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Abstract
We review the widely used concepts of “buoyancy” and “convective available
potential energy” (CAPE) in relation to deep convection in tropical cyclones and
discuss their limitations. A fact easily forgotten in applying these concepts is that
the buoyancy force of an air parcel, as often defined, is non-unique because it
depends on the arbitrary definition of a reference density field. However, when
calculating CAPE, the buoyancy of a lifted air parcel is related to the specific ref-
erence density field along a vertical column passing through that parcel. Both
concepts can be generalized for a vortical flow and to slantwise ascent of a lifted
air parcel in such a flow. In all cases, the air parcel is assumed to have infinitely
small dimensions. In this article, we explore the consequences of generalizing
buoyancy and CAPE for buoyant regions of finite size that perturb the pres-
sure field in their immediate environment. Quantitative calculations of effective
buoyancy, defined as the sum of the conventional buoyancy and the static ver-
tical perturbation pressure gradient force induced by it, are shown for buoyant
regions of finite width. For a judicious choice of reference density, the effective
buoyancy per unit mass is essentially a unique force, independent of the refer-
ence density, but its distribution depends on the horizontal scale of the buoyant
region. A corresponding concept of “effective CAPE” is introduced and its rele-
vance to deep convection in tropical cyclones is discussed. The study is conceived
as a first step to understanding the decreasing ability of inner-core deep convec-
tion in tropical cyclones to ventilate the mass of air converging in the frictional
boundary layer as the vortex matures and decays.
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1 INTRODUCTION

This article was motivated, in part, by attempts to under-
stand the evolution of inner-core deep convection during

the life cycle of a tropical cyclone. However, it soon became
clear that the concepts are more widely applicable to con-
vective systems in the Tropics and elsewhere. The terms
“buoyancy” and “convective available potential energy”
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(CAPE) are widely invoked concepts in relation to deep
convection, in general, and to deep convection in the Trop-
ics (including tropical cyclones) in particular. However,
the limitations of these concepts are not always recog-
nized or understood and can lead easily to arguments
that are misguided or incomplete. A central problem is
that air-parcel buoyancy as commonly defined is not a
unique quantity because it depends on a reference den-
sity, which is usually chosen to characterize the density of
the air parcel’s environment. Nevertheless, CAPE, which
is the vertical integral of the buoyancy, is considered to be
a unique quantity, subject to the thermodynamic process
assumed for the lifted air parcel and the parcel’s height
and thermodynamic state. Lucid articulations of the issues
involved are provided by Doswell and Markowski (2004)
and Houze (2014), whereas efforts to address these issues
are described in articles by Davies-Jones (2003), Paluis and
Garner (2006, section 4), and more recently by a number
of other workers (Jeevanjee and Romps, 2015; 2016; Peters,
2016; Morrison, 2016; Tarshish et al., 2018; McKim et al.,
2020).

With applications to deep convection in tropical
weather systems and tropical cyclones in mind, in
Sections 2 and 3 we review the definitions of buoyancy and
CAPE and some of their limitations. Then, in Section 4,
we review briefly the extension of these concepts to “air
parcels” or buoyant regions of finite size following the
insightful articulation of this extension by Houze (1993;
2014), which leads to the concepts of “effective buoyancy”
(a term evidently first introduced by Davies-Jones (2003))
and “effective CAPE” as envisaged by Doswell and
Markowski (2004). In Sections 5 and 6 we offer a range of
calculations of effective buoyancy and effective CAPE rel-
evant to the tropical atmosphere. In Section 7 we discuss
some applications of the foregoing ideas to understand-
ing tropical convection and tropical cyclones. In Appendix
A we compare the Houze (1993) formulation with that
of Davies-Jones (2003), highlighting some issues with the
efforts of Peters (2016) to quantify “local buoyancy”.

2 BUOYANCY

In a non-rotating, inviscid fluid, the three-dimensional
momentum equation is

𝜕u
𝜕t
+ u ⋅ ∇u = −1

𝜌
∇p − gk, (1)

where u is the velocity vector, p is the pressure, 𝜌 is the
density, g is the acceleration due to gravity, and k is a unit
vector in the local vertical direction. The left-hand side of
the equation is just the vector acceleration of a fluid parcel

and the right-hand side is the force per unit mass acting
on the parcel. Defining a reference density 𝜌o(z) and a ref-
erence pressure po(z) that are in hydrostatic balance (i.e.,
dpo∕dz = −g𝜌o), Equation (1) may be written in terms of
a “perturbation pressure” p′ = p − po(z) and a “buoyancy
force” b = −g(𝜌 − 𝜌o)∕𝜌, both per unit mass, to give

𝜕u
𝜕t
+ u ⋅ ∇u = −1

𝜌
∇p′ + bk. (2)

The vertical forces per unit mass on the right-hand sides of
Equations (1) and (2) are the same; that is,

−1
𝜌

𝜕p
𝜕z
− g = −1

𝜌

𝜕p′

𝜕z
+ b. (3)

The numerator in the definition of b, that is,−g(𝜌 − 𝜌o),
is sometimes referred to as the “Archimedean buoyancy
force per unit volume” (e.g., Davies-Jones, 2003). The ref-
erence density can be arbitrary, but it is usually chosen
to be density in the far environment or an areal average
of the density over some domain. Although either side
of Equation (3) is independent of the choice of reference
density, p′ and b are not. Thus, the buoyancy force and
corresponding perturbation pressure gradient force are not
uniquely defined: They depend on the choice of reference
density.

In certain slowly spreading flows, such as buoyant
plumes or buoyant jets, a scale analysis of the governing
equations shows that the parcel buoyancy b dominates
the perturbation pressure gradient −(1∕𝜌)𝜕p′∕𝜕z, at least
when the reference density is chosen to be that in the
plume or jet environment (Morton et al., 1956). However,
if the reference density were chosen to be along the axis
of the plume or jet, the buoyancy would be zero along the
axis and negative elsewhere and the perturbation pressure
gradient would be the dominant term. The same would be
true for the updraught of a deep convective cloud, at least
at altitudes where the updraught width is spreading only
slowly with height. On the other hand, for some distance
below the detrainment level where the updraught spreads
out, a perturbation pressure gradient force, comparable in
magnitude to the buoyancy force, is generally required to
decelerate the updraught in the vertical and accelerate it
horizontally (see Section 5).

By itself, the concept of buoyancy is limited because
it is not the only vertical force and, depending in part on
the choice of reference density in its definition, it may
not be the dominant force in a particular situation. This
feature was recognized in early modelling studies of con-
vective clouds (see Holton, 1973 and references therein);
we return to this feature in Section 5. A way to circum-
vent the non-uniqueness of buoyancy in the context of
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2120 SMITH and MONTGOMERY

moist convection was suggested by Davies-Jones (2003)
and explored further by Peters (2016) (see Section 4).

In a rapidly rotating flow such as a tropical cyclone,
the air parcel buoyancy will have a radial and a vertical
component and the reference density may be generalized
to be a function of both radius and height. In this case,
one might wish to consider “local buoyancy” with respect
to a background vortex that is in thermal wind balance
(Smith et al., 2005). The field of buoyancy associated with
the background vortex would then be regarded as “system
buoyancy”.

3 CAPE

Emanuel (1994) defines CAPE as the potential energy
gained by an air parcel in rising from its current level zi
in a conditionally unstable atmosphere to its level of neu-
tral buoyancy (LNB), whereas many others (e.g., Houze,
2014; Siebesma et al., 2020) define it as the potential
energy gained as the air parcel rises between its level of
free convection (LFC) and its LNB. In practice, at least
in the moist Tropics, the convective inhibition between
zi and the level of free convection is relatively small so
that there is not much difference between the two def-
initions. In both cases, it is assumed that there is no
mixing with environment air and that the lifted air par-
cel conserves either its pseudo-equivalent potential tem-
perature (best for deep precipitating convection) or its
reversible equivalent potential temperature (best for shal-
low non-precipitating convection).

Using the Emanuel (1994) definition, we may write

CAPE = ∫
LNB

zi

b dz, (4)

where z measures height and b is the buoyancy force per
unit mass. The alternative definition, which we shall adopt
here, may be written

CAPE = ∫
LNB

LFC
b dz. (5)

In either definition, the reference density for calculating
the buoyancy is always the profile of density along the ver-
tical line that passes through the initial air parcel so that
the buoyancy in Equations 4 and 5 is uniquely defined
(e.g., Doswell and Markowski, 2004, p. 854). There are
many caveats when using CAPE for estimating the energy
of localized convective updraughts, one of which relates
to the assumption that b is the sole vertical force act-
ing on an air parcel, thereby neglecting the contribution
from (−1∕𝜌)𝜕p′∕𝜕z. The robustness of this assumption is

explored in the following three sections. Other caveats
regarding CAPE are reviewed in Section 6.1.

4 BUOYANCY IN A FINITE
HORIZONTAL DOMAIN

In section 7.2 of his book on cloud dynamics, Houze
(1993; 2014) presents an elegant analysis of the way in
which a region of buoyant air with finite size induces a
static perturbation pressure field, p′b, whose vertical gradi-
ent, −(1∕𝜌)𝜕p′b∕𝜕z opposes the buoyancy force and whose
magnitude increases with the horizontal scale of the buoy-
ant region. The sum of these forces may be thought of as
an effective buoyancy per unit mass:

be = −
1
𝜌

𝜕p′b
𝜕z

+ b. (6)

Houze (2014) showed that when the buoyant region has
infinitely small dimensions (i.e., the case of an air parcel),
−(1∕𝜌)𝜕p′b∕𝜕z is zero and be = b, while in the limit of infi-
nite width, −(1∕𝜌)𝜕p′b∕𝜕z exactly balances the buoyancy
force and be = 0. In general, for a fluid in motion, there will
be a dynamic contribution to the total perturbation pres-
sure p′, say p′d, which is required to ensure the flow satisfies
the mass continuity equation (see later). Houze’s 2014
analysis is sketched in the next paragraph and provides the
basis for a quantification of the relative contributions of
−(1∕𝜌)𝜕p′b∕𝜕z and b to be in a tropical context.

First, we make the “anelastic approximation” and
replace the density by its horizontal average, 𝜌o(z), except
where it appears in the buoyancy force. Multiplying
Equation (2) by 𝜌o and taking the three-dimensional diver-
gence with the momentum advection term moved to the
right-hand side gives

𝜕

𝜕t
(∇ ⋅ 𝜌ou) = −∇2p′ + 𝜕

𝜕z
(𝜌ob) − ∇ ⋅ (𝜌ou ⋅ ∇u). (7)

Using the anelastic form of the mass continuity equation,
∇ ⋅ (𝜌ou) = 0, Equation (7) may be written

∇2p′ = 𝜕

𝜕z
(𝜌ob) − ∇ ⋅ (𝜌ou ⋅ ∇u)

= Fb + Fd, (8)

where
Fb =

𝜕

𝜕z
(𝜌ob), (9)

and
Fd = −∇ ⋅ (𝜌ou ⋅ ∇u). (10)
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SMITH and MONTGOMERY 2121

Equation (8) is a Poisson-type, second-order, elliptic partial
differential equation from which the perturbation pres-
sure may be diagnosed, given the spatial distribution of
Fb and Fd together with suitable boundary conditions on
p′. The key step in the derivation of this equation is the
use of the continuity equation. Physically, the equation
constrains the pressure field in such a way that the total
force (perturbation pressure gradient force and buoyancy
force) produces a local flow acceleration at every point that
is consistent with mass continuity together with suitable
conditions on the flow boundary.

If the solution domain of Equation (8) is bounded by
impermeable boundaries at the ground (z = 0) and at the
tropopause (z = H) and if the forcing distributions are
localized in the horizontal direction, Neumann bound-
ary conditions, 𝜕p′∕𝜕n = 0, are appropriate boundary con-
ditions to take, assuming that the side boundaries are
sufficiently far from the forcing. Here, n refers to the
direction normal to the particular boundary. These condi-
tions would determine p′ to within an arbitrary constant
that could be taken to be zero at some point on one side
boundary. From a dynamical perspective, it is only the per-
turbation pressure gradient that is of consequence. The
condition that 𝜕p′∕𝜕z = 0 at z = 0 and z = H is required for
consistency with the vertical momentum equation when
the vertical velocity is set to zero at these boundaries.

At this point it is convenient to partition the pertur-
bation pressure into static and dynamic parts by writing
p′ = p′b + p′d. The solution of ∇2p′b = Fb gives the static
perturbation pressure distribution p′b associated with the
buoyancy distribution over a finite domain, whereas that
of ∇2p′d = Fd gives the perturbation pressure distribution
p′d associated with the instantaneous distribution of flow
acceleration. Because the equation for p′ is linear, there
would be no loss of generality by choosing the same bound-
ary conditions on p′b and p′d as on p′, since these would
ensure the correct conditions on p′.

Houze (2014) invoked an analogy with electrostatics
to elucidate the qualitative behaviour of the solutions to
∇2p′ = Fb + Fd, but equally one could use the membrane
analogy in which p′ may be thought of as the equilib-
rium displacement of a stretched membrane in response
to a steady force distribution Fb + Fd applied normal to the
membrane (cf. Wang and Smith, 2019).

A slightly different approach was suggested by
Davies-Jones (2003) and discussed also by Doswell and
Markowski (2004), but the outcome is the same. The
Davies-Jones approach is to partition the static perturba-
tion pressure p′b into the sum of a non-hydrostatic part p′nh
and a hydrostatic part p′h, where p′h is chosen to satisfy the
perturbation hydrostatic equation (1∕𝜌o)𝜕p′h∕𝜕z = b. The
details are sketched out in Appendix A, where the method
is contrasted with the present approach.

In the next section we present some numerical solu-
tions of Equation (8) in a bounded domain for spe-
cific buoyancy distributions that relate to the tropical
atmosphere.

5 QUANTIFICATION OF
EFFECTIVE BUOYANCY

To elucidate the static perturbation pressure distribution
p′b induced by a finite region of buoyant air in a stably
stratified environment, we examine two thought experi-
ments. For simplicity, we assume a two-dimensional (slab
symmetric) configuration in a domain that is 100 km wide,
16 km high, and with rigid horizontal boundaries at top
and bottom, where w = 0.

In the first example, we consider the buoyancy dis-
tribution in a vertical column of finite width extending
from an altitude of 2 km to 12 km, The background density
within the domain 𝜌o(z) is taken to be a piecewise analyt-
ical approximation to the Dunion moist tropical sounding
for the Atlantic hurricane season (Dunion, 2011), and the
buoyancy in the column assumes a sinusoidal temperature
perturbation over the column with a maximum amplitude
of +3◦C above the sounding temperature. The tempera-
ture perturbation is uniform across the column and zero
at the upper and lower edges of the column. Details of the
solution method and boundary conditions on perturbation
pressure are given in Appendix B.

Figure 1 shows the fields of static perturbation pressure
associated with column widths of 3 and 20 km. As antici-
pated by Houze (2014), the induced pressure perturbation
increases as the width of the buoyant region increases. The
buoyancy induces low perturbation pressure around the
base of its region and high perturbation pressure around
its top. This pattern would be consistent with the tendency
for air to be drawn into the base of the buoyant region
and to be forced upwards at the top, combined with a
tendency for air to rise within the region itself (e.g., see
Smith et al. (2005, figure 4 and related discussion), keeping
in mind that a complete picture requires a consideration
of the effects of Fd in Equation (8) as well). A similar
demonstration of the scale effect on the perturbation pres-
sure field was shown by Markowski and Richardson (2010,
figure 3.1), and the same effect was noted by Trapp (2013,
section 3.1.2). However, neither of these works showed the
effective buoyancy force field.

Figure 2 shows vectors of static perturbation pres-
sure gradient force per unit mass −(1∕𝜌o)(𝜕p′b∕𝜕x, 𝜕p′b∕𝜕z)
and the contours of the vertical component of this gra-
dient corresponding to the calculations for the same
columns shown in Figure 1. Supplementary to these pan-
els, Figure 3 shows the vertical profiles of −(1∕𝜌)𝜕p′b∕𝜕z
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2122 SMITH and MONTGOMERY

(a) (b)

F I G U R E 1 Static perturbation pressure field p′b induced by a horizontally uniform sinusoidal temperature perturbation in the vertical
to an analytical approximation to the Dunion Atlantic moist tropical sounding. This perturbation is applied in the region enclosed by the
green rectangle centred at x = 0. It has a maximum amplitude of +3◦C and is zero at the upper and lower boundaries of the rectangle.
Rectangle width: (a) 3 km; (b) 20 km. The contour interval for perturbation pressure is 20 Pa. Also shown are the vectors of perturbation
pressure gradient force per unit mass. The reference scale for these vectors shown in the lower right is 0.2 m⋅s−2 [Colour figure can be viewed
at wileyonlinelibrary.com]

(a) (b)

F I G U R E 2 Buoyancy force b (green contours, colour shading) and static perturbation pressure gradient force per unit mass
−(1∕𝜌o)(𝜕p′b∕𝜕x, 𝜕p′b∕𝜕z) (arrows) corresponding to the calculations shown in Figure 1. The actual calculations were carried out on the same
domain as Figure 1. Values on the colour bar in m⋅s−2. The reference scale for the pressure gradient force vectors, 0.2 m⋅s−2, is shown in the
lower right. Red and blue contours show the vertical component of the perturbation pressure gradient force per unit mass. Contour interval
0.02 m⋅s−2; solid red contours positive, dashed blue contours negative [Colour figure can be viewed at wileyonlinelibrary.com]

and be along the axis of the buoyancy column for these
calculations and two additional columns with widths of 5
and 10 km. Figure 3b shows the vertical profile of b also,
in essence the total static force for a column of infinites-
imal width. Again, as anticipated by Houze (2014), as

the horizontal extent of the buoyant region increases, the
contribution of −(1∕𝜌)𝜕p′b∕𝜕z increases in magnitude and
opposes the buoyancy force with the expectation that, as
the horizontal scale becomes very large, the two forces
almost cancel, leading to approximate hydrostatic balance.
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SMITH and MONTGOMERY 2123

. .

(a) (b)

F I G U R E 3 Vertical profiles of (a) static perturbation pressure gradient force per unit mass −(1∕𝜌)𝜕p′b∕𝜕z, and (b) the effective
buoyancy per unit mass be, corresponding to the buoyancy distribution and sounding in Figure 1. Curves 1, 2, 3, and 4 refer to the forces
along the axis of vertical columns of widths 3, 5, 10, and 20 km, respectively, and curve 0 refers to the buoyancy force alone corresponding to a
column of infinitesimal width [Colour figure can be viewed at wileyonlinelibrary.com]

The perceptive reader will notice that the effective
buoyancy force does not become negative below the top
boundary, but the total force −(1∕𝜌)𝜕p′∕𝜕z + b must be
negative since rising air parcels must decelerate before
reaching this boundary. It follows that the deceleration
effect must be contained in the solution of ∇2p′d = Fd,
which gives the dynamical contribution to p′. To indicate
that this is the case, we examine conditions along the ver-
tical axis for simplicity. Along this axis, the lateral flow
component is zero by symmetry and ignoring the decrease
in density with height just below the top of the domain, Fd
can be shown to be approximately equal to −2𝜌o(𝜕w∕𝜕z)2,
which is negative definite (the derivation is sketched in
Appendix C). According to the membrane analogy for solv-
ing the perturbation pressure equation (Wang and Smith,
2019), a region of negative Fd would imply one of posi-
tive total perturbation pressure p′, as would be required to
decelerate the vertical flow induced by the buoyancy force
near the domain top.

In contrast to our definition of effective buoyancy per
unit mass, Davies-Jones (2003) defines effective buoyancy
per unit volume, which he shows to be completely inde-
pendent of the reference density (see Appendix A). How-
ever, if one chooses a reference density judiciously so
that the difference between 1∕𝜌 and 1∕𝜌o can be ignored,
the effective buoyancy per unit mass (in essence the

second term in Emanuel (1994, equation (11.5.17)) would
be essentially independent of reference density also. The
questions then are what does the field of effective buoy-
ancy look like and how does its distribution vary with
the width of the region of buoyancy? Answers to these
questions are provided by Figure 4, which shows con-
tours of effective buoyancy be and vectors of the total force
(−(1∕𝜌o)𝜕p′b∕𝜕x, be) corresponding to the four calculations
referred to in Figure 3.

For each width of the buoyancy column, the effective
buoyancy is positive both above and below the column
from the surface to the top boundary and, in the narrower
columns, the positive region is a little broader than the
buoyancy column itself. Elsewhere, the effective buoyancy
is negative with a narrow sheath of strong negative buoy-
ancy along the side of the buoyancy column. As the width
of the buoyancy column is increased, the maximum effec-
tive buoyancy moves away from the centre of the column,
with the largest positive values along the inner edge of the
column. At the same time, the effective buoyancy becomes
smaller in the central region of the column. In essence, the
largest values of effective buoyancy, both positive and neg-
ative, become concentrated along the sides of the buoyancy
column. Note that even though the buoyancy itself is hor-
izontally uniform across the buoyancy column, the effec-
tive buoyancy is not, a fact that will have consequences

 1477870x, 2022, 746, D
ow

nloaded from
 https://rm

ets.onlinelibrary.w
iley.com

/doi/10.1002/qj.4294 by C
ochrane G

erm
any, W

iley O
nline L

ibrary on [29/09/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

http://wileyonlinelibrary.com


2124 SMITH and MONTGOMERY

(a) (b)

(c) (d)

F I G U R E 4 Effective buoyancy be (shaded) and vectors of the total static force (−(1∕𝜌)𝜕p′b∕𝜕x, be) corresponding to the four
calculations discussed in Section 5. Width of buoyancy region: (a) 3 km, (b) 5 km, (c) 10 km, (d) 20 km. Contour interval for effective
buoyancy 0.02 m⋅s−2; solid red contours positive, dashed blue contours negative. Values on the colour bar in m⋅s−2. The reference scale for the
pressure gradient force vectors, 0.2 m⋅s−2, is shown in the lower right [Colour figure can be viewed at wileyonlinelibrary.com]

for calculating CAPE in a region of buoyancy of finite
width. The concept of effective CAPE is explored in the
next section.

The methodology for calculating effective buoyancy
could be applied also to three-dimensional configurations
of buoyancy, but this would involve solving the ellip-
tic Poisson equation, Equation (8), in three dimensions
instead of two.

6 IMPLICATIONS FOR CAPE

The definition of CAPE given by Equation (4) or (5) con-
siders only the buoyancy force acting on a lifted air parcel
of infinitesimal size. Although this force is made unique
by taking the reference density along a vertical through the
lifted air parcel, it is strictly not the only force acting on the
air parcel if the air parcel belongs to a region of buoyancy

with a finite size. As shown in the previous section, in this
case, the perturbation pressure gradient force should be
taken into account also.

It is clear from the substantial dependence of the total
vertical force on the width of the buoyant region shown
in Figure 3 that the conventional CAPE is likely to be a
significant overestimate of potential energy achievable by
an ascending air parcel, at least for an air parcel that rises
along the axis of the buoyant column. By “effective CAPE”
we mean the CAPE calculated with the total vertical force
per unit mass acting on the air parcel. To demonstrate
this fact, we calculate first the buoyancy distribution and
CAPE in the usual way for an infinitesimally small air par-
cel lifted from an altitude of 100 m in the Dunion moist
tropical sounding to its LNB. The positive buoyancy dis-
tribution between the LFC (about 900 m) and the LNB
(about 13.8 km) is then used to calculate the total force on
an air parcel within a buoyant column of finite width as

 1477870x, 2022, 746, D
ow

nloaded from
 https://rm

ets.onlinelibrary.w
iley.com

/doi/10.1002/qj.4294 by C
ochrane G

erm
any, W

iley O
nline L

ibrary on [29/09/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

http://wileyonlinelibrary.com


SMITH and MONTGOMERY 2125

.

F I G U R E 5 Vertical profiles of the effective buoyancy per unit
mass of an air parcel lifted from a height of 100 m in the Dunion
moist tropical sounding in regions of horizontally uniform buoyancy
of different widths. Curves 1, 2, 3, and 4 refer to the specific forces
along the axis of vertical columns of widths 3 km, 5 km, 10 km, and
20 km, respectively, and curve 0 refers to the pure buoyancy force
for a column of zero width. The levels of free convection and neutral
buoyancy for the lifted air parcel are denoted by LFC and LNB,
respectively [Colour figure can be viewed at wileyonlinelibrary.com]

in Section 5. Where the buoyancy is negative, below the
LFC and above the LNB, we set the buoyancy equal to zero
for simplicity. We refer to the CAPE based on the effective
buoyancy as the effective CAPE.

Figure 5 highlights conditions along the domain axis
for four calculations corresponding to the same buoyancy
columns in Figure 3, but with the buoyancy distribution
calculated as described in this section. The figure shows
the vertical profile of effective buoyancy be as in Figure 3b.
In these cases also, the total vertical force is reduced sig-
nificantly as the width of the buoyant column is increased
on account of the increasing adverse perturbation pressure
gradient force.

The effects of the decreasing total vertical force on
the effective CAPE along the axis in these calculations is
summarized in Table 1. In these calculations, the vertical
interval for the integration of Equation (5) from the LFC

T A B L E 1 Values of effective convective available potential
energy (CAPE) for an infinitesimally small air parcel lifted along
the axis of buoyant columns of finite width from a height of 100 m
to the level of neutral buoyancy (LNB) in the Dunion moist
tropical sounding. The calculations are based only on the
“positive area”; that is, the vertical force between the level of free
convection and LNB

Column width (km) Effective CAPE (J⋅kg−1)

0 2,130

3 1,540

5 1,280

10 800

20 300

to the LNB is 100 m. The normal parcel CAPE, based on
the buoyancy force alone, equivalent to a column width of
0 km, is approximately 2,130 J⋅kg−1. However, as the col-
umn width increases to 20 km, the effective CAPE reduces
to as little as 300 J⋅kg−1.

It is worth noting that, like effective buoyancy, the
effective CAPE in the foregoing calculations is a mini-
mum along the axis of the buoyancy column and increases
towards the edge of the column. Judging from Figure 4,
this effect should be most pronounced for the larger col-
umn widths. Figure 6 highlights this feature for a lifted air
parcel in the Dunion moist tropical sounding, showing the
effective buoyancy and vectors of total force for the broad-
est buoyancy column with 20 km width. In the case of a
buoyancy distribution without such an abrupt decline at
its edge as here, it may be shown that the maximum effec-
tive CAPE occurs where the horizontal Laplacian of buoy-
ancy is a maximum (Davies-Jones, 2003; see Equation (A4)
in Appendix A).

It is worth noting here that Figures 4–6 complement
some of the theoretical findings of Jeevanjee and Romps
(2016) and Tarshish et al. (2018), based on axisymmetric
buoyancy distributions centred at different heights above
the surface. Jeevanjee and Romps’ 2016 figures 1 and 3
are similar in spirit to our Figures 4 and 5. Likewise,
Tarshish et al.’s 2018 figure 1 is similar to our Figure 4,
except that they employ a spherically symmetric buoyancy
distribution.

6.1 Caveats on CAPE

Many researchers have cautioned against the indiscrim-
inate use of parcel CAPE as a measure of convective
instability and the vigour of convective updraughts. For
example, Zipser (2003) draws attention to the importance
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F I G U R E 6 Effective buoyancy (shaded) and vectors of the
total static force, (−(1∕𝜌)𝜕p′b∕𝜕x, −(1∕𝜌)𝜕p′b∕𝜕z + b), for a lifted air
parcel in the Dunion moist tropical sounding corresponding to the
simulation with a buoyant region of 20 km width referred to in
Figure 5. Contour interval for effective buoyancy 0.02 m⋅s−2; solid
red contours positive, dashed blue contours negative. Values on the
colour bar in m⋅s−2. The reference scale for the pressure gradient
vectors, 0.2 m⋅s−2, is shown in the lower right [Colour figure can be
viewed at wileyonlinelibrary.com]

of turbulent mixing during the ascent of air in convective
updraughts, noting that undilute ascent is rare and, if at all,
is found only in severe convective storms in mid-latitudes.
Citing observational studies by Lucas et al. (1994) and
Wei et al. (1998), he argues that, in the case of oceanic
deep convection in the Tropics, large dilution of convective
updraughts by entrainment is the norm. Nevertheless, he
argues that, despite large dilution, sub-cloud air can easily
ascend within cumulonimbi to the tropopause if freezing
of condensate is taken into account, supporting the results
of an earlier study by Williams and Renno (1993) that,
surprisingly, Zipser does not refer to.

Siebesma et al. (2020, section 2.3.3.2) point out the
actual CAPE of a given atmospheric sounding “is not a
number without ambiguity” and that “if it is to be used
quantitatively, the particular use of the concept must be
made precise”. In general, CAPE is a function of the state
of the air parcel lifted, the environment in which it is
lifted, and the assumed thermodynamic process by which
it is lifted.

Even if the concept of CAPE is made precise, com-
parison of CAPE values from different studies is often
difficult because of differences in the way in which the
initial thermodynamic state is determined, including the
initial height of the lifted parcel and whether or not

its properties are based on some layer average. Observa-
tions by Renno and Williams (1995) found that convective
updraughts have their roots at low levels in the bound-
ary layer, and these authors recommend using lifted parcel
heights between screen level and 100 m above the sur-
face, a range similar to that suggested by Romps and
Kuang (2011, section 1c). Notably, none of these authors
discuss the potential limitations of CAPE estimates on
account of the neglect of the vertical pressure gradient
force investigated in the last three sections.

7 SOME IMPLICATIONS FOR
INTERPRETATIONS OF
TROPICAL- CYCLONE CONVECTION

In a review article on tropical cyclone clouds, Houze (2010)
writes:

It is tempting to think of clouds in the inner
regions of tropical cyclones as cumulonimbus
that just happen to be located in a spinning
vortex. However, this view is over simplified,
as the clouds in a tropical cyclone are intrin-
sically connected with the dynamics of the
cyclone itself.

A particular feature discussed in the review is the evo-
lution of deep convection from upright buoyant cells that
readily develop into mesoscale convective systems in the
formation stage of the tropical cyclone, to slantwise struc-
tures with little parcel buoyancy that form the eyewall
cloud complex as the mature stage is approached. It is
certainly the experience of pilots flying hurricane recon-
naissance missions that the most vigorous updraughts
occur when the storm is in an early stage of development
or rapidly intensifying. Nevertheless, Houze (2010) notes
that, even in the mature stage, transient deep convective
cells may develop in the eyewall complex that are more
buoyant and more upright than the mean eyewall itself.
Indeed, in a modelling study of Hurricane Bob (1991),
Braun (2002) found that buoyant elements within the
eyewall account for over 30% of the vertical mass flux in
the eyewall. Other numerical simulations have shown the
existence of two maxima in vertical velocity in the eye-
wall, one at low levels near where air exits the boundary
layer and a second one in the upper troposphere, which
is presumably a result of positive (effective) buoyancy; for
example, see Smith et al. (2021, figure 4c,e).

Recent research has highlighted the fact that the net
upward mass flux carried by deep convection in the inner
core of a tropical cyclone should not be equated to the
mass flux that converges in the frictional boundary layer,
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as is done in many simple models. Rather, there is, in gen-
eral, a mismatch between these quantities (Kilroy et al.,
2016; Wang and Smith, 2019; Smith et al., 2021). If the
vortex is still relatively weak, the boundary layer inflow
will be weak and inner-core deep convection will be strong
enough to draw air inwards above the boundary layer,
opposing the tendency for the boundary layer to produce a
shallow layer of outflow above it. The influx of the vertical
component of absolute vorticity above the boundary layer
will increase the azimuthal circulation, leading to vortex
spin up. On the other hand, as the vortex strengthens, there
may be periods in which the inner-core deep convection
is no longer strong enough to ventilate all the air converg-
ing in the boundary layer. At such times, the fraction of air
that cannot be ventilated will flow out above the boundary
layer, leading to vortex spin down.

The foregoing studies indicate that, as the simulated
tropical cyclone matures, the inner-core deep convection
becomes increasingly less able to ventilate the mass con-
verging in the boundary layer. It would be reasonable to
surmise that the ability of deep convection to ventilate
the mass of air converging in the boundary layer depends
in some way on the collective buoyancy of updraughts,
or more specifically on the effective buoyancy of the
updraughts and the related CAPE.

Research aircraft surveys of the convective environ-
ment of pre-genesis disturbances during the PREDICT
field campaign in 2010 (Montgomery et al., 2012) cor-
roborate the description by Houze (2010), showing that
there were large values of pseudo-adiabatically calculated
CAPE available to support vigorous deep convective sys-
tems in these disturbances (Smith and Montgomery, 2012).
However, as summarized also by Houze (2010), in an
azimuthally averaged view and to a first approximation,
the eyewall convection in a mature tropical cyclone is
close to a moist adiabat, whereupon there is only minimal
buoyancy and hence minimal CAPE.

An early observational study by Bogner et al. (2000)
provided evidence that, in hurricanes, there is a general
increase in CAPE with radius from the centre, although
this inference is based on sounding data below 500 mbar
obtained by Omega dropsonde soundings. These data
were complemented with composite reference soundings
derived from radiosondes released from nearby land sta-
tions. Nevertheless, Bogner et al.’s finding is supported
by a more comprehensive study by Molinari et al. (2012)
using dropsondes released from an altitude closer to the
tropopause, although in both of these studies the sound-
ings were not obtained in the eyewall region itself.

Like Zipser (2003), Molinari et al. (2012) argued
that CAPE values calculated with the normal assump-
tions, even assuming reversible ascent with no fusion,
were unrealistically large, in that the maximum vertical

velocities inferred from these values were much too
large. They suggested that one needs to take entrainment
into account, arguing that “entraining CAPE was consis-
tent with the observed radial distribution of convective
intensity … ”. Though they acknowledged below their
equation (1) the potential adverse effect of a negative per-
turbation pressure gradient force, they did not calculate
this force, intimating they did not think it would be a
dominant effect. However, from the data shown in their
figure 3, the reduction in CAPE values to take account
of entrainment are comparable to the reduction shown in
our Table 1 as a result of the decrease in effective buoy-
ancy with the width of the buoyant column. This reduction
reflects the adverse vertical perturbation pressure gradient
force for regions of convection with widths on the order
of 20 km, which is comparable to the scale of convective
rain bands observed in tropical cyclones (e.g., Houze, 2010;
Bell et al., 2012). This finding calls into question the con-
clusion that accounting for entrainment alone accounts
for “the observed radial distribution of convective intensi-
ty”. However, at this stage, it is premature to speculate on
the relative roles of entrainment and the finite size of the
convection on the calculation of CAPE because the verti-
cal structure of the entrainment rate into clouds is poorly
known.

Even though values of CAPE may be small in the eye-
wall of a tropical cyclone, it is clear that CAPE is not a very
useful concept for assessing buoyancy in the eyewall. This
is because the computed buoyancy of the lifted air parcel
would be relative to a reference density1 that lies within
the eyewall, itself. As already noted herein, in the centre
of such a moist environment, where the air is at, or close
to, saturation over a considerable depth of the troposphere,
one would not expect lifted air parcels to have much local
buoyancy.

At least from an azimuthally averaged perspective, if
the eyewall slope is not too large in the vertical, the rel-
atively large width of the eyewall region would lead to
a significant adverse perturbation pressure gradient force
(see Section 5), and thereby to an even smaller effective
buoyancy across much of the eyewall region. Of course,
from a three-dimensional perspective, vertical shear in the
azimuthal direction would be an additional complexity
(e.g., Persing et al., 2013). Strictly speaking, in either case,
buoyancy and CAPE would need to be calculated along
air parcel trajectories with an appropriate reference den-
sity that varies spatially (e.g., Braun, 2002). For example,

1In the presence of a rapidly rotating vortex one needs to decide whether
or not to include or exclude the system buoyancy from the calculation;
that is, the part of the buoyancy field that would be in thermal wind
balance with the vortex in the definition of a reference density (Smith
et al., 2005).
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in the azimuthally averaged perspective of a mature trop-
ical cyclone, the eyewall may have an appreciable slope
with height, so that the calculation of a slantwise CAPE
would be more appropriate (e.g., Emanuel, 1994, chap-
ter 12). Emanuel’s definition is related in the vertical direc-
tion to the buoyancy and not to the effective buoyancy.
The methodology for calculating effective buoyancy dis-
cussed here could be presumably generalized to slantwise
CAPE, but it would need to consider the lateral (or radial)
momentum equation as well.

The tropical-cyclone life cycle simulation described by
Smith et al. (2021) indicates that, as the vortex matures,
the eyewall expands and its mean radius increases. Despite
this increase in area, it was shown that the eyewall
becomes increasingly less capable of ventilating all the air
that is being funnelled inwards in the frictional boundary
layer. Again, it would be reasonable to surmise that the
reduction of effective buoyancy that would accompany the
expansion and areal growth of the eyewall would be an ele-
ment of any explanation for the reduction of the areally
averaged mass flux carried by the eyewall. An exploration
of this likelihood is currently underway. This task will
require, inter alia, an extension of the theory of buoyancy
in a vortical flow by Smith et al. (2005) to one for effective
buoyancy. It will require also an analysis of the dynami-
cally induced pressure gradient field where the boundary
layer terminates; that is, a solution of the ∇2p′d = Fd part
of Equation (8) formulated in cylindrical coordinates with
appropriate consideration of centrifugal forces.2

8 CONCLUSIONS

We have reviewed the widely used concepts of buoyancy
and CAPE and their limitations in application to deep con-
vection in tropical cyclones. As commonly defined, the
buoyancy force of an air parcel is not unique because it
depends on the arbitrary definition of a reference density
field. However, one may define an “effective buoyancy”
for buoyant regions of finite dimensions as the sum of the
conventional buoyancy and the static vertical perturba-
tion pressure-gradient force induced by it. For a judicious
choice of reference density, the effective buoyancy per
unit mass is essentially a unique force, independent of
the reference density, but its distribution depends on the
horizontal scale of the buoyant region.

We have presented calculations of effective buoyancy
for idealized rectangular columns of horizontally uni-
form buoyancy of varying widths in a two-dimensional
configuration where the background stability is based on
a mean sounding for the tropical atmosphere. As the

2Coriolis forces should be weak in this inner region of the vortex.

buoyant region increases in width, appreciable values of
effective buoyancy become concentrated near the sides of
the buoyant region, while the effective buoyancy near the
centre of the buoyancy column diminishes. The calcula-
tions motivate the introduction of a local “effective CAPE”
based on the effective buoyancy. It is shown that, even
when the buoyancy is horizontally uniform, the effective
CAPE varies across the width of the buoyant region. As
the buoyant column increases in width, the local effec-
tive CAPE at the centre of the column decreases compared
with the actual CAPE.

The likely relevance of the calculations to understand-
ing the evolution of buoyant deep convection in tropical
cyclones was discussed. In this regard, the study was envis-
aged as a first step in understanding the decreasing ability
of inner-core deep convection in tropical cyclones to ven-
tilate the mass of air converging in the frictional boundary
layer as the vortex matures and decays, as evidenced by
recent studies.
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APPENDIX A. EFFECTIVE BUOYANCY PER
UNIT MASS

As noted in Section 4, Davies-Jones (2003) parti-
tions the static perturbation pressure p′b into the sum
of a non-hydrostatic part p′nh and a hydrostatic part p′h,
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where p′h is chosen to satisfy the perturbation hydrostatic
equation

1
𝜌o

𝜕p′h
𝜕z

= b. (A1)

Then, the vertical component of the momentum
equation has the form

Dw
Dt

= 1
𝜌o

(
𝜕p′d
𝜕z

+
𝜕p′nh

𝜕z

)
, (A2)

where Dw∕Dt = 𝜕w∕𝜕t + u ⋅ ∇w is the vertical accelera-
tion. Note that the buoyancy b and vertical gradient of
static perturbation pressure p′b per unit mass have com-
bined to give (1∕𝜌o)𝜕p′nh∕𝜕z.

After a little algebra, the equation corresponding to
Equation (8) becomes one for pnh; that is,

∇2p′nh = Fh + Fd, (A3)

where Fh = −∇2
hp′h and Fd is as in Section 4. Davies-Jones

(2003) takes −𝜕∕𝜕z of Equation (A3) and uses
Equation (A1) to obtain

∇2
(
−
𝜕p′nh

𝜕z

)
= −g𝜌o∇2

hb. (A4)

He notes also that if w = 0 at z = 0, the right-hand
side of Equation (A2) must be zero at z = 0. Further, he
goes on to assume that the two pressure gradient terms
on the right-hand side of Equation (A2) are separately
zero at z = 0, whereupon Equation (A4) may be solved, in
principle, subject to Dirichlet (sic) boundary conditions on
𝜕p′nh∕𝜕n (i.e., 𝜕p′nh∕𝜕n = 0 along the domain boundary as
in Section 4).

Davies-Jones (2003) defines −𝜕p′nh∕𝜕z as the “effective
buoyancy per unit volume” and notes that, because the
term g𝜌o∇2

hb on the right-hand side of Equation (A4) is
independent of the reference density, so must this effec-
tive buoyancy. Nevertheless, effective buoyancy per unit
mass −(1∕𝜌o)𝜕p′nh∕𝜕z does depend on the choice of ref-
erence density. Davies-Jones (2003) obtained a formal
solution of Equation (A4) in terms of a Green’s func-
tion in the half space z > 0, but did not show specific
solutions.

More recently, Peters (2016) attempted to solve
the two-dimensional (x, z) form of Equation (A4) for
a localized region of buoyant air with width 𝛿x and
depth between the LFC to the LNB. However, this solu-
tion is limited by the fact that boundary conditions

𝜕p′nh∕𝜕z|LFC = 0, 𝜕p′nh∕𝜕z|LNB = 0 and 𝜕p′nh∕𝜕z|±𝛿x = 0
are applied on the boundaries of the buoyant region
rather than along the boundaries of the whole
domain that encompasses the buoyant region and its
environment.

APPENDIX B. SOLUTION OF EQUATION (8)

The Poisson-type second-order partial differential
equation in Equation (8) is solved explicitly for the per-
turbation pressure p′ on a rectangular grid using the
solver helmholtz_ffacr.f90 (available from the first author).
The domain is 100 km wide and 16 km high with a grid
spacing of 500 m in the horizontal direction and 100 m
in the vertical, equivalent to 201 × 161 grid points. Neu-
mann conditions are imposed on p′ along each bound-
ary (see Section 4) and the solution is made unique by
the requirement that p′ = 0 at the lower left corner of
the domain.

APPENDIX C. FORCING OF p′ BY Fd IN
EQUATION (8) ON THE UPPER DOMAIN
AXIS

Taking u = (u,w), Fd = −∇ ⋅ (𝜌ou ⋅ ∇u, 𝜌ou ⋅ ∇w), or

Fd = −
𝜕

𝜕x

(
𝜌ou𝜕u

𝜕x
+ 𝜌ow𝜕u

𝜕z

)

− 𝜕

𝜕z

(
𝜌ou𝜕w

𝜕x
+ 𝜌ow𝜕w

𝜕z

)
(C1)

while mass continuity, Equation (3), gives

𝜕u
𝜕x

= − 1
𝜌o

𝜕

𝜕z
(𝜌ow). (C2)

Then, Equation (C1) becomes

Fd = −
1
𝜌o

[
𝜕

𝜕z
(𝜌ow)

]2

+ u 𝜕

𝜕x

[
𝜕

𝜕z
(𝜌ow)

]

− 𝜌o
𝜕w
𝜕x

𝜕u
𝜕z
+ 𝜌ow 𝜕

𝜕z

[
1
𝜌o

𝜕

𝜕z
(𝜌ow)

]

− 𝜕

𝜕z

(
𝜌ou𝜕w

𝜕x
+ 𝜌ow𝜕w

𝜕z

)
. (C3)

Along the axis x = 0, u = 0 and 𝜕w∕𝜕x = 0 by symme-
try, whereupon

Fd = −
1
𝜌o

[
𝜕

𝜕z
(𝜌ow)

]2

− 𝜕

𝜕z

(
𝜌ow𝜕w

𝜕z

)
. (C4)
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Assuming that near the domain top, the Boussinesq
approximation is valid (i.e., 𝜌o is approximately constant),
it follows that

Fd ≈ −2𝜌o

(
𝜕w
𝜕z

)2

, (C5)

which is negative definite and, according to the mem-
brane analogy (see Section 4), would lead to a positive
perturbation pressure near the top of the domain, as
expected.
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