 4. Assume that 𝑛 and 𝑘 have the same parity. Then 𝑋𝑘𝑛(𝑐) is spin if and only if 𝑘 and 𝑛 are
odd and 𝑐 is even.

Proof. Recall that a complex manifold is spin if and only if its first Chern class is divisible by 2 in
integral cohomology. For 𝑋𝑘𝑛(𝑐), the formula (2) gives us

𝑐1(𝑋
𝑘
𝑛(𝑐)) = (𝑛 + 1)𝑥 + 𝑘𝑦 + (𝑦 + 𝑐𝑥) = (𝑘 + 1)𝑦 + (𝑛 + 1 + 𝑐)𝑥.

This is divisible by 2 if and only if both 𝑘 + 1 and 𝑛 + 1 + 𝑐 are even. Since we assumed that 𝑘 and
𝑛 have the same parity this happens if and only if 𝑘 and 𝑛 are odd and 𝑐 is even. □

In later sections, we will always assume that the conditions in this lemma are satisfied, so that
we are dealing with spin manifolds of real dimension 4𝑚, where 2𝑚 = 𝑘 + 𝑛. To end this section,
we note that the manifolds 𝑋𝑘𝑛(𝑐) are nonnegatively curved.

Lemma 5. Every 𝑋𝑘𝑛(𝑐) admits a Riemannian metric of nonnegative sectional curvature.

Proof. Since 𝑋𝑘𝑛(0) is a product of complex projective spaces, we may assume 𝑐 ≠ 0. The vector
bundle 𝐸𝑐 = 𝐻𝑐 ⊕ ℂ𝑘 over ℂ𝑃𝑛 has structure group 𝑈(1) = 𝑆1, and is therefore associated to an
𝑆1-bundle 𝑃𝑐 ⟶ ℂ𝑃𝑛 with Euler class 𝑐 ⋅ 𝑥. The total space of this circle bundle is the lens space
𝑆2𝑛+1∕ℤ|𝑐|, carrying an 𝑆1-invariantmetric of constant positive curvature. Now𝑋𝑘𝑛(𝑐)has the form
(𝑃𝑐 × ℂ𝑃

𝑘)∕𝑆1, where 𝑆1 acts freely by isometries of the product metric formed by the positively
curvedmetric on the lens space and the Fubini–Study metric on ℂ𝑃𝑘, since 𝑆1 acts on ℂ𝑃𝑘 via the
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UNBOUNDED PONTRYAGIN NUMBERS ON NONNEGATIVELY CURVED SPIN MANIFOLDS 2317

appropriate inclusion 𝑆1 ↪ 𝑈(𝑘 + 1). The non-decreasing property of curvature in submersions
implies that the induced metric on 𝑋𝑘𝑛(𝑐) is nonnegatively curved. □

3 COMPUTATIONS OF PONTRYAGIN NUMBERS

We now prove some results about the Pontryagin numbers of 𝑋𝑘𝑛(𝑐) in the case where 𝑘 and 𝑛
are both odd. Here by Pontryagin number we mean not just the evaluation of monomials in the
Pontryagin classes, but any rational linear combination of such evaluations. The general shape of
these numbers is as follows.

Proposition 6. As a function of 𝑐, every Pontryagin number of𝑋𝑘𝑛(𝑐) is an odd polynomial of degree
at most 𝑛.

Recall that a polynomial is odd if it involves only odd powers of the variable 𝑐. We will see in
Proposition 7 that the maximal degree 𝑛 does occur.

Proof. Recall from (3) that the total Pontryagin class is given by

𝑝(𝑋𝑘𝑛(𝑐)) = (1 + 𝑦
2)𝑘(1 + 𝑥2)𝑛+1(1 + (𝑦 + 𝑐𝑥)2).

Therefore, every Pontryagin number is given by the evaluation of a homogeneous polynomial of
degree 𝑚 = 1

2
(𝑘 + 𝑛) in the variables 𝑦2, 𝑥2 and (𝑦 + 𝑐𝑥)2. In other words, we are looking into

evaluating linear combinations of monomials of the form

𝑦2𝑎 ⋅ 𝑥2𝑏 ⋅ (𝑦 + 𝑐𝑥)2(𝑚−𝑎−𝑏)

with nonnegative exponents. Expanding the third factor with the binomial theorem we find a
linear combination of the monomials

𝑦2𝑎+𝑖 ⋅ 𝑥2𝑚−2𝑎−𝑖 ⋅ 𝑐2(𝑚−𝑎−𝑏)−𝑖 with 0 ⩽ 𝑖 ⩽ 2(𝑚 − 𝑎 − 𝑏).

Note that 𝑥 and 𝑦 are cohomology classes of degree 2, and 𝑐 is an integer. Setting 𝑗 = 2𝑚 − 2𝑎 − 𝑖,
these monomials become

𝑦2𝑚−𝑗 ⋅ 𝑥𝑗 ⋅ 𝑐𝑗−2𝑏 with 0 ⩽ 𝑗 ⩽ 𝑛.

Using the cohomology relation from Lemma 2 repeatedly, we find

𝑦2𝑚−𝑗 ⋅ 𝑥𝑗 ⋅ 𝑐𝑗−2𝑏 = (−1)𝑛−𝑗𝑦𝑘 ⋅ 𝑥𝑛 ⋅ 𝑐𝑛−2𝑏.

Here 𝑦𝑘 ⋅ 𝑥𝑛 is the generator of the top-degree cohomology of 𝑋𝑘𝑛(𝑐). Since 𝑛 is odd, the exponent
𝑛 − 2𝑏 of 𝑐 is always odd, and this finally shows that any Pontryagin number of 𝑋𝑘𝑛(𝑐) is a rational
linear combination of terms which contain only odd powers of 𝑐. Moreover, the exponent 𝑛 − 2𝑏
of 𝑐 is bounded above by 𝑛 since 𝑏 is nonnegative. □
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2318 HSIAO and KOTSCHICK

For any closed oriented manifold𝑀 of dimension 4𝑚 with total Pontryagin class

𝑝(𝑇𝑀) =
∏
𝑖
(1 + 𝑦2

𝑖
)

the Milnor–Thom number 𝑠𝑛(𝑀) is defined by

𝑠𝑚(𝑀) =
∑
𝑖

⟨
𝑦2𝑚
𝑖
, [𝑀]

⟩
.

The splitting principle implies that this is a Pontryagin number. The significance of 𝑠𝑚 is that
its non-vanishing on 𝑀 is equivalent to 𝑀 being a generator of the rational bordism ring, see
Section 4.

Proposition 7. Assume that𝑘 and𝑛 are odd, and let𝑚 = 1
2
(𝑘 + 𝑛). Then theMilnor–Thomnumber

of 𝑋𝑘𝑛(𝑐) is given by

𝑠𝑚(𝑋
𝑘
𝑛(𝑐)) = 𝑐

𝑛

[(
𝑘 + 𝑛 − 1

𝑛

)
− 𝑘

]
. (4)

In particular, 𝑠𝑚(𝑋𝑘𝑛(𝑐)) ≠ 0 whenever 𝑘 ⩾ 3, 𝑛 ⩾ 3 and 𝑐 ≠ 0.

Proof. This formula is a special case of a calculation of Schreieder [8], who considered arbitrary
projectivizations. Nevertheless, we include a direct proof, which is no more complicated than the
explanation of how to extract what we need from [8, Lemma 2.4].
Using the formula (3), the definition of the Milnor–Thom number gives

𝑠𝑚(𝑋
𝑘
𝑛(𝑐)) =

⟨
𝑘𝑦𝑛+𝑘 + (𝑛 + 1)𝑥𝑛+𝑘 + (𝑦 + 𝑐𝑥)𝑛+𝑘, [𝑋𝑘𝑛(𝑐)]

⟩
.

The term (𝑛 + 1)𝑥𝑛+𝑘 vanishes since 𝑥𝑛+1 = 0. We expand (𝑦 + 𝑐𝑥)𝑛+𝑘 using the binomial for-
mula, and drop all terms where the exponent of 𝑥 is > 𝑛. Finally, we trade all terms with an
exponent of 𝑦 that is larger than 𝑘 using the relation 𝑦𝑘+1 = −𝑐𝑥𝑦𝑘 from Lemma 2 repeatedly.
This leads to

𝑘𝑦𝑛+𝑘 + (𝑦 + 𝑐𝑥)𝑛+𝑘 = 𝑘𝑦𝑛+𝑘 +

𝑛∑
𝑖=0

(
𝑛 + 𝑘

𝑖

)
𝑐𝑖𝑥𝑖𝑦𝑛+𝑘−𝑖

= (−1)𝑛𝑘𝑐𝑛𝑥𝑛𝑦𝑘 +

𝑛∑
𝑖=0

(−1)𝑛−𝑖
(
𝑛 + 𝑘

𝑖

)
𝑐𝑛𝑥𝑛𝑦𝑘

= (−1)𝑛𝑐𝑛

[
𝑘 +

𝑛∑
𝑖=0

(−1)𝑖
(
𝑛 + 𝑘

𝑖

)]
𝑥𝑛𝑦𝑘.

Since 𝑛 is odd, the term (−1)𝑛 = −1. Further, 𝑥𝑛𝑦𝑘 evaluates as 1 on the fundamental class, and
therefore

𝑠𝑚(𝑋
𝑘
𝑛(𝑐)) = −𝑐

𝑛

[
𝑘 +

𝑛∑
𝑖=0

(−1)𝑖
(
𝑛 + 𝑘

𝑖

)]
.
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UNBOUNDED PONTRYAGIN NUMBERS ON NONNEGATIVELY CURVED SPIN MANIFOLDS 2319

Now replace each binomial coefficient with 𝑖 > 0 in the sum using the recursion(
𝑛 + 𝑘

𝑖

)
=

(
𝑛 + 𝑘 − 1

𝑖 − 1

)
+

(
𝑛 + 𝑘 − 1

𝑖

)
. (5)

Since in the resulting sum almost all binomial coefficients appear twice with opposite signs, they
cancel in pairs, except for the last summand

(𝑛+𝑘−1
𝑛

)
. This finally gives

𝑠𝑚(𝑋
𝑘
𝑛(𝑐)) = −𝑐

𝑛

[
𝑘 −

(
𝑛 + 𝑘 − 1

𝑛

)]
as claimed. □

We will need to consider another special Pontryagin number, defined as follows.

Definition 8. For a closed oriented manifold𝑀 of dimension 4𝑚 the 𝑞-number is defined by

𝑞𝑚(𝑀) =
∑
𝑖

∑
𝑗≠𝑖

⟨
𝑦2
𝑖
𝑦2𝑚−2
𝑗

, [𝑀]
⟩
,

where the 𝑦2
𝑖
are the Pontryagin roots of𝑀.

By the splitting principle, this is indeed a Pontryagin number of 𝑀. From its definition it is
clear that 𝑞𝑚 vanishes on product manifolds which have no factor of dimension at least 4𝑚 − 4.
(To avoid trivialities, we may assume that𝑚 > 1.)

Proposition 9. Assume that 𝑘 and 𝑛 are odd and⩾ 3. Setting𝑚 = 1
2
(𝑘 + 𝑛), the 𝑞-number of𝑋𝑘𝑛(𝑐)

is given by

𝑞𝑚(𝑋
𝑘
𝑛(𝑐)) = 𝑘

[(
𝑛 + 𝑘 − 3

𝑛

)
− (𝑘 − 1)

]
𝑐𝑛 + (𝑛 + 1)

[(
𝑛 + 𝑘 − 3

𝑛 − 2

)
− 𝑘

]
𝑐𝑛−2. (6)

Proof. We compute 𝑞𝑚(𝑋𝑘𝑛(𝑐)) from the definition using the formula (3):

𝑞𝑚(𝑋
𝑘
𝑛(𝑐)) =

⟨
(𝑛 + 1)𝑥2

[
𝑘𝑦𝑛+𝑘−2 + 𝑛𝑥𝑛+𝑘−2 + (𝑦 + 𝑐𝑥)𝑛+𝑘−2

]
+ 𝑘𝑦2

[
(𝑘 − 1)𝑦𝑛+𝑘−2 + (𝑛 + 1)𝑥𝑛+𝑘−2 + (𝑦 + 𝑐𝑥)𝑛+𝑘−2

]
+ (𝑦 + 𝑐𝑥)2

[
𝑘𝑦𝑛+𝑘−2 + 𝑛𝑥𝑛+𝑘−2

]
, [𝑋𝑘𝑛(𝑐)]

⟩
.

The cohomology relations from Lemma 2 give 𝑥𝑛+𝑘−2 = 0 and (𝑦 + 𝑐𝑥) ⋅ 𝑦𝑘 = 0, therefore the
above sum reduces to

𝑞𝑚(𝑋
𝑘
𝑛(𝑐)) =

⟨
(𝑛 + 1)𝑥2

[
𝑘𝑦𝑛+𝑘−2 + (𝑦 + 𝑐𝑥)𝑛+𝑘−2

]
, [𝑋𝑘𝑛(𝑐)]

⟩
+
⟨
𝑘𝑦2

[
(𝑘 − 1)𝑦𝑛+𝑘−2 + (𝑦 + 𝑐𝑥)𝑛+𝑘−2

]
, [𝑋𝑘𝑛(𝑐)]

⟩
.
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2320 HSIAO and KOTSCHICK

We expand the powers of 𝑦 + 𝑐𝑥 using the binomial theorem, and, as in the proof of Proposi-
tion 7, we drop terms where the exponent of 𝑥 is > 𝑛, and we trade powers of 𝑦 with exponent
> 𝑘 using the relation 𝑦𝑘+1 = −𝑐𝑥𝑦𝑘 from Lemma 2. Finally, evaluating on the fundamental class
using ⟨𝑦𝑘𝑥𝑛, [𝑋𝑘𝑛(𝑐)]⟩ = 1 we find

𝑞𝑚(𝑋
𝑘
𝑛(𝑐)) = (𝑛 + 1)

[
−𝑘 +

𝑛−2∑
𝑖=0

(−1)𝑖+1
(
𝑛 + 𝑘 − 2

𝑖

)]
𝑐𝑛−2

+𝑘

[
−(𝑘 − 1) +

𝑛∑
𝑖=0

(−1)𝑖+1
(
𝑛 + 𝑘 − 2

𝑖

)]
𝑐𝑛.

The first sum is simplified using the recursion (5) to get

𝑛−2∑
𝑖=0

(−1)𝑖+1
(
𝑛 + 𝑘 − 2

𝑖

)
=

(
𝑛 + 𝑘 − 3

𝑛 − 2

)
,

and similarly for the second sum. This completes the proof. □

Remark 10. When 𝑛 = 3, then the shape of formula (6) says that 𝑞𝑚(𝑋𝑘3 (𝑐)) is an integral linear
combination of 𝑐3 and 𝑐. However, an inspection of the linear term reveals that it actually vanishes
in this case, so 𝑞𝑚(𝑋𝑘3 (𝑐)) is simply a multiple of 𝑐

3.

4 CALCULATIONS IN SPIN BORDISM

In this section, we work inΩ∗, the rational spin bordism ring, that is, the usual spin bordism ring
tensored with ℚ. As is well-known, at the rational level there is no difference between oriented
bordism and spin bordism, see [9, chapter XI], and so Ω∗ is a polynomial algebra over ℚ with
one ring generator 𝛼𝑖 in each dimension of the form 4𝑖. Moreover, by a result of Thom [10], a
4𝑖-dimensional closed oriented manifold 𝑀 may be taken as a representative for 𝛼𝑖 if and only
if its Milnor–Thom number 𝑠𝑖(𝑀) does not vanish; cf. [4, 9]. We will write simply 𝛼𝑖 = 𝑀 ∈ Ω4𝑖 ,
identifying𝑀 with its bordism class, without using brackets or other notation to specify that we
are taking the equivalence class of𝑀 in the ℚ-vector space Ω4𝑖 , the degree 4𝑖 part of Ω∗.
Let 𝐾3 be the smooth closed oriented 4-manifold underlying a complex 𝐾3 surface, and ℍ𝑃2

the quaternionic projective plane.

Proposition 11. Let𝛼1 = 𝐾3,𝛼2 = ℍ𝑃2. For 𝑖 ⩾ 3 consider any decomposition 2𝑖 = 𝑛 + 𝑘with both
𝑛 and 𝑘 odd and⩾ 3, and let 𝛼𝑖(𝑐) = 𝑋𝑘𝑛(𝑐). Then as long as 𝑐 is even and nonzero, the 𝛼𝑖 form a basis
sequence forΩ∗.

Proof. The 𝐾3 surface has trivial first Chern class, and so is spin. Moreover, its signature is not
zero, which means 𝑠1(𝐾3) ≠ 0. The quaternionic projective plane is 2-connected, and therefore
spin. It is well-known that 𝑠2(ℍ𝑃2) ≠ 0. Finally, if 𝑘 and 𝑛 are odd and 𝑐 is even, then𝑋𝑘𝑛(𝑐) is spin
by Lemma 4, and we have 𝑠𝑖(𝑋𝑘𝑛(𝑐)) ≠ 0 by Proposition 7 as soon as 𝑐 ≠ 0 and 𝑛, 𝑘 ⩾ 3. □
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The universal elliptic genus is a surjective homomorphism of graded rings

𝜑∶ Ω∗ ⟶ ℚ[𝛿, 𝜖],

where 𝛿 and 𝜖 have degrees 4 and 8 respectively; cf. [4, 7]. Ochanine’s theorem [7] characterizes
ker(𝜑) as the ideal generated by all ℂ𝑃odd-bundles with compact Lie groups as structure groups.
Since the manifolds 𝑋𝑘𝑛(𝑐) are ℂ𝑃

odd-bundles with structure group 𝑆1, they are in the kernel of
the elliptic genus. Moreover, in terms of the above basis sequences we can think of 𝜑 as being the
projection

Ω∗ = ℚ[𝛼1, 𝛼2, 𝛼3(𝑐), …]⟶ ℚ[𝛼1, 𝛼2]

which kills all the 𝛼𝑖 with 𝑖 ⩾ 3.

Proposition 12. Let 𝑝 and 𝑞 be odd and ⩾ 3 and 𝑐 be even and nonzero. Then in Ω∗ the product
𝑋
𝑞
𝑝(𝑐) × 𝐾3 equals a polynomial in ℍ𝑃2 and the various 𝑋𝑘𝑛(𝑐), but not involving 𝐾3.

Proof. The proof is by induction on the dimension 2(𝑝 + 𝑞). The base case is where this dimension
is 12 and 𝑝 = 𝑞 = 3. Then we look at 𝑋3

3
(𝑐) × 𝐾3, of dimension 16. In dimension 16, we have two

choices of indecomposable generators, namely 𝑋5
3
(𝑐) and 𝑋3

5
(𝑐) whose Milnor–Thom numbers

according to Proposition 7 are

𝑠4(𝑋
5
3
(𝑐)) = 30𝑐3, 𝑠4(𝑋

3
5(𝑐)) = 18𝑐

5.

This implies that the element 𝑌(𝑐) = 3𝑐2𝑋5
3
(𝑐) − 5𝑋3

5
(𝑐) is in the kernel of 𝑠4, and is therefore

expressible as a polynomial in the generators of dimension ⩽ 12. However, 𝑌(𝑐) is also in the
kernel of the elliptic genus, and in dimension 16 this kernel is spanned by𝛼3(𝑐) × 𝐾3 = 𝑋33(𝑐) × 𝐾3
and 𝛼4(𝑐). Thus 𝑌(𝑐) is a rational multiple of 𝑋33(𝑐) × 𝐾3, and we only have to show that it is
not the zero multiple. We can do this conveniently by using the calculations of the 𝑞-number in
Proposition 9:

𝑞4(𝑌(𝑐)) = 3𝑐
2𝑞(𝑋5

3
(𝑐)) − 5𝑞(𝑋35(𝑐))

= 3𝑐2 ⋅ 30𝑐3 − 5 ⋅ (−3𝑐5 + 42𝑐3)

= 105𝑐3(𝑐2 − 2).

This is nonzero since 𝑐 is a nonzero integer. Thus, we have shown that 𝑋3
3
(𝑐) × 𝐾3 is a rational

multiple of 𝑌(𝑐) = 3𝑐2𝑋5
3
(𝑐) − 5𝑋3

5
(𝑐).

For the inductive step, consider some 𝑋𝑞𝑝(𝑐) of dimension 4𝑚 = 2(𝑝 + 𝑞) ⩾ 16. We fix a basis
sequence 𝛼𝑖 as in Proposition 11, taking 𝑋𝑞𝑝(𝑐) in its dimension: 𝛼𝑚(𝑐) = 𝑋

𝑞
𝑝(𝑐) for 𝑚 =

1

2
(𝑝 +

𝑞). Now in dimension 4𝑚 + 4 we may consider the two manifolds 𝑋2𝑚−1
3

(𝑐) and 𝑋3
2𝑚−1

(𝑐). By
Proposition 7 their Milnor–Thom numbers are

𝑠𝑚+1(𝑋
2𝑚−1
3

(𝑐)) = 𝑐3
[(
2𝑚 + 1

3

)
− (2𝑚 − 1)

]
= 𝜆𝑐3,

𝑠𝑚+1(𝑋
3
2𝑚−1

(𝑐)) = 𝑐2𝑚−1
[(
2𝑚 + 1

2𝑚 − 1

)
− 3

]
= 𝜇𝑐2𝑚−1.
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2322 HSIAO and KOTSCHICK

This implies that the element 𝑍(𝑐) = 𝜇𝑐2𝑚−4𝑋2𝑚−1
3

(𝑐) − 𝜆𝑋3
2𝑚−1

(𝑐) is in the kernel of 𝑠𝑚+1, and is
therefore expressible as a polynomial in the generators 𝛼𝑖 with 𝑖 ⩽ 𝑚.
We want to check that 𝑞𝑚+1(𝑍(𝑐)) ≠ 0. Using the formula from Proposition 9 we see that

𝑞𝑚+1(𝑍(𝑐)) is an integral linear combination of 𝑐2𝑚−1 and 𝑐2𝑚−3. However, in light of Remark 10,
𝑐2𝑚−4𝑋2𝑚−1

3
(𝑐) does not contribute to the term of degree 2𝑚 − 3, and so we can simply read off

the coefficient of 𝑐2𝑚−3 in 𝑞𝑚+1(𝑍(𝑐)) to be

−𝜆 ⋅ 2𝑚 ⋅
[(
2𝑚 − 1

2𝑚 − 3

)
− 3

]
= −

[(
2𝑚 + 1

3

)
− (2𝑚 − 1)

]
⋅ 2𝑚 ⋅

[(
2𝑚 − 1

2

)
− 3

]
.

As this is clearly nonzero, we do indeed have 𝑞𝑚+1(𝑍(𝑐)) ≠ 0 for nonzero 𝑐.
Now expressing 𝑍(𝑐) as a polynomial in the generators 𝛼𝑖 with 𝑖 ⩽ 𝑚, the non-vanishing of the

𝑞-number tells us that the monomial 𝛼1 ⋅ 𝛼𝑚(𝑐) must appear with a nonzero coefficient, since
𝑞𝑚+1 vanishes on all monomials consisting only of 𝛼𝑖 with 𝑖 < 𝑚. We can then solve the resulting
equation for𝛼1 ⋅ 𝛼𝑚(𝑐) and this expresses𝐾3 × 𝑋

𝑞
𝑝(𝑐) as a rational linear combination of𝑋2𝑚−13

(𝑐),
𝑋3
2𝑚−1

(𝑐) and monomials in the 𝛼𝑖 with 𝑖 < 𝑚. As 𝐾3 × 𝑋
𝑞
𝑝(𝑐) is in the kernel of the elliptic

genus, each monomial appearing in the linear combination must contain an 𝛼𝑖 with 3 ⩽ 𝑖 < 𝑚
represented by some 𝑋𝑘𝑛(𝑐). By the inductive hypothesis, whenever such a monomial also con-
tains 𝛼1 = 𝐾3 we can replace 𝐾3 × 𝑋𝑘𝑛(𝑐) by an expression not involving 𝐾3. This completes the
inductive step. □

After these preparations, we can now prove the theorem.

Proof of Theorem 1. We fix a basis sequence 𝛼1 = 𝐾3, 𝛼2 = ℍ𝑃2, 𝛼𝑖(𝑐) = 𝑋𝑘𝑛(𝑐) for 𝑖 ⩾ 3 for Ω∗ as
in Proposition 11. As discussed above, the elliptic genus 𝜑 is the projection to the quotient by the
ideal generated by the 𝛼𝑖 with 𝑖 ⩾ 3.
Consider spin manifolds of dimension 4𝑚, and a non-trivial linear combination 𝑓 of their

Pontryagin numbers. If the linear map

𝑓∶ Ω4𝑚 ⟶ ℚ

does not factor through 𝜑|Ω4𝑚, then it does not vanish identically on ker(𝜑). This means that
𝑚 ⩾ 3 and that there is an element in ker(𝜑) on which 𝑓 does not vanish. However, a vector
space basis for ker(𝜑) is given by the monomials in the 𝛼𝑖 containing at least one index 𝑖 ⩾ 3.
Thus, there is a Cartesian product of 𝐾3, ℍ𝑃2 and the 𝑋𝑘𝑛(𝑐) on which 𝑓 does not vanish, and this
product definitely contains at least one factor of the form 𝑋𝑘𝑛(𝑐). If this product does not contain
𝐾3, then it is a product of nonnegatively curved manifolds, and therefore nonnegatively curved.
The value of 𝑓 on this Cartesian product can be thought of as a linear combination of Pontryagin
numbers of one of the factors of the form 𝑋𝑘𝑛(𝑐), with coefficients that depend on the Pontryagin
numbers of the other factors. Moreover, the non-vanishing of 𝑓means that a non-zero Pontryagin
number of 𝑋𝑘𝑛(𝑐) does appear. Since the Pontryagin numbers of 𝑋

𝑘
𝑛(𝑐) are odd polynomials in 𝑐

by Proposition 6, they are certainly non-constant. Varying 𝑐, we see that 𝑓 is unbounded on this
family of nonnegatively curved manifolds.
Finally, if the monomial in the generators 𝛼𝑖 on which 𝑓 does not vanish contains a 𝐾3 factor,

then, because it also contains at least one 𝑋𝑘𝑛(𝑐), we can replace 𝐾3 × 𝑋
𝑘
𝑛(𝑐) by a linear combina-

tion of terms not involving𝐾3 using Proposition 12. This replaces the monomial in the generators
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UNBOUNDED PONTRYAGIN NUMBERS ON NONNEGATIVELY CURVED SPIN MANIFOLDS 2323

by a linear combination of terms, but since 𝑓 does not vanish on the monomial, it does not vanish
on at least one of the summands of the linear combination. Repeating this procedure until there
are no𝐾3 factors left we find a product of factors all of which areℍ𝑃2 or of the form𝑋𝑘𝑛(𝑐), and on
which 𝑓 does not vanish. Since there is at least one 𝑋𝑘𝑛(𝑐)-factor, as above we conclude that 𝑓 is
unbounded on these nonnegatively curved manifolds as we vary 𝑐. This completes the proof. □
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