Journal of Cryptographic Engineering (2022) 12:387-412
https://doi.org/10.1007/s13389-021-00283-6

REGULAR PAPER O‘)

Check for
updates

Secret-free security: a survey and tutorial

Ulrich Rithrmair'2

Received: 30 June 2021 / Accepted: 24 December 2021 / Published online: 2 March 2022
© The Author(s) 2022

Abstract

“Classical keys,” i.e., secret keys stored permanently in digital form in nonvolatile memory, appear indispensable in modern
computer security—but also constitute an obvious attack target in any hardware containing them. This contradiction has led
to perpetual battle between key extractors and key protectors over the decades. It is long known that physical unclonable
functions (PUFs) can at least partially overcome this issue, since they enable secure hardware without the above classical
keys. Unfortunately, recent research revealed that many standard PUFs still contain other types of “secrets” deeper in their
physical structure, whose disclosure to adversaries breaks security as well: Examples include the manufacturing variations in
SRAM PUFs, the power-up states of SRAM PUFs, or the signal delays in Arbiter PUFs. Most of these secrets have already
been extracted in viable attacks in the past, breaking PUF-security in practice. A second generation of physical security
primitives now shows potential to resolve this remaining problem, however. In certain applications, so-called Complex PUFs,
SIMPLs/PPUFs, and UNOs are able to realize not just hardware that is free of classical keys in the above sense, but completely
“secret-free” instead. In the resulting hardware systems, adversaries could hypothetically be allowed to inspect every bit and
every atom, and learn any information present in any form in the system, without being able to break security. Secret-free
hardware would hence promise to be innately and permanently immune against any physical or malware-based key-extraction:
There simply is no security—critical information to extract anymore. Our survey and tutorial paper takes the described situation
as starting point, and categorizes, formalizes, and overviews the recently evolving area of secret-free security. We propose
the attempt of making hardware completely secret-free as promising endeavor in future hardware designs, at least in those
application scenarios where this is logically possible. In others, we suggest that secret-free techniques could be combined
with standard PUFs and classical methods to construct hybrid systems with notably reduced attack surfaces.

Keywords Physical unclonable functions (PUFs) - Complex PUFs - SIMPL systems (SIMPLs) - Public PUFs (PPUFs) -
Unique objects (UNOs) - Secret-free security

1 Introduction Itis not too difficult to see that in a purely Turing-machine-

based view of security, such keys are indeed provably

1.1 Motivation and overview

At least since the introduction of Kerckhoffs’ principle in the
19th century [35], the notion of cryptographic security has
always been intimately tied to the concept of a secret key.
Many classical cryptographic tasks were considered possi-
ble solely under the assumption that one party permanently
stored a digital number that remained unknown to adver-
saries.

B< Ulrich Riithrmair
ruchrmair @ilo.de

' LMU Miinchen, Munich, Germany

University of Connecticut, Storrs, USA

indispensable. Take the task of secure identification as a sim-
ple example: If Alice is modeled as Turing machine, and if
she securely wants to identify herself remotely to others,
some “part” of her Turing program or Turing tape must be
unknown to impersonators. This part automatically consti-
tutes a secret digital key of the identification scheme, then.
Similar considerations apply to other typical cryptographic
tasks, such as encryption and decryption, message authenti-
cation, or digital signatures.

Unfortunately, this purely mathematical view comes along
with some well-known implementation issues, because the
effective safeguarding of secret digital keys in electronic
hardware still constitutes a major challenge to this day. Both
digital malware and various physical attacks have proven

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s13389-021-00283-6&domain=pdf
http://orcid.org/0000-0003-0156-6738

388

Journal of Cryptographic Engineering (2022) 12:387-412

highly efficient key extraction strategies over the years [1].
With the internet of things looming, the problem is exacer-
bated by the high level of mobility and interconnectivity of
modern devices, as well as the complexity of their operat-
ing systems, programs, and concurrently running apps. This
turns permanently stored, digital secret keys into one of the
Achilles heels of contemporary security hardware.

The described situation has at least in parts motivated the
introduction of physical unclonable functions (PUFs) over a
decade ago [21,46]. Their central idea is to replace classical
secret keys by complex physical structures, whose individual
challenge-response behavior depends on unique and unclon-
able manufacturing variations in the PUF. In this fashion,
PUFs can individualize and identify hardware without non-
volatile memory (NVM) or permanent digital keys on board
[21,32,47], and can even be employed in various advanced
cryptographic protocols, such as key exchange, oblivious
transfer, or secure multi-party computation [6,61,68]. From
the perspective of this paper, they could hence be seen as
avoiding permanently stored digital secrets in vulnerable
hardware.

At the same time, however, recent research has revealed
that standard silicon PUFs cannot completely evade any
sort of secrets in hardware yet: For example, the power-
up states of SRAM PUFs [26,32], the individual runtime
delays in Arbiter PUFs [21], or, generally speaking, the man-
ufacturing variations in most silicon PUFs that determine
their responses, still must remain secret, i.e., unknown to
adversaries, for maintaining security. This observation has
enabled arange of practically effective attacks on these PUFs
[29,44,57,60,77], all of which have in common that they first
identify, then extract various secrets from the PUFs, breaking
their security.

A second and more recent class of physical security
primitives, including so-called Complex PUFs, SIMPLs/
PPUFs [4,65], and UNOs, now shows promise to com-
plete the endeavor originally started out by PUFs, however.
Implemented successfully, they could maintain their secu-
rity features under a surprisingly strong attack model: Even
if the adversary was allowed to inspect their hardware bit by
bit and atom by atom, and allowed to learn any information
that is present in the hardware in any form at any time during
a cryptographic scheme’s execution, security would still be
maintained. Such hardware therefore not just avoids perma-
nently stored digital keys, but is completely secret-free for
obvious reasons.

Being innately immune against any forms of key extrac-
tion, secret-free hardware could hence potentially lead to
a disruptive change in the field. It would end the perpet-
ual battle between key extractors and key protectors in a
rather unexpected manner: Namely by simply removing any
secrets, and thus any adversarial targets, from vulnerable sys-
tems, at least in certain application scenarios. This intriguing

@ Springer

possibility, which is currently appearing almost unnoticedly
on the horizon, motivates this survey and tutorial paper.

1.2 Related work

The best-known primitive by which “classical keys” (i.e.,
secret digital keys stored permanently in NVM) can be
avoided, clearly are standard PUFs [21,40,47]; please also
compare surveys [31,41,55,69] and references therein. Sub-
sequent follow-up works on SIMPL Systems (SIMPLs) [65]
and Public PUFs (PPUFs) [4] implicitly taught us how PUFs
could even be made “secret-free” in our sense. The early pub-
lications on SIMPLs/ PPUFs did not make this aspect fully
explicit, though, and demonstrably did not put it in their cen-
ter; their focus lay on the public key functionality of the
introduced SIMPLs/PPUFs instead [4,65].

It is an interesting historical footnote that already prior to
PUFs, an almost unnoticed side strand of security research
had suggested unclonable physical primitives that were not
only free of any classical keys, but also free of any secrets, at
least in the parlance of this paper. These early and sometimes
rudimentary approaches usually focused on the forgery-proof
labeling or tagging of valuable items, such as credit cards,
passport, bank notes, paper stock certificates, branded con-
sumer products, and the like, and thus arguably did not
cover the full application spectrum of modern PUFs yet.
They date back to as early as the late 1960s [39], and have
resurfaced independently again in the 1980s [3,23], 1990s
[10,27,71,74,83,86,87], and 2000s [7,9,11,14,28,70,89]. It
seems that these methods remained more or less unnoted by
the larger security community, though; to this day, they are
not routinely quoted in the PUF-literature, unfortunately.

Another related research strand concerns the usage of
general physical assumptions in theoretical cryptography.
It, too, shares a long tradition, reaching back to the 1980s,
and includes quantum [5], noise-based [43], DNA-based
[12,37], or relativistic cryptography [34]. Its main motivation
arguably lies in replacing the standard, unproven computa-
tional complexity assumptions of mathematical cryptogra-
phy by other, independent physical hypotheses, however; its
focus is not on the avoidance of classical keys or secrets in
hardware. (The only exception known to us may be recent
approaches on quantum read-out PUFs [25,73] and quantum
public key encryption [82].)

Given this existing research landscape, it hopefully seems
fair to say that none of the above publications explicitly
makes the fundamental distinction between classical keys
and secrets that underlies our paper, or solely focuses on the
idea of secret-free hardware, as we do in this work. Con-
cerning traceable historic roots, the first works in which the
concept of secret-free security was fully and unambiguously
expressed (sometimes without using exactly this terminol-

Journal of Cryptographic Engineering (2022) 12:387-412

389

ogy) to our knowledge is [63,64] in 2011/2012.! The first
formal definition of a secret-free primitive (in this case a
secret-free so-called SIMPL system) apparently appeared in
[63] in 2012.2 Yet another, but later source known to us is
[30] from 2016.

On a final note, this paper is an extended journal version of
an earlier workshop publication [66] and a prior eprint [67] of
the same author. Broadening the workshop publication, anew
section on UNOs has been added (Sect. 6). Furthermore, this
paper has been fundamentally rewritten in large parts, and
various reworked or partly even new definitions have been
added (e.g., Def. 3, 4, 8, 11, 14, 15, and Table 1).

1.3 Our contributions

We make the following contributions in this work:

To the best of our knowledge, this is the first survey and
tutorial paper on secret-free security.
We propose semi-formal definitions of a “secret” and of
“secret-free hardware.”
— Furthermore, we develop the first formal taxonomy of
different types of secrets.
We use our taxonomy to classify the various types of
secrets in several existing, exemplary PUF-schemes. This
illustrates that standard PUF hardware is free of classical
keys, but not free of secrets yet.
We formally introduce the concept of Complex PUFs
as a link between the world of standard PUFs and the
secret-free world beyond, building on and extending an
earlier analysis of Pappu et al. [46,47] on the simulation
complexity of their optical PUF construction.
We propose a general framework for defining secret-
free primitives. It employs a game-based, parametric
approach that considers finite, single physical objects
(instead of infinite families of objects as in [6]). At its
core, the framework employs the concept of a complete
internal state of hardware: Providing the complete inter-
nal state of a hardware to attackers, while still requiring
that security should be upheld, is suggested as general
method for defining secret-free security.

— We then use our framework to formally define the secret-
free primitives of Complex PUFs, SIMPLs/ PPUFs, and
UNO:s.

— We overview typical implementations, protocols, and
applications of Complex PUFs, SIMPLs/ PPUFs, and
UNGOs.

— We also briefly survey other secret-free techniques,

including virtual proofs of reality, secret-free sensing,

1 See abstract and page 2 of [64] and abstract and pages 2/3 of [63].
2 See Specification 1 on pages 4/5 of [63].

digital rights management, or secret-free tamper detec-
tion.

— Finally, by putting secrets (instead of classical keys) into
focus, we try to restructure the areas of PUFs and physical
cryptography: We suggest that future approaches could
try to completely avoid any secrets in hardware, at least
wherever possible, instead of merely avoiding so-called
“classical keys” (=digital keys stored permanently in non-
volatile memory).

1.4 Organization of this paper

This manuscript is organized as follows: Sect. 2 provides a
formal definition of secrets, a taxonomy of secrets, and defini-
tions of secret-free hardware. Section 3 analyzes the various
secrets in typical Weak and Strong PUF schemes. Sections 4,
5, and 6 detail three secret-free security primitives: Complex
PUFs, SIMPLs/PPUFs, and UNOs. Section 7 describes pos-
sible extensions of secret-free security techniques beyond
identification applications. Table 1 on page 23 provides a
compact overview of our main results and classifications.

2 Defining secrets and secret-free security
2.1 Definition of secrets

This and the next two subsections will expound some of the
central formal concepts of this work. As a preparatory step, it
will be useful to stipulate the “standard” sequential security
schemes considered throughout our paper.

Definition 1 (Standard Sequential Security Schemes). For
the purposes of this paper, a so-called “standard” sequen-
tial security scheme S is assumed to possess the following
properties:

— Sisimplemented by a finite number of hardware systems
H Ty eoes Hk.

— &S consists of an initial set-up phase, which is termed
Ro for consistency reasons, and a subsequent execution
phase, which comprises a finite number of sequential runs
Ri, ..., Ry

— Each of these runs R; (with 1 < j < n) is expected to
possess certain (general or individual) security features
with respect to some adversary As. O

The above requirements are very mild, meaning that Defi-
nition 14 is hardly restrictive. Its purpose is mainly to provide
some language for talking about secrets, as we do in the next
definition.

@ Springer

390

Journal of Cryptographic Engineering (2022) 12:387-412

Definition 2 (Hardware Secrets). Let S be a standard
sequential security scheme. A finite number or bitstring sec
is called a hardware secret (or just secret) with respect to S
if:

— sec is physically represented in arbitrary form® in some
hardware system H; of S at least once during some run
R; of S (where R; may also be the set-up phase Rp).

— The disclosure of sec to the adversary Ag at the end of
R; allows Ags to break some of the expected security
features of at least one of the runs Ry, ..., R, (including
Rj).

Under these circumstances, we will also call sec a secret in
‘H; (with respect to S), or say that H; contains the secret sec
(during R;). O

Slightly looking ahead, concrete examples of secrets will
be provided to interested readers in Sects. 3, 4, or also Table
1. They include the physical manufacturing variations in
SRAM PUFs or Arbiter PUFs; the power-up states of SRAM
PUFs; the signal delays in Arbiter PUFs; the digital values
of the sub-responses of all parallel single Arbiter PUFs in an
XOR Arbiter PUF construction; the content of the arbiter ele-
ments (=latches) in XOR Arbiter PUFs; and, of course, any
“classical” digital secret keys that are stored permanently
in hardware. Readers familiar with PUFs may perhaps find
these examples useful to build some first intuition.

But for now, let us remain on an abstract level first, and
discuss on several formal aspects and peculiarities of Defini-
tion 2. Firstly, the concept of a secret obviously only makes
sense in relation to a given security scheme S and its expected
security properties. No piece of information is a secret just
by itself, but only becomes one in a given context. The defi-
nition takes this into account, defining secrets sec relative to
schemes S.

Secondly, in order to achieve full generality, Definition
2 must leave the realm of the Turing formalism: As PUFs
and other physical security primitives have taught us, secrets
need not always be classical keys, i.e., secret digital numbers
stored permanently in memory. This prevents the standard
application of the Turing machine in Definition 2, while leav-
ing open which other formalism should be employed instead.
The utilization of physical Turing machines, as carried out
in [62], would be exact and rigorous, but also cumbersome,
creating involved language and expressions. The best actual
remedy seems the precisest possible use of everyday lan-
guage, as employed in the definition. This holds in particular

3 This naturally includes, but is not limited to, the content of volatile
or nonvolatile memory, any physical properties of circuit components,
any physical characteristics of transient signals (including signal timing,
shape or strength), as well as any internal physical states, structures, or
configurations of the hardware.

@ Springer

with hindsight to the question what it means that some infor-
mation is “physically represented” in a hardware system
(please reconsider Footnote 3 in this context). We comment
that this approach does have some tradition in theoretical
computer science; compare, for example, the Church-Turing
thesis [90], which must necessarily be formulated in everyday
language. While there are alternative options, our approach
has the advantage of creating a rigorous, yet easily accessible
framework.

Thirdly, it may seem surprising that the definition uses a
mild form of time line, stipulating that adversaries are only
given a secret sec after the execution of a certain run R, not
during it. The reason is relatively straightforward: Consider
for illustration a standard, challenge-response type sym-
metric identification scheme [1], where verifier and prover
hold the same key K. In each run, the verifier will send a
fresh, random nonce N to the prover, whose hardware com-
putes PRFx(N) for a keyed pseudo-random function PRF,
and returns this value to the verifier. Now, if the value
PRFk(N) (which must be computed by and thus contained
in the prover’s hardware during each run), was given to an
adversary immediately during this very run, impersonation
would become straightforward: The adversary could simply
instantly pass on PRFk(N) to the verifier, impersonating the
prover in this protocol run.

A definitional framework that would allow adversaries to
learn any potential secrets instantaneously during a run R;,
i.e., as soon as they appear in the prover’s hardware, would
therefore formally turn the value PRFg(N) into a “secret”
of said identification scheme. While intuitively, and in any
natural understanding of the term “secret,” it should not be
considered as such: Recall that PRFk(N) is sent in the clear
over the communication channel from the prover to the ver-
ifier in the course of the identification protocol.

Definition 2 prevents this paradox by stipulating that the
attacker shall only learn potential secrets after the end of
the respective run R;. In effect, this ensures that a secret is
something deeper than just a (public) message in a challenge—
response protocol that is passed on or replayed. It instead
must be a value that has a more profound impact, either back-
ward on the security of already completed runs, or on the
future security of yet unstarted runs (in which new random-
ness or new challenges are used).

Finally, formulating our definition relative to the expected
security properties and the adversary Ag of S makes the
definition more general, allowing broad applicability to not
yet fully specified future schemes. This is one other, and final,
motivation for defining secrets relative to schemes S.

2.2 A taxonomy of secrets

The recently emerging physical security techniques, includ-
ing PUFs, have taught us that there are different “classes”

Journal of Cryptographic Engineering (2022) 12:387-412

391

or “types” of secrets in hardware. This motivates the devel-
opment of a taxonomy of secrets below. The taxonomy will
later be applied to distinguish various types of secrets in the
upcoming sections.

Definition 3 (A Taxonomy of Secrets). Let sec be a secret
in some hardware system H; with respect to some standard
sequential security scheme S. Then, we call sec a:

(i) Permanent digital secret if it is represented perma-
nently in digital form (i.e., in nonvolatile or volatile
digital memory) in ‘H; during all runs Ry, ..., R,.

(i.a) Permanent, nonvolatile digital secret, or simply a
classical key, if it is represented permanently in
nonvolatile digital memory in H; during all runs
Ri,..., Ry

(i.b) Permanent, volatile digital secret if it is represented
permanently in volatile digital memory in H; during
all runs Ry, ..., R,.

(i) Non-permanent digital secret if it is represented at
least once, but not permanently, in digital form (i.e., in
nonvolatile or volatile digital memory, or in the digital
values of transient digital signals) in H; during at least
one run Ry, ..., R,.

(ii.a) Non-permanent, nonvolatile digital secret if it is
represented at least once, but not permanently, in non-
volatile digital memory in H; during at least one run
Ro, ..., Ry.

(ii.b) Non-permanent, volatile digital secret if it is rep-
resented at least once, but not permanently, in
volatile digital memory in H; during at least one run
Ro, ..., Ry.

(ii.c) Transient digital secret if it is represented at least
once, but not permanently, in the digital values of
transient digital signals in H; during at least one run
Ro, ..., Ry.

(iii) Digital secret if it is any of the above types (i) to (ii.c),
and physical secret if it is not a digital secret.

(vi) Permanent physical secret if it is a physical secret
that is represented in H; permanently during all runs
Ri, ..., R,

(vi.a) Permanent, nonvolatile physical secret if it is a phys-
ical secret that is represented in H; permanently
during all runs Ry, ..., R,, and in such a way that
it remains present if all power and energy supplies
for H; are disabled.

(vi.b) Permanent, volatile physical secret if it is a physical
secret that is represented in H; permanently during
all runs Ry, ..., R, and in such a way that it is lost if
all power and energy supplies for H; are disabled.

(v) Non-permanent physical secret if it is a physical
secret that is represented at least once, but not per-
manently, in H; during at least one run Ry, ..., R,.

(v.a) Non-permanent, nonvolatile physical secret if it is
a physical secret that is represented at least once,
but not permanently, in H; during at least one run
Ro., - .., Ry, and in such a way that it remains present
if all power and energy supplies for H; are disabled.

(v.b) Non-permanent, volatile physical secret if itis a phys-
ical secret that is represented at least once, but not
permanently, in H; during at least one run Ry, ...,
Ry, and in such a way that it is lost if all power and
energy supplies for H; are disabled. [

Sections 3, 4, and Table 1 will animate Definition 3: They
will present concrete examples for all mentioned types of
secrets. But for now, let us better remain on an abstract level
for a while, discussing the definition’s formal approach in all
detail.

The definition distinguishes secrets along the following
three dimensions: (a) Are they digital or physical? (b) Are
they permanent or non-permanent? (c¢) Are they nonvolatile,
volatile, or (in the case of digital signals) transient? This
detailed differentiation leads to an implicit “hierarchy” of
secrets, which ranges from the generally more vulnerable
ones (item (i.a)) to the commonly more attack-resilient ones
(item (v.b)).

Let us expound this idea of a general “hierarchy” among
secrets in a bit more detail. To start with, it seems reason-
ably to claim that digital secrets (as defined in items (i) to
(iii) of Definition 3) at least generally are more vulnerable
than physical ones: Information present in digital form typi-
cally appears easier to extract than arbitrary analog/physical
characteristics [1,78]. Secondly, permanent secrets seem, at
least in principle and in general, more vulnerable than non-
permanent ones: The obvious reason is that they are present
in hardware for (sometimes substantially) longer periods.

Thirdly, nonvolatile secrets typically appear more vulnera-
ble than their volatile counterparts, which, in turn, commonly
are better accessible than secrets that exist only in the form
of transient signals. One reason is that nonvolatile secrets
remain in the system if the power supply is turned off, cut,
or destroyed during an attack, or if the attacked hardware is
(partly) disassembled [1,78]. Nonvolatile memory also com-
monly shows stronger data remanence effects than volatile
memory [1,78]. One further reason is that extracting transient
digital signals on the fly generally seems more cumbersome
for adversaries than reading out static digital memory [1,78].

All these arguments seem to add to the idea of a potential
hierarchy of secrets in Definition 3, ranging from the gener-
ally more vulnerable secrets (such as (i.a)), to the more attack
resilient ones (such as (v.b)). While this hierarchy is by no

@ Springer

392

Journal of Cryptographic Engineering (2022) 12:387-412

means fully strict or binding, and is necessarily subject to all
kinds of exceptions and counterexamples®, it still can pro-
vide a useful guideline for a first assessment of the resilience
of given hardware against physical attacks. Using our taxon-
omy, an analysis of the various secrets in new architectures
could be standardized easily, pointing to possible vulnerabil-
ities at early design stages. Interestingly, the actual historic
development in cryptography and hardware security has rel-
atively closely followed our mainly theoretically inspired
taxonomy (please compare Table 1 on page 23). This could
potentially be seen as another reason supporting our classi-
fication and hierarchy.

Let us next dive yet deeper into some other details of
Definition 3, which are independent of the above idea of a
potential hierarchy. Firstly, readers will hopefully agree that
the concept of a transient signal is meaningful only if the
hardware has some circuit-like structure, i.e., if it has a digital
layer. Furthermore, it only makes sense in connection with
non-permanent secrets. For these reasons, transient digital
signals are only defined as a sub-concept of non-permanent
digital secrets, and not in other contexts, in item (ii.c) of
Definition 3.

Secondly, readers may have noticed that all permanent
secrets are defined over the runs Ry, ..., R, (i.e., excluding
the set-up phase Rp), while all non-permanent secrets are
defined over all runs Ry, ..., R, (i.e., including the set-up
phase Rp). The reason is that even permanent secrets need
to be generated at some point during a security scheme, and
this usually takes place within the set-up phase. Requiring
that permanent secrets should already be present during the
entire set-up phase, i.e., form its very start onward, would
simply ask for too much. On the other hand, non-permanent
secrets may be present temporarily in the set-up phase Rg
(and perhaps not even in any other runs of the scheme!”). This
suggests to explicitly allow this possibility in our definitional
framework, including the set-up phase Rg in our definition for
the case of non-permanent secrets.

Thirdly, Definition 3 makes every effort to meaningfully
transfer the concept of nonvolatile/volatile digital secrets to
the more general situation of physical secrets. We stipulate
that in physical hardware layers, nonvolatile secrets must
remain present once any energy supply is disabled, while
volatile secrets are lost in this case. The “energy supply” in
our sense need not be a standard electrical signal, but could
also be a laser, a dedicated thermal energy source, etc. We

4 Ttis not too difficult, for example, to imagine poorly designed physical
secrets, which are far simpler to extract than a well-protected classical
key, and so on.

3 See Sect. 4.4 and Scheme 10 for an example: The laser beam that con-
stitutes the challenges C1, ..., Cy.,, which are applied to the scattering
token/optical PUF during the set-up phase Ry, by Definition 2 is only a
non-permanent, volatile physical secret in Ry (and not in the other runs
Ri, ..., R, of the scheme)

@ Springer

hope that this keeps our definition general and applicable in
different circumstances.

2.3 Key-free and secret-free hardware and their
promise

As already mentioned, Definition 3 pinpoints various types of
secrets, introducing some mild hierarchy among them. This
suggests a complementary hierarchy of hardware systems
that are free of the respective secrets: For example, hardware
free of permanent digital secrets; free of permanent, volatile
digital secrets; free of permanent physical secrets; etc. Two
particular elements of this “mirrored” and complementary
hierarchy possess special importance and relevance for us,
namely “key-free” and “secret free” hardware systems. For-
mally defining and comparing them will be the topic of this
brief section.

Definition 4 (Key-Free Hardware) A single hardware sys-
tem H; of a standard security scheme S is called free of
classical keys (or simply key-free) if it contains no classical
keys (with respect to S). [J

Along the same lines, secret-free hardware can be defined
as follows:

Definition 5 (Secret-Free Hardware) A single hardware sys-
tem H; of a standard security scheme S is called secret-free
(with respect to S) if it contains no secrets (with respect to

S). O

The above two definitions naturally imply that any secret-
free hardware is also key-free. The converse is not true, as
Sects. 3 and 4 show in all detail: Many hardware systems
based on standard PUFs are key-free, but not completely
secret-free yet.

Let us again lead an abstract, comparative discussion
between key-free and secret-free hardware below, carefully
illustrating their mutual differences and respective advan-
tages. This will help us to gain momentum for the rest of the
paper, and will motivate the notable benefits of secret-free
over merely key-free hardware.®

To start with, key-free hardware surely promises less vul-
nerabilities against physical attacks than systems containing
classical keys. The simple reason is that attackers must extract
other types of secrets, such as non-permanent, volatile, or
physical ones. These are usually either located on “deeper,”
physical hardware levels, and/or are present in the system
only for shorter periods of time. This constitutes a notable
achievement of key-free systems, and could be regarded as
the initial PUF-promise.

% Once more, concrete examples will be provided throughout the fol-
lowing Sects. 3 to 7.

Journal of Cryptographic Engineering (2022) 12:387-412

393

At the same time, latest PUF-research has revealed that the
above-mentioned attacks on deeper system levels or on non-
permanent secrets may be hard, but are not impossible [29,
44.,57,60,77]. Key-free hardware systems which still contain
secrets may therefore improve attack resilience, constituting
a strong and notable achievement of such systems and of
standard PUFs in general. But still, they often cannot evade
physical attacks completely yet.

Secret-free systems try to take this approach one critical
step further: They promise that even adversaries who could
hypothetically access any information that is present in hard-
ware in any, possibly physical form during a security scheme
(not just in the form of digital, permanently stored keys in
nonvolatile memory!), and who could unrestrictedly inspect
every bit and even every atom of the system, would be unable
to break security. Secret-free hardware thus possesses prov-
able and complete immunity against any type of adversarial
probing, and against software-based key-extraction as well,
including malware—the obvious reason being that there sim-
ply is nothing security—critical to extract.

Furthermore, secret-free security systems may not even
require confidentiality in their set-up phases (compare
Scheme 13 as example). The plain reason is that there are
no secrets in the set-up phases that need to be protected.
They thus can establish certain partial security guarantees
even against malicious manufacturers. Their setup could,
for example, be accomplished under the eyes of the pub-
lic, or in the presence of cryptographic adversaries, should
this become necessary. This feature can enable new classes
of security schemes: For example, in the context of nuclear
weapons inspections, set-up phases for the inspectors’ equip-
ment may need to be conducted in the potentially hostile
environments of the inspected nation [48].

Taken together, this makes secret-free security a worth-
while theoretical concept to pursue. To which extent it can
already be realized in practice, and in which scenarios it
is already concretely applicable (and in which not), will
hopefully become clearer throughout our detailed practical
discussions in the upcoming Sects. 3 to 7.

3 Secrets in standard PUFs

Having laid the theoretical foundations in Sect. 2, we will
now shift our focus, moving to more practical topics. To
start with, this Sect. 3 will illustrate our taxonomy of secrets
at work, and present concrete examples for various types
of secrets. More specifically, we will identify miscellaneous
secrets in protocols built on the two most widespread silicon
PUFs: Namely in identification protocols built on SRAM
PUFs [26,32] and on XOR Arbiter PUFs [21,76]. This will
again confirm our earlier mantra: While standard PUFs are
free of classical keys, they are not secret-free yet.

3.1 Basics of SRAM PUFs and XOR Arbiter PUFs

To make this paper as self-contained as possible, we will start
our discussion with a rudimentary introduction to the above-
mentioned two PUF types; interested readers are referred to
existing PUF-surveys [31,41,55,69] for further details.

Inanutshell, an SRAM PUF is nothing else than a standard
array of kK SRAM cells. Each single cell possesses a specific
and (hopefully) reasonably stable power-up behavior, which
is determined by its random manufacturing variations. The
so-called “PUF-challenge” in the case of an SRAM PUF
array is simply this power-up operation, i.e., the entire PUF
merely has one challenge. The “PUF-response” is the con-
catenated string of the k power-up values of the Kk SRAM
cells. SRAM PUFs belong to a PUF-class that has been
termed Weak PUFs [55] or Physically Obfuscated Keys
(POKs) [31] at times.

An XOR Arbiter PUF, on the other hand, is a construc-
tion that consists of k parallel, single Arbiter PUFs [76]. It
possesses exponentially many possible challenges C;, more
precisely 2" challenges, where n is its challenge length; usu-
ally n = 64 or larger. A given challenge C; is applied equally
and identically to all these k parallel Arbiter PUFs, producing
k sub-responses Ril, el Rll‘. These sub-responses are held
temporarily in the nonvolatile arbiter elements/latches at the
end of each Arbiter PUF. The global, overall PUF-response
R; of an XOR Arbiter PUF is then digitally computed on chip
as the XOR of these k sub-responses Ril ey Rl{‘. Physically,
this is accomplished by a large XOR-gate connected to all
the latches, i.e., R; = Ri1 ®---Pb Rl{‘.

XOR Arbiter PUFs have originally been suggested as
candidates for a PUF-class known as Strong PUFs [31,55].
Interested readers are again referred to existing PUF-surveys
for further details [31,41,55,69].

Definition 2 tells us that for a well-founded analysis of
secrets in PUF-hardware, we also need to pick a specific
security scheme S in which this hardware is used. As a natural
choice here (and in the largest part of this paper), we selected
the remote identification of a prover to a verifier over a digital
channel [1]. The simple reason is that this protocol constitutes
the historically first and still most popular PUF application
to this day [21,47], and that it is conceptually relatively easy
to describe.

3.2 Secrets in SRAM PUF-based identification

Let us then start by analyzing the secrets induced by SRAM
PUFs [26,32] in remote identification. The standard scheme
to this end [26,32] assumes that an SRAM PUF (consisting
of kK SRAM cells) is contained and hardwired in the prover’s

@ Springer

394

Journal of Cryptographic Engineering (2022) 12:387-412

hardware Hp.” The power-up states of these k cells are used
to derive a key K. The prover’s hardware Hp subsequently
uses this key in a classical symmetric identification protocol
with the verifier’s hardware Hy.

For the sake of an accurate analysis, and again in order to
make this paper self-contained, let us spell out the various
details of the scheme as follows:

Scheme 6 (Identification with SRAM PUFs [26,32])
Set-Up Phase (also called Ry):

1. The prover’s hardware Hp internally measures the k
(noisy) digital power-up states of the SRAM PUF.

2. 'Hp provides these power-up states to the verifier’s hard-
ware Hy via some digital communication interface. Hp
then erases these power-up states internally (i.e., in its
own system Hp), for example, by overwriting them with
ZEerOoS.

3. Hy derives a stable secret key K and error-correcting
helper data HD from said power-up states. Hy then stores
the resulting key K permanently in nonvolatile digital
memory.

4. Next, Hy provides the helper data HD to the prover’s
hardware Hp via the above-mentioned digital communi-
cation interface. Hp stores HD permanently in nonvolatile
digital memory.

5. Finally, the functionality of Hp by which the power-up
states of the Kk SRAM cells may be provided to external
parties like Hy during the set-up phase is irreversibly
disabled.

Execution Phase (Run R;, with 1 <i < n):

1. The verifier’s hardware Hy remotely sends a fresh ran-
dom nonce N; to the prover’s hardware Hp.

2. Hp triggers a power-up operation of its SRAM cells.
It derives the key K from the power-up states of the
k SRAM cells of its SRAM PUF. In this context,
‘Hp uses the stored helper data HD and some error-
correction mechanisms. Finally, Hp stores K in volatile
memory.

3. Hp computes the value PRFk (N;) for some pseudorandom
function PRF. To this end, the key K is transferred from
the volatile memory in which it was stored to the part of
the hardware that computes PRF.

4. Next, Hp sends the value PRFk(N;) remotely to the ver-
ifier’s hardware. After this, Hp erases the key K and the
power-up states of the SRAM cells, e.g., by overwriting
them with zeros.

7 Just to quickly remind the reader again: The party who wants to
identify itself in a remote identification protocol is usually called the
“prover” in cryptographic parlance. The party who wants to verify the
identify of the prover is termed the “verifier.”

@ Springer

5. The verifier’s hardware checks the correctness of the
received function value PRFk (N;), using K. It accepts the
identification if and only if the value is correct. [J

Itis clear that the prover’s hardware Hp is free of any clas-
sical keys, i.e., of any permanent nonvolatile digital secrets,
while the verifier’s hardware Hy does contain such classical
keys. Applying the taxonomy of Definition 3 enables a yet far
more finegrained analysis, however. It allows us to identify
various other types of secrets in Hp and Hy. Their disclosure
to adversaries would break the scheme as well, and would
allow impersonation of the prover in future protocol runs.

Let us start with the secrets in the prover’s hardware Hp:

— 'Hp is free of classical keys (or of permanent nonvolatile
digital secrets in our parlance).

— Still, Hp stores the key K in volatile memory for some
limited time in every run R; (for 1 <i < n). This makes
K a non-permanent, volatile digital secret in our termi-
nology.

— Hp contains another non-permanent, volatile digital
secret in every run R; (this time even including the set-up
phase, i.e., for 0 < i < n), namely the power-up states
of the kK SRAM cells.

— In the case that Hp is a completely digital system, it will
furthermore contain various transient digital secrets:
As first example, in the set-up phase Ro, the k power-up
states will be transferred via the digital interface from
‘Hp to Hy. These power-up states hence also constitute
transient digital secrets in Hp.

Secondly, in each run R; (with 1 < i < n), the key
K will be transferred by transient digital signals within
‘Hp, namely from the volatile memory where it is stored
to the circuitry that computes PRFk(N;) (Step 3 of the
execution phase of Scheme 6). This makes K a transient
digital secret, too.

As third example, in each run R; (with 0 < i < n),
the digital signals that communicate the power-up states
of the SRAM cells to the error-correction/key derivation
mechanism inside Hp constitute transient digital secret
as well.

— Finally, Hp contains permanent, nonvolatile physical
secrets: Namely the physical manufacturing variations
that determine the power-up states of the SRAM cells.
Knowing them, adversaries could derive the power-up
states of the SRAM cells by numerical simulation in
practice. They may then infer K themselves (recall that
the helper data HD and the method for error-correction
usually are assumed to be public), breaking security.

Let us continue with the secrets in the verifier’s hardware
Hy:

Journal of Cryptographic Engineering (2022) 12:387-412

395

— The verifier’s hardware Hy obviously contains a classi-
cal key (or, in the language of Definition 3, a permanent,
nonvolatile digital secret), namely the secret key K.

— If'Hy is afully digital system, it will contain various tran-

sient digital secrets, too: Just to name a first example, in
run Ry, transient digital signals will deliver the power-up
states of the k SRAM cells key K inside Hy from the com-
munication interface with Hp to the nonvolatile memory
of Hy, where it is stored permanently (Step 3 of Scheme
6).
As a second example, in each single run R; (for 1 <i <
n), the key K is digitally transferred from its permanent
storage location in Hy to the module inside Hy where
the prover’s answer PRF(N;) is verified. This again con-
stitutes a digital transient secret in Hy in each of these
single runs.

The above analysis illustrates the potential of the new for-
malism: While from the perspective of classical keys, all to
be said about Scheme 6 is that Hp does not contain such
classical keys, while Hy in fact does, a secret-based analysis
directly pinpoints deeper attack vectors and vulnerabilities.
In fact, some of these vectors have been exploited in practical
attacks in the past already: For example, the power-up states
of SRAM PUFs have been read out invasively via smart tech-
niques [29,44]. While these attack vectors were also known
prior our taxonomy, Definitions 2 and 3 still seem to make a
systematic and standardized analysis much easier.

On a short side note, the situation changes slightly, but
not fundamentally if SRAM PUFs are used to derive a
hardware-internal (public key, private key)-pair [81], which
is subsequently used in an asymmetric identification scheme.
In this case, the verifier’s hardware becomes secret-free, as it
merely needs to store a public key—but all above-mentioned
secrets in the prover’s hardware, which is usually more
exposed and attack-prone in practical applications, remain
unchanged.

3.3 Secrets in XOR Arbiter PUF-based identification

Will XOR Arbiter PUFs fare better concerning the types of
secrets they cause in hardware? After all, their large num-
ber of challenge-response pairs (CRPs), together with their
(supposedly) unpredictable responses [55], allow a different
type of identification protocol [47].

In the upcoming Scheme 7, the XOR Arbiter PUF
itself is employed as if it was a unique and unclonable
pseudo-random function, which is contained/hardwired in
the prover’s hardware Hp.® Its CRPs are sent in the clear
over the digital communication channel, without deriving

8 To again quickly remind the reader: The party who wants to identify
itself in a remote identification protocol is usually called the “prover”

internal secret keys first, as in Scheme 6. This approach is
typical for the class of so-called Strong PUFs [55], for which
XOR Arbiter PUFs were initially designed, and could be
called “plain CRP-based identification” [47,55].

Scheme 7 provides all the further details. It employs a
security parameter A, and has an envisaged number of # runs.

Scheme 7 (Identification with XOR Arbiter PUFs [47])
Set-Up Phase (also called Ry):

1. The verifier’s hardware Hy chooses A - n random chal-
lenges Cq, ..., Cyp.

2. Hy applies these challenges Cy, ..., C,., to the XOR
Arbiter PUF via its digital
challenge-response interface. The corresponding responses
Ri, ..., R)., are collected via the same interface.

3. Hy permanently stores the so created CRP-List (C1, Ry),
...y (Cy.n, Ry.p) in nonvolatile memory.

Execution Phase (Run R;, with 1 <i < n):

1. The verifier’s hardware Hy randomly selects A new CRPs
(Ci,RY), ..., (CL, R!) from the CRP-List.

2. Hy sends Ci, el C;; to the prover’s hardware Hp.

3. 'Hp applies these challenges to the XOR Arbiter PUF, and
sends the obtained responses Ri, ..., Rf\ to Hy.

4. 'Hy checks if the received responses Ri, e, Ri match
the pre-recorded responses R!, ..., Ri from the CRP-
List. It accepts the identification if and only if they match
within a certain, previously specified error margin [47].

5. The CRPs (Ci, R‘i), ..., (cL, Ri) are removed from the
CRP-List. O

Scheme 7 induces various secrets in the hardware of the
involved parties. Let us again start with the prover’s hard-
ware Hp:

— Hp isfree of classical keys, i.e., of permanent nonvolatile
digital secrets.

— If the number n of sequential runs in Scheme 7 is large
enough, Hp will contain non-permanent volatile digi-
tal secrets, however: Namely the digital content of the
latches which act as “arbiter elements” at the end of each
single Arbiter PUF within the larger XOR Arbiter PUF
construction.

Once many of these values are known to adversaries,
machine learning of the single Arbiter PUFs, and sub-
sequent prediction of the complete XOR Arbiter PUF,
becomes possible [57]. For the same reason, the digital
signals that enter the final XOR gate of the XOR Arbiter

in cryptographic parlance. The party who wants to verify the identify

of the prover is termed the “verifier.”

@ Springer

396

Journal of Cryptographic Engineering (2022) 12:387-412

PUF are transient digital secrets. Interestingly, the secret
in the two latter cases is not contained in a single run in
‘Hp, but is spread over many runs R; of Scheme 7.

— Closely following Definitions 2 and 3, Hp also contains
a transient digital secret in its set-up phase Ry, namely
the CRPs (Cy, Ry), ..., (C).u, R;.,) that are collected
via the digital challenge-response interface of the XOR
Arbiter PUF to create the CRP-List. Knowing these CRPs
after the setup R, but before the runs R;, allows imper-
sonation of the prover’s hardware Hp in Scheme 7.

— Finally, Hp contains permanent nonvolatile physical
secrets: The manufacturing variations that cause the run-
time delays in the XOR Arbiter PUF.

Let us continue with the secrets in the verifier’s hardware

Hy:

— 'Hy contains a permanent nonvolatile digital secret,
namely the CRP-List.

— Hy does not contain any volatile or transient digital
secrets, though: Scheme 7 only needs to read those CRPs
from the CRP-List that are used in the current single run
R;. If these are revealed to the adversary at the end of R;,
as stipulated in Definition 2, this does not affect the secu-
rity of R;, and neither of any past or future runs. Recall
that any CRPs employed in R; are removed from the CRP-
List, and are never re-used in future runs (compare Step
5 of the execution phase of Scheme 7 and Definition 2).

In other words: If Strong PUFs are implemented by XOR
Arbiter PUFs and comparable designs [8,36,88], and used
in plain CRP-based identification, they can avoid permanent
nonvolatile digital secrets in the prover’s hardware. But they
are unable yet to realize secret-free security for the verifier
or the prover.

3.4 Practical relevance of secrets and enduring
benefits of standard PUFs

Let us conclude this section by discussing the practical rel-
evance of secrets in PUF-based hardware and PUF-based
protocols. It could be tempting to understand the distinc-
tion between classical keys and secrets as purely academic
topics, claiming that it had no “real” relevance for practical
hardware security. We would like to emphasize that this is
not the case. Most of the above-mentioned secrets have actu-
ally been extracted from real silicon SRAM PUFs and XOR
Arbiter PUFs, a fact that has rendered both PUF-types vulner-
able or even insecure in practice [29,44,57,60,77]. In various
cases, demarcating merely key-free from completely secret-
free systems has been equal to drawing the line between
insecure and secure systems. This observation holds not just
in theory, but in practice [29,44,57,60,77].

@ Springer

Still, in order to obtain a balanced view, it seems impor-
tant to again stress the enduring achievements of standard
PUFs. They have been the first physical security primitive
which enabled the individualization of hardware without
nonvolatile memory on board, and which enabled security
without classical keys. In the language of Definitions 3 and
4, they were hence the first primitives that could realize key-
free security in certain applications and certain pieces of
hardware. This constitutes a strong achievement in itself.

Diving further into the details, Strong PUF at least concep-
tually holds a yet stronger promise: Not just key-free security,
but also security without any digital secrets in the Strong PUF
carrying hardware (compare again Definition 3). Most exist-
ing silicon Strong PUF designs do not realize this property
yet, as they possess digital sub-signals that must remain secret
(such as the sub-responses in an XOR Arbiter PUF that enter
the XOR gate, for example). But future, improved electri-
cal Strong PUF designs might. Finally, optical Strong PUF
constructions, such as Pappu et al.’s design [47], can already
now realize certain forms of secret-free security, provided
that they fulfill the additional criterion of being a Complex
PUFs (see Sect. 4). They hence clearly foreshadow the later
idea of secret-free security.

These benefits of standard PUFs are highly noteworthy,
and will always remain, no matter which future development
the area might take. We considered it important to stress this
at the end of this section.

4 Secret-free security by complex PUFs
4.1 Definition of complex PUFs

Trying to leave the realm of key-free hardware systems, the
perhaps easiest route to secret-free security is the concept of
a Complex PUF, which we will formally introduce in this
section. Complex PUFs are a special sub-class of so-called
Strong PUFs [55], i.e., by definition they must possess a large
and practically inexhaustible CRP-space, a publicly accessi-
ble challenge-response interface/mechanism, and responses
that are difficult to predict numerically, even if many other
challenge-response pairs are known (compare [55]).

On top of these features, a so-called (e, tpreq)-Complex
PUF shall fulfill the following property: Even if the adversary
knows its complete internal state (including any manufactur-
ing variations and internal random structure and parameters,
such as resistances, threshold voltages, or signal delays) of
an (€, tpred)-Complex PUF, and has some feasible time for
preparatory calculations, he cannot numerically predict the
correct response R; to a randomly chosen challenge C; with
a probability better than € and within time t after C; has been
presented to him.

Journal of Cryptographic Engineering (2022) 12:387-412

397

This basic idea is more formally developed over the fol-
lowing two definitions.

Definition 8 (Complete Internal State of a Hardware). LetH
be some hardware. The complete internal state of H, termed
CIS(H), is a bitstring that describes all information that is
present in H, and that is relevant for the functionality and
security of H. This explicitly includes, but is not limited to:

— The digital design and system-level architecture of H, if
it has any.

— The digital memory content of H, if there is any.

— The physical structure and physical state of H, includ-
ing any manufacturing variations that are relevant for the
functionality and security of H. [J

The above concept of a complete internal state will be cen-
tral for defining secret-free security. Similarly to Definition
2, it touches upon very fundamental questions—and is hard
to formalize in compact form and with full rigor at the same
time. As earlier, we hope that Definition 8 strikes a good
balance between exactness and simple accessibility, using
everyday language in precise manner (please also compare
our discussion after Definition 2).

Definition 8 can be applied in the context of Complex
PUFs as follows:

Definition 9 ((e, tpreq)-Secure Complex PUFs). Let P be a
PUF with complete internal state CIS(P). P is called an
(€, tpred)-secure Complex PUF (or just (€, tpreq)-Complex
PUF) with respect to an adversary A if A has a
probility of at most € to win the following game:

FASTPREDGAME(P, A, CIS(P), tpred):

Phase 1: Preparation. Ais given CIS(P) and physical access
to P for one year. Throughout this period, .A may conduct
physical measurements on P (including determination of
CRPs), carry out computations (including machine learning
attacks or other precomputations for Phase 2 below), and fab-
ricate physical systems (including special simulation devices
and attempted physical clones of P). At that, A is only being
limited by his own technological capabilities and equipment.
At the end of Phase 1, A’s physical access to P is ceased.

Phase 2: Response Prediction. A challenge C; is drawn
uniformly from the challenge space of P, and is given to .A.
Within time #preq, A must output a “response prediction” Ié,-.
A wins the game if this prediction is correct, i.e., if I§,~ = R;.
Thereby the probability € is taken over all of A’s random
actions during FASTPREDGAME, including any employed
random fabrication processes. [J

Let us quickly comment on the features and approach of
Definition 9. It partly follows earlier, game-based definitions

of PUFs [2,58], once more trying to strike a balance between
rigor and accessibility.

Its security game FASTPREDGAME closely mimics the sit-
uation of adversaries in Complex PUF schemes, such as
Scheme 10: Their task usually is to predict responses of
the Complex PUF quickly in order to break security. This
is captured in Phase 2 of the game. Prior to this, the adver-
sary commonly has substantial time for preparing his attack
in practice, as reflected in the game’s Phase 1. Providing A
with all internal state CIS(P) of the PUF, while still requir-
ing that security shall be preserved, makes Complex PUFs a
secret-free security concept in the sense of this paper.

The chosen length of Phase 1 (=one year) is to some extent
arbitrary, but is motivated by the practical parameters around
certain modeling attacks on PUFs [57]; if anything, it overes-
timates the adversary’s possibilities, leading to a yet stronger
security notion. The reason for choosing a concrete length of
Phase 1 (instead of assigning another parameter fppaseq) 1S
that it keeps the definition simpler. It also allows leaner and
more concrete security analyses of any given, single Com-
plex PUF candidates, as it avoids dependency on yet another
parameter.

On a final note, Definition 9 is formulated relative to an
adversary A and her/his/their individual technological capa-
bilities and equipment. This will eventually lead to statements
of the form “if a certain PUF is (e, tpreq)-Complex with
respect to an adversary A, also Scheme X is secure with
respect to the same adversary A 7. Such relative formu-
lations appear perfectly acceptable, however, following the
standards of traditional, reductionist cryptography [24]. At
the same time, such a “relative” definitional approach keeps
our framework more flexible; please also compare our dis-
cussion subsequent to Definition 2 in this context.

4.2 Implementation of complex PUFs

From a fundamental perspective, the existence of Complex
PUFs is substantiated by the fact that the simulation of certain
physical systems can be laborious, sometimes even infeasible
in practice (see, for example, [19]). Let us try to translate
this idea specifically to a PUF-context. It is long known [57]
that we can write a PUF’s responses R; as a function of the
applied challenge C; and the complete internal state CIS(P)
of the PUF:

R; = Fpur(Ci, CIS(P))

Following this equation, the decisive point that distinguishes
most standard PUFs from Complex PUFs is the higher com-
putational complexity of the function Fpyr. For example,
(€, tpred)-Complex PUFs require an Fpy that cannot be com-
puted or emulated in any (possibly physical) way by the

@ Springer

398

Journal of Cryptographic Engineering (2022) 12:387-412

adversary within the time period €, even if the complete inter-
nal state CIS(P) of the PUF is known.

But which PUFs possess this property? A concrete imple-
mentation candidate of a (€, tpreq)-Complex PUF for reason-
able values € and fpyeq is the optical PUF of Pappu et al. [47].
Following the security analysis in [46,47], we argue in some
greater detail in Appendix 1 that at least under somewhat
optimistic assumptions, Pappu et al.’s optical PUFs could be
regarded a (13.3%, 10 s)-Complex PUFs with respect to real-
istic adversaries 4. We will assume these values in the further
course of this paper in several schemes (see also Sect. 4.3).

Other Complex PUF candidates include the optical con-
structions of [33,72], while silicon candidates are much
harder to find. They may include certain analog Strong PUFs
[13,15]; also so-called SIMPL Systems [65] or Public PUFs
[4] could theoretically directly serve as Complex PUF, not
utilizing their response simulatability (compare Sect. 5). On
the other hand, Arbiter PUFs and their variants are defi-
nitely no Complex PUFs for reasonably large values of #pyeqg.
Readers can easily convince themselves heir simulation com-
plexity simply is too low: Once the signal runtimes in the
Arbiter PUF components are known, simulating the outputs
merely requires simple numeric addition of these runtimes.
This can be carried out in logarithmic depth at time scales
comparable to the challenge—response behavior of the origi-
nal PUF hardware.

4.3 Complex PUF-based identification

Which secrets do Complex PUFs induce in hardware when
employed in cryptographic protocols? Again, we use remote
identification between a prover and a verifier as our guiding
example, this time in connection with an optical PUF. To be
fully precise, this implies that three pieces of hardware are
involved in our protocol: (a) The prover’s hardware Hp, con-
sisting of a measurement apparatus and computing device.
(b) The verifier’s hardware Hy, consisting of a measurement
apparatus and computing device. (¢) An optical Complex
PUF, i.e., a passive, non-electronic, optical scattering token,
which is sometimes measured in the apparatus of the prover,
sometimes in the apparatus of the verifier.

The resulting identification scheme has a security param-
eter A, as well as n envisaged future runs, and is detailed in
the following:

Scheme 10 (Identification with (e, fpreq)-Complex PUFs).
Set-Up Phase (also called Ry):

1. The verifier’s hardware Hy chooses A - n random chal-
lenges Cq, ..., Cyp.

2. 'Hy applies these challenges Cy, ..., Cy., to the optical
(€, tpreq)-Complex PUF, and collects the corresponding
responses Ry, ..., Ry.n.

@ Springer

3. The resulting CRP-List (Cy, Ry), ..., (Crn, Ry.p) is
stored permanently in Hy in nonvolatile memory.

Execution Phase (Run R;, with 1 <i < n)

1. The verifier’s hardware Hy randomly selects 1 CRPs
(Ci,Ri), ..., (CL, R!) from the CRP-List.

2. Hy sends Ci, - Ci to the prover’s hardware Hp.

3. Hp applies these challenges to the optical (€, tpreqd)-
Complex PUF, and measures the resulting responses,
which we call R}, ..., RL.

4. Hp sends Ié‘i, R Iéi to Hy.

5. Hy measures the time period #* that has passed between
sending ci,..., Ci and receiving Iéi, e, Ri.

6. Hy then applies the following decision rule: If the respon-
ses Ié’i, e, Iéi arrived fast enough, i.e., if

1" < tpreds
and if all these responses Ié; were correct, i.e., if

pi _ pi .
Rj _Rj forall j =1,...,A,
then Hy accepts the identification, otherwise not.
7. The CRPs (C{, RY), ..., (C}, R}) are removed from the
CRP-List. [J

Let us quickly comment that error tolerance can be
achieved easily by relaxing the decision rule of Hy [46,47]
: For example, a previously fixed number of incorrect
responses I?j. may be allowed. Or each sent response 15’/
may be permitted to differ from the pre-recorded value R;
in a fraction of bits [46,47]. Often syndrome-free error cor-
rection in the form of image transformations (e.g., the Gabor
transformation [46,47] and others [54]) is applied in this con-
text.

Regarding the security of Scheme 10, the following
heuristic analysis holds. Let us call the (symmetric and uni-
directional) communication and processing latency between
verifier and prover (and vice versa) fiat, and the prover’s
time for measuring a response of the employed Complex
PUF fpmeas. Then, it is not too difficult to see that Scheme 10
works securely as long as

Ipred = 2- flat + A - IMeas- (1)

The rationale behind Eq. 1 lies in comparing an adversary
A who is closely located to the verifier, and who has latency
fLat ~ 0 in the most extreme case, to a remote honest prover.
A can use the full response time of this prover, which is
around 2 -1 3t + A - Meas, for his fraudulent numeric simulation
of the A responses R’i, el Ri. He can thereby parallelize
his simulation task to A computers, while the honest prover

Journal of Cryptographic Engineering (2022) 12:387-412

399

needs to measure the A responses in sequence. This leads to
the necessary and sufficient condition formulated in Eq. 1.

When applying Pappu et al.’s optical PUF in Scheme 10
over the internet, one could use parameters fpreq = 10 s,
tMeas = 0.1 s, and 15t < 1 s. Given the (optimistically) esti-
mated value of e = 13.3% from Appendix 1, a target cheating
probability of smaller than 27'% and an assumed CRP-
measurement rate of 10 CRPs per second by the prover’s
measurement apparatus in practice, users can safely choose
the security parameter A = 35. Equation 1 is then fulfilled,
and Scheme 10 is both secure and practical, for these example
values.

4.4 Secrets in complex PUF-based identification

Let us now return to our main topic: Which secrets do Com-
plex PUFs induce in hardware? As before, we use the earlier
Scheme 10 as concrete discussion example. Please recall that
there are three pieces of hardware in the scheme: (a) The
measurement apparatus and computing device of the prover.
(b) The measurement apparatus and computing device of the
verifier. (c) An optical Complex PUF, i.e., an optical scatter-
ing token, which is sometimes measured in the apparatus of
the prover, sometimes in the apparatus of the verifier.

Our analysis of the secrets in these hardware pieces is
slightly shorter than in earlier schemes:

— The prover’s hardware Hp does not contain any secrets
during the entire scheme, i.e., during runs Ry, ..., R,. It
is secret-free.

— The verifier’s hardware Hy contains permanent non-

volatile secrets: Namely the CRP-List put together during
Ro and stored during all the rest of the scheme in NVM.
Furthermore, Hy also contains transient digital secrets
during Ro: Namely the digital challenges C; that are trans-
ferred to the measurement apparatus, and the resulting
digital responses R; that are received from the measure-
ment apparatus.
Finally, Hy contains various non-permanent, volatile
physical secrets during Ry: Firstly, the optical challenges
C; that Hy generates (i.e., the laser beam and its position
and angle of incidence). Secondly, the resulting physical,
analog responses R; that hit the CCD-camera of Hy.

— The optical Complex PUF itself also contains non-
permanent, volatile physical secrets during the set-up
phase Ro. This includes, first of all, the optical challenges
C; in the form of a laser beam that hits the PUF. The rea-
son why they should be considered a secret is as follows:
Imagine that they are given at the end of Ry to an adver-
sary. Assume further that, following the standard and
established attack model for Strong PUF protocols [59],
this adversary has physical access to the PUF at least once
after the set-up phase. Then the adversary can apply all

these challenges himself to the PUF, obtain the responses,
and may later impersonate the PUF (or its holder) in com-
munication with the verifier. This makes these analog
optical challenges a permanent, volatile physical secret
according to our earlier definitions. Secondly, the optical
responses that leave the PUF in the form of a compli-
cated optical wave during the set-up phase obviously are
secrets for the same reasons.

During the entire execution phase, i.e., during the runs
R1, ..., Ry, however, the optical Complex PUF is secret-
free. Please recall in this context that the challenge—
response pairs that are implicitly present in the respective
runs Ry, ..., R, are no secrets in the sense of Definition 2:
Given to the adversary at the end of the respective run, as
stipulated in Definition 2, they do not break the security
of past or future runs of the identification scheme.

This means that Scheme 10 implements a remote identi-
fication protocol with a secret-free prover during the entire
scheme, and a secret-free Complex PUF/ identification token
during the entire execution phase. This is provably impos-
sible in a purely mathematical or Turing-machine-based
scenario—constituting a noteworthy achievement of optical
PUFs in our opinion.

One interesting aspect of the scheme is that although Com-
plex PUFs are generally secret-free, they still can induce
secrets in other pieces of hardware—in this case, the per-
manently stored CRP-List in the hardware of the verifier.
Furthermore, depending on the exact cryptographic proto-
col they are used in, even the Complex PUFs themselves
may carry volatile physical secrets for short periods—in our
case, the physically applied optical challenges and resulting
physical optical responses. This confirms our earlier mantra
that the notion of secret-free security should be ideally be
considered in relation to a certain cryptographic scheme and
its specific properties in order to be meaningful.

We feel the above analysis also demonstrates the practical
relevance of our taxonomy and theoretical framework. For
example, the secrets which optical PUFs contain in the set-
up phase usually are often overlooked in existing analyses
of Scheme 10. Still, they can be exploited as attack vectors,
for example, in the so-called “bad PUF model” [59,85]: This
attack model (among other things) assumes that Strong PUFs
could be manipulated by adversaries, so that they somehow
“store” or “record” all challenges that have been applied to
them earlier. In the case of optical Strong PUFs, this could
potentially be achieved by adding a very thin layer of a
special chemical substance onto the PUF, which changes
permanently upon illumination, but which is only visible
under UV-light, say.” Such “challenge-logging” bad PUFs

9 This is just an illustrating example, of course, and many other vari-
ants are possible. In general, “challenge-logging” bad PUFs are easier

@ Springer

400

Journal of Cryptographic Engineering (2022) 12:387-412

then destroy the security of various protocols under standard
attack models, as detailed in [54,59,85]. Standardized analy-
ses following our framework would allow the identification
of such secrets and associated attack vectors at early stages,
however. Their routine application could therefore be valu-
able to system designers and users alike.

5 Secret-free security by SIMPLs

5.1 Definition of SIMPLs

Can both verifier and prover become secret-free in identifi-
cation schemes? This fundamental question almost immedi-
ately leads to the concept of a SIMPL System (or just SIMPL)
[65], which also has been proposed equivalently and inde-
pendently under the name Public PUF (or PPUF) [4]. The
acronym SIMPL stands for “SIMulation Possible, but Labo-
rious.”

In a nutshell, a SIMPL System S is a PUF that possesses a
publicly known description Des(S) of its individual physical
disorder and randomness. This description is published and
known to any protocol participants and adversaries alike. It
shall allow the numeric simulation of the correct response
R; to any challenge C; via some public simulation algorithm
SIM:

R; = SIM(C;, Des(S))

At the same time, this simulation (as well as any other simu-
lation or emulation) shall be notably slower than the real-time
behavior of S. Saying this in yet other words, obtaining the
response R; via physical measurement of the original, unique
SIMPL shall be detectably faster than producing the same
response via any (possibly adversarial) numeric simulation
or hardware emulation. This fact allows immediate identifi-
cation applications, for example, where the person holding
the unique SIMPL can identify by presenting the correct
responses to randomly chosen challenges over a digital com-
munication line guicker than anyone else.

Due to the inherent limitations of existing manufactur-
ing methods, the SIMPL S may indeed remain realistically
unclonable even if Des(S) is publicly known. For simi-
lar reasons, also the digital simulation/emulation of S may
remain difficult, even if all internal details of S are public.
The promise therefore is that time gap between measuring
and simulating/emulating responses R; can be upheld, even
against adversaries who know Des(S) and SIM. This renders

to realize for electrical PUFs with a digital challenge—response inter-
face: Maliciously adding a challenge-logger behind that interface is
especially hard to detect. But via the above approach, also challenge-
logging optical PUFs appear realistic to us.

@ Springer

SIMPLs a secret-free primitive in our sense (compare also
[63,64]).

The above, informal discussion triggers the following
sequence of definitions (compare again [63-65]).

Definition 11 (SIMPLs [63-65]) A SIMPL S is a PUF which
possesses:

— A very large number of possible challenges, ideally (but
not necessarily) exponential in some system parameter,
such as the physical size or mass of S.

— A publicly accessible challenge-response mechanism,
meaning that everyone with physical access to the SIMPL
and/or the hardware embedding it can unrestrictedly
apply challenges to the SIMPL and read out the corre-
sponding responses.

— A publicly known description Des(S), which describes
the individual features of S to a level of detail that allows
simulation of the challenge—response pairs of S.

— A publicly known simulation algorithm SIM, which can
simulate the correct response R; of the SIMPL S when
given a challenge C; and Des(S):

R; = SIM(C;, Des(S)). U

We comment that the description Des(S) is assumed to
be specific and individual for each SIMPL system, while the
simulation algorithm SIM should be applicable to all SIMPL
systems of a certain, joint design or class. We stress that the
above definition merely clarifies the basic functionality of
SIMPLs; their security features are stipulated next (compare
again [63]):

Definition 12 ((¢, tpyeq)-Secure SIMPLs) Let S be a SIMPL
with internal state CIS(S) and simulation algorithm SIM. S
is called an (e, tpreq)-secure SIMPL (or just an (€, tpred)-
SIMPL) with respect to an adversary A if A
has a probability of at most € to win the following game:

FASTPREDGAMEC(S, A, CIS(S), Des(S), SIM, fpreq):

Phase 1: Preparation. A is given the binary strings CIS(S),
Des(S) and SIM and physical access to S for one year.
Throughout this period, A may conduct physical measure-
ments on S (including determination of CRPs), carry out
computations (including machine learning attacks or pre-
computations), and fabricate physical systems (including
special simulation devices and attempted physical clones of
S), only being limited by his own technological capabilities
and equipment. At the end of Phase 1, A’s physical access
to S is ceased.

Phase 2: Response Prediction. A challenge C; is drawn
uniformly from the challenge space of S, and is given to A.

Journal of Cryptographic Engineering (2022) 12:387-412

401

A

Within time 7preq, A must output a “response prediction” R;.
A wins the game if this prediction is correct, i.e., if

A

R, = R;.

Thereby the probability € is taken over .4’s random actions
during FASTPREDGAME. []

We comment that Definitions 9 and 12 follow the same
technical and conceptual approach; please therefore compare
our explicatory discussion in Sect. 4.1. Again, the secret-free
nature of SIMPLs/PPUFs is captured by giving all internal
state CIS(S) and SIM to the adversary, while requiring that
security is still upheld. We comment that Definitions 9 and
12 imply that any (€, fpreq)-SIMPLS is a (€, tpreq)-Complex
PUFs for the same adversary .A—but not necessarily vice
versa.

5.2 Implementation of SIMPLs

Similar to Complex PUFs, the existence of SIMPLs/ PPUFs
is generally supported by the fact that most physical systems
are Turing simulatable, but not necessarily efficiently (let
alone in real-time), as pointed out early by Feynman [19].
Still, their implementation is an act of balance: Their simula-
tion complexity cannot straightforwardly be maximized, as
in the case of Complex PUFs. Instead, it must be finetuned
and balanced to be large enough to prevent quick adversarial
simulation, while still allowing response verification or slow
simulation at all for honest users in practice.

Past research has yielded between one and two dozen
SIMPL/PPUF implementation candidates, including [4,15,
16,20,30,38,42,49-51,53,63-65,75] and references therein.
This encompasses methods based on the random runtime
delays in special digital circuits [4,42], nano-electronics
and nano-circuits [49,51], analog circuits [15,16,20] and so-
called cellular nonlinear networks [13,53], special-purpose
circuits solving hard optimization problems on chip [38], spe-
cial memory designs [53], or complex, disordered systems
guided by differential equations, including optical systems
[30,64,65,75].

We owe readers two illustrating (but not necessarily prac-
tical) didactic examples at this point, which they may keep in
their minds throughout the rest of the paper to foster their own
intuition. SIMPLs could, for example, be envisioned as opti-
cal PUFs whose complexity (i.e., number of scattering ele-
ments) has been gradually reduced to a regime where the opti-
cal PUF can be individually characterized and simulated, but
where such simulation is still more time-consuming than the
physical generation of an optical response by the PUF [65].

As second example, readers may consider a complex
physical systems guided by differential equations (DEs)
[30,65,75]. The challenge C; could be applied by modify-

ing the side/boundary conditions of the physical system and
of its resulting DEs. The physical response R; should ideally
constitute some solution to these DEs. By simply inserting a
candidate responses Ri into the DE, R,- could be checked for
correctness quickly, then; but computing a correct response
from scratch might be much harder. This approach, which
has first been proposed in [65,75], !0 has the strong asset
of allowing very quick response verification for the verifier.
It thus reduces the computational burden of the verifier in
Scheme 13, while upholding security and a high adversarial
simulation time.

Finally, we would like to stress again that classical PUFs
such as Arbiter PUFs are unsuited as SIMPLs/PPUFs, as
their simulation and response prediction complexity is too
low once their internal secrets have become known (com-
pare Sect. 4.2). Good starting points for interested readers on
SIMPL/ PPUF implementations could be [30,50,64,65,75].

5.3 SIMPL-based identification

Let us now detail the use of SIMPLs in our familiar bench-
mark application of remote identification [65]. Once, spelling
out the details will serve the purpose of an accurate analysis
later on.

Scheme 13 (Identification with (¢, fpyeq)-SIMPLS [65])
Set-Up Phase (also called Ry):

1. The SIMPL S is fabricated, and SIM is derived.
2. SIM is permanently stored in Hy in nonvolatile memory.

Execution Phase (Run R;, with 1 <i < n)

1. The verifier’s hardware Hy randomly selects A challenges
ci,....C i .

2. Hy sends Cj, ..., C; to the prover’s hardware Hp.

3. 'Hp applies these challenges to the SIMPL, and measures
the resulting responses, which we term Ri, ..., Ri. Hp
sends R}, ... R! to Hy.

4. Hy measures the time period ¢* that has passed between
sending Cﬁ, e, Ci and receiving I?’i, el Ri.

5. Hy then applies the following decision rule: If the respon-
ses Iéll', e, Ri were sent fast enough, i.e., if

1" < tpreds

and if all sent responses R j were correct, i.e., if
SIM(C’, Des(S)) = R}, forall j =1,...,4,

then Hy accepts the identification, otherwise not. [

10 gee, e.g., Section 6.3 of [65].

@ Springer

402

Journal of Cryptographic Engineering (2022) 12:387-412

As earlier, some level of error tolerance can be achie-
ved by appropriately relaxing the decision rule of Hy on the
correctness of the R’. in Step 5. Analogously to our discussion
following Scheme 10 and also to Eq. 1, Scheme 13 is secure
against an adversary .4 as long as

Ipred = 2 - tLat + A - IMeas;

provided that an (e, tpreq)-SIMPL/PPUF with respect to .4
was used. Again, we denote the (symmetric and unidirec-
tional) communication/processing latency between verifier
and prover (and vice versa) #| 5 at that, and the prover’s time
for measuring a response of the Complex PUF #peas.

In opposition to Scheme 10, the verifier in Scheme 13
needs to simulate the responses obtained from the prover
in order to check their correctness. This consumes some
time during the protocol. Pre-simulating the used A CRPs
prior to each protocol run R; has been suggested in the lit-
erature [4,30] as countermeasure in order to speed up the
protocol’s execution time. This is possible, but also comes
at a price: First of all, presimulation requires that the ver-
ifier knows that an identification protocol with a specific
user and his SIMPL/PPUF is upcoming in the future. Sec-
ondly, presimulation unwantedly induces new secrets in the
verifier’s hardware, namely the pre-computed and stored
CRPs. This makes the scheme no longer completely and
permanently secret-free. (In passing, this again confirms
our earlier mantra that also the use of secret-free primi-
tives can induce secrets in hardware, depending on the exact
scheme and the exact manner they are used. Only their
“right” usage guarantees completely secret-free schemes and
hardware.)

One alternative strategy to evade long computation times
on the side of the verifier is the use of SIMPLs whose
responses are hard to simulate from scratch, but which can be
verified quickly. Disordered systems guided by differential
equations, which have been sketched in [30,65,75], could
be promising tools to this end. Such SIMPLs with quick
response verification are somewhat hard to implement, but
would clearly constitute an important breakthrough in the
area.

5.4 Secrets in SIMPL-based identification

Let us now return to our main topic, namely the secrets
that SIMPLs induce in remote identification protocols, more
precisely in Scheme 13. Under the assumption that an
(€, tpred)-secure SIMPLs is used, our analysis is delightfully
brief:

— The prover’s hardware Hp is secret-free.
— Also the verifier’s hardware Hy is secret-free.

@ Springer

In other words, Scheme 13 is completely secret-free.
From this angle, SIMPLs could hence be seen as a nat-
ural continuation and extension of both standard, digital
public key cryptography [17], and of Complex PUFs: On
the one hand, the use of public key techniques in remote
identification [18] removes any secrets from the verifier’s
hardware, replacing them with a public key. Still, public key
identification requires a secret key in the prover’s hardware.
On the other hand, the utilization of Complex PUFs avoids
any secrets at the prover. But it still leads to digital secrets
at the verifier. SIMPLs combine the best of both worlds:
They remove secrets from both parties, the prover and the
verifier.

We comment that all which Scheme 13 requires for remote
identification is an authenticated, but public piece of infor-
mation at the verifier. Intuitively, this appears as a minimal
requirement: The verifier has to know at least something
about the prover, otherwise the task of identification makes
no sense and is ill-defined in the first place. Realizing this
minimal requirement in a practically valid protocol marks a
noteworthy achievement of PUF-like techniques and physi-
cal cryptography in our opinion. Once more, achieving the
same is provably impossible to achieve via purely digital or
Turing machine-like techniques.

6 Secret-free security by UNOs
6.1 Definition of UNOs

The third and last basic secret-free primitive which this
manuscript shall discuss are so-called unique objects (UNOs).
Let us start this section with some brief and distinguishing
motivation for them.

Consider a small region of paper (0.01 mm?, say), which
is scanned by some external measurement apparatus like an
electron microscope. This produces a high-resolution image
P of its properties and structure [7]. However, due to limita-
tions in existing 3D fabrication methods, adversaries could
not fabricate a second piece of paper which, when being
measured by the same electron microscope, would have the
same properties P as the original [7]. This limitation even
holds of adversaries would know P. Our piece of paper hence
must be considered secret-free and unclonable with respect
to external measurement by the microscope.

The above phenomenon is an interesting security prop-
erty, which is not yet directly captured by one of our earlier
notions. This motivates the introduction of the complemen-
tary secret-free concept of a UNO below (compare [69]). As
usual, will develop a semi-formal framework that captures
their properties below, starting by a formal definition of the
above-mentioned external measurement apparatuses.

Journal of Cryptographic Engineering (2022) 12:387-412

403

Definition 14 (Standard Measurement Apparatuses) For the
purposes of this paper, a so-called “Standard” Measurement
Apparatus (SMA) is a device M that takes a physical object
O as input, and produces a binary string Propy (O) as output,
which is called the properties of O (upon measurement with
M). We idealize that the measurement process executed by
a SMA M shall leave the input object O unaltered. Further-
more, we stipulate that a SMA M shall be mass-producible,
i.e., it shall be possible to fabricate an arbitrary number of
specimens M/, M”, ... that possess the same input-output
behavior.

Given these preparations, we can now define unique
objects.

Definition 15 (Unigue Objects) Let M be an SMA with
complete internal state CIS(M), O be a physical object with
complete internal state CIS(O) and properties Propm(O), and
let A be an adversary. O is called a unique object (UNO) with
unique properties Propp(O)with respect to Aand M if it is
practically infeasible for .A to win the following game:

CloneGame(O, M, A, Propm(0), CIS(0), CIS(M)):

A is given O, M, CIS(O), and CIS(M). Within one year, A
must output two physical objects O1 and O, thereby only
being limited in his actions by his technological capabilities
and equipment. 4 wins the game if

Propm(O) = Propm(01) = Propm(03). |

We stress that the original object O may be destroyed or
altered in the above CloneGame in order to make the defi-
nition most general: One of the objects O1 and O, may be,
but need not be, equal to O. Please note that Definition 15
follows the same technical approach as Definitions 9 and 11,
creating a coherent definitional framework for all secret-free
primitives of in this paper. As before, providing all relevant
information Propp (O), Inlng, and Inlny to adversaries, while
still requiring security to be maintained, captures the secret-
free character of the considered primitive, in this case UNOs.

One interesting feature of UNOs is that adversaries are
forced to generate real, physical objects in their attacks in
order to break security. In all our earlier definitions, it was
already sufficient if adversaries could numerically output
a certain response correctly (and/or fast enough). UNOs
therefore for the first time enforce real, physical cloning for
adversaries. This can substantially enhance attack resilience,
especially against adversaries who have no direct access to
sophisticated fabrication equipment or clean rooms, such
as standard consumers or small, non-state-funded hacker
groups.

Conceptually, the price to be paid is the presence of a
trusted, external, mass-producible measurement apparatus
on site, which can physically measures the UNOs. Remote

protocols between provers and verifiers, such as Schemes 7,
10, and 13, are not intended in a UNO-context. Still, these fea-
tures allow application to two societally extremely relevant
problems: The unforgeable tagging of valuable items (see
Sect. 6.3) and protection and management of digital rights
(see Sect. 7.4).

6.2 Implementation of UNOs

From a theoretical perspective, the existence of UNOs is
motivated by the fundamental and well-known asymmetry
between measuring and fabricating a physical object with a
given precision. Measuring is both more accurate and more
cost effective, in 2D as well as in 3D [46]. We stress again
that no other known primitive exploits this asymmetry more
directly than UNOs, since their attack model in Definition
15 forces the adversary to physically clone the UNO itself
(compare Sect. 6.1).

Without explicitly using the term UNO (and mostly with-
out developing a general conceptual theory behind it), a
surprisingly large number of researchers have proposed and
re-invented the basic idea of UNOs ad hoc and independently.
The thread starts as early as in the late 1960s [39], continues
in the 1980s [3,23] and 1990s [10,27,71,74,83,86,87], just
to surface again in the 2000s [7,9,11,14,28,56,70,89]. His-
torically speaking, this line of research arguably marks the
birth of what we call now “physical cryptography.” Paper as
employed physical medium plays a predominant role, being
complex and stable, but still an everyday structure. Differ-
ent measurement methods have been proposed to extract its
unique features, including lasers [7,70] and ordinary scan-
ners [11]. Other implementation suggestions include optical
fibers [9], as well as radio wave [14] and magnetic [10,39,83]
UNOs.

Again, we would like to propose three didactic, concep-
tual UNO-examples to readers, which they can hold in their
minds throughout this section. The first one is the above-
mentioned, tiny paper surface (or any other suited disordered
surface), when being scanned with a high-resolution micro-
scope. The second is Pappu et al.’s optical PUF [47]: Under
the assumption that even if a certain raw response (=inter-
ference pattern) is known, no object can be produced which
generates exactly this pattern upon laser illumination with
a fixed challenge Cy, it is also a UNO. As a third example,
image a variant of Pappu et al.’s PUF, where the number of
scattering centers is reduced extremely strongly, so that only
25 scattering particles are contained in the structure, and that
there are no further relevant manufacturing variations, say.
The 3D position of each single scattering particle can then
be determined with single digit nm accuracy in less than
one second by existing microscopic techniques [84], while
positioning the 25 particles with the same accuracy in 3D
is currently impossible [84]. Unclonability hence is upheld,

@ Springer

404

Journal of Cryptographic Engineering (2022) 12:387-412

even if all information about the structure is known, making
ita UNO. At the same time, this object is not complex enough
to serve as Strong PUF, Complex PUF, or SIMPL/PPUF, dif-
ferentiating these concepts from UNOs.

To yet better draw the demarcation line between PUFs and
UNOs, we should also mention that XOR Arbiter PUFs by
virtue of Definition 15 are no UNOs: First of all, they con-
tain secrets, namely their runtime delays. Secondly, a fixed,
small set of their CRPs cannot serve as unique properties:
Recall that an adversary know the target unique properties
in his attack, and that XOR Arbiter PUFs have a digital
challenge-response interface. The adversary can hence pro-
duce an effective clone with the same interface, that simply
stores all few target CRPs of the XOR Arbiter PUF (i.e.,
all its UPs), and digitally outputs them whenever needed
over this interface. Similar considerations apply to SRAM
PUFs, which are no UNOs in our sense as well. Finally,
we would like to stress that in opposition to many PUFs,
often non-electronic, cost-effective, everyday media (such
as paper) can be used as UNOs; please compare above. This
promises a particularly easy mass-market applicability of
theirs.

6.3 UNO-based unforgeable item tags/labels

UNOs can be applied to the efficient, unforgeable “tag-
ging” or “labeling” of items of value, including passports,
bankcards, banknotes, pharmaceuticals, security—critical com-
ponents, consumer products, and the like. This constitutes an
extremely relevant scientific problem: In 2013, the value of
counterfeit and pirated goods was estimated between $923
Billion and $1.13 Trillion [79], with associated wider eco-
nomic and social costs of $737 to $898 Billion [79], and
desastrous employment losses of 2 to 2.6 million jobs [79].
Similar figures have been reported by the OECD [80] or Inter-
pol [14].

The tagging scheme below assumes three basic parties
or entities: (i) The item (of value) with an attached, UNO-
based rag. (ii) The manufacturer of the items of value, or
some other trusted third party, who can generate digital
signatures that certify the tags. To this end, the manufac-
turer holds a secret signing key SK. (iii) The testing device,
which verifies the tags and items for their validity by direct
physical inspection. To this end, the testing device pos-
sesses the public verification key PK corresponding to SK,
and an inbuilt standardized measurement apparatus M. Com-
paring this to our earlier, remote identification schemes,
the items of value plus tags constitute some equivalent of
the provers, the testing devices some analog to the veri-
fiers. Scheme 16 could hence also be interpreted as on-site
identification.

@ Springer

Scheme 16 (Unforgeable Labels/Item Tags with UNOs [14,
23,69])

Set-Up Phase (also called Ryp):

1. A UNO O is fabricated, and its unique properties
Propm(O) are determined by a specimen M’ of the SMA
M.

2. Using his signing key SK, which is stored permanently
in nonvolatile digital memory, the manufacturer creates
a digital signature DigSigsk (Propm(O)).

3. The UNO O is attached to the item of value. Jointly with
it, Propm (O) and DigSigsk (Propm (O)) are stored perma-
nently on the item of value, for example, via a 2D barcode.
Taken together, O, Propy(O) and DigSigsk (Propm(O))
constitute the tag.

Execution Phase (Run R;, with 1 <i < n)

1. The item with its tag are presented to a testing device. The
latter holds the public verification key PK corresponding
to SK'in nonvolatile memory, and possesses its own spec-
imen M” of the SMA M.

2. Using PK and M”, the festing device applies the following
decision rule: If

DigSigsk (Propm(0))

is valid, and if for the object O on the item it holds that
Propy(0) = Propm(0). 2
then the testing device accepts the tag, otherwise not. [

From a security perspective, scheme 16 possess some
intriguing upsides: Firstly, it conveniently allows an offline
verification of tags, without an online channel to a cen-
tral authority. This preserves the privacy of verifiers, and
also maintains the non-traceability of tagged items, such as
banknotes. The item of value itself thereby acts as a store-and-
forward channel, permanently carrying the binary unique
properties and digital signature, together with the physi-
cal object O. Secondly, the scheme is particularly useful
in the context of offshore fabrication and illegitimate over-
production [1]: The company headquarters or intellectual
property holder can provide their digital signatures remotely
for tagging all items. Distrusted fabrication sites will then
not possess their own signing keys, but can be kept secret-
free instead, which is a strong asset. Finally, the tag’s digital
signature can also certify some additional, item-related infor-
mation, such as biometric features of a passport owner,
monetary value of banknotes, or consumer product data. This
makes the general approach of Scheme 16 broadly applica-
ble.

Journal of Cryptographic Engineering (2022) 12:387-412

405

We remark that in order to be practical, the scheme ide-
ally requires UNOs with unique properties Propm(O) of
the length of a few kilobytes, and also with reasonably
small measurement times. Alternatively, hashed values of
Propm(O) can be signed and contained in the tags, and
compared in Equation 2. As before, some small error toler-
ance and deviation may be allowed in this process, possibly
using helper data [47]. Furthermore, the UNOs should allow
high-precision measurement by cost-effective, standardized
measurement apparatuses.

6.4 Secrets in UNO-based item tags

Let us now return to the secrets which UNOs induce in
Scheme 16. Again, the list is delightfully brief:

— The item of value and the tag are secret-free.

— The testing device is secret-free.

— However, the manufacturer holds classical keys. Fur-
thermore, skipping some details, the processing of these
classical keys in the manufacturer’s (digital) hardware
will consequentially induce various other secrets. This
includes transient digital secrets, and, depending on the
exact system architecture, probably also non-permanent,
nonvolatile digital secrets.

Scheme 16, therefore, establishes another approach in
which certain hardware systems are secret-free. One partic-
ular asset here is that the two most widespread components
of the scheme — the items/tags and the testing devices,
which may exist in millions or even billions of samples—are
secret-free. They hence do not require intricate and costly
protection, but can remain inexpensive. The manufacturer,
on the other hand, does hold a secret.

But this secret can be much better protected in a sin-
gle company headquarter than elsewhere. Furthermore, in
the case of offshore fabrication of the UNOs and the to-
be-tagged items, the manufacturer can create his signatures
from aremote, well-protected environment when being given
Propm(O) by the fabrication site. This gives the manufacturer
full control over all valid labels, while not needing to share
the signing key with other parties or the local fabrication site
abroad.

7 Extension: other secret-free schemes?

The previous sections all focused on remote or on-site
identification schemes as potentially key-free or secret-free
application. This established a consistent benchmark for our
comparative analyses. This section now deals with possible
extensions of secret-free security to other settings, and ulti-

mately also with the reach and limits of secret-free methods
in general.

On the one hand, we will see that identification is certainly
not the only possible appliance of secret-free techniques, and
that their spectrum is considerably larger. On the other hand,
it will become clear that probably not every conceivable cryp-
tographic task can be realized in a completely secret-free
manner either. Our discussion below tries to shed light on
these and other aspects in a compact style.

7.1 Secret-free message authentication

One fundamental task beyond identification that is well-
suited for secret-free security is message authentication
(MACing). A concrete protocol to this end based on SIM-
PLs/PPUFs has first been described in [63,65]; it bears some
similarities with Scheme 13, and can achieve both secret-free
provers and secret-free verifiers. It is relatively straightfor-
ward to imagine similar schemes based on Complex PUFs
(even though this has never been described explicitly in
the literature to our knowledge). Such protocols based on
Complex PUFs would achieve secret-free provers during the
execution phase, but no secret-free verifiers.

Interestingly, both types of protocols (i.e., MACin with
Complex PUFs and with SIMPLs/PPUFs) are inherently
interactive and time-bounded in their nature: The verifier has
to communicate in several rounds with the prover online in
order to test the authenticity of a given message. Furthermore,
the entire communication needs to be completed within a cer-
tain time frame, which is related to the adversarial prediction
time tpreq Of the employed Complex PUF or SIMPL/PPUF
(please compare Schemes 10, 13, and Definitions 9, 11).
This makes the schemes interesting also from a theoretical
perspective: They belong to the very few known interactive
and time-bounded message authentication methods. Inter-
ested readers are referred to [63,65] for further details on
SIMPL/PPUF-based MACing.

7.2 Secret-free tamper detection and PUF-capsules

One of the earliest proposed applications of PUFs has
been tamper detection [22,47]: To this end, an optical PUF
(or any other PUF whose CRPs are sensitive to viola-
tions of its structural integrity) shall encapsulate a piece
of vulnerable hardware. By measuring CRPs of this “PUF-
capsule” from the inside, and by employing them in a similar
protocol as Scheme 7, the capsule’s integrity and the “non-
tamperedness” of the hardware inside it may be verified
remotely.

Employing Complex PUFs or SIMPLs/PPUFs (instead
of standard PUFs) as capsules, this approach can be imple-
mented with a secret-free prover during the execution phase
(if Complex PUFs are used). Or even with secret-free provers

@ Springer

406

Journal of Cryptographic Engineering (2022) 12:387-412

and verifiers (if SIMPLs/PPUFs are utlized); please compare
Schemes 10 and 13 in this context. Both approaches would
provide a novel, secret-free manner of protecting vulnera-
ble endpoints in large communication networks, such as the
internet of things.

7.3 Secret-free sensing and virtual proofs of reality

Another emerging application of secret-free techniques lies
in the domain of secure sensors. Let us assume to this end that
Complex PUFs or SIMPLs/PPUFs could be reliably made
dependent in their responses on the value EnvVar of a certain
environmental variable, such as temperature, humidity, and
pressure, following the equation below:

R; = F(C;, CIS(P), EnwVar). A3)

Under these circumstances, their CRPs can prove the actual
value of the environmental variable to remotely located par-
ties. For this purpose, protocols similar to Schemes 10 and
13 can be employed, in which each PUF-response is also a
function of the desired environmental variable, as in Equa-
tion 3. The verifier in the set-up phase first needs to collect a
different CRP-list for each discrete value of the environmen-
tal variable within a certain range. These CRP-lists are later
used in communication protocols to show that the environ-
mental variable at the PUF-location has a certain value. This
is the principle of so-called virtual proofs (VPs) of reality,
which have been detailed in [56].

Such VPs can be made secret-free on the side of the
prover by using suitable environment-dependent Complex
PUFs. They can even be made secret-free for both the verifier
and prover by using SIMPLs/PPUFs [56] whose responses
depend on the desired environmental variable. Interestingly,
VPs with secret-free provers in the execution phase have
already been demonstrated in experiment for (i) the destruc-
tion of a physical object, and for (ii) the spatial distance of two
objects, using optical Complex PUFs in both cases [56]. Also
temperature sensors based on electrical PUFs have already
been realized in practice [56]. Finally, and most recently, VP-
based techniques have been suggested in nuclear weapons
inspections [48], introducing secret-free methods also in this
highly demanding scenario. This makes secret-free sensing
not just a theoretical, but also a practically viable option.

7.4 Secret-free digital rights management

Another fruitful application for secret-free techniques are
digital rights management and copy-protection of valuable
digital content. The basic observation that enables these
usages is that even certain storage media like CDs/DVDs
possess a “unique fingerprint,” i.e., unique and unclonable
physical properties, on a sub-digital and analog level [28,89].

@ Springer

Remarkably, this holds even if these media store exactly the
same digital content.

Building on this observation, any digital content on
CDs/DVDs can be certified, using digital signatures in com-
bination with the physically unique features of each individ-
ual CD/DVD [28,89]. The approach in the end bears similar-
ities to the use of UNOs as unforgeable labels, as spelled out
in Sect. 6; technically speaking, the only major difference is
that (a hash value of) the protected digital content is included
in the digital signature in Step 2 of Scheme 16. Customary
CD/DVD-readers can then serve as widespread, inexpensive,
but surprisingly accurate measurement apparatus/testing
device, as demonstrated in [28,89]. Both the CDs/DVDs and
CD/DVD-readers are secret-free in this approach.

7.5 Secret-free encryption and digital signatures?

Is completely secret-free encryption possible? While this
would be desirable, two fundamental obstacles exist.

Firstly, encryption obviously requires long-term security
against adversaries. This probably implies that the neces-
sary time gap fpeq between the real-world behavior and
any adversarial simulation/emulation of the Complex PUF
or SIMPL/PPUF must be huge: It would have to be directly
related to the aspired long-term confidentiality, which is on
the order of many years or decades. At the same time, the
implementation of Complex PUFs and SIMPLs/PPUFs cur-
rently is already highly challenging for medium values of
tpred> Which lie on the order of seconds or minutes. This
obviously constitutes a severe issue.

Secondly, and perhaps yet more fundamentally, any
encryption hardware necessarily needs to receive the plain-
text at some point and in some form as input; but this plaintext
by definition constitutes a secret in any encryption scheme. At
least while this plaintext is provided to (and present in) hard-
ware, the hardware hence cannot be completely secret-free.

This does not necessarily mean that secret-free encryption
was no interesting topic for future research: Reduced forms
of “secret-freeness” could still be possible. It is interesting to
investigate, for example, whether encryption merely based on
physical, non-permanent and volatile secrets is realizable in
practice; future research will eventually have to tell. For now,
let us merely comment that recently, some very interesting
suggestions in this direction have been made in the quantum
world [82]; the corresponding papers are recommended to
interested readers.

Not exactly identical, but at least related considerations
apply to secret-free digital signatures. They seem hard to
realize via known SIMPLs/PPUFs because of the required
gap between aspired long-term security and currently possi-
ble values of #preq. On the other hand, digital signatures do not
share the fundamental problem of encryption schemes that
the signed text necessarily constitutes a secret in itself. Future

Journal of Cryptographic Engineering (2022) 12:387-412

407

investigations will have to reveal to which extent secret-free
digital signatures are realizable in practice.

8 Summary and outlook
8.1 Summary

Secret keys that are stored permanently in digital form in
NVM represent a standard ingredient in contemporary secu-
rity architectures—but at the same time constitute a routinely
exploited attack target in any resulting security hardware.
One central motivation behind the introduction of PUFs was
to overcome this problem: As PUFs can avoid permanently
stored digital keys in NVM, they seemingly could immu-
nize hardware against key extraction. Despite this seminal
idea, PUFs perhaps surprisingly have been the subject of
manifold and diverse attacks over the last decade, however
[29,44,57,60,77].

By considering the formal concept of a secret in hard-
ware, one can easily pinpoint the single, unifying reason
behind these attacks: While standard PUFs can avoid classi-
cal, permanently stored digital keys, they often induce other
types of secrets in hardware, which can again be extracted by
smart adversaries. All above-mentioned PUF-attacks [29,44,
57,60,77] indeed have in common that they first identify, then
extract secrets from PUFs: Modeling attacks deduced the
(secret) signal delays of Arbiter PUFs via machine learning
analysis of their CRPs [57]; certain physical attacks accom-
plished the same via photonic emission analysis of a running
Arbiter PUF circuit [77]; yet other physical attacks on SRAM
PUFs invasively obtained the (secret) power-up states of the
involved SRAM cells [29]; and so on, and so on.

One theoretical way out of this dilemma would be the
development of completely secret-free hardware—but such
a step is non-trivial, unfortunately. It is provably impossi-
ble within a purely digital context, and has to be achieved
by moving deeper into the physical layer. Along these lines,
our paper described three realistic potential physical prim-
itives by which certain forms of secret-freeness can be
achieved in certain applications: Namely Complex PUFs,
SIMPLSs/PPUFs, and UNOs. In appliances like identification,
message authentication, tamper protection, secure sensing,
and yet a few others, these primitives can be employed to
make some parties (such as provers in identification pro-
tocols), sometimes even all involved parties (such as both
provers and verifiers in identification), secret-free.

Wherever achievable, the central promise of secret-
freeness is to guarantee security in a rather extreme attack
model: Even if adversaries could hypothetically inspect a
piece of secret-free hardware bit by bit, and atom by atom,
and were able to learn any information that is present in any
form and at any time within the hardware, the security of the

applications and protocols built on this hardware would still
be upheld. Complex PUFs, SIMPLs/PPUFs, UNOs, and any
other secret-free techniques thus can achieve provable and
innate security against any kind of physical probing, side
channels, or even malware-based key-extraction. In those
settings in which they are applicable, they can thus bring
the perpetual battle between key extractors and key protec-
tors to an unexpected halt: Namely by removing any secrets,
and thus any adversarial targets, from hardware. This feature
is not met by previously existing purely digital methods, and
also not by standard PUFs, as detailed in this manuscript. It
hence seems to constitute a promising new route in hardware
design and hardware security.

Besides the above contributions, we developed the first
definitional framework for secrets, together with a formal tax-
onomy of secrets in hardware. This taxonomy might prove
useful beyond completely secret-free hardware systems: It
could be routinely applied to classify future security hard-
ware according to the type of secrets it contains. With certain
exceptions and counterexamples (compare Footnote 4 on
page 6), our taxonomy generally induces a mild and con-
sistent “hierarchy of secrets” in hardware. It ranges from
more dangerous and vulnerable secrets to more resilient and
harder-to-extract ones. Its routine application could hence
help to identify potential system vulnerabilities at very early
design stages. Sections 3.2, 3.3, and 4.4 illustrate this mech-
anism: They all theoretically identify secrets that have in
the meantime been extracted in practical and concrete PUF
attacks. In principle, these could have been identified by a
standard application of our taxonomy early on.

Finally, Table 1 on page 23 subsumes our main findings.
It provides both a historic overview and concrete examples
for (almost) all different types of secrets from our taxonomy.

8.2 Three caveats

It seems important to us to explicitly issue three caveats
toward the end of this manuscript, trying to avoid certain
misunderstandings.

The first potential misunderstanding concerns the hope
that secret-free security would allow unconditionally secure
systems, on which simply no attack vectors exist, neither now
nor in the future. This is not the case. As laid out in this work,
also the security of secret-free primitives depends on certain
unproven assumption. Two examples include the presumed
time gap between the real-world behavior of a Complex PUF
or SIMPL/PPUF and any possible adversarial emulation. Or,
secondly, the assumed physical unclonability of these primi-
tives, including UNOs. These two assumptions may turn out
valid or not; they may potentially be attacked and broken
by sophisticated adversaries in the future, and then restored
by yet new designs, etc. What secret-free primitives promise
to deliver is something else: They can completely disable

@ Springer

408

Journal of Cryptographic Engineering (2022) 12:387-412

one (of many) attack vectors, namely physical and malware-
based key extraction. Given that this is one of the main attack
routes on contemporary electronic hardware, this still seems
a noteworthy accomplishment, however.

A second important point is that completely secret-free
solutions presumably will not exist for every cryptographic
task. It seems hard to imagine, for example, how entirely
secret-free encryption could be realized: Recall that the plain-
text necessarily constitutes a secret in this application, and
that it arguably must be present in any encryption and decryp-
tion hardware at least once and for limited time periods. This
implies that such hardware cannot be considered completely
secret-free (please compare Sect. 7.5). Also the simplistic
hope that desktop computers and mobile communication
hardware could be made continuously secret-free in any
everyday applications would appear overstated. What Com-
plex PUFs, SIMPLs/PPUFs, and UNOs can achieve for us,
however, is secret-free security in certain basic applications
and protocols, such as remote identification, message authen-
tication, sensing, tamper detection, or forgery-proof item
tagging. Future research needs to investigate how the secret-
freeness in these fundamental protocols can be exploited in,
and uplifted to, more complex tasks and system architectures.
We assume that probably hybrid systems will come into exis-
tence, in which secret-freeness is achieved for certain time
periods or in certain exposed hardware parts only; our tax-
onomy of secrets from Definition 3 can help us to routinely
classify and analyze such systems for their vulnerabilities.

A last misunderstanding we would like to avoid is that all
standard PUFs would not be useful (anymore). This is cer-
tainly not the case, and our taxonomy in Definition 3 actually
witnesses this fact: While complete secret-free security may
be the ultimate goal to fight key extraction, subforms (such
as those in our taxonomy) are interesting and beneficial, too.
This certainly includes standard PUFs as example, which can
avoid classical keys. As they are practically easier to realize
than completely secret-free systems, and since they arguably
have a yet larger application spectrum (for example, in the
form of Weak PUFs), they can be combined with secret-free
methods to form the above-mentioned hybrid systems, in
which the overall practical attack surface against key extrac-
tion is minimized.

8.3 Differences between secret-freeness and
unclonability

At first, the two concepts of unclonability and secret-freeness
might appear all too closely related, perhaps even identical.
Let us therefore clarify their relation and differences in this
short paragraph. To start with, any PUF-like hardware that is
secret-free is necessarily also physically and digitally unclon-
able by definition. That is, adversaries in practice cannot
fabricate a physical clone with a challenge-response behav-

@ Springer

ior indistinguishable from the original PUF, and they also
cannot derive a computer program (=a digital clone) that
simulates and predicts the PUF’s responses numerically.

This does not imply the converse, though—and, in fact,
this lacking converse implication differentiates the two
notions of unclonability and secret-freeness: A practically
secure, i.e., digitally and physically unclonable PUF, may
still contain secrets. As an example, think of a Arbiter PUF
variant like the Interpose PUF (iPUF) [45] with very large
sizes, which is beyond the reach of current machine learning
attacks, and where also physical extraction of secrets may be
difficult. Such a structure would be hard to clone in practice,
both physically and digitally, but still contains secrets, for
example, the exact delays and runtimes of its internal sig-
nals. This illustrates that unclonability and secret-freeness
are two differing concepts.

Looking at the same circumstance from yet another angle,
the practical security of PUF-like primitives can have two
reasons: (i) The primitive contains no secrets at all. (ii)
The primitive does contain secrets, but these are infeasible
to extract in practice. While the PUF-literature has largely
focused on case (ii) in the past, we would like to put forward
in this paper that realizing case (i) seems, first of all, realisti-
cally possible given the latest developments in the field. And,
secondly, that it might even represent the yet more promis-
ing strategy for realizing sustainedly secure hardware than
standard PUFs or the attempted shielding of classical keys.

8.4 Future work

We believe that various research opportunities, perhaps even
some research program evolves from the presented mate-
rial. On the theory side, yet more closely investigating the
unclonability and inherently slow simulatability of Com-
plex PUFs, SIMPLS/PPUFs, and other secret-free primitives
seems intriguing. So would be advancing the logical founda-
tions of secret-free security, formally proving statements like
“secret-free provers in secure remote identification protocols
are equivalent to the existence of Complex PUFs.” Thirdly,
identifying secret-free primitives beyond the ones listed in
this paper would appear fascinating—or formally showing
that no such other secret-free primitives exist!

On the commercial side, the optimized design, practical
realization, and widespread deployment of secret-free hard-
ware seem attractive targets. Just to name three concrete
examples: The development of CMOS-compatible Complex
PUFs or SIMPLs/PPUFs; of secret-free sensors for physi-
cal variables beyond temperature [56]; or of secret-free item
tags/labels which combine utmost measurement precision
and security with cost efficiency and stability; all represent
seminal and well-achievable goals. This paper is written in
the hope to inspire and foster such activities.

Journal of Cryptographic Engineering (2022) 12:387-412 409

Table 1 Resulting secrets at prover and verifier when different prim-
itives are used for identification protocols, unforgeable labels, or for
secure sensing/virtual proofs of reality. Historically, the table illustrates
the gradual development from hardware containing classical keys to

secret-free systems. Many of the listed features provably cannot be
achieved in a purely digital setting, but inherently require physical
approaches or primitives instead

CRYPTOGRAPHIC TASK/
ProTOCOL

EMPLOYED
PrRIMITIVES/KEYS

RESULTING SECRETS
AT VERIFIER
(SEE DEFINITIONS 3, 4, 5)

RESULTING SECRETS
AT PROVER
(SEE DEFINITIONS 3, 4, 5)

Standard symmetric
identification [1]

Secret digital keys

stored permanently in NVM

at prover and verifier

Permanent non-volatile
digital secrets

Permanent non-volatile
digital secrets

Standard asymmetric
identification [1]

Private (resp., public)
digital keys stored
permanently in NVM
at prover (resp., verifier)

Secret-free

Permanent non-volatile
digital secrets

‘Weak PUF-based
symmetric
identification
(Scheme 6)

SRAM PUFs at prover.
Secret digital key stored
permanently in NVM
at verifier.

Permanent non-volatile
digital secrets

Non-permanent volatile and
transient digital secrets.
Permanent non-volatile

physical secrets.
Key-free.

Weak PUF-based
asymmetric
identification
(see also [26])

SRAM PUFs at prover.
Public digital key stored
permanently in NVM
at verifier.

Secret-free

Non-permanent volatile and
transient digital secrets.
Permanent non-volatile

physical secrets.
Key-free.

Strong PUF-based
identification
(Scheme 7)

XOR Arbiter PUF
at prover.
Digital CRP-list stored
permanently in NVM
at verifier.

Permanent non-volatile
digital secrets

Non-permanent volatile and
transient digital secrets.
Permanent non-volatile

physical secrets.
Key-free.

Complex PUF-based
identification
(Scheme 10)

Optical Complex PUF
at prover.
Digital CRP-list stored
permanently in NVM
at verifier.

Permanent non-volatile
digital secrets

Non-permanent volatile
physical secrets and key-free
(in set-up phase).
Secret-free
(in execution phase).

Virtual proof

of temperature
(compare Section 7.3,
and Protocol 1 of [56])

XOR Bistable Ring PUF
at prover.
Digital CRP-list stored
permanently in NVM
at verifier.

Permanent non-volatile
digital secrets

Non-permanent volatile and
transient digital secrets.
Permanent non-volatile

physical secrets.
Key-free.

Virtual proof
of distance
(compare Section 7.3,
and Protocol 2 of [56])

Optical Complex PUF
at prover.
Digital CRP-list stored
permanently in NVM
at verifier.

Permanent non-volatile
digital secrets

Non-permanent volatile
physical secrets and key-free
(in set-up phase).
Secret-free
(in ezecution phase).

SIMPL-based
identification
(Scheme 13)

SIMPL/PPUF at prover.
Public digital description
(i-e., Des(S)) stored perma-
nently in NVM at verifier.

Secret-free

Secret-free

UNO-based
unforgeable labels
(Scheme 16)

UNO at prover/label.
Public digital key stored
permanently in NVM at

verifier/testing apparatus.

Secret-free

Secret-free

@ Springer

410

Journal of Cryptographic Engineering (2022) 12:387-412

Acknowledgements The author acknowledges support by BMBF
Project QUBE and by BMBF Project PICOLA and by AFOSR Project
FA9550-21-1-0039.

Funding Open Access funding enabled and organized by Projekt
DEAL.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, you will need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

Appendix A: Analysis of Pappu et al.’s optical
PUF as (€, tpyeqd)-complex PUF

This section in the appendix discusses the suitability of Pappu
et al.’s optical PUF construction [47] as (€, tpreq)-Complex
PUF for reasonable values of € and #p,eq. We will simplify our
analysis at times, and make a number of relatively optimistic
assumptions, following the discussion in [47].

Let us start by deducing a somewhat realistic value of
frred- Pappu et al. estimate that given the entire internal
structure of their optical PUF (i.e., sizes and positions of scat-
tering centers, etc.), in the most extreme case still up to 1026
computational operations are necessary to numerically pre-
dict responses with full exactness [47]. This estimate seems
somewhat on the optimistic side; but if true, it would imply
that the numeric computation of optical PUF responses may
not even be practically possible at all in certain cases, and
that #p,eq in practice is certainly much larger than 10 s, say.
A guaranteed time margin of 10 s already suffices for many
typical protocols in practice (please compare Scheme 10),
however. While being aware that this may underestimate their
real computational complexity, we thus for now and for our
targeted application in identification protocols set fpyeq = 10
s. Please recall in this context also that by definition, pyeq is
merely a lower bound for the adversarial response prediction
time.

Let us next derive an adequate value for the parame-
ter €. Under the assumption that the 2400-bit keys derived
from the multi-bit raw responses of Pappu et al.’s optical
PUF are bitwise independent and all equally hard to pre-
dict (compare [46,47]), the probability of simply randomly
guessing a response correctly would be as low as 2724 (ie.,
considerably smaller than the standard guessing probability
1/2 for silicon PUFs with single-bit outputs). Direct ran-

@ Springer

dom guessing of the response of the optical PUF hence is no
viable strategy. Also no machine learning or other numerical
approaches for deriving new, unknown responses from given
CRPs are known in the case of Pappu et al.’s optical PUF.
Let us therefore (again somewhat optimistically) assume that
the above guessing probability of 272400 hence cannot be
improved much by known numerical methods either.

If we again consider the (optimistic!) above assumption
that numeric simulation of optical PUF-responses is too slow
to matter in practice [46,47], the best adversarial approach for
correctly predicting the optical PUF response to a randomly
chosen challenge C; in Phase 2 of the security experiment
of Definition 9 therefore seems the following: (i) Collect as
many CRPs as possible in Phase 1 of the security experiment
of Definition 9, and (ii) hope that the posed challenge C; then
lies within this set of already known CRPs.

How large can said fraction of known CRP realistically
become in Phase 1 under these assumptions? Pappu et al.
estimate the number of decorrelated and independent CRPs
of their optical PUF to be on the order of 2.37 x 109 [46,
47]. Let us assume, once more somewhat optimistically from
the perspective of honest users, that at most on the order of
102 CRPs can be measured per second by adversaries with
access to the optical PUF, due to the necessary mechanical
re-positioning of the laser and the frequency and data transfer
limits of the CCD camera. Under this assumption, after one
year of continuous CRP-measurements, an adversary will
only have obtained a fraction of 13.3% of all CRPs. We hence
estimate € on the order of 13.3%.

Finally, it is important to stress that following the argu-
ments of Pappu et al. [46,47], their optical PUF remains
physically unclonable, even if all of its internal structure is
known to adversaries. This is due to the current limitations of
three-dimensional manufacturing techniques: It is assumed
that they cannot position the scatterers in three dimension
with the required precision [46,47]. This again guarantees
the aspired secret-freeness of the optical PUF.

Assuming the correctness of the analysis in [46,47] and
of our above example derivation, this would suggest that
Pappu et al.’s optical PUFs could be regarded as (13.3%,
10 s)-Complex PUFs with respect to realistic adversaries .A.
Finally, we stress again that our above exemplary analysis
is rather optimistic in certain parts. It is to be understood
as an example calculation that shall familiarize readers with
our concepts, not so much as fully comprehensive or tight
security analysis yet.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Journal of Cryptographic Engineering (2022) 12:387-412

411

References

10.

11.

12.

13.

14.

15.

16.

Anderson, R.J.: Security Engineering: A Guide to Building
Dependable Distributed Systems. Wiley, New York (2010)
Armknecht, F., Maes, R., Sadeghi, A.R., Standaert, F.X., Wachs-
mann, C.: A formalization of the security features of physical
functions. In: IEEE Symposium on Security & Privacy (2011)
Bauder, D.W.: An anti-counterfeiting concept for currency systems.
Sandia National Labs, Albuquerque, NM, Technical Report, PTK-
11990 (1983)

Beckmann, N., Potkonjak, M.: Hardware-based public-key cryp-
tography with public physically unclonable functions. Inf. Hiding
2009, 206-220 (2009)

Bennett, C.H., Brassard, G.: Quantum cryptography: public-key
distribution and coin tossing. In: Proceedings of IEEE International
Conference on Computers, Systems and Signal Processing, Ban-
galore, India, pp. 175-179 (1984)

Brzuska, C., Fischlin, M., Schroder, H., Katzenbeisser, S.: Physical
unclonable functions in the universal composition framework. In:
CRYPTO (2011)

Buchanan, J., Cowburn, R., Jausovec, A., Petit, D., Seem, P., Xiong,
G., Atkinson, D., Fenton, K., Allwood, D., Bryan, M.: Forgery:
fingerprinting documents and packaging. Nature 436(7050), 475
(2005)

Chen, Q., Csaba, G., Lugli, P., Schlichtmann, U., Riihrmair, U.: The
bistable ring PUF: a new architecture for strong physical unclonable
functions. In: HOST (2011)

Chen, Y., Mihcak, M.K., Kirovski, D.: Certifying authenticity via
fiber-infused paper. SIGecom Exchanges 5(3), 29-37 (2005)
Chu, M.C., Cheng, L.L., Cheng, L.M.: A novel magnetic card pro-
tection system. In: European convention on security and detection,
pp. 207-211 (1995)

Clarkson, W., Weyrich, T., Finkelstein, A., Heninger, N., Halder-
man, J., Felten, E.: Fingerprinting blank paper using commodity
scanners. In: IEEE Symposium on Security and Privacy (Oak-
land’09), pp. 301-314 (2009)

Clelland, C.T., Risca, V., Bancroft, C.: Hiding messages in DNA
microdots. Nature 399(6736), 533-534 (1999)

Csaba, G., Ju, X., Ma, Z., Chen, Q., Porod, W., Schmidhuber, J.,
Schlichtmann, U., Lugli, P., Rithrmair, U.: Application of mis-
matched cellular nonlinear networks for physical cryptography. In:
IEEE workshop on cellular nanoscale networks and their applica-
tions (CNNA), pp. 1-6 (2010)

Delean, G., Kirovski, D.: RE-DNA: radio-frequency certificates of
authenticity. In: CHES, pp. 346-363 (2007)

Deyati, S., Muldrey, B.J., Singh, A.D., Chatterjee, A.: Challenge
engineering and design of analog push pull amplifier based phys-
ically unclonable function for hardware security. In: IEEE Asian
test symposium (ATS), pp. 127-132 (2015)

Deyati, S.: Scalable algorithms and design for debug hard-
ware for test, validation and security of mixed signal/rf cir-
cuits and systems. Ph.D. thesis, Georgia Institute of Technol-
ogy (2017). https://smartech.gatech.edu/bitstream/handle/1853/
58757/DEYATI-DISSERTATION-2017.pdf

Diffie, W., Hellman, M.: New directions in cryptography. IEEE
Trans. Inf. Theory 22, 644-654 (1976)

. Feige, U., Fiat, A., Shamir, A.: Zero-knowledge proofs of identity.

J. Cryptol. 1, 77-94 (1988)

Feynman, R.P.: Simulating physics with computers. Int. J. Theor.
Phys. 21(6-7), 467488 (1982)

Gassel, K.A.: Analog public PUF for hardware security. Master
thesis, Georgia Institute of Technology (2018.) https://smartech.
gatech.edu/bitstream/handle/1853/59961/GASSEL-THESIS-
2018.pdf

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.
36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

48.

Gassend, B., Clarke, D.E., van Dijk, M., Devadas, S.: Silicon phys-
ical random functions. In: ACM Conference on Computer and
Communications Security (2002)

Gassend, B.: Physical random functions. MSc thesis, MIT (2003)
Goldman, R.N.: Non-counterfeitable document system. US-Patent
4,423,415. Publication date: 1983. Priority date: 1980. See https://
patents.google.com/patent/US4423415A

Goldreich, O.: Foundations of Cryptography: Volume 2, Basic
Applications. Cambridge University Press, Cambridge (2009)
Goorden, S.A., Horstmann, M., Mosk, A.P., Skoric, B., Pinkse,
P.W.H.: Quantum-secure authentication of a physical unclonable
key. Optica (2014)

Guajardo, J., Kumar, S.S., Schrijen, G.J., Tuyls, P.: FPGA intrinsic
PUFs and their use for IP protection. In: CHES, pp. 63-80 (2007)
Haist, T., Tiziani, H.J.: Optical detection of random features for
high security applications. Opt. Commun. 147, 173-179 (1998)
Hammouri, G., Dana, A., Sunar, B.: CDs have fingerprints too. In:
CHES (2009)

Helfmeier, C., Boit, C., Nedospasov, D., Seifert, J.-P.: Cloning
physically unclonable functions. In: HOST, pp. 1-6 (2013)
Herder, C.H.: Towards security without secrets. Ph.D. thesis, Mas-
sachusetts Institute of Technology (MIT) (2016)

Herder, C., Yu, M.D., Koushanfar, F., Devadas, S.: Physical unclon-
able functions and applications: a tutorial. Proc. IEEE 102(8),
1126-1141 (2014)

Holcomb, D.E., Burleson, W.P., Fu, K.: Power-up SRAM state as
anidentifying fingerprint and source of true random numbers. IEEE
Trans. Comput. 58(9), 1198-1210 (2009)

Horstmeyer, R., Assawaworrarit, S., Rithrmair, U., Yang, C.:: Phys-
ically secure and fully reconfigurable data storage using optical
scattering. In: HOST, pp. 157-162

Kent, A.: Unconditionally secure bit commitment by transmitting
measurement outcomes. Phys. Rev. Lett. 109(13), 130501 (2012)
Kerckhoffs, A.: La cryptographie militaire. J. Sci. Mil. (1883)
Kumar, R, Burleson, W.: On design of a highly secure PUF based
on non-linear current mirrors. In: HOST, pp. 38-43 (2014)

Leier, A., Richter, C., Banzhaf, W., Rauhe, H.: Cryptography with
DNA binary strands. Biosystems 57(1), 13-22 (2000)

Li, M., Miao, J., Zhong, K., Pan, D.Z.: Practical public PUF enabled
by solving max-flow problem on chip. In: ACM/EDAC/IEEE
Design Automation Conference (DAC) (2016)

Lindstrom, G., Schullstrom, G.: Verifiable identification document.
US-Patent 3,636,318. Publication date: 1972. Priority date: 1968.
See https://patents.google.com/patent/US3636318A

Lofstrom, K., Daasch, W.R., Taylor, D.: IC identification circuit
using device mismatch. ISSCC 2000, 372-373 (2000)

Maes, R., Verbauwhede, I.: Physically unclonable functions: a
study on the state of the art and future research directions. In:
Towards Hardware-Intrinsic Security, pp. 3-37. Springer (2010)
Majzoobi, M., Koushanfar, F.: Time-bounded authentication of
FPGAs. IEEE Trans. Inf. Forensics Secur. 6(3), 1123-1135 (2011)
Maurer, U.M.: Secret key agreement by public discussion from
common information. IEEE Trans. Inf. Theory 39(3), 733-742
(1993)

Nedospasov, D, Seifert, J.-P., Helfmeier, C., Boit, C.: Invasive PUF
analysis. In: FDTC, pp. 30-38 (2013)

Nguyen, P.H., Sahoo, D.P, Jin, C., Mahmood, K., Rithrmair, U.,
van Dijk, M.: The interpose PUF: secure PUF design against state-
of-the-art machine learning attacks. IACR Trans. CHES (2019)
Pappu, R.: Physical one-way functions. Ph.D. thesis, Massachusetts
Institute of Technology (2001)

. Pappu, R., Recht, B., Taylor, J., Gershenfeld, N.: Physical one-way

functions. Science 297, 2026-2030 (2002)

Philippe, S., et al.: The application of virtual proofs of reality to
nuclear safeguards and arms control verification. In: 57th annual
INMM meeting (2016)

@ Springer

https://smartech.gatech.edu/bitstream/handle/1853/58757/DEYATI-DISSERTATION-2017.pdf
https://smartech.gatech.edu/bitstream/handle/1853/58757/DEYATI-DISSERTATION-2017.pdf
https://smartech.gatech.edu/bitstream/handle/1853/59961/GASSEL-THESIS-2018.pdf
https://smartech.gatech.edu/bitstream/handle/1853/59961/GASSEL-THESIS-2018.pdf
https://smartech.gatech.edu/bitstream/handle/1853/59961/GASSEL-THESIS-2018.pdf
https://patents.google.com/patent/US4423415A
https://patents.google.com/patent/US4423415A
https://patents.google.com/patent/US3636318A

412 Journal of Cryptographic Engineering (2022) 12:387-412

49. Potkonjak, M., Meguerdichian, S., Nahapetian, A., Wei, S.: Dif- 71. Simmmons, G.J.: Identification of data, devices, documents and
ferential public physically unclonable functions: architecture and individuals. In: Annual International Carnahan Conference on
applications. In: DAC (2007) Security Technology (1991)

50. Potkonjak, M., Goudar, V.: Public physical unclonable functions. 72. Skoric, B., Schrijen, G.J., Ophey, W., Wolters, R., Verhaegh, N., van
Proc. IEEE 102(8), 1142-1156 (2014) Geloven, J.: Experimental hardware for coating PUFs and optical

51. Rajendran, J., Rose, G.S., Karri, R., Potkonjak, M.: Nano-PPUF: PUFs. In: Security with noisy data, pp. 255-268. Springer, London
a memristor-based security primitive. In: [EEE Computer Society (2007)

Annual Symposium on VLSI (2012) 73. Skoric, B.: Quantum readout of physical unclonable functions.

52. Ruehrmair, U., et al.: Method for security purposes. US Patent AFRICACRYPT (2010)

Application No. 13/250,534 (2012) 74. Smith, J.R., Sutherland, A.V.: Microstructure based indicia. In:

53. Rithrmair, U., Chen, Q., Stutzmann, M., Lugli, P., Schlichtmann, Proceedings of the Second Workshop on Automatic Identification
U., Csaba, G.: Towards electrical, integrated implementations of Advanced Technologies (1999)

SIMPL systems. WISTP (2010) 75. Stutzmann, M., Csaba, G., Lugli, P., Finley, J.J., Jirauschek, C.,

54. Riihrmair, U., Hilgers, C., Urban, S., Weiershduser, A., Dinter, E., Jaeger, C., Riihrmair, U.: Towards electrical, integrated imple-
Forster, B., Jirauschek, C.: Optical PUFs reloaded. IACR cryptol- mentations of SIMPL systems. European Patent Application
ogy ePrint archive, report 2013/215 (2013) EP2230794 A3. Priority date: March 16, 2009. See https://patents.

55. Rithrmair, U., Holcomb, D.E.: PUFs at a glance. In: DATE (2014) google.com/patent/EP2230794A3

56. Riihrmair, U., Martinez-Hurtado, J.L., Xu, X., Kraeh, C., Hilgers, 76. Suh, G.E., Devadas, S.: Physical unclonable functions for device
C., Kononchuk, D., Finley, J.J., Burleson, W.P.: Virtual proofs of authentication and secret key generation. In: Design Automation
reality and their physical implementation. In: IEEE Symposium on Conference, pp. 9-14 (2007)

Security and Privacy (2015) 77. Tajik, S., Dietz, E., Frohmann, S., Seifert, J.-P., Nedospasov, D.,

57. Riihrmair, U., Sehnke, F., Solter, J., Dror, G., Devadas, S., Schmid- Helfmeier, C., Boit, C., Dittrich, H.: Physical characterization of
huber, J.: Modeling attacks on physical unclonable functions. In: arbiter PUFs. In: CHES, pp. 493-509 (2014)

ACM Conference on Computer and Communications Security 78. Tehranipoor, M., Wang, C. (eds.): Introduction to Hardware Secu-
(2010) rity and Trust. Springer, Berlin (2011)

58. Riihrmair, U., Sélter, J., Sehnke, F.: On the foundations of physi- 79. The Economic Impacts of Counterfeiting and Piracy—Executive
cal unclonable functions. IACR cryptology ePrint archive, report Summary. International Chamber of Commerce BASCAP and
2009/277 (2009) INTA Frontier Reports (2017). https://iccwbo.org/publication/

59. Rithrmair, U., van Dijk, M.: PUFs in security protocols: attack economic-impacts-counterfeiting- piracy-report-prepared-
models and security evaluations. In: IEEE Symposium on Security bascap-inta/
and Privacy (2013) 80. Trade in Counterfeit and Pirated Goods: Mapping the Economic

60. Riihrmair, U., Xu, X., Solter, J., Mahmoud, A., Koushanfar, F., Impact. Organisation for Economic Co-operation and Develop-
Burleson, W.: Power and timing side channels for PUFs and ment (OECD) (2016). See also: http://www.oecd.org/gov/risk/
their efficient exploitation. IACR cryptology ePrint archive, report trade-in-counterfeit-and-pirated- goods-9789264252653-en.htm
2013/851 (2013) 81. Tuyls, P, Schrijen, G.-J., Skoric, B., van Geloven, J., Verhaegh, N.,

61. Riihrmair, U.: Oblivious transfer based on physical unclonable Wolters, R.: Read-proof hardware from protective coatings. CHES
functions. In: TRUST (2010) 2006, 369-383 (2006)

62. Rithrmair, U.: Physical turing machines and the formalization of 82. Uppu, R., Wolterink, T.A.W., Goorden, S.A., Chen, B., Skoric,
physical cryptography. IACR cryptology ePrint archive, report B., Mosk, A.P., Pinkse, PW.H.: Asymmetric cryptography with
2011/188 (2011) physical unclonable keys. Quantum Sci. Technol. 4, 045011 (2019)

63. Riihrmair, U.: SIMPL systems as a keyless cryptographic and secu- 83. Vaidya, A.W.: Keeping card data secure at low cost. In: European
rity primitive. In: Naccache, D. (Ed.) Cryptography and Security: Convention on Security and Detection, pp. 212-215 (1995)

From Theory to Applications. Lecture Notes in Computer Science, 84. van den Broek, B., Ashcroft, B., Oosterkamp, T.H., van Noort,
vol. 6805. Springer (2012) J.: Parallel nanometric 3D tracking of intracellular gold nanorods

64. Rithrmair, U.: SIMPL systems, or: Can we build cryptographic using multifocal two-photon microscopy. Nano Lett. 13(3), 980-
hardware without secret key information? In: SOFSEM 2011. 986 (2013)

LNCS, vol. 6543. Springer (2011) 85. van Dijk, M., Rithrmair, U.: Physical unclonable functions in

65. Rithrmair, U.: SIMPL systems: on a public key variant of physi- cryptographic protocols: security proofs and impossibility results.
cal unclonable functions. IACR cryptology ePrint archive, report Cryptology ePrint archive, report 228/2012 (2012)

2009/255 (2009) 86. vanRenesse, R.L.: 3DAS: a 3-dimensional-structure authentication

66. Riihrmair, U.: SoK: towards secret-free security. In: ASHES work- system. In: European Convention on Security and Detection, pp.
shop at ACM CCS (2020) 45-49 (1995)

67. Rithrmair, U.: Towards secret-free security. IACR cryptology 87. van Renesse, R.L.: Optical Document Security. Artech House,
ePrint archive, report 2019/388 (2019). https://eprint.iacr.org/ Boston (1998)
2019/388.pdf 88. Vijayakumar, A., Kundu, S.: A novel modeling attack resistant

68. Riihrmair, U., van Dijk, M.: On the practical use of physical unclon- PUF design based on non-linear voltage transfer characteristics.
able functions in oblivious transfer and bit commitment protocols. In: DATE, pp. 653-658 (2015)

J. Cryptogr. Eng. (JCEN) 3(1), 17-28 (2013) 89. Vijaywargi, D., Lewis, D., Kirovski, D.: Optical DNA. In: Financial

69. Riihrmair, U., Devadas, S., Koushanfar, F.: Security based on phys- Cryptography, pp. 222-229 (2009)
ical unclonability and disorder. In: Tehranipoor, M., Wang, C. 90. Yao, A.C.C.: Classical physics and the Church-Turing Thesis. J.
(eds.) Introduction to Hardware Security and Trust. Springer, Berlin ACM (JACM) 50(1), 100-105 (2005)

(2011)
70. Sharma, A., Subramanian, L., Brewer, E.A.: PaperSpeckle: micro-

scopic fingerprinting of paper. In: ACM CCS, pp. 99-110 (2011)

@ Springer

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

https://eprint.iacr.org/2019/388.pdf
https://eprint.iacr.org/2019/388.pdf
https://patents.google.com/patent/EP2230794A3
https://patents.google.com/patent/EP2230794A3
https://iccwbo.org/publication/economic-impacts- counterfeiting-piracy-report-prepared-bascap-inta/
https://iccwbo.org/publication/economic-impacts- counterfeiting-piracy-report-prepared-bascap-inta/
https://iccwbo.org/publication/economic-impacts- counterfeiting-piracy-report-prepared-bascap-inta/
http://www.oecd.org/gov/risk/trade-in-counterfeit-and-pirated-goods-9789264252653-en.htm
http://www.oecd.org/gov/risk/trade-in-counterfeit-and-pirated-goods-9789264252653-en.htm

	Secret-free security: a survey and tutorial
	Abstract
	1 Introduction
	1.1 Motivation and overview
	1.2 Related work
	1.3 Our contributions
	1.4 Organization of this paper

	2 Defining secrets and secret-free security
	2.1 Definition of secrets
	2.2 A taxonomy of secrets
	2.3 Key-free and secret-free hardware and their promise

	3 Secrets in standard PUFs
	3.1 Basics of SRAM PUFs and XOR Arbiter PUFs
	3.2 Secrets in SRAM PUF-based identification
	3.3 Secrets in XOR Arbiter PUF-based identification
	3.4 Practical relevance of secrets and enduring benefits of standard PUFs

	4 Secret-free security by complex PUFs
	4.1 Definition of complex PUFs
	4.2 Implementation of complex PUFs
	4.3 Complex PUF-based identification
	4.4 Secrets in complex PUF-based identification

	5 Secret-free security by SIMPLs
	5.1 Definition of SIMPLs
	5.2 Implementation of SIMPLs
	5.3 SIMPL-based identification
	5.4 Secrets in SIMPL-based identification

	6 Secret-free security by UNOs
	6.1 Definition of UNOs
	6.2 Implementation of UNOs
	6.3 UNO-based unforgeable item tags/labels
	6.4 Secrets in UNO-based item tags

	7 Extension: other secret-free schemes?
	7.1 Secret-free message authentication
	7.2 Secret-free tamper detection and PUF-capsules
	7.3 Secret-free sensing and virtual proofs of reality
	7.4 Secret-free digital rights management
	7.5 Secret-free encryption and digital signatures?

	8 Summary and outlook
	8.1 Summary
	8.2 Three caveats
	8.3 Differences between secret-freeness and unclonability
	8.4 Future work

	Acknowledgements
	Appendix A: Analysis of Pappu et al.'s optical PUF as (ε, tPred)-complex PUF
	References

