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Abstract
Purpose: To investigate the static magnetic field generated by a proton pencil
beam as a candidate for range verification by means of Monte Carlo simulations,
thereby improving upon existing analytical calculations. We focus on the impact
of statistical current fluctuations and secondary protons and electrons.
Methods: We considered a pulsed beam (10 μs pulse duration) during the duty
cycle with a peak beam current of 0.2 μA and an initial energy of 100 MeV. We
ran Geant4-DNA Monte Carlo simulations of a proton pencil beam in water and
extracted independent particle phase spaces. We calculated longitudinal and
radial current density of protons and electrons, serving as an input for a mag-
netic field estimation based on a finite element analysis in a cylindrical geometry.
We made sure to allow for non-solenoidal current densities as is the case of a
stopping proton beam.
Results: The rising proton charge density toward the range is not perturbed
by energy straggling and only lowered through nuclear reactions by up to 15%,
leading to an approximately constant longitudinal current.Their relative low den-
sity however (at most 0.37 protons/mm3 for the 0.2 μA current and a beam
cross-section of 2.5 mm),gives rise to considerable current density fluctuations.
The radial proton current resulting from lateral scattering and being two orders
of magnitude weaker than the longitudinal current is subject to even stronger
fluctuations.Secondary electrons with energies above 10 eV, that far outnumber
the primary protons, reduce the primary proton current by only 10% due to their
largely isotropic flow. A small fraction of electrons (< 1%), undergoing head-on
collisions,constitutes the relevant electron current. In the far-field,both contribu-
tions to the magnetic field strength (longitudinal and lateral) are independent of
the beam spot size. We also find that the nuclear reaction-related losses cause
a shift of 1.3 mm to the magnetic field profile relative to the actual range,which is
further enlarged to 2.4 mm by the electron current (at a distance of 𝜌 = 50 mm
away from the central beam axis). For 𝜌 > 45 mm, the shift increases linearly.
While the current density variations cause significant magnetic field uncertainty
close to the central beam axis with a relative standard deviation (RSD) close
to 100%, they average out at a distance of 10 cm, where the RSD of the total
magnetic field drops below 2%.
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Conclusions: With the small influence of the secondary electrons together
with the low RSD, our analysis encourages an experimental detection of the
magnetic field through sensitive instrumentation, such as optical magnetometry
or SQUIDs.

KEYWORDS
electromagnetic signal, range verification, secondary particles

1 INTRODUCTION

With several techniques currently under investigation,
precise in vivo range verification for proton beam irradi-
ation is a sought and critical step toward robust clinical
ion-beam therapy.1,2 The aim is to detect and compen-
sate range shifts that originate from uncertainties in
imaging, planning, patient setup, anatomical changes,
etc. In addition to the existing approaches such as
PET,3 prompt gamma,4 and ionoacoustics,5 Albert et al.6

proposed to detect the electric field of the primary pro-
tons.Subsequently,we further developed their analytical
method to characterize the complete electromagnetic
signal generated by a proton beam in different tissues.7

Therein, it is shown that the rapid charge relaxation
diminishes the electric field strength substantially due
to the tissue’s conductivity. In fact, collecting the asso-
ciated charges through electrodes has recently been
suggested as a dose monitoring system.8 Eventually,we
concluded the magnetic field, compared to the electric
field, to be the favorable choice, which is approximately
independent of the environment and directly corre-
lated to the primary protons. Yet we already highlighted
the shortcomings of the analytical approach, neglect-
ing nuclear reactions, secondary protons and electrons,
energy and range straggling, and lateral scattering.7

With the present work we seek to take these effects
into account by means of Monte Carlo (MC) simu-
lations. Some simplifying assumptions remain, which
are discussed in Section 4.8. We also replace the
analytical solution of the Maxwell equations with a
numerical finite element analysis (FEA), which is
one among numerous methods from computational
electromagnetics9,10.Alternatives include integral meth-
ods based on Jefimenko’s equations11. Compared to a
previous approach12, we have simplified the FEA from
a two-step process to a single calculation. We con-
duct an extensive analysis of the MC generated phase
spaces (PS) together with a comparison of the asso-
ciated charge and current density. From the latter, we
estimate the magnetic field and analyze the impact of
the hitherto neglected processes. With error propaga-
tion and the current density fluctuations extracted from
MC, we also aim to quantify the magnitude of magnetic
field uncertainties and gauge their impact on a measure-
ment. Finally, we discuss a few aspects toward asMn
experimental detection.

2 METHODS

Throughout this work, many symbols, variables, and
acronyms are used.For convenience, they are tabulated
in the Supporting information (Section G).

2.1 Finite element analysis

In the present work, we estimate the magnetic field from
the MC data through the FEA. In particular, we apply
a magnetostatic formulation due to the rapid response
times (sub-nanosecond) of the magnetic field relative to
the pulse duration7. The magnetic field strength quickly
reaches its static value, only briefly deviated by an initial
peak. Relaxation due to polarization effects are minute
and also vanish in the nanosecond scale. Overall, the
temporal profile of the magnetic field is quite simple, as
it approximately follows the beam pulse shape.A similar
beam pulse shape is also extracted from the ion source
of the S2C213,an accelerator whose parameters guided
the MC simulation settings (details in Section 2.3).Thus,
we rather focus on the on average constant plateau
value and calculate, by the use of the FEA, the spatial
profile. For our application, the choice of FEA formalism
requires careful consideration, as described in the fol-
lowing and further detailed in the Supporting information
(Section A).

2.1.1 Formulation

In the FEA, one utilizes the potential representation of
the Maxwell equations, which are reformulated as a
Lagrangian density.Minimizing the corresponding action
solves the original differential equation according to
the calculus of variations14. In the static case, we can
neglect the dispersion. Assuming an isotropic and linear
medium, the constitutive relations take the simple forms
D = 𝜀E and H = B∕𝜇, where 𝜀 and 𝜇 are the static per-
mittivity and permeability of the medium. Also, E and B
are the electric field and magnetic flux density, while D
and H are the electric displacement field and the mag-
netic field strength, respectively. Throughout this paper,
we will refer to B just as the magnetic field, which is
our primary quantity of interest. Upon the introduction
of the scalar potential 𝜑 and the vector potential A as
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1002 IMPACT OF SECONDARY PARTICLES ON THE MAGNETIC FIELD GENERATED BY A PROTON PENCIL BEAM

B = ∇ × A and E = −∇𝜑 − 𝜕A∕𝜕t,Ampère’s circuital law
takes the following form15:

(
−∇2 +

1
c2

𝜕2

𝜕t2

)
A + ∇

(
∇ ⋅ A +

1
c2

𝜕𝜑

𝜕t

)
= 𝜇J, (1)

where c = 1∕
√
𝜀𝜇 is the speed of light in the medium

and J is the free current density. The magnetostatic
assumption 𝜕A∕𝜕t = 0, is usually paired with the elec-
trostatic assumption 𝜕𝜑∕𝜕t = 0, which with the identity
∇ × (∇ × A) = ∇(∇ ⋅ A) − ∇2A, leads to the significantly
simpler curl–curl equation15–18

∇ ×

(
1
𝜇
∇ × A

)
= J. (2)

Since the divergence of a curl vanishes by defi-
nition, Equation (2) implies that the input J has to
be divergence-free (i.e., ∇ ⋅ J = 0). As we aim to cal-
culate the magnetic field of a stopping pencil beam,
where ∇ ⋅ J ≠ 0, especially at the range, an approach
based on Equation (2) is not suitable. The issue lies
in the electrostatic assumption. Charges that are pri-
marily deposited at the range, give rise to an electric
field, that changes linearly in time for a beam with a
constant current.Nonetheless, the charges do not accu-
mulate at the range indefinitely. The conductivity of
the target leads to charge relaxation with timescales
ranging between a tenth and tens of nanoseconds,
depending on the target tissue7, which prohibits charge
accumulation. Note that the associated charge trans-
port is rather an exchange of electrons than an actual
displacement of the primary protons. Also, the corre-
sponding conductivity current density Jc = 𝜎E, where 𝜎
is the conductivity, does not give rise to an additional
magnetic field, due to the little charge transport that
occurs during conduction and its flow along the radially
symmetric E. The latter follows directly from Maxwell’s
equations. Moreover, when it reaches the (discontinu-
ous) boundary, Jc is distributed over a large volume
and thus low compared to the compact and unidirec-
tional beam current. The existence of external charges
related to the proton’s drift through air or the patient’s
skin has been ruled out by the measurements of Cirrone
et al.8

Consequently, if ∇ ⋅ J ≠ 0, then also 𝜕𝜑∕𝜕t ≠ 0. Rein-
troducing the 𝜕𝜑∕𝜕t-term back into Equation (2) com-
plicates the computations, however12. Nonetheless, the
magnetic field estimation can be simplified consider-
ably through the Lorentz gauge15,17 ∇ ⋅ A + 𝜀𝜇𝜕𝜑∕𝜕t =
0, whereby Equation (1), under the magnetostatic
assumption, simplifies to the vector Poisson equation

−∇2A = 𝜇J, (3)

F IGURE 1 Schematic sketch of the geometrical setup, current
density tracking and magnetic field estimation. We took advantage of
the cylindrical symmetry of a single proton pencil beam by collecting
the 3D phase-space data into the 2D 𝜌–z-plane through square
toroid shaped voxels (red volume). The nodes for the vector potential
lie on the intersections of the grid lines, while the current density is
defined on the pixels in between. The domain has been enlarged
through exponential spacing, reaching far beyond the depicted area.

with the vector Laplacian on the left-hand side. Further
analysis of Equation (3) is given in Section A.1.

2.1.2 Magnetic field estimation

Through MC simulations (see Section 2.3 for details),
we obtain multiple PS of a single proton pencil beam
in water, where we take advantage of its cylindrical
symmetry about the central beam axis. Thereby, the
computations can be reduced to a 2D boundary value
problem along the radius 𝜌 and the beam axis z (see
Figure 1). The following steps, outlined in the first
two sentences of Section 2.1.1, are summarized in
Section A.2.

For the minimization of the action, one discretizes
and expands the vector potentials through nodal ele-
ments: A𝜅 =

∑
i Ãi

𝜅Ni(𝜌, z), where Ni(𝜌, z) are the two-
dimensional basis functions surrounding the nodal ele-
ments Ãi

𝜅,which are arranged on a two-dimensional grid
(𝜅 = {𝜌, z}). The accent ◦̃ shall separate physical quan-
tities from nodal elements (with accent) expanding the
physical quantities. Eventually, Equation (3) reduces to
two separate systems of linear equations, summarized
as

N
𝜅
̃𝜅 = ̃𝜅, (4)

where the entries of the symmetric matrices N
𝜅

describe

the overlap of the basis functions. The vectors ̃𝜅

collect the nodal elements (i.e., (̃𝜅)i = Ãi
𝜅), while ̃𝜅

contain the integrated current densities, weighted with
the basis functions (i.e., (̃𝜅)i = J̃i

𝜅). Explicit expressions
are provided in Section A.3.
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IMPACT OF SECONDARY PARTICLES ON THE MAGNETIC FIELD GENERATED BY A PROTON PENCIL BEAM 1003

Finally, we obtain the magnetic field B = ∇ × A with
B𝜙 = 𝜕A𝜌∕𝜕z − 𝜕Az∕𝜕𝜌 through differentiation

B𝜙(𝜌B
i , zB

j ) =
∑

k

Ãk
𝜌

𝜕Nk(𝜌B
i , zB

j )

𝜕z
−
∑

k

Ãk
z

𝜕Nk(𝜌B
i , zB

j )

𝜕𝜌

≡ B𝜙,𝜌 + B𝜙,z, (5)

where we have defined a separation of the azimuthal
magnetic field B𝜙 into the magnetic field that originates
from radial current B𝜙,𝜌 and the longitudinal current
B𝜙,z.

Considering a detection outside of the target, that
is, beyond the tissue’s boundaries, we are effectively
facing an unbound domain, namely the surrounding
air. Furthermore, since the permeability of biological
tissues, water and air are well approximated by the
vacuum permeability (𝜇r ≈ 1)19, the domain is approxi-
mately homogeneous in the case of the static magnetic
field.

For symmetry, we need to set the boundary at the
central beam axis of ̃𝜌 to zero. Instead of (arbitrar-
ily) setting the remaining boundaries, we sufficiently
enlarge the domain. To limit computational cost, we use
exponentially increasing spacing as described in the
subsequent section and shown in Figure 1. A broader
discussion regarding the boundaries is provided in
Section A.4.

2.1.3 Domain discretization

Starting from the central beam axis, the radial vector
potential grid is with Nlin

𝜌 = 100 samples initially linearly
spaced, reaching up to Nlin

𝜌 Δ𝜌 = 10 cm, where Δ𝜌 =

1 mm.For the distance from 10 cm to 1 m,we used expo-
nentially increasing spacing with Nexp

𝜌 = 49.The interval
[0, Nlin

z Δz] on the z-axis is with Nlin
z = 150 and Δz =

1 mm also linearly spaced. We set zA
0 = 0 to the depth

where the beam enters the target,such that the range of
100 MeV protons in water is approximately in the center
of the linear interval. Both the distal and proximal ends
are similarly exponentially enlarged to approximately
±1 m with Nexp

z = 24 samples each. Details have been
summarized in the Supporting information (see Sec-
tion A.5).The discrete 𝜌A

i and zA
i span a two-dimensional

rectangular grid as illustrated in Figure 1. To put the
exponential spacing into perspective, the linearly spaced
area of interest (150 × 100 mm2) constitutes merely
0.75% of the entire area, but is described by 51% of
the sample points.

The midpoints between the grid lines 𝜌J
i and zJ

i
are the pixel centers of the discrete current density.
For each pixel, we collected data from the associated
square toroid volume (red ring in Figure 1), thereby tak-
ing advantage of the cylindrical symmetry. The kernels

at the outermost edges (i.e., at 𝜌A
max, zA

min, and zA
max)

require two pixels of 𝜌J
i and zJ

i beyond,where we merely
mirrored the preceding two pixels.

Finally, we interpolated the magnetic field with the
differentiated interpolation kernels between the nodes
at 𝜌B

i = (0.25 + i × 0.5) mm for i ∈ {0,… , 199} and zB
i =

(0.25 + i × 0.5) mm for i ∈ {0,… , 299} on a square grid,
thereby only evaluating the linearly spaced area.

2.1.4 Numerical solution

With the domain specified above,N
𝜅

are 29850 × 29850
matrices,where a numerical inversion is computationally
feasible. For a discretized current density Ji

𝜅 the entries
of ̃𝜅 from Equation (A7) are merely a weighted sum
of Ji

𝜅, where the weights are the pixel-wise integrated
interpolation kernels.Furthermore, the interpolation with
the differentiated kernels from Equation (5) is also
a weighted sum. Both can be represented by matrix
multiplications: ̃𝜅 = K

J
J𝜅, B𝜙,𝜅 = K

𝜅
̃𝜅 and combined

B𝜙,𝜅 = K
𝜅
N−1
𝜅

K
J

⏟⎴⏟⎴⏟
M
𝜅

J𝜅, (6)

where the vector J𝜅 collects the current density ele-
ments,calculated from MC.Therefore, the magnetic field
Bi
𝜙,𝜅 is yet a weighted sum of the discrete current density

elements, with the weights collected in M
𝜅
. This repre-

sentation is practical for an uncertainty and fluctuation
estimation:

𝝈B𝜙,𝜅
=
(

M◦2
𝜅
𝝈◦2

J𝜅

)◦1∕2
, (7)

where 𝝈J𝜅 and 𝝈B𝜙,𝜅
are the vectors containing the

uncertainty of the current density and magnetic field and
v◦p is the elementwise power as in (v◦p)i = vp

i .

2.2 Current density accumulation

Let 𝜌max mark the radial outer edge of the current, that is,
J𝜅(𝜌 > 𝜌max) = 0. For an infinitely long and 𝜙-symmetric
current along z (i.e., J = Jz(𝜌)êz), it follows directly from
Ampère’s circuital law that the azimuthal component
of the magnetic field B𝜙 for 𝜌 > 𝜌max depends only
on the enclosed cross-sectional surface integral over
Jz(𝜌) and drops off inversely proportional to the dis-
tance. In other words, since our primary interest is the
field strength some centimeters away from the central
beam axis, where Jz = 0, the exact shape of Jz(𝜌) does
not affect the result and can thus be accumulated to
a one-dimensional profile along z. This enables a sim-
ple evaluation of the impact of lateral scattering and
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1004 IMPACT OF SECONDARY PARTICLES ON THE MAGNETIC FIELD GENERATED BY A PROTON PENCIL BEAM

beam spot size in Section 3.2.2. In the following, we
show how the accumulation rules emerge from the one-
dimensional solutions along the radial axis. We will see
below that they also apply in the two-dimensional case.
We first recap the accumulation for Jz to facilitate the
similar derivation for J𝜌.

2.2.1 Accumulation for Jz

Setting 𝜕2Az∕𝜕z2 = 0 reduces Equation (A2) to one
dimension. With B𝜙,z ≡ −𝜕Az∕𝜕𝜌 and requiring B𝜙,z(𝜌 →
0) = 0, one obtains the result by straightforward integra-
tion:

B𝜙,z =
𝜇

𝜌 ∫
𝜌

0
𝜌′Jz(𝜌′, z)d𝜌′

⏟⎴⎴⎴⎴⏟⎴⎴⎴⎴⏟
z(z)

. (8)

The 𝜌′-weight is associated with the aforementioned
surface integral in cylindrical coordinates. For 𝜌 > 𝜌max,
the quantity z(z) is constant. As long as it equates
to the same value, we can accumulate Jz(𝜌, z)
to a one-dimensional profile. In particular, z(zJ

i ) ≈∑
j 𝜌

J
j Jz(𝜌J

j , zJ
i ), where 𝜌J

i ≡ ∫ 𝜌J
i +Δ𝜌∕2

𝜌J
i −Δ𝜌∕2

𝜌′d𝜌′ = 𝜌J
i Δ𝜌. The

accumulated current is then Jacc
z (𝜌J

0, zJ
i ) = z(zJ

i )∕𝜌J
0.

2.2.2 Accumulation for J𝜌

Likewise, we simplify Equation (A1) with 𝜕2A𝜌𝜕z2 =

0. Setting the boundary conditions A𝜌(𝜌 → {0,∞}) = 0
leads to

A𝜌(𝜌, z) =
𝜇𝜌

2 ∫
∞

𝜌

J𝜌(𝜌′, z)d𝜌′ +
𝜇

2𝜌 ∫
𝜌

0
𝜌′2J𝜌(𝜌′, z)d𝜌′

⏟⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⏟
𝜌(z)

.

(9)

The first term of A𝜌(𝜌, z) vanishes for 𝜌 > 𝜌max,
while 𝜌(z) remains constant like z(z). Radial cur-
rent further away from the central beam axis con-
tributes for 𝜌(z) more due to the quadratic weighting
as opposed to the purely geometrical linear weight-
ing factor from z(z). The additional 𝜌-weight orig-
inates from the radial current flowing outward into
larger volumes. Only a divergence-free and therefore
source-free radial current J𝜌 ∝ 1∕𝜌 contributes equally
like Jz. J𝜌�∝ 1∕𝜌 implies current sources along 𝜌 giv-
ing rise to stronger magnetic fields. In the present
scenario, Coulomb scattering away or toward the
central beam axis constitutes such sources. Accord-
ingly, the radial accumulation differs and has been
implemented as follows: 𝜌(zJ

i ) ≈
∑

j
̃̃𝜌J
j J𝜌(𝜌

J
j , zJ

i ), where

�̃�J
i ≡ ∫ 𝜌J

i +Δ𝜌∕2

𝜌J
i −Δ𝜌∕2

𝜌′2d𝜌′ = (𝜌J2
i + Δ𝜌2∕12)Δ𝜌 and therefore

Jacc
𝜌 (𝜌J

0, zJ
i ) = 𝜌(zJ

i )∕ ̃̃𝜌J
0.

2.3 Monte Carlo simulation

A volume of 41 × 41 × 103 mm3 was defined in Geant4
(version 10.5.p1)20–22 to simulate interactions between
an incident proton beam and a uniform material. Phys-
ical interactions were modeled using either the “option
5” constructor, made available through the Geant4-DNA
extension23–26 (abbreviated as DNA_5), or a standard
physics list (QGSP_BIC) compatible with the processes
from the constructor. In both cases, water was the
chosen material.

For the present work, we consider a pulsed beam,
as can be generated, for example, by a synchrocy-
clotron, over a continuous one, for example, from an
isochronous27. Both can deliver maximum average cur-
rents in the order of tens/hundreds of nA’s, which are
required for standard clinical dose rates28. However,
the pulsed operation creates stronger, albeit shorter,
currents in the μA range, which give rise to larger mag-
netic field strengths. Analogous to the preceding ana-
lytical work7, IBA’s superconducting synchrocyclotron
(S2C2)29 serves here as a guideline regarding the
choice of beam parameters.Its maximum average beam
current and the pulse duration vary in the literature
between∼ 20−200 nA29–31 and∼ 7−10 μs29,32,33 with a
1 kHz repetition rate.The maximum possible peak beam
current of 18 μA is tabulated in31. For our simulations,
we have chosen a more moderate peak beam current
of I = 0.2 μA.

Particles were shot after sampling x–y-starting posi-
tions, from normal distributions. The beam current
determines the average time delay between two con-
secutive protons:Δtp = qe∕I,where qe is the elementary
charge. In our case: Δtp ≈ 0.8 ps. Since the differences
of subsequent samples from any sorted uniform dis-
tribution can be well approximated by an exponential
distribution, we introduce launch time fluctuations, by
sampling Δtp from fΔtp(𝛿 > 0) = exp[−𝛿∕Δtp]∕Δtp, lead-
ing to a random, but on average uniform current. By
launching the protons with constant Δtp instead, we
observe that protons tend to occupy some zJ

i -bins more
frequently, regardless of changing seeds. This implies
that energy straggling shuffles the longitudinal position
below the binning size Δz (more prominent for smaller
z). A constant Δtp is therefore not appropriate.

S2C2’s uncertainty of the initial energy for a 230 MeV
beam is 0.4 MeV, as given by Henrotin et al.33 or Van
de Walle32. Relative to the beam energy, this equates
approximately to 𝜎Q ≈ 0.174%, which we applied to our
chosen initial energy of Qin = 100 MeV by sampling the
initial energies from a normal distribution with 𝜇Q = Qin
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IMPACT OF SECONDARY PARTICLES ON THE MAGNETIC FIELD GENERATED BY A PROTON PENCIL BEAM 1005

and 𝜎Q = 0.174 MeV. For DNA_5, we used a spot size
of 𝜎b = 2.5 mm,while we tested multiple spot sizes 𝜎b =

{0.5, 1.0,… , 5} mm with QGSP_BIC, guided by Henrotin
et al.33 and Moteabbed et al34.

We simulated independently (i.e., with different ran-
dom seeds) the time from 0 to 0.9 ns, since, according
to the continuous slowing down approximation (CSDA),
it takes on average about tg ≈ 0.81 ns for the first pro-
tons to arrive at the range.We then exported the particle
PS at randomly chosen times within tPS ∈ [0.85, 0.9] ns
to describe the steady-state condition in a pulse.The tPS
variations target the same issue that motivated the ran-
dom Δtp sampling. We revert to the PS-based scoring,
since current density,unlike dose, is not an accumulated
quantity. Using multiple tPS from the same simulation
would lead to considerable and undesirable correla-
tions and increased fluctuations. Also, different seeds
allow a parallel implementation, which is necessary for
the computationally expensive DNA_5 physics.The sim-
ulation time for one PS on a single CPU averages
between 37–40 h.We deem NPS = 300 PSs as sufficient
statistics, revealing the weak and strongly fluctuating
radial current.

The statistics allows an estimation of the current den-
sity standard deviation, which depends on the volume
subdivision,that is,voxelization.Some technical remarks
are given in Section B. We seek to estimate the stan-
dard deviation, since the actual particle count of moving
protons in the target at any given time is comparatively
low. Integrating Equation (D2) from Section D.1 across
the target yields ntot = Φ(tg − t0) = I∕qe(tg − t0),which is
merely the particle rate Φ multiplied with the average
deceleration time tg − t0, where t0 = 0 is the entrance
time. With I = 0.2 μA, ntot = 995, while the count for the
DNA_5 data is with ntot = 962 somewhat reduced due to
nuclear reaction losses. For equal volume voxels (Sec-
tion B) this means, there is an average of less than
one proton per voxel. In other words, only very few pro-
tons give rise to the complete signal. The upper panel
of Figure 2 shows a single PS sample, illustrating the
low density.

2.3.1 Extension of proton data

With Geant4,we only simulate the stopping of the beam
in the target. Therefore, we need to add the preced-
ing drift toward the entrance region, otherwise Jz would
indicate a current source at z = 0, which changes the
magnetic field profile. Assuming an initially normally dis-
tributed lateral beam profile with standard deviation 𝜎b
and zero divergence drifting through vacuum, we sim-
ply have J(𝜌, z < 0) = I∕(2𝜋𝜎2

b) exp[−𝜌2∕(2𝜎2
b)]êz. The

proportion of the total beam current impinging on a
cylindrical pixel element Ω within the radii 𝜌0 < 𝜌 < 𝜌1
and the angular element 𝜙0 < 𝜙 < 𝜙0 + Δ𝜙 is given by

F IGURE 2 Beam extension based on Poisson distribution. The
volume was subdivided into equal voxels Vvoxel

0 (see Section B). The
upper panel for z ≥ 0 shows a sample of a proton count distribution
(i.e., charge in units of elementary charge qe) from the DNA_5 data,
hence the discretized colorbar. The data for z < 0 have been sampled
from a Poisson distribution, with the mean given by Equation (11). For
this demonstration, we kept Δz = 1 mm for z < 0, yet our actual
geometry is exponentially spaced (Section 2.1.3 or Figure 1). The
corresponding mean and standard deviation of the complete DNA_5
data are given below. In addition, we provided the underlying
histograms at selected points, marked in the central row as crosses
with the same color as the histogram bars. The two histograms at the
entrance region, which are most similar to the free space drift, are
further compared to Poisson probability mass functions (PMFs), with
𝜆 = Np, showing good agreement. The errorbars on the PMFs are
the expected statistical deviations. For M samples,
𝜎PMF

k =
√

Mpk (1 − pk ), that is, the standard deviation of a binomial
distribution. For the equal volume subdivision, M changes with the
radius. Therefore, the blue histograms add up to NPS, while the
red/orange ones, located at 𝜌J

4 = 4.5 mm, to 9 × NPS.

I′ = ∬
Ω

J ⋅ dA

= ∫
𝜌1

𝜌0

𝜌d𝜌 ∫
𝜙0+Δ𝜙

𝜙0

d𝜙
I

2𝜋𝜎2
b

exp

(
−
𝜌2

2𝜎2
b

)

= I

[
exp

(
−
𝜌2

0

2𝜎2
b

)
− exp

(
−
𝜌2

1

2𝜎2
b

)]
Δ𝜙

2𝜋
. (10)

From the partial current I′, we can determine the
average time delay between two adjacent protons
Δt′p = qe∕I′ and thus the average distance Δz′p = vinΔt′p
through their initial velocity vin. The latter in turn
is determined by the initial kinetic energy: vin∕c0 =√

Qin
√

Qin + 2Ep∕(Qin + Ep), where Ep ≈ 938.272 MeV
is the proton rest energy and c0 is the speed of light.
With the longitudinal grid spacing Δz, we can determine
the average number of protons within each voxel:

Np = Δz∕Δz′p = I′Δz∕(qevin). (11)

The actual proton count undergoes random fluctua-
tions, which are well described by a Poisson distribution,
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1006 IMPACT OF SECONDARY PARTICLES ON THE MAGNETIC FIELD GENERATED BY A PROTON PENCIL BEAM

as shown in Figure 2, where the Poisson sampled data
are even hardly distinguishable from the DNA_5 data.

Therefore, we complete the data by first sampling Np

from a Poisson distribution with pNp=k = 𝜆
k exp(−𝜆)∕k!,

with 𝜆 = Np. Subsequently, we draw Np energy sam-
ples from a normal distribution with 𝜇 = Qin and 𝜎 = 𝜎Q
and calculate their average velocity v̄. Finally Jpre

z =

qeNp∕Vvoxel
i v̄,where Vvoxel

i is the voxel volume from Sec-
tion B. Likewise, we also extend the uncertainty through

𝜎
pre
Jz

= qe∕Vvoxel
i

√
v2

in𝜎
2
Np
+ Np𝜎

2
vin

, (12)

where the first term under the square root dominates
due to the comparatively low 𝜎2

vin
with respect to 𝜎2

Np
=

Np and for the second term we used the standard devia-
tion of the mean 𝜎2

v̄ = 𝜎
2
vin
∕Np. In Figure B.1 (Supporting

information), Equation (12) has been compared to the
standard deviation in the entrance region of the DNA_5
data, confirming (i) the validity of Equation (12) and (ii)
the applicability of the simple standard deviation on the
DNA_5 data. Equation (12) also underlines the depen-
dence of 𝜎Jz

on the volume originating from 𝜎Np
, which

is discussed in Section B. We do not need to extend the
radial current J𝜌, assuming an initially divergence-free
beam.Also,we assume that no secondary electrons are
produced outside of the target due to the comparatively
low density of the surrounding air.

2.3.2 Range estimation from Monte Carlo
generated phase spaces

We assign the peak of the diffluence (derivative of the
fluence along the beam line) to the beam range, thereby
applying the definition from Paganetti35. In particular, we
calculate the current density Jz(zi) (with zi = (i + 1∕2)Δz
and i ≥ 0) for stacked cylindrical volumes, that is, discs,
perpendicular to the beam axis with Δz = 0.25 mm, and
a radius r larger than the beam spot size. We then
obtain the corresponding current by integration over
the cross-sectional area: I(zi) = Jz(zi)𝜋r2. In order to
compensate for the noise of the PS data, which is fur-
ther enhanced through the required differentiation, we
choose a smooth fit function. Based on Bohr’s energy
straggling theory36, the distal fall-off can be described
by an error function: g(z|wg, zg,𝜎g) ≡ g(z) = wg∕2{1 +

erf[−(z − zg)∕(
√

2𝜎g)]}.The fit parameters wg,zg, and 𝜎g
quantify the current strength prior to the drop, the range
and the range straggling, respectively. Instead of exclud-
ing the data that corresponds to the preceding plateau,
we continuously and smoothly attach a simple power
law of the form (az + b)𝛼, which models the decrease
of fluence through nuclear reactions, in order to fit the

TABLE 1 Proton range for different Geant4 physics packages

Physics package DNA_5 DNA_5 (Standard only) QGSP_BIC

Range (mm) 76.31(4) 77.33(4) 77.72(4)

entire profile. In particular f (z|wg, zg,𝜎g, zp,𝛼p) ≡ f (z)
with

f (z) =

⎧⎪⎨⎪⎩
g(zp)

(
1 +

g′(zp)

𝛼pg(zp)

(
z − zp

))𝛼p

z ≤ zp

g(z) z > zp

, (13)

where we join g(z) and the power law at zp < zg.We find
that the Geant4 physics package has a non-negligible
impact on range, differing up to 1.4 mm (see Table 1).
For reference, the NIST stopping power37 combined
with the CSDA predicts a range of 77.32 mm. Accord-
ingly, we refrain from comparing data from different
physics packages.

3 RESULTS

Summarizing Section 2.3, we present results from
two distinct simulations. First, the complex DNA_5
data, comprising 300 PSs of a pencil beam in water
with a cross-section of 2.5 mm. Second, the simpler
QGSP_BIC data with beam cross-sections ranging from
0.5 to 5.0 mm and otherwise identical parameters.

3.1 Phase-space analysis

We begin with the analysis of the MC data, paying
particular attention to velocity and charge density dis-
tributions of both protons and electrons to evaluate the
current density from which the magnetic field is even-
tually calculated (Equation (6)). If not stated otherwise,
we present the DNA_5 data. In the following, velocity-
related quantities, that are given as percentages, are
relative to the speed of light c0. Also, 𝜅 = {𝜌,𝜙, z}
serves as a placeholder for the vector components in
cylindrical coordinates.

3.1.1 Protons

Statistical analysis.
The average proton velocities v𝜅 and their standard
deviations sv𝜅 are shown in Figure 4. All v𝜅 are well
approximated by normal distributions, therefore v𝜅 and
sv𝜅 were determined through Gaussian fits. In terms of
counts, magnitude and uncertainty v𝜅 vary significantly
so that we adjusted the binning dynamically for each
pixel. To ensure a balanced count per bin, we initially
approximated mean 𝜇 and standard deviation 𝜎 with the
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IMPACT OF SECONDARY PARTICLES ON THE MAGNETIC FIELD GENERATED BY A PROTON PENCIL BEAM 1007

F IGURE 3 Current profile fit on the DNA_5 data with
Equation (13) to determine the range. The values in parentheses are
the 1𝜎 uncertainties of the fit parameters, applying always to the last
digits. The horizontal dashed line is the error function g(z) (see the
text above Equation (13)), technically only valid for z > zp. It provides
an estimate of the nuclear reaction related losses.

F IGURE 4 Average v𝜅 and standard deviation sv𝜅 of the proton
velocity along the components of a cylindrical coordinate system
oriented along the beam axis. We collected data from all NPS phase
spaces (PSs), excluding pixels with less than 10 protons. Except for
vz, the results are logarithmically scaled.

corresponding percentiles and set the histogram bin-
ning within [𝜇 − 5𝜎,𝜇 + 5𝜎]. This helps to compensate
for outliers.

Beam distributions.
Some accumulated proton beam distributions are col-
lected in Figure 5. The corresponding theoretical
description is part of Section D.1. The complete dataset
of NPS PSs has been collected to enable a more sta-
tistically significant evaluation, while the results have
been rescaled to represent the normalization of a single
PS. Consequently, it is shown in the upper left panel of
Figure 5 that a constant beam of 0.2 μA has a density
of about 10 protons/mm in the entrance region, which
increases to above 20 at the range.

Multiplying the charge density qef̃ b
n (r) with the average

velocity vz(z) leads by definition to the current den-
sity, which is, upon lateral integration, the current Ĩ =
qef̃ b

n (z)vz(z). f̃ b
n (z) is the already laterally integrated pro-

ton number density from Equation (D3). For vz(z) in Ĩ,
we used the linearly extrapolated velocity (dotted lines
in Figure D.3) to avoid a sharp drop of Ĩ at the range. Ĩ is

F IGURE 5 Summary of accumulated proton beam distributions
during irradiation and considering only protons in motion. The
theoretical expectations (dashed and solid lines) were derived in the
Supporting information (Section D.1). f b

Q(Q) was additionally
discretized (i.e., bin-wise integrated) in the inset of the upper right
panel, due to the sharp peak close to Q = 0. The z-coordinates were
binned with Δz = 0.25 mm, while the energies were binned with
ΔQ = 0.25 MeV.

in the lower left panel of Figure 5 compared to the MC
data, which is essentially also shown in Figure 3.

3.1.2 Electrons

The interaction cross-sections from DNA_5 are more
accurate regarding the production of secondary
electrons23,25, than the standard QGSP_BIC physics
list, especially for low energies. In fact, secondary,
tertiary, etc., electrons with energies above 10 eV com-
prise about 92.3% of the exported PSs and thus far
outnumber the primary protons. For QGSP_BIC they
amount to about 0.02% only, while the primary protons
constitute the vast majority. Yet, with 92.3%, there are
on average only about 12 times more electrons than
protons, while one might expect 4–5 orders of mag-
nitude more. In particular, with an average secondary
electron kinetic energy of 55 eV in water38 and a
mean ionization potential of 78 eV, we expect a total
of 100 MeV∕(78 + 55) eV ≈ 7.5 × 105 secondary elec-
trons per primary proton. Significantly larger number
of ionizations can also be found in the literature39

with the theoretical descriptions through the interaction
cross-sections discussed elsewhere40–42. Recall that
DNA_5 tracks electrons down to 10 eV and does not
use any production cuts for the DNA processes24. The
apparent lack of electrons can be explained by their
short lifetimes (sub-picoseconds) compared to the
deceleration times of the primary protons (0.81 ns, as
has been mentioned in Section 2.3). In fact, from our
simulations, the average lifetime of the secondary elec-
trons is just 7.5 fs, so when integrated over time, there
are approximately 0.81 ns∕7.5 fs ≈ 1.1 × 105 electrons
in total. Given that despite the short lifetimes there are
still 12 times more electrons than protons and taking
the electrons with energies below 10 eV into account38,
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1008 IMPACT OF SECONDARY PARTICLES ON THE MAGNETIC FIELD GENERATED BY A PROTON PENCIL BEAM

F IGURE 6 Normalized mean and skewness of the z-velocity
from the complete secondary electron dataset as a function of
increasing energies included, starting from Qcut = 10 eV. Both the
mean and the skewness (serving as a measure of symmetry) begin
to deviate from a symmetric zero-mean distribution, only when
electrons larger than our chosen threshold energy of Qthr = 1 keV
are included. These electrons amount to only 2% of the data, which
follows from the cumulative distribution function (CDF): P( ≤ Q).

F IGURE 7 Logarithmic electron velocity distribution, relative to
the speed of light, in the entrance region (z0 = 0.5 mm,Δz = 1 mm,
laterally integrated). Electrons are separated into low energies 
(blue) and high energies 𝔅 (orange). The upper left panel, which
shows the absolute velocity, is additionally logarithmic on the
horizontal axis. The remaining panels are the velocity components in
cylindrical coordinates.

there now seem to be many. Yet, the upper estimate
refers to secondaries only, while Geant4-DNA simulates
tertiary, etc., electrons. In summary, the factor of 12
refers to the instantaneous ratio between protons and
electrons, not to an integrated one. In the following, we
provide a statistical analysis of the electron distribution.

With respect to the velocity distribution, which is the
primary focus here, we find that the secondary elec-
trons can empirically be separated into two classes via
the threshold energy Qthr = 1 keV (see Figure 6), that
is, threshold velocity 𝛽thr = 6.247 × 10−2 (see Figure 7).
Electrons with energies below the threshold show a nar-
row and isotropic distribution surrounding the primary
protons, where their absolute velocity shall be denoted
by  and the components by 𝜅. The vast majority,
almost 98% of all electrons, belong to this class. Con-
versely, high energy electrons, with energies above Qthr,

F IGURE 8 Low-energy electron velocity distributions, relative to
the speed of light, in the entrance region (z0 = 0.5 mm,Δz = 1 mm,
laterally integrated). The upper left panel shows the distributions of
the relative velocity components 𝜅∕ ∈ [−1, 1], while the remaining
panels are close-up histograms of 𝜅 ∈ [−𝛽thr, 𝛽thr], also shown in
Figure 7, here in a linear scale. The fit function for all 𝜅 is given by
Equation (15).

follow a rather broad and anisotropic distribution (see
Figure 7), represented by 𝔅 and 𝔅𝜅.

Low-energy electron velocity distribution
The energy distribution is on the lower edge further
thresholded by MC simulation related energy cuts set
to Qcut = 10 eV. Accordingly, the -distribution is also
cut off at 𝛽cut ≈ 6.256 × 10−3, due to the monotone
relationship between kinetic energy and velocity.

We seek to quantify the width of the 𝜅-distributions
and thus analyze the impact of the energy cuts on 𝜅.
The normalized velocity components are shown in the
upper left panel of Figure 8, which are well described by
uniform distributions,that is,𝜅∕ ∼ [−1,1].The present
symmetry around zero indicates that the low-energy
electrons flow indeed isotropically without a net drift
across all 𝜅-components, as has been mentioned pre-
viously. By applying the latter in reverse, one obtains 𝜅
by multiplying  with samples from a uniform distribu-
tion. The resulting distribution as the product of the two
random variables can be calculated through43

f𝜅 (𝛽) = ∫
∞

−∞

f(𝛽′)f (𝛽∕𝛽′)∕|𝛽′|d𝛽′
=

1
2 ∫

∞

|𝛽| f(𝛽′)∕𝛽′d𝛽′, (14)

where we used that f(𝛽 < 0) = 0. Based on the
approximately linear decrease of  in the double-
logarithmic histogram shown in Figure 7 (upper left
panel), we describe  through a simple power law:
f(𝛽) ≈ 𝛼𝛽𝛼cut∕𝛽

𝛼+1𝜃(𝛽 − 𝛽cut) with the open parameter
𝛼. For simplicity, we tolerate the unphysical non-zero
probability beyond 1, that is, v > c0, which is, neverthe-
less,practically zero for the present parameter range.We
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IMPACT OF SECONDARY PARTICLES ON THE MAGNETIC FIELD GENERATED BY A PROTON PENCIL BEAM 1009

combine Equation (14) with the power-law distribution
and obtain

f𝜅 (𝛽) ≈
𝛼

2(𝛼 + 1)𝛽cut

{
1 |𝛽| ≤ 𝛽cut

(𝛽cut∕|𝛽|)𝛼+1 |𝛽| > 𝛽cut
. (15)

The 𝜅-distribution in Equation (15) is flat below the
threshold velocity and, according to the same power
law that applies to , falls off symmetrically beyond
𝛽cut. Based on the preceding empirical description, we
choose the full width at half maximum (FWHM) of the
𝜅-distribution as the desired measure for the distribu-
tion width (both Equation (15) and FWHM𝜅 are shown
in Figure 8):

FWHM𝜅 = 2(𝛼+2)∕(𝛼+1)𝛽cut. (16)

The standard deviation of 𝜅 is not suitable due to its
truncated shape.

High-energy electron velocity distribution.
The high-energy secondary electron distributions
(orange histograms in Figure 7) are significantly broader
than the 𝜅-distributions. While there is no drift along
the radial (𝔅𝜌) or azimuthal (𝔅𝜙) direction, one can
notice a shift of the 𝔅z-distribution in the forward direc-
tion. In other words, these electrons tend to traverse
downstream together with the primary protons. This
directional current originates predominantly from single
head-on electron proton interactions, known as hard
collisions44. The maximum energy transfer is approx-
imately given by ΔQmax ≈ 2𝛽2

p𝛾
2
pEe, where 𝛽p = vp∕c0

is the primary proton velocity relative to the speed
of light, 𝛾p = 1∕

√
1 − 𝛽2

p , and Ee is the electron rest
energy.Consequently, the maximum secondary electron
velocity is well approximated by

𝛽max
e ≈ 2𝛽p𝛾

2
p∕(1 + 2𝛽2

p𝛾
2
p). (17)

Longitudinal profile.
We extracted several statistical parameters from the
depth-dependent electron distributions, such as the
exemplary distributions in Figures 7 and 8 from the
entrance region, and collected them in Figure 9. The
electron data were laterally integrated within each z-
bin, since the shape of the distribution does not change
with the distance from the central axis, except for the
decreasing statistics due to fewer primary protons. In
other words, the almost isotropic electron cloud sur-
rounding the primaries does not depend on the lateral
position. In the following, we describe what is shown in
Figure 9 from the bottom to the top.

The width of the low-energy velocity distribution is
with FWHM𝜅 ≈ 1.41% approximately constant along
z. The percentage of high-energy electrons (pQe>Qthr

)
slightly decreases downstream due to the decreasing

F IGURE 9 Statistical parameters from depth-dependent
electron distributions extracted from NPS DNA_5 phase spaces.
FWHM𝜅 is given in Equation (16), pQe>Qthr

is the percentage of

electrons with kinetic energies above 1 keV,𝔅𝜅, s𝔅𝜅 , and 𝔅max
𝜅 are

the mean, standard deviation, and maximum values of the
𝔅𝜅-distributions (see Figure 7) and 𝛽max

e is given in Equation (17).

F IGURE 10 Charge density 𝜌f of protons (p+) and electrons
(e−). We show the mean of NPS PSs on the left and the sample
standard deviation on the right, which was estimated within
increasing volumes (see Section B for details). We compensated the
opposite charge of the electrons for clarity.

primary proton energy, starting from almost 3% in the
entrance region down to below 1% at the range.The 2%
estimate from Figure 6 is the average.

The high-energy standard deviations of the velocity
(s𝔅𝜅 ) as well as the mean velocity along z (𝔅z) show
an almost identical profile, gradually decreasing along z
from about 17% down to 6%. The absolute maximum
values 𝔅max

𝜌 and 𝔅max
𝜙

are shown as the 99.5th per-
centile, while 𝔅max

z is the 99.9th percentile. We have
chosen the percentile over the overall maximum (100th
percentile) since it follows the same trend, however it is
interrupted by individual higher peaks that most likely
originate from electrons involved in nuclear reactions.
Finally, 𝔅max

z is compared to 𝛽max
e from Equation (17),

as a function of the depth-dependent primary proton
velocity 𝛽p.

3.2 Charge and current density

3.2.1 DNA_5 data

The charge density of a proton beam with I = 0.2 μA,
together with its secondary electrons, is shown
in Figure 10. The maximum proton density of
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1010 IMPACT OF SECONDARY PARTICLES ON THE MAGNETIC FIELD GENERATED BY A PROTON PENCIL BEAM

F IGURE 11 Current density of protons (p+) and electrons (e−)
sorted by magnitude from strongest to weakest. See the caption of
Figure 10 for further details.

F IGURE 12 Simulated longitudinal (left) and lateral (right)
proton current densities for increasing beam spot sizes
𝜎b = {0.5,… , 4.5} mm. Only a subset of all 𝜎b is shown. The beam
current is 0.2 μA for all spot sizes.

approximately 0.37 p+/mm3, as mentioned in the
abstract, is taken from the upper left panel. As previ-
ously mentioned, the numerous electrons with energies
above 10 eV of the DNA_5 data far outnumber the
primary protons by up to 20-fold, especially at the range.
On the preceding plateau, the electron charge density is
approximately 10 times larger.The average factor 12 fol-
lows from the overall statistics (see Section 3.1.2). The
current density components of protons and electrons
with non-zero average are summarized in Figure 11.For
the calculation of the magnetic field with Equation (6),
the data of Figure 11 have been used, where Jz of
the protons needs to be expanded as described in
Section 2.3.1.

3.2.2 QGSP_BIC data with different spot
sizes

In Figure 12, we have collected the average longi-
tudinal and radial proton current density for different
initial beam spot sizes, which have been simulated with

F IGURE 13 Accumulated longitudinal and radial current
densities with different spot sizes from Figure 12 normalized to
currents Iz and I𝜌 through the gray areas. As opposed to Figure 12,
all 𝜎b were included. The impact of scattering and thus the
magnitude of I𝜌 compared to Iz appears exaggerated, which is
discussed in Section 4.4.

F IGURE 14 Radius-dependent range estimation for the DNA_5
data. For this purpose, we subdivided the data into annular rings
(color-coded from small [blue] to large [red] radii) and determined the
range based on error-function fits of the distal edge (right panel). The
upper left panel shows the complete profiles, which, when added up,
recover the profile from Figure 3 with 0.2 μA. The lower left panel
collects the radius-dependent range values, compared to the overall
range of 76.31 mm from Figure 3. The radially accumulated beam
profile is shown on its right vertical axis.

QGSP_BIC. We then applied the accumulation laws of
Equations (8) and (9) for the one-dimensional compari-
son in Figure 13. The longitudinal current Iz = Jacc

z 𝜋Δ𝜌2

is the flow through the circular cross-sectional area of
the innermost disk. The radial current passes through a
cylindrical area that changes within the pixel from zero to
2𝜋Δ𝜌Δz. We take the average, as depicted in Figure 13:
I𝜌 = Jacc

𝜌 𝜋Δ𝜌Δz.
For a more detailed analysis regarding the range, we

show a radius-dependent range in Figure 14. This is
motivated by the radially decreasing range as appar-
ent in Figure 4 due to the longer proton paths from the
lateral scattering.

3.3 Magnetic field

Finally, we present the calculated magnetic field
strengths, starting with Figure 15. Through Equation (5),
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IMPACT OF SECONDARY PARTICLES ON THE MAGNETIC FIELD GENERATED BY A PROTON PENCIL BEAM 1011

F IGURE 15 Magnetic field strength of a 0.2 μA beam from the
average current densities of NPS phase-spaces (PSs) (see
Figure 11). The horizontal dotted lines indicate the range at
76.31 mm from Figure 3. The vertical dashed lines correspond to the
profile plots from Figures 17 and 18, maintaining the same color
code. The electron contribution is flipped due to the opposite charge.

the total azimuthal field B𝜙 has been separated into B𝜙,z
and B𝜙,𝜌 that emerge from the z- and 𝜌-proton-currents
and B

𝜙,z
from the electron current along z. With Equa-

tion (7), we calculated the uncertainties and represent
the result in Figure 16 as absolute relative standard
deviation, RSD = 𝜎∕|𝜇|. The total uncertainty has been
collected in the usual fashion:𝜎2

B𝜙
= 𝜎2

B𝜙,z
+
̄
𝜎2

B𝜙,z
+ 𝜎2

B𝜙,𝜌
.

In Figure 17, we further analyze the magnetic field
strength with profile plots parallel to the central beam
axis at a distance of 5 cm. There, the results from
Figure 15 are compared to the magnetic field strengths
Bacc
𝜙,z and Bacc

𝜙,𝜌 from the accumulated currents Jacc
z and

Jacc
𝜌 (see Sections 2.2.1 and 2).We estimated the uncer-

tainty with Equation (7) and the standard deviation of the
mean, that is, 𝝈J𝜅 → 𝝈J𝜅∕

√
NPS, which is not to be con-

fused with the fluctuation estimation from Figure 16. In
addition, we take the current profile from Figure 3 and
calculate with the corresponding current density Jfit

z the
magnetic field Bfit

𝜙,z.Except for the noise,Jfit
z is identical to

Jacc
z , hence the agreement between Bfit

𝜙,z and Bacc
𝜙,z . The

fit enables a further separation into the error-function
current Jerf

z = g(z)∕(𝜋Δ𝜌2) and the attenuation-related
current Jatt

z = [f (z) − g(z)]∕(𝜋Δ𝜌2) (see Equation (13)
and text above for details). Accordingly, Bfit

𝜙,z = Berf
𝜙,z +

Batt
𝜙,z. Lastly, for reference we added the analytical result7

F IGURE 16 Relative standard deviation (RSD) of the results
presented in Figure 15, with the current density uncertainty from the
right column of Figure 11. See the caption of Figure 15 for further
details.

F IGURE 17 Magnetic field profiles along the vertical lines of
Figure 15. Bacc

𝜙,z and Bacc
𝜙,𝜌 are the fields of the accumulated currents

(Sections 2.2.1 and 2). We added the analytical result Bref
𝜙,z from

Equation (18) with the initial current of I = 0.2 μA and the
error-function weight from Figure 3: I = wg = 0.174 μA. The
separation of the profile from Figure 3 into error-function and
attenuation profile Bfit

𝜙,z = Berf
𝜙,z + Batt

𝜙,z is also shown. The colored lines
are surrounded by an error estimate, which is, however, due to its
small size, only visible in the inset around the range. We also
attached a closeup of B𝜙,𝜌 and Bacc

𝜙,𝜌 on the bottom.

Bref
𝜙,z =

𝜇0I
4𝜋𝜌

⎛⎜⎜⎜⎝1 −
z − zg√

𝜌2 + (z − zg)2

⎞⎟⎟⎟⎠ (18)

which is obtained under simplified assumptions, that is,
neglecting nuclear reactions and range straggling. The
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1012 IMPACT OF SECONDARY PARTICLES ON THE MAGNETIC FIELD GENERATED BY A PROTON PENCIL BEAM

F IGURE 18 Second derivative with respect to z of the results
presented in Figure 17. See the caption of Figure 17 for a more
detailed description.

apparent horizontal shift between Bfit
𝜙,z and the idealized

Bref
𝜙,z with I = 0.2 μA is further investigated in Figure 18.

The second derivative of Equation (18) with respect to
z has a root at the range:

𝜕2Bref
𝜙,z

𝜕z2
=

3𝜇0I𝜌
4𝜋

z − zg√
𝜌2 + (z − zg)2

5
. (19)

Hence, we estimate the second derivative of various
results presented in Figure 17 as a simple approach to
quantify range shifts with respect to the ideal Bref

𝜙,z. Anal-
ogous to Figure 17, the results have been collected in
Figure 18. Computationally, we used the second-order
central difference to approximate the differentiation.

4 DISCUSSION

To summarize, we aimed to analyze the influence of
secondaries (including nuclear reactions) and current
density fluctuations on the magnetic field generated by
a proton beam. We also investigated the impact of the
beam spot size.

4.1 Phase-space analysis: protons

We begin with the proton velocity analysis from Figure 4.
Through scattering, the average radial velocity v𝜌
increases downstream, while its standard deviation sv𝜌
remains approximately constant. The latter is for the
most part larger than v𝜌, leading to a relative uncer-
tainty above 100%. Due to the cylindrical symmetry, we
have v𝜙 ≈ 0, with sv𝜙 ≈ sv𝜌 , since both originate from
Coulomb scattering. The positive and negative devia-
tions from v𝜙 ≈ 0 are related to low statistics. Finally, vz
dominates and is not exceeded by its uncertainty svz

,
which increases longitudinally due to energy straggling.
Yet, svz

∕vz < 1 throughout. Overall, we expect the mag-

netic field from the radial proton current to be subject to
larger fluctuations than from the longitudinal current.

The constancy of the beam current hinges upon
the charge density increasing at the same rate as the
velocity decreases. However, energy straggling and the
corresponding penetration depth uncertainty has a dis-
tributing or spreading effect, potentially reducing the
charge density. Hence, we analyze, whether the drop of
current, as shown in Figure 3, can partially be attributed
to energy straggling, which was the main purpose of
the beam analysis presented in Figure 5. The expected
main contributing process, reducing the beam current,
are nonetheless the nuclear reactions, neglecting the
weak lateral current (Figure 12). Comparing the more
accurate f̃ b

n (z),which includes energy straggling,with the
ideal f b

n (z), we see that energy straggling has negligible
impact prior to the range. Only the smooth drop of f̃ b

n (z)
at the range is caused by range straggling. Since we
neglected the nuclear reactions during the calculation of
f̃ b
z (z) in Section D.1, the gradually increasing difference

between f̃ b
z (z) and the DNA_5 data can exclusively be

attributed to nuclear reactions.Yet, the nuclear reactions
do not eradicate the rise of the charge density along z,
increasing to more than twice its initial value, which is a
crucial characteristic that prevents a significant drop in
magnetic field intensity. In fact, the difference between
f̃ b
n (z) and the DNA_5 data is at most 15%, which is also

the ratio between the initial current and the weight wg
of the error function contribution from the fit of Figure 3.
We can thereby largely confirm the expectation from a
more analytical work7, now on a MC basis.

Shortly before the range f̃ b
n (z) even exceeds f b

n (z),
since the spread of the sharp peak from f b

n (z) occurs
longitudinally in both directions. Upon close inspection,
this is visible in the upper left panel of Figure 5, but
much more pronounced for Ĩ in the lower left. Note that
the velocity extrapolation, used in vz(z), provides an
accurate description of the data.

Finally, the DNA_5 energy distribution is well
described through the idealized f b

Q(Q), given that a
symmetric blurring has little impact. Based on the
increasing number density distribution along z and that
the average proton energy decreases downstream, the
naïve expectation of the energy distribution would be
that it rises toward lower energies. Yet, both the theo-
retical description f b

Q(Q) and the DNA_5 data exhibit a
contradicting distribution. The explanation of this coun-
terintuitive result lies within the concave shape of z(Q),
that originates from the increasingly more rapid energy-
loss downstream. Therefore, an energy interval ΔQ is
initially associated with a wide Δz, which decreases
with lower energies. Accordingly, the distribution should
have more particles with higher energies and fewer
with low energies. The opposing expectation, based on
the shape of f̃ b

n (z), is therefore not invalid but merely
overshadowed by the countering z(Q)-effect. In fact, the
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IMPACT OF SECONDARY PARTICLES ON THE MAGNETIC FIELD GENERATED BY A PROTON PENCIL BEAM 1013

former effect dominates for very low energies, where
the curvature of z(Q) changes, leading to a minimum
of f b

Q(Q) close to Q = 0 (see the inset of the upper right
panel of Figure 5).

4.2 Phase-space analysis: electrons

The empirical sub-division at Qthr = 1 keV is well jus-
tified with Figure 6, enabling a simple separation into
relevant high-energy and negligible low-energy elec-
trons. The directionality of the secondary electrons is
dictated by the binary encounter peak angle45.For track-
structure codes, such as Geant4-DNA, it is applied for
energies above 100 eV46,47. In our results (see Figure 6),
we can only see very slight forward scattering above
100 eV, since the deflection angle is almost perpendic-
ular to the primary proton track for such low energies.
A practical conclusion for future work is to raise the cut
energy to the threshold energy, which should acceler-
ate simulation times significantly, since only 2% of the
DNA_5 data need to be simulated and saved to obtain
the same results.

In Section 2.1.1, we have argued that the homoge-
neous charge relaxation current does not lead to an
additional magnetic field, yet it has not been discussed
whether the secondary electrons increase the conduc-
tivity, which would lead to an asymmetric current. We
would argue that the latter is not the case, for the follow-
ing two reasons.First,while there are 105–106 electrons
per primary proton, their density remains low relative
to the ionic charge carriers of the target, which is in
the order of Avogadro’s number. Recall that the primary
protons have low densities themselves (see Figure 2).
The second reason are the immensely short lifetimes
of secondaries. As mentioned in Section 3.1.2, they
are sub-picoseconds with energies above 10 eV and
captured quickly thereafter. Alternatively, they enter a
solvated state within the same timescales that lies below
the conduction band48. This means that while the pri-
mary proton is still underway, its secondary electrons
are already absorbed. Simultaneously, the charge relax-
ation times are above the nanosecond scale7, so that
the primary protons downstream cannot exert a drift on
the short-lived electrons.

The symmetric low-energy electron distributions are
shown in Figure 8. It follows straight from Equation (14)
that any -distribution with a lower threshold will lead
to a plateau within |𝛽| ≤ 𝛽cut for 𝜅 as long as 𝜅∕ ∼[−1,1]. This provides an explanation for the unexpected
plateau in 𝜅 as a mere consequence of the MC cut
energy. The empirical power-law fit provided a close
description of the 𝜅-distributions, yet it fails to capture
the tails. With the sharp drop of the power-law (𝛼𝜅 ≈
4.89(2)) f𝜅 (𝛽) is hardly broader than the cut velocity
such that FWHM𝜅 ≈ 2𝛽cut. Hence, a somewhat higher
Qcut would have eradicated the vast majority of elec-

trons,as can also be confirmed with Figure 6.Compared
to the target electrons, the instantaneous density of
secondary electrons remains comparatively low so that
together with their short lifetimes, high velocities (10 eV
corresponds to 0.6% of c) and random trajectories, one
can neglect their mutual interactions. In hindsight, this
also justifies the use of MC.

From Figure 7,we see that the small shift of 𝔅z toward
positive velocities gives rise to the complete electron
current. Note that even though the primary protons do
exhibit a radial drift, the same cannot be observed for
the secondary electrons.The comparatively low strength
and the strong fluctuations of the primary proton veloc-
ity (Figure 4) suppress a radial trend of the electron
flow.

The summary of Figure 9 shows that the homoge-
neous electron cloud is constant along the beam. This
allows for a collective analysis of the low-energy elec-
trons, integrated also along z. Instead of the power law,
it is probably more natural to consider a normal distri-
bution for the velocity components 𝜅. Some theoretical
considerations and the corresponding truncated normal
distribution are given in Section C together with the fit in
Figure C.2. While the Gaussian model demonstrates a
good description of the data in the linear scale and close
to 𝛽cut, large discrepancies emerge in the logarithmic
scale, with the data included up to 𝛽thr. Yet, the Gaus-
sian model is worthwhile,since it allows an extrapolation
and furthermore an estimate of the total number of elec-
trons if no energy cuts were applied, that is, Qcut = 0.
By this approach, there should be 4.7 ± 0.2 times more
low-energy electrons. Accordingly, the high-energy frac-
tion shrinks from 2% (from Figure 6) to below 0.5%.
However, this analysis is deliberately not part of the
results,being a somewhat crude extrapolation based on
comparatively little truncated data.

The non-zero longitudinal electron drift 𝔅z (red line
of Figure 9) is strongly perturbed by the uncertainties
s𝔅𝜅 of almost identical magnitude,which can already be
appreciated in Figure 7. With the corresponding relative
uncertainty close to one, just like v𝜌 of the protons, we
also expect larger magnetic field uncertainties. Finally,
the upper threshold of the 𝔅z-distribution 𝔅max

z is well
described by the depth-dependent maximum energy
of the secondary electrons 𝛽max

e from Equation (17)
(orange line of Figure 9). This supports the statement
from above that the 𝔅𝜅-electrons result from hard, that
is,head-on,collisions.These interactions solely give rise
to the relevant electron current.

4.3 Charge and current density

The longitudinally increasing proton charge density is
indeed also present in Figure 10. Likewise its uncer-
tainty s𝜌f

increases, indicating that the initial Poissonian
uncertainty also applies downstream, which increases
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1014 IMPACT OF SECONDARY PARTICLES ON THE MAGNETIC FIELD GENERATED BY A PROTON PENCIL BEAM

with the square root of the proton counts. The magni-
tude of s𝜌f

is comparable to 𝜌f itself due to the low proton
counts per voxel. Yet again, Figure 10 shows the abun-
dance of electrons over protons. However, the larger
electron counts also undergo uncertainties of compa-
rable size, much like the protons, despite the larger
statistics. Therefore, the Poissonian expectation does
not apply to the electrons. The latter can be explained
bearing in mind that the secondary electrons do not
scatter far away from the primary protons. If a proton
occupies a voxel, then so do many secondary electrons.
Similarly, the absence of protons leads to an absence
of electrons (“all-or-nothing”). This close correlation lets
the electron counts fluctuate like the protons, just in
larger quantities.

The proton current strength J̄z in Figure 11 decreases
longitudinally due to lateral scattering and nuclear reac-
tion related losses. The increasing s𝜌f

is suppressed
in sJz

due to the decreasing velocity (J̄z = �̄�fv̄z). More-
over, the impact of the rising vz-fluctuations (Figure 4),
as a result from energy straggling, is comparatively low
and can therefore not be observed in sJz

. In terms
of strength, the electron current is approximately one
order of magnitude weaker than the proton current. Yet,
there are approximately 10 times more electrons with
energies above 10 eV than protons (certainly more,con-
sidering Figure C.2). This discrepancy is resolved with
the foregoing PS analysis of the electrons. We had that
only 2% of electrons contribute to the non-zero aver-
age, which compensates the two orders of magnitude
difference. These electrons (𝔅z from Figure 9) are on
average slower than the protons, whose velocity is com-
parable to 𝔅max

𝜌 or 𝔅max
𝜙

. Their maximum speeds up
to 0.7 × c0 contribute to the large variability, which is
also explained by the low relevant electron counts. In
summary, few swift electrons comprise the electron cur-
rent, as opposed to many slow ones. Yet another order
of magnitude weaker is the radial proton current, with
an relative uncertainty below one. Its contribution to the
magnetic field will be negligible.

4.4 Spot size impact

For small beam spot sizes (0.5–2.5 mm), the lateral
scattering leads to an apparent drop in longitudinal cur-
rent density Jz, as can be seen on the left panel in
Figure 12. However, while the field strength close to the
central beam axis might be impacted, the accumulated
currents Iz from Figure 13 are equal, implying no field
strength differences among different spot sizes in the
far-field. This is a rather expected behavior based on
Ampère’s law, since the current for, for example, 𝜎b =

0.5 mm and z > 40 mm is more spread out but still
flows approximately in parallel.For larger spot sizes, this
effect is less pronounced, due to an approximate equi-

librium of scattering toward and away from the central
beam axis.

The radial scattering increases downstream, except
for 𝜎b = 0.5 mm, which is dominated by the afore-
mentioned increasing spreading.Comparing the current
strengths of Jz to J𝜌 for each 𝜎b (left vs. right in
Figure 12),J𝜌 is once again approximately two orders of
magnitude weaker than Jz. Yet, the accumulated radial
currents I𝜌 in Figure 13 are comparable to Iz, whereby
similar field strengths could be expected.However,while
B𝜙,z ∝ Jz, B𝜙,𝜌 ∝ 𝜕J𝜌∕𝜕z, depending on the change of
J𝜌 along z. Therefore, it is not sensible to compare Iz
and I𝜌 regarding the corresponding field strengths. It
is unexpected, however, that also J𝜌, under the square
weight accumulation of Equation (9), integrates to a spot
size independent profile (see Figure 13). Nonetheless,
we find that this result is indeed supported by simple
scattering theory (Fermi–Eyges). Details are given in
the Supporting information: Section E. Altogether, nei-
ther Jz nor J𝜌 are affected by the spot size in the far-field.
This also holds true for beam spot sizes larger than the
simulated 5 mm.

4.5 Two-dimensional magnetic field
profiles

The total azimuthal magnetic field B𝜙 is dominated by
the longitudinal current Jz and only slightly lowered by
the electron current (Figure 15).The impact of the radial
current is negligible. Since B𝜙,𝜌 ∝ 𝜕J𝜌∕𝜕z, as mentioned
previously, its strongest contribution is at the range due
to the sharp drop of current. It changes sign, since the
radial current initially increases (as shown in Figure 13).
Since we did not extend the radial and electron current,
we see that B𝜙,𝜌 and B

𝜙,z
approach zero toward z = 0,

as opposed to B𝜙,z.
The separation into individual PSs enabled an esti-

mation of uncertainty, which we translated to the B𝜙
uncertainty through Equation (7). To clarify the interpre-
tation of the results in Figure 16, they quantify, more
specifically, the variability of the resulting magnetic field
from different static PSs. The dynamic nature of the
process is neglected, in particular the propagation of
the field to the detector, which strongly depends on the
medium7. Nonetheless, Figure 16 confirms the overall
expectation, that the strong current density fluctuations
(Figure 10) lead to high RSD.The further we move away
from the central beam axis, the more current elements
contribute to the signal, averaging out the fluctuations.
The zero-crossing of B𝜙,𝜌 causes the high RSD around
z = 50 mm.Overall, the magnitude of the RSDs is in line
with the sJ𝜅 from Figure 10, with the dominant contri-
bution once again from the longitudinal proton current.
The results from Figure 16 focus on the azimuthal com-
ponent. The v𝜙 uncertainties (Figures 4 and 9) lead to
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IMPACT OF SECONDARY PARTICLES ON THE MAGNETIC FIELD GENERATED BY A PROTON PENCIL BEAM 1015

B𝜌 and Bz fluctuations, which are likely of similar mag-
nitude, but cannot be estimated under our symmetry
assumptions from Section 2.1.2. Due to the rapid pro-
ton velocities (Figure 4), the fluctuations should be in
the nanosecond time scale, that is, in the GHz frequency
range. They are not expected to disturb a measure-
ment means of optical magnetometry, which is further
discussed in Section F.

4.6 One-dimensional magnetic field
profiles

First and foremost, Figure 17 confirms the accumula-
tion rules from Sections 2.2.1 and 2 due to the excellent
agreement between B𝜙,𝜅 and Bacc

𝜙,𝜅 . Also, the analytical
references Bref

𝜙,z from Equation (18) with the initial cur-
rent of I = 0.2 μA and the remaining range current of
I = 0.174 μA are indistinguishable from Berf

𝜙,z, which are
based on smoother current profiles as opposed to the
sharp step used for Equation (18). Hence, range strag-
gling does not perturb or shift the magnetic field profile
in the far-field. In addition, the two Bref

𝜙,z provide an enve-
lope for the more accurate B𝜙,z, which is as expected,
since Jz transitions continuously from 0.2 to 0.174 μA
(Figure 3). Yet, it appears shifted back with respect to
the 0.2 μA profile.A natural explanation might be the lat-
eral scattering leading to shorter projected ranges due
to the curved paths. This effect is, for example, present
in Figure 4.We inspected this hypothesis with Figure 14.
While the range is indeed longitudinally shifted for larger
radii, the vast majority of protons maintain the range
close to 76.31 mm. The scattering does not provide an
explanation for the shift. Therefore, in Figure 17 we sep-
arately show the B𝜙,z-field contribution related to the
attenuation Batt

𝜙,z.
The zero-crossing of the second derivative provides

a simple assessment of a Batt
𝜙,z related profile shift

(Figure 18). This criterion has been chosen, since it
is less susceptible to differences in magnitude, that
is, Bref

𝜙,z(I = 0.174 μA) may appear shifted horizontally

with respect to Bref
𝜙,z(I = 0.2 μA) in Figure 17, but both

𝜕2
z Bref

𝜙,z pass through zero precisely at zg = 76.31 mm

in Figure 18. And indeed, with 𝜕2
z Batt

𝜙,z > 0 at the range,

𝜕2
z B𝜙,z, 𝜕2

z Bacc
𝜙,z and 𝜕2

z Bfit
𝜙,z are equally shifted back

by approximately 1.3 mm. Electrons together with the
radial current further enlarge the distance from zg
and the zero-crossing of B𝜙 to roughly 2.4 mm. Note
that the shift changes with the radius. For 𝜌 > 45 mm,
it increases linearly and can thus be described by
z[mm] = p1 ⋅ 𝜌[mm] + p0, where p1 = −0.0709(1) and
p0 = 77.47(1) mm. In summary and ordered from most
to least contributing, the shift originates from the atten-

uation of nuclear reactions, the electron current and the
radial proton current.

In terms of magnitude, Batt
𝜙,z approximately cancels

B
𝜙,z

, which is why B𝜙 is well approximated by Bref
𝜙,z(I =

0.174 μA). Just as in Figure 15, since both the electron
and radial proton current only exist inside the target,B

𝜙,z
and B𝜙,𝜌 trend toward zero for z < 0.

4.7 Toward detection

Having presented a detailed analysis of the magnetic
field that originates from a proton pencil beam, we can
now roughly evaluate a potential clinical applicability.
The underlying principle is that the longitudinal profile
carries information about the range. We have shown
that technically it could be extracted from the second
derivative with respect to z, where attenuation, electron
current and radial proton current related shifts need
to be compensated. Yet, the necessary sensitivity to
probe second-order variations of the B-field directly
seems beyond current technical capabilities. For our
work,we have used 𝜕2

z B𝜙 as a tool to quantify the impact
of effects that have been neglected thus far. A more
direct approach would be to measure the magnetic field
itself. One could then obtain the range by optimizing the
agreement between the measured and expected profile
of B𝜙 along z as it is shown in Figure 17. As its range is
known, it could be inferred from the measured data.

In terms of magnitude, this seems feasible. In par-
ticular, assuming a sensitivity of 3.6 fT∕

√
Hz49 and a

pulse duration of 10 μs one may detect field strengths
of 1 pT. For our calculations, we have considered rather
small beam spot sizes (2.5 mm) and currents that lie well
within the technical limitations of S2C2 so that the dose
of a single pulse is comparatively low: 37 mGy. Consid-
ering a more practical spot size of 7.5 mm (relying on
spot size independence, as investigated with Figure 13)
and allowing for a dose of 0.1 Gy, the peak beam cur-
rent can be about 20 times larger,while S2C2 can deliver
up to 100 times larger peak beam currents31 and some-
what longer pulses13.Accordingly,the field strength rises
from about 0.5 (Figure 17) to 10 pT, one order of magni-
tude above the sensitivity limits. A further enhancement
can be achieved by averaging the signal over multi-
ple pulses, as has been done in the work of Lehrack
et al.50, investigating ionoacoustics as an alternative
range verification approach.

Higher doses should still be tolerable so that stronger
currents or longer pulses are possible. Thereby, one
enters the regime of ultra-high dose rates, known as
FLASH, where a magnetic field based range verification
may become a more interesting approach, as its signal
strength scales with the current and thus dose rate. In
fact, considering the average rather than instantaneous
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1016 IMPACT OF SECONDARY PARTICLES ON THE MAGNETIC FIELD GENERATED BY A PROTON PENCIL BEAM

F IGURE 19 Theoretical accuracy of a range measurement. The
simulated measurements are on the left, whereas the difference
between measured (zm) and actual range (zr) is on the right. The
latter is fitted with a normal distribution.

current, 0.2 μA is close to the necessary dose rate for
FLASH31.

Since the signal strength decreases with the distance
from the source, it is preferable to place detectors as
close as possible to the proton beam. Also, the lon-
gitudinal B-field profile flattens with increasing 𝜌 (see
Equation (18)), which provides further motivation to
minimize the distance. How close sensitive magnetom-
etry devices can be placed to the human body is also
of interest in magnetoencephalography (MEG). SQUID
detectors are as close as 2 cm away from the scalp51,
while using optical magnetometers a separation as low
as 5 mm is possible52,53. In order to detect the B-field
profile, one would need an array of detectors. Once
again, we can take rough estimates from MEG, where
a spacing of about 20–30 mm is used54. This may
be sufficient considering the rather smooth profile from
Figure 17.

Related to MEG, coping with noise from bioelectric-
ity is a major concern toward a clinical application, as
it potentially masks the sought signal. One potential
approach to overcome this issue is by realizing that elec-
tromagnetic biological fields are in the low-frequency
regime, reaching up to 100 Hz as known from MEG54.
One may separate the low-frequency background from
the signal of the proton beam by oscillating the beam
current at frequencies above the biological threshold.As
magnetometry can be tailored toward oscillating fields55,
it could enable a detection in the presence of noise by
searching for the known reference frequency.

A detection would require shielding from external
magnetic fields,which is common practice in MEG.With-
out active pencil beam scanning, the fringe fields in
the treatment room are below mT, where the closest
quadrupole magnet is 2.99 m away from the isocenter56.
This should be even lower with the setup from Paul
et al.57,where the magnets are more than 6 m away from
the isocenter.

Finally, based on the assumptions made in this sec-
tion, we make an estimate regarding the accuracy of
a potential range verification through a magnetic field
measurement.Therefore,we have simulated a measure-
ment process (see Figure 19) by randomly sampling
the ideal magnetic field (B𝜙-profile from Figure 17) at

a few selected detector locations (longitudinally spaced
by 20 mm over a distance of 16 and 5 cm away
from the central beam axis) from a normal distribution.
Strength and uncertainty are given above.We then fit the
expected profile to the “measured data” and extract the
longitudinal position. As shown in Figure 19, the accu-
racy of a single pulse measurement (0.1 Gy) would
be about 3.91 mm, while an average over five pulses
increases the accuracy to 1.75 mm.

4.8 Limitations

The present study sought to establish a fundamen-
tal understanding regarding the impact of secondaries
on the primary proton beam current and its associ-
ated magnetic field.A couple of simplifying assumptions
were made, whose justifications and shortcomings are
discussed here.

First, the uniform axial-symmetric geometry is only a
very rough approximation of a patient-like target. Future
work should consider more realistic phantoms. On the
other hand, it enabled a reduction to two-dimensional or
one-dimensional profiles and thereby a simple analysis.
At the present early stage of these investigations,simpli-
fied geometries are crucial to extract general statements
from complex simulated data. Also, within this study we
compare the results to our previous analytical work,
which was based on the same geometry.

Furthermore, this work relies on MC, which can-
not simulate interactions between particles and there-
fore neglects conductive processes. For heterogeneous
targets, small additional magnetic fields could arise
from non-symmetric conduction currents. This needs
to be simulated with a completely different numerical
approach, far beyond this first assessment. Experi-
mentally, impact of the target’s conductivity could be
assessed by a comparison with a non-conductive target,
such as PMMA.

5 CONCLUSION

Through the present work, we provided a comprehen-
sive analysis of the static magnetic field created by a
therapeutic proton beam. Initially, the necessity for a
quasi-static FEA formalism, allowing for ∇ ⋅ J ≠ 0 has
been underlined and discussed. We also largely simpli-
fied the computational cost by exploiting the cylindrical
symmetry and making use of exponential spacing.
Relying on Geant4-DNA simulations, we find that the
secondary electrons, despite their relative abundance,
decrease the proton current by only about 10%, which
is primarily caused by few directional head-on proton–
electron collisions, while the vast majority (more than
98%) flows isotropically. The radial scattering leads to
strongly fluctuating radial current,which can however be
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IMPACT OF SECONDARY PARTICLES ON THE MAGNETIC FIELD GENERATED BY A PROTON PENCIL BEAM 1017

neglected as it is two orders of magnitude below the lon-
gitudinal current. The accumulation laws show that the
magnetic field from both lateral and longitudinal current
is independent of the spot size. The increasing proton
charge density along the beam explains the approx-
imately constant current density, which is somewhat
lowered by nuclear reaction losses. The latter, together
with the electron current, shift back the magnetic field
profile by approximately 2.4 mm at 𝜌 = 50 mm. For
𝜌 > 45 mm, the shift increases linearly. The relatively
low proton count, despite a beam current of 0.2 μA,
leads to strong fluctuations close to the beam,yet 10 cm
away from the beam axis, the RSD drops below 2%. We
also have argued that these fluctuations should have
a negligible impact on a measurement. Finally we have
discussed how a potential clinical application could
be implemented.

Future work should lift the quasi-static assump-
tion and further investigate the time dependence,
including conductivity effects. Also, the precision of
the suggested range verification needs to be fur-
ther assessed. It depends on several factors such as
geometry and target site, beam current, detector type
and their accuracy (SQUID vs. optical magnetome-
try), detector placement, averaging, frequency depen-
dence, and regression-based determination comparing
expected vs. predicted profile. This should be feasi-
ble with the more fundamental analysis presented in
this work. Whether the advantages (simple principle
idea, signal strength scaling with the current) outweigh
the challenges (experimental realization) need to be
analyzed.
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