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Abstract
The errors in numerical weather forecasts resulting from limited ensemble size
are explored using 1,000-member forecasts of convective weather over Ger-
many at 3-km resolution. A large number of forecast variables at different
lead times were examined, and their distributions could be classified into three
categories: quasi-normal (e.g., tropospheric temperature), highly skewed (e.g.
precipitation), and mixtures (e.g., humidity). Dependence on ensemble size was
examined in comparison to the asymptotic convergence law that the sampling
error decreases proportional to N−1/2 for large enough ensemble size N, indepen-
dent of the underlying distribution shape. The asymptotic convergence behavior
was observed for the ensemble mean of all forecast variables, even for ensemble
sizes less than 10. For the ensemble standard deviation, sizes of up to 100 were
required for the convergence law to apply. In contrast, there was no clear sign
of convergence for the 95th percentile even with 1,000 members. Methods such
as neighborhood statistics or prediction of area-averaged quantities were found
to improve accuracy, but only for variables with random small-scale variability,
such as convective precipitation.

K E Y W O R D S
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1 INTRODUCTION

Weather is by nature unpredictable, and especially
so on the convective scale where errors grow rapidly
(Lorenz, 1969; Hohenegger et al., 2006; Leoncini

et al., 2010; Clark et al., 2010; Keil et al., 2014; Craig
et al., 2021). But even when deterministic forecasts are
inaccurate, useful information can often be obtained in
the form of probabilities. In a highly non-linear system
like the atmosphere, the probability distribution is often
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complex in form and evolving in time, and as a result most
meteorological services base their probabilistic predictions
on ensembles of numerical forecasts.

An ensemble prediction system must represent sev-
eral sources of forecast uncertainty. One important source
is the uncertainty in the initial conditions, as repre-
sented by the data assimilation (DA) system (Stensrud
et al., 2009; Sun et al., 2014). Current operational DA sys-
tems, whether variational or ensemble-based, are derived
under the assumption that error distributions are Gaus-
sian, and do not perform well when this assumption is not
met (Evensen and van Leeuwen, 2000). This happens more
frequently at smaller scales because of the rapid non-linear
error evolution in convective weather (Zhang, 2005).
Another major source of uncertainty is model error. There
is little consensus regarding how this should be rep-
resented in the ensemble system, but convective-scale
ensembles may include variations in model parameters to
represent uncertainty due to systematic errors (e.g. Geb-
hardt et al., 2011; Kühnlein et al., 2014), or stochastic
parameterizations to represent unresolved processes (e.g.
Bouttier et al., 2012; Jankov et al., 2017; Rasp et al., 2018;
Hirt et al., 2019; Sakradzija et al., 2020).

In practice, one of the most important factors for the
quality of the probabilistic forecast is the size of the ensem-
ble, that is, the number of member forecasts used to con-
struct the predicted distribution of a forecast variable. A
large ensemble is required to accurately capture the shape
of the distributions, especially in the case of rare outlier
events and non-Gaussian behaviors such as multimodality
or heavy tails (Bannister et al., 2017). Because of com-
putational power limitations, operational ensembles in
numerical weather prediction (NWP) centres rarely have
more than 50 members for global models (e.g. see table 1
in Leutbecher, 2019) and even fewer for limited area mod-
els (e.g. Gebhardt et al., 2011; Bouttier et al., 2012; Hagelin
et al., 2017; Schwartz et al., 2017; Frogner et al., 2019; Keil
et al., 2020). This is not enough to accurately represent the
non-linear evolution of the forecast distributions (Leut-
becher, 2019). Indeed, using an intermediate atmospheric
general circulation model, Kondo and Miyoshi (2019) per-
formed experiments with up to 10,240 ensemble members,
and concluded that approximately 1,000 ensemble mem-
bers were necessary to represent important features of
the distributions, such as multimodality and probability of
extreme events.

Less is known about the problem of under sam-
pling in convective-scale NWP. Harnisch and Keil (2015)
found that an increase of ensemble size from 20 to
40 members led to a more accurate analysis and more
accurate 3-hr forecasts. Hagelin et al. (2017) showed a
large improvement in forecast skill for precipitation with
a doubling of ensemble size from 12 to 24 using the

Met Office convective-scale ensemble (MOGREPS-UK).
Raynaud and Bouttier (2017) compared the benefits of
increasing ensemble size from 12 to 34 members to the
benefits of increasing horizontal resolution from 2.5 to
1.3 km. They showed that the increase in ensemble size is
more beneficial than a resolution increase for lead times
greater than about 1 hr, when there is a larger uncer-
tainty to be sampled. This result is consistent with Legrand
et al. (2016), who found that non-Gaussianity, and hence
the need for large samples, increases with forecast lead
time. This, and previous studies using big ensembles at
both global and regional scales, consistently show that
the largest non-Gaussianity arises from highly non-linear
processes in deep convective clouds (Miyoshi et al., 2014;
Jacques and Zawadzki, 2015). Recent studies using data
assimilation in 1,000-member convective-scale ensembles
have shown that non-Gaussianity can develop in much
less than an hour in deep moist convection, originating
in the region of the convective updrafts (Kawabata and
Ueno, 2020; Ruiz et al., 2021).

The preceding results all suggest that the ensembles
in current operational use are likely to be too small, but
how big do they need to be? In general, the number of
samples that must be collected to estimate the distribution
of a forecast variable depends on the form of the distri-
bution, and in weather prediction there are many forms.
Figure 1 shows a conceptual model of how the distribu-
tion of a forecast variable might evolve over time. The
uncertainty in the initial conditions is relatively small, at
least in comparison to the uncertainty at later times, and
is commonly assumed to be Gaussian in the data assimila-
tion system. Over time, the distribution will broaden and
often develop asymmetric tails (left panel), for example
due to constraints that quantities like humidity must
be non-negative. As time advances and non-linear pro-
cesses strongly influence the dynamics, the distribution
may take a complex form with heavy tails representing
higher probabilities of extreme events, or even multimodal
distributions associated with preferred regimes (Fig. 1,
centre panel). Eventually the forecast ensemble will lose
all memory of the initial conditions, and the forecast
distribution will converge to a typically broad, smooth,
climatological distribution (right panel). Note that in
the case of convective-scale forecasting in a limited-area
model, the “climatological” distribution would represent
the possible weather within the limited-area model when
small-scale errors have saturated, subject to the range
of synoptic-scale conditions represented in the driving
global ensemble (Selz, 2019). This “climatological” distri-
bution might be reached within a day or two (Hohenegger
and Schär, 2007), but rather than being time-independent
the distribution would continue to evolve on synoptic
timescales.
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F I G U R E 1 Conceptual model showing the time evolution of the distribution of a hypothetical forecast variable q. In each panel the
dashed line represents the distribution at an earlier time, which evolves into the distribution shown by the solid line. In the centre and right
panels, the dashed line is identical to the solid line in the previous panel. See text for further details [Colour figure can be viewed at
wileyonlinelibrary.com]

In addition to changing over time, the shape of the fore-
cast distribution will also be influenced by the forecasting
problem being considered. It will depend on the weather
regime (e.g., convective or clear), and also on the quan-
tity being forecast. Variables such as precipitation cannot
be negative and take skewed distributions, while aggre-
gated quantities such as time- or area-averages may be
more Gaussian than point values. It may be possible to esti-
mate the ensemble mean accurately with a relatively small
ensemble, but higher moments of the distribution, or the
probability of extreme events, might require much larger
ensembles (Leutbecher, 2019). The question of how big an
ensemble should be is actually a set of many questions, and
the cost of experimenting with large ensembles in NWP
means that definitive answers are difficult to obtain.

Given the concern that the ensemble sizes that are
computationally feasible may not be large enough to
accurately represent the forecast uncertainty, a number
of techniques have been proposed to increase the rep-
resentativity of small ensembles. In global ensembles,
perturbations based on singular vectors or bred vectors
can be used to ensure that the ensemble captures the
most rapidly-growing error modes (Palmer et al., 1998;
Toth and Kalnay, 1997). In limited area models, lateral
boundary conditions can be chosen to ensure that the
full spread of the global ensemble is represented (Mon-
tani et al., 2011). Marsigli et al. (2014) show that lack of
diversity in the global ensemble providing boundary con-
ditions to a limited-area ensemble prediction system can
be a major limitation when the global ensemble is small, or
based on a single forecast model. The strength of this effect
is likely to depend on the weather regime, as found by Keil
et al. (2014) in their investigation of ensemble forecasts in
a convection-permitting model. They found that the driv-
ing model is the dominant source of uncertainty when the
synoptic forcing of convection is strong, but model physics

perturbations that affect the triggering of convection are
the main source of uncertainty when the forcing is weak.

In many forecast problems, particularly on the con-
vective or sub seasonal to seasonal scales, predictions are
made for averaged quantities, since much of the variabil-
ity in the ensemble may be associated with rapidly varying
weather systems that obscure predictable variations on
larger scales (Toth and Buizza, 2019). If the small-scale
variations are uncorrelated among the ensemble mem-
bers, the variability will decrease as the averaging region
increases. Finally, for probabilistic predictions of cumu-
lus convection, it is often possible to increase the effective
ensemble size by sampling the statistics within neighbor-
hoods rather than for individual grid points (Ebert, 2009;
Ben Bouallègue et al., 2013; Hagelin et al., 2017). This will
be effective if the neighborhood is large enough that the
convection at different grid points within the neighbor-
hood is uncorrelated, and small enough that the statisti-
cal properties are homogeneous, that is not modified by
factors such as large variations in orography or synoptic
weather conditions. All of these methods can help offset
the sampling errors due to small ensemble size, but their
applicability depends on particular assumptions about the
variability of the weather to be predicted.

The starting point for this article is the availability of
an exceptional dataset, consisting of several 1,000-member
convective-scale ensemble forecasts. Necker et al. (2020a)
described the ensemble and evaluated the overall perfor-
mance in comparison to an operational ensemble predic-
tion system. They conducted an extensive analysis of the
spatial and temporal covariance structures, motivated by
two applications: ensemble data assimilation and localiza-
tion, and estimation of ensemble sensitivities as a basis for
evaluating the relative potential impact of different obser-
vations. The dataset from the large ensemble allowed them
to estimate the errors in the covariances and sensitivity
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diagnostics when restricted to smaller ensemble sizes.
Building on this work, Necker et al. (2020b) evaluated
a promising method for correcting for sampling error in
these diagnostics when estimated from smaller ensembles.
The present study uses the same set of forecasts, but is
motivated by the use of ensembles to generate probabilis-
tic forecast products. The 1,000-member ensemble dataset
includes 14-hr forecasts, with a 3-km resolution, for eight
different days that featured convective weather over Ger-
many. Although the length and number of forecasts is
limited, the large ensemble size provides an opportunity
to characterize the forecast distributions with exceptional
accuracy, and to address the question of how big an ensem-
ble is required for a wide variety of forecast variables drawn
from different distributions.

Our approach to investigating the 1,000-member
ensemble has three main parts. First, we visually exam-
ine histograms of many forecast quantities, and attempt to
classify them subjectively into a small number of charac-
teristic distribution types. Second, we choose a representa-
tive forecast variable for each type, and examine the quali-
tative behavior of the distribution as function of neighbor-
hood size, spatial averaging area, and forecast lead time.
Finally, we compute the quantitative rate of convergence
with increasing ensemble size of the mean, standard devi-
ation and 95th percentile for each variable, or probability
of exceeding a threshold in the case of precipitation. In
the concluding section of the article, we will discuss how
the results of the present study might generalize to other
weather regimes and forecast systems, and identify some
questions for future research.

2 DATA AND METHODS

2.1 The SCALE-RM ensemble

This study is based on 1,000-member ensemble forecasts
from a limited area, convection-permitting model, and
includes 10 ensemble forecasts for convective weather over
Germany in the summer of 2016. The simulations were
performed on the K-Computer at the RIKEN Center for
Computational Science in Kobe, Japan.

The numerical model used for the forecasts is the
open-source Scalable Computing for Advanced Library
and Environment Regional Model (SCALE-RM: ver-
sion 5.1.2; see Nishizawa et al., 2015; Sato et al., 2015;
Nishizawa and Kitamura, 2018). The simulations use
the Tomita (2008) single-moment bulk microphysics
scheme, the Mellor–Yamada–Nakanishi–Niino 2.5 clo-
sure boundary-layer scheme (Nakanishi and Niino, 2004),
the Model Simulation Radiation Transfer code for
the representation of radiative fluxes (Sekiguchi and

F I G U R E 2 Model domains for the Scalable Computing for
Advanced Library and Environment Regional Model (SCALE-RM)
simulations: 15-km resolution model domain used for data
assimilation cycling and boundary conditions (dashed line); full
domain for the 3-km forecasts (solid line, larger region), and the
Southern subdomain used for analysis (solid line, smaller region)
[Colour figure can be viewed at wileyonlinelibrary.com]

Nakajima, 2008), and a Beljaars-type surface model
(Beljaars d Holtslag, 1991) for the computation of soil
variables and surface fluxes. The horizontal resolution is
3 km, and the domain covers 350× 250 grid points with 30
vertical levels (Fig. 2).

Initial and boundary conditions are obtained from
forecasts using a 1,000-member SCALE-RM ensemble
with 15-km resolution, which in turn uses boundary con-
ditions from the 20-member Global Ensemble Forecast
System (GEFS) of the National Center for Environmen-
tal Prediction (NCEP). The 15-km resolution ensemble
uses a Local Ensemble Transform Kalman Filter system
(SCALE-LETKF: Lien et al., 2017) to assimilate conven-
tional data with a 3-hr assimilation window. The ensemble
DA was initialized from a previous 15-km, 1,000-member
DA experiment over the same domain, spun up for a week.
Boundary conditions for the 15-km forecast were prepared
every 6 hr, using a combination of randomly generated
perturbations and the 20-member GEFS analyses. The
boundary perturbations were generated by taking the dif-
ference between two randomly chosen atmospheric states
corresponding to the same season and time of day, then
scaling the amplitude by a factor of 0.1. Every 6 hr, each
perturbation was updated using the difference between the
atmospheric states 6 hr after the states used for the previ-
ous perturbation, ensuring that the perturbations evolve
smoothly. The initial conditions for the 3-km ensemble
were obtained by interpolating the corresponding fields
from the members of the 15-km analysis ensemble, and
boundary conditions were provided hourly by a parallel
15-km ensemble forecast on the outer domain. Ensemble
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forecasts were initialized every 12 hr (at 0000, 1200 UTC)
over an eight-day period from 0000 UTC, 29 May to 1200
UTC, 7 June (excluding 3 and 4 June), for a total of 16 fore-
casts. The forecasts were integrated out to a lead time of
14 hr. Further details of the ensemble set-up are provided
by Necker et al. (2020a,b).

2.2 Synoptic situation

The period from 29 May to 7 June 2016 was characterized
by a quasi-stationary weather pattern over central Europe.
An upper-level trough over western Europe was accompa-
nied by a shallow surface low in the first part of the simula-
tion period, followed by a weak pressure-gradient synoptic
pattern (Fig. 3). The mid-level winds started warm and
moist southerly to easterly in the first half of the period and
backed to northeasterly at later times.

Throughout the simulation, the environment was
highly unstable, through a combination of synoptic forc-
ing and surface heating, with the latter process increasing
in importance throughout the period. Cumulus convec-
tion was most intense in the first few days and the motion
of the convective cells was slow. Later in the simulation
period, convection followed a clear diurnal cycle, with a
peak late in the afternoon. Because of the intense, exten-
sive and recurring convection, this period has been the
subject of many investigations (e.g. Piper et al., 2016;
Necker et al., 2018; Keil et al., 2019; Bachmann et al., 2020;
Scheck et al., 2020).

For this study we focus on forecasts started at 1200
UTC on three selected days: 31 May, 29 May and 5 June
2016. The figures will show examples from 31 May 2016,
since this day featured a combination of patchy convective

F I G U R E 3 ECMWF ERA-Interim reanalysis of 500 hPa
geopotential (m2⋅s−2, white contours) and temperature (◦C, shaded)
for 1800 UTC 31 May 2016 [Colour figure can be viewed at
wileyonlinelibrary.com]

showers and more widespread precipitation regions
(Fig. 4a–c). As a result, this day showed the most varied
and complex distributions of forecast variables. Regard-
ing the other two days, 29 May exhibited more intense
and organized convective activity over the domain, and 5
June much weaker large-scale forcing and more scattered
convection, mostly over orography. A preliminary inves-
tigation of the forecast probability distributions on these
other days showed a similar range of behaviors to those
of the 31 May forecast, and no additional new features.
Similarly, results will only be shown for the southern half
of the model domain, since the northern region did not
provide any additional behaviors or insight.

2.3 Forecast variables

A 1,000-member ensemble generates vast amounts of data,
which is challenging for both storage and movement of
the datasets. For the present investigation we extracted a
subset of the archived data that covered many of the vari-
ables most relevant for convective-scale weather predic-
tion. The selected variables were three-dimensional fields
of temperature, horizontal and vertical wind velocities (u,
v, w), specific humidity, relative humidity, hydrometeor
mixing ratio and radar reflectivity, on selected pressure lev-
els and two-dimensional fields of mean sea-level pressure,
surface precipitation rate, surface net longwave radiation
flux, surface net shortwave radiation flux, surface down-
ward longwave radiation flux, surface downward short-
wave radiation flux, top of atmosphere (TOA) net long-
wave radiation flux and shortwave radiation flux. The data
was stored at hourly intervals for each of the ten 14-hr
forecasts.

Even this dataset was too large to be analyzed fully,
and we have further restricted our analysis to tempera-
ture, horizontal and vertical wind velocity, reflectivity, and
specific humidity at 500 hPa, as well as surface precipita-
tion rate and mean sea level pressure. Regarding specific
humidity, it soon became apparent that an important
factor influencing the distributions was the distinction
between cloudy (saturated) regions and unsaturated air.
To make this distinction more obvious, we have generally
plotted specific saturation deficit (qdef), instead of spe-
cific humidity. This quantity is defined as the difference
between the saturation water vapor mixing ratio at the
grid point temperature and the actual mixing ratio and is
related to relative humidity:

qdef = qsat − q = q (RH−1 − 1), (1)

where RH =q/qsat is the relative humidity. An example of
the ensemble mean qdef field is shown in Fig. 4c.
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F I G U R E 4 (a) SCALE-RM ensemble mean hourly precipitation (mm), plus 6 hr lead time; (b) 14 hours accumulated precipitation
(mm); and (c) specific saturation deficit(qdef, g⋅kg−1) at 500 hPa, 6 hr lead time (for the forecast started at 1200 UTC on 31 May 2016). The
rectangles in (a–c) are the subdomains used in the analysis of spatial-scale dependencies (see Section 2.4) [Colour figure can be viewed at
wileyonlinelibrary.com]

2.4 Spatial scales and time evolution

Histograms were plotted for the selected variables, show-
ing the variability across the 1,000 ensemble members
at individual grid points and times. Each plot was con-
structed using 50 bins, and shows the number of occur-
rences that fall within each bin, divided by the total num-
ber of occurrences and the bin width. Histograms were also
produced for different spatial regions, defined in Figure 4.
The meridional widths of the chosen subregions are 3,
45, 120, 285, 375 and 525 km. The largest region con-
sisted of the southern half of the model domain, with
size 525× 750 km. The other subregions were chosen to
have the same shape, for example 45× 63 km (15 × 21 grid
points), except for the 3-km region, which corresponds to
a single grid point. Distributions of variables were exam-
ined for these six subdomains, centered over the middle
point of the largest subdomain (Fig. 4) for a selected time

(31 May 2016, 1800 UTC, at 6 hr of lead time). The largest
sub region extends to the boundaries of the model domain.
This raises the possibility of a penetration of boundary
condition influence into the analysis region, most dramat-
ically taking the form of a spin-up of cloud and precipi-
tation variables near inflow boundaries. Figure 3 suggests
that this will not be a major influence in the present case
study, since the synoptic flow is weak everywhere. The
boundaries might be a factor in the low precipitation totals
on the eastern edge of the domain (Fig. 4b), but this is only
relevant for the largest subdomain and even there affects
only a small fraction of the area.

Histograms for spatial regions were produced in two
ways. In the neighborhood method, the individual grid
points in the chosen region are treated as independent
ensemble members. This increases the effective size of the
ensemble, but only provides new information if the differ-
ent grid points are uncorrelated. The second method plots
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histograms of area-averaged quantities. In this case, the
spatial variability is averaged out if it is uncorrelated in
space, leading to less variability across the 1,000 members
and a less uncertain forecast.

Finally, the time evolution of the distributions was
examined. Results were computed using the neighborhood
method for a fixed region size (45-km width), and for lead
times from the first time step (which will be referred to as
the initial time) to 14 hours. Histograms were then com-
pared to the conceptual model of the evolution of a forecast
distribution in Figure 1.

2.5 Sampling error and measuring
convergence

Estimates of forecast quantities constructed from a small
ensemble will suffer from sampling error, but should con-
verge to an accurate value as ensemble size increases.
To provide a quantitative measure of this convergence,
estimates were made using a range of ensemble sizes, sub-
sampled from the 1,000-member ensemble. In general the
members of the sub ensembles were selected randomly,
but for the set of estimates based on “selected members”
we constrained the selection to draw equal numbers of
members using boundary conditions from each of the 20
members of the GEFS ensemble. If the synoptic environ-
ment, which is represented by the spread in boundary
conditions from the global ensemble, is a main source
of uncertainty, it may be possible to capture the most
important characteristics of the distribution in a small
ensemble, as long as this variability is explicitly included.
The selected member ensembles were defined by Necker
et al. (2020a) for ensemble sizes of N = 20, 40, 80, 160, 320,
600 and 800.

Confidence intervals for the estimates were con-
structed as follows. For each ensemble size, 10,000 test
ensembles were created by bootstrapping with replace-
ment. The forecast parameter (e.g., ensemble mean) was
computed from each test ensemble to create a distribu-
tion of estimates. The 2.5th and 97.5th percentiles of this
distribution then define the 95% confidence interval.

3 RESULTS AND DISCUSSION

3.1 Classification of distributions

The first goal of this investigation is to inspect histograms
of the various forecast quantities for different regions and
times, in order to identify the characteristic types of distri-
bution produced by the ensemble. Each forecast variable
was found to have a typical shape, and these shapes could

T A B L E 1 Classification of variables. All three-dimensional
variables are extracted at 500 hPa

Category Variable

Quasi-normal Temperature

Horizontal wind velocity

Vertical wind velocity

Mean sea level pressure

Highly skewed Precipitation

Reflectivity

Specific humidity

Mixture Specific saturation deficit

Relative humidity

be classified into three broad categories: quasi-normal dis-
tributions, highly skewed distributions, and mixtures with
two or occasionally three peaks. Table 1 shows which vari-
ables are assigned to each category. The remainder of this
subsection presents examples of each category to illustrate
their distinctive properties.

A distribution is classified as quasi-normal if it is uni-
modal, with a relatively small skew. In most cases, these
distributions are fitted well by a Gaussian function. Vari-
ables with this distribution shape include temperature
(see Fig. 5a), all wind components at 500 hPa, and mean
sea-level pressure. The quasi-normal shape was found for
all neighborhood widths, averaging regions, and forecast
lead times. Note that this subjective description does not
take into account outlier values, such as the temperature
or vertical velocity anomalies at the core of a convective
updraft, which are very rare (around 0.1% of grid points)
in the case considered here.

Variables showing highly skewed distributions include
precipitation and reflectivity. These quantities are both
related to hydrometeor content and hence bounded by
zero. The example precipitation distribution shown in
Figure 5b is closer to lognormal than normal in shape.
Note that the full distribution of precipitation rates
includes a point mass at zero representing members that
have zero precipitation at this location, and would be best
described as a mixture that resembles a combination of
a lognormal distribution and delta function at zero. We
have plotted the histogram with a logarithmic x-axis to
make the relation to a lognormal shape more visible, but
with the disadvantage that the zero precipitation values
cannot be plotted. Instead, a numerical value for R, the
fraction of ensemble members with non-zero precipitation
is given (precipitation rates greater than 10−10 mm⋅hr−1 are
considered to be non-zero). In Figure 5b, R = 0.39 indi-
cates that 39% of the ensemble members have non-zero
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2332 CRAIG et al.

F I G U R E 5 Histograms of: (a)
temperature (◦C) at 500 hPa; and (b)
precipitation [mm] in the last hour on 31
May at 1800 UTC (forecast lead time 6 hr)
in a 375 km wide neighborhood. Note the
logarithmic axis for precipitation in (b),
and the value R denoting the fraction of
members with non-zero precipitation. A
Gaussian function with the same mean and
standard deviation (a) and a lognormal
function (b) are shown for comparison
(solid lines) [Colour figure can be viewed at
wileyonlinelibrary.com]

F I G U R E 6 Histograms of: (a) specific humidity (g⋅kg−1); (b) specific saturation deficit (g⋅kg−1); and (c) relative humidity (%) at
500 hPa in the southern region with a width of 375 km on 31 May, 1800 UTC (forecast lead time 6 hr). Grey and blue colors indicate
contributions from cloudy and clear grid points at 500 hPa, respectively. The criterion to distinguish cloudy grid points is a simulated radar
reflectivity higher than −19 dBZ at 500 hPa. A Gaussian function with the same mean and standard deviation is shown for comparison (solid
lines) [Colour figure can be viewed at wileyonlinelibrary.com]

precipitation, while the remaining 61% have zero values
and are not seen on the plot.

The last group, mixture distributions, includes the spe-
cific saturation deficit, qdef, and other humidity variables.
Figure 6 compares the distributions of specific humidity
to relative humidity and qdef, with the latter two variables
showing clearly how the moisture distribution is bounded
by the saturation humidity. The figure also shows that the
complex distribution shape arises as a mixture of distinct
distributions in cloudy and clear regions. In this partic-
ular example, there is even a third peak in the humidity
distribution, since this example is computed for a large
neighborhood (width 375 km), that includes not only the
mixture of cloudy and clear grid points in the rainy region
in southern Germany, but also part of the dry band across
the central part of the country (Fig. 4c).

The three types of histogram presented here represent
very broad categories, identified subjectively, rather than

parametric distributions that can be quantitatively fitted.
They are useful to illustrate the different dependencies of
distribution shape on aggregation over regions of different
sizes, and on forecast lead time. In the following sub-
sections, we will illustrate these dependencies using one
example variable from each of the three categories. Details
of the distributions will depend on the specific weather sit-
uation experienced at that place and time, and in general, it
would be interesting to consider other locations, times and
forecast variables. However, the limited period of our fore-
cast dataset means that even if we considered all possible
distributions, the results would still not be representative
of the range of behaviors encountered by a regional ensem-
ble forecasting system. Instead, we have chosen to analyze
a small number of examples in depth, and in Section 4, we
are careful to distinguish results that might be generally
applicable from those that may be specific to this location,
time, and weather situation.
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CRAIG et al. 2333

3.2 Scale dependency

We now examine qualitatively how the forecast distribu-
tions are represented in the 1,000-member ensemble. We
consider distributions for three variables, representative
of the three categories when computed for single grid
points, and apply two methods that use spatial information
to improve the representation. As described earlier, the
neighborhood method treats grid points within a spatial
region as alternative, but statistically equivalent, realiza-
tions of the ensemble at the target grid point, giving a
larger effective sample size. This method is expected to
work only to the extent that the grid points are uncor-
related. If this assumption is true, the histogram will
not change form as neighborhood size increases, but will
become smoother and better defined, as sampling error
is reduced. The averaging method considers the distribu-
tion of an area-averaged quantity. Averaging will remove
small-scale variability, but again only to the extent that the
grid points are uncorrelated in space. If this is true, the
averaging operation will be a sum of independent random
variables, and the Central Limit Theorem ensures that the
histogram will converge to a Gaussian distribution, with
variance that decreases as the size of the averaging region
increases (Bonamente, 2017).

For each method, the scale dependency is illustrated by
analyzing distributions of variables on 31 May 2016 at 1800
UTC for the six concentric subdomains shown in Figure 3.

This location was chosen mainly for convenience, since
it lies in the centre of the southern domain, allowing a
large range of region sizes to be used. However, this should
also be an interesting region, since it includes a variety of
precipitation types and intensities.

3.2.1 Distributions over neighborhoods

Figure 7 shows distributions of example forecast variables
from each of the three categories for different neighbor-
hood sizes. The three rows show histograms of tempera-
ture at 500 hPa, 1-hr accumulated precipitation, and spe-
cific saturation deficit at 500 hPa. The first column shows
the distribution across the ensemble at a single grid point.
Here, 1,000 members are sufficient to produce a smooth
distribution for temperature, but not for the two other vari-
ables. This is particularly true for precipitation, where only
21% of members have precipitation at all.

The second column in Figure 7 shows distributions
for a neighborhood with width 45 km. As detailed in
Section 2.4, this neighborhood contains 15× 21 = 315 grid
points, giving an effective ensemble size of 315,000 if the
grid points are truly independent. In reality, the effective
resolution of the model is likely 5–6 grid points, leading
to correlations between nearby grid points. In this case
the number of independent grid points in each direction
will be correspondingly smaller, reducing the effective

F I G U R E 7 Histograms of temperature at 500 hPa (first row), precipitation (second row) and specific saturation deficit at 500 hPa
(third row) on 31 May 2016 at 1800 UTC (forecast lead time 6 hr). The histograms are computed for neighborhoods with widths of 3, 45, 120,
285, 375 and 525 km (columns from left to right). A Gaussian or log-normal distribution (for precipitation) with the same mean and standard
deviation is shown for comparison (solid lines) [Colour figure can be viewed at wileyonlinelibrary.com]
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2334 CRAIG et al.

ensemble size by a factor of 25–36 to about 10,000. In the
case of larger convective systems, the effective ensemble
size would be even smaller, but still might be substantially
larger than the 1,000 members available at a single grid
point, Indeed the histograms for the 45-km region are now
smooth for all three variables. While the distributions are
better defined for the 45-km neighborhood than for a sin-
gle grid point, there is little evidence that the shapes of the
underlying distributions have changed, which would be
evidence of spatial correlations on larger scales. Instead,
this behavior is consistent with the hypothesis that the
grid points included in a small neighborhood are to some
extent statistically independent and can be considered
as additional ensemble members. In Section 3.4, we will
attempt to provide a quantitative estimate of the effective
ensemble size.

The relative independence of the forecast distributions
on neighborhood size is no longer true when neighbor-
hoods larger than about 100 km are chosen, as seen in
the three columns on the right of Figure 7. The tempera-
ture distribution broadens with increasing neighborhood
size. Since the spatial variation in the temperature field is
mostly at synoptic scales, the distribution is quite narrow
for small neighborhoods, but broadens as more large-scale
variability is included in the larger region. On the other
hand, the precipitation distribution narrows with increas-
ing neighborhood size and the fraction R of members
with precipitation increases. These effects are also likely
to be associated with variability on large spatial scales,
since the larger neighborhoods will include more of the
broad regions of intense precipitation in the eastern half
of the model domain (Figure 4a,b). The humidity distri-
bution shows the effects of large-scale variability even
more dramatically, with the distribution becoming very
broad, and eventually showing a second and even a third
maximum, as different geographical regions are included
in the neighborhood.

The results shown in Figure 7 are likely to be specific
to this case, time, and even to the selected grid point. How-
ever, some aspects of the qualitative behavior are likely
to apply more generally. Variables such as precipitation
and humidity benefit from the neighborhood method since
their spatial variability includes a significant component
that is small-scale and random. On the other hand, tem-
perature variations in the troposphere are weak on smaller
length scales and the increase in effective ensemble size
due to the neighborhood brings no new information, leav-
ing the distribution similar to the single grid point version.
For all variables, a sufficiently large neighborhood will
include synoptic variability, and the neighborhood distri-
bution will no longer be representative of the distribution
for the target grid point. For the variables shown here, the
neighborhood must be smaller than about 100 km to avoid

these effects, but the threshold is likely to be different for
other weather situations, or other variables such as 2-m
temperature, where the small-scale variability is strongly
influenced by local factors such as land surface properties.

3.2.2 Distributions of spatially averaged
quantities

Histograms for the three example forecast variables, aver-
aged over areas of different size, are shown in Figure 8. The
left column shows the same single grid point data as the
left column of Figure 7, but the appearance has changed
due to different scales on the x- and y-axes.

The convergence of the distribution to a Gaussian form
with larger averaging area is clearly seen for qdef in the
bottom row of Figure 8. By an area width of 285 km, the
histogram is largely symmetrical, and becomes narrower
for larger averaging areas. The approach to a narrowing
Gaussian distribution is seen in the second row for the log-
arithm of precipitation, coinciding with 100% of members
having non-zero precipitation rates in the area average.
This convergence to a lognormal distribution would be
expected from the Central Limit Theorem for a product of
independent random variables.

The distribution of temperature appears Gaussian in
the 1,000-member ensemble even for a single grid point,
but there is no decrease in width as the averaging area
increases. Consistent with the results of the neighborhood
analysis, this is likely related to the variability of the tem-
perature being dominated by the synoptic scales. Note
however, that this could act in different ways. The sim-
plest possibility is that the temperature variability might
be perfectly correlated across the subsynoptic averaging
regions, so that there is no small-scale variability to aver-
age out. On the other hand, it might be that any decrease
in small-scale variability due to averaging is offset by the
inclusion of increasing amounts of large-scale variability
as the region size increases.

3.3 Time evolution

In this section we examine the time evolution of the fore-
cast distributions. The conceptual model that was pre-
sented in the introduction (Fig. 1) suggested that we might
expect the histogram to evolve from a simple form given
by the data assimilation (perhaps Gaussian), to a more
complex, even multimodal, shape. Eventually the distri-
bution would converge to a smooth “climatological” form,
that in the case of a convective-scale forecast, would be
determined by the large-scale weather pattern when pre-
dictability on the convective scale is lost. As an example
of this process, Figure 9 shows the time evolution of
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CRAIG et al. 2335

F I G U R E 8 As in Figure 7, but computed by averaging over subdomains of width 3 (single gridpoint), 45, 120, 285, 375 and 525 km
[Colour figure can be viewed at wileyonlinelibrary.com]

F I G U R E 9 Histograms of temperature (top row), precipitation (middle row) and specific saturation deficit (bottom row) on 31 May
2016 in southern Germany, for a neighborhood of width 45 km. Forecast lead time increases from left to right from the first time step (1200
UTC) to 14 hr (0200 UTC, 1 June). A Gaussian or log-normal distribution function (for precipitation) with the same mean and standard
deviation is shown for comparison (solid lines) [Colour figure can be viewed at wileyonlinelibrary.com]
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2336 CRAIG et al.

the three selected variables in terms of histograms over
45-km neighborhoods. This neighborhood provides a large
enough effective ensemble size to visualize the distribu-
tions, but not so large as to include significant variability
on large spatial scales.

The top row of Figure 9 shows that the temperature at
500 hPa is gradually cooling over the 14 hr of the forecast.
The distribution starts close to Gaussian, and remains so
for several hours, with little change in width. Eventually
the histogram develops a significant skew. Figure 3 shows
that the temperature field is dominated by a synoptic-scale
gradient, with colder air to the south. The cooling trend
shows that colder air is being advected north on average,
but this non-linear process proceeds at different rates in
different ensemble members and does not preserve the
Gaussian distribution. Overall, the behavior is consistent
with the first two stages of the conceptual model, but
the evolution is occurring on a relatively slow, synoptic
time-scale.

The evolution of the distribution of precipitation is
shown in the second row of Figure 9. Since precipitation
is accumulated over the previous hour, it is not available
at the initial time. Starting from a lead time of two hours,
the histogram changes only slowly as the synoptic envi-
ronment evolves. Since the predictability of convective
clouds is very short, it is possible that the precipitation
distribution moves through all stages of the conceptual
model within two hours, arriving at a “climatological”
distribution determined by the large-scale flow. Unfortu-
nately, it is not possible to test this interpretation with the
available data.

The humidity distribution starts fairly close to Gaus-
sian at the analysis time, but narrows and becomes increas-
ingly asymmetric over time. At 6 hr lead time, the his-
togram is concentrated near the zero bound of saturation
deficit, indicating that the region has become cloudy in
almost all ensemble members. By the end of the forecast at
14 hr, the histogram shows both a cloudy and a clear-sky
peak. It is not known whether the distribution will con-
tinue to evolve in time, but this form would be expected for
the “climatological” distribution, when predictability of
the locations of the convective clouds is lost. At this point,
the overall humidity is set by the large-scale conditions,
but there is no skill in predicting whether a particular grid
point will be cloudy or clear.

Overall the behavior of the distributions is not incon-
sistent with the conceptual model of Figure 1, but it is
not possible to clearly identify all of the stages for any
of the forecast variables shown here. At the very least a
higher time resolution would be needed to see the impact
of the initial loss of predictability of the convection, while
a longer simulation time might be needed before the

distributions could be regarded as climatological, even in
the sense defined for Figure 1.

3.4 Convergence of ensemble
predictions

The quantitative convergence of probabilistic predictions
with ensemble size will be explored by considering dis-
tributions of temperature, precipitation and humidity
obtained in three ways: first for grid point values, second
for a 45-km neighborhood, and finally for grid point values
obtained from a “selected member” ensemble constrained
to sample all 20 large-scale boundary conditions equally
(see Section 2.5 ). For temperature and humidity, we exam-
ine convergence of the ensemble mean, the standard devi-
ation, and as a representative of more extreme events,
the 95th percentile. For precipitation, the standard devia-
tion and 95th percentile of the distribution are less useful
because of the large number of members with zero precipi-
tation. Instead, we consider the probability of precipitation
exceeding two thresholds: 0.1 and 5 mm⋅hr−1. The first
threshold is a very modest amount of rain, whereas the sec-
ond threshold corresponds to a relatively rare event in the
ensemble.

As explained in Section 2.5, a distribution of estimates
for each forecast quantity was constructed by bootstrap-
ping. Figure 10 shows the bootstrap sample median and
confidence intervals for each estimated quantity as func-
tion of ensemble size. Starting with the grid point estimates
for the quasi-normal variable, temperature, the top left
panel shows that the estimate of the mean for all ensem-
ble sizes is unbiased and the confidence interval narrows
as ensemble size increases. In contrast, estimates of the
standard deviation of temperature (second column), and
even more so the 95th percentile (third column), are biased
low for small ensemble sizes, with the median value below
that of the 1,000-member reference (shown in white). The
rate of decrease in the width of the confidence interval for
smaller ensemble sizes is irregular, although it becomes
smoother for larger ensemble sizes. For all three quanti-
ties, the neighborhood method produces slightly narrower
confidence intervals than the single grid point values, con-
sistent with a larger effective ensemble size.

Similar conclusions can be drawn for the precipita-
tion and humidity estimates in the second and third rows
of Figure 10, with irregular behavior for small ensemble
sizes, but tending towards a smoother convergence behav-
ior for larger ensembles. The bias of the estimate is partic-
ularly pronounced for the higher precipitation threshold
of 5 mm h−1. The median probability is zero for ensem-
ble sizes of 40 or less, indicating that this precipitation
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CRAIG et al. 2337

F I G U R E 10 Mean, standard deviation and 95th percentile of 500 hPa temperature (top row) and saturation deficit (bottom row).
Middle row shows mean hourly precipitation and probability of precipitation exceeding thresholds of 0.1 and 5.0 mm⋅h−1 Forecast quantities
are computed for 31 May at 1800 UTC (forecast lead time 6 hr). The bands show the 95% confidence interval determined for the 10,000
bootstrapped samples (bounded by 2.5% and 97.5% quantiles), while the solid lines show the respective median values. The dashed white
horizontal line indicates the median of the distribution computed using all 1000 members. Grid point: single grid point forecast,
neighborhood: 45-km neighborhood forecast [Colour figure can be viewed at wileyonlinelibrary.com]

rate did not occur at all in more than half of the boot-
strap ensembles. Comparing the grid point results to the
neighborhood estimates, it is clear that the benefit for nar-
rowing the confidence intervals is greater for precipitation
than for temperature. However, the neighborhood esti-
mates of ensemble mean and other quantities converge
to a value that is different from the large ensemble limit
computed for a single grid point. The difference is partic-
ularly prominent for precipitation. As shown in Fig. 4, the
location under consideration is on the edge of a region of
frequent precipitation, so that the neighborhood includes
locations with higher probabilities of more intense rain.
As a result, the variability in the neighborhood is not an

accurate substitute for the ensemble variability at a single
grid point in this case.

Finally, we consider the performance of the selected
member ensembles, which are expected to increase
the spread of small ensembles by always including all
large-scale boundary conditions. The results of these
experiments have not been plotted in Figures 10 and 11,
because they were almost identical to those of the ran-
domly chosen ensembles. No impact on ensemble spread
was found. This result is consistent with the analysis of
Necker et al. (2020a), who showed that the inclusion of
different large-scale boundary conditions in the ensemble
had only a small effect on the variance spectrum during
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2338 CRAIG et al.

F I G U R E 11 Width of the 95% confidence intervals, between 2.5% and 97.5% quantiles, based on 10,000 bootstrap samples, for the
forecast variables shown in Figure 10. Dashed lines show reference curves with slope N−1/2, fitted by eye [Colour figure can be viewed at
wileyonlinelibrary.com]

the initial spin-up phase of the forecast, and no signifi-
cant impact at later times. A possible explanation for the
lack of impact is that, for the weather situation consid-
ered here, the variability in the ensemble is dominated
by local processes (Keil et al., 2014). In this case, a larger
number of case studies with a greater variety of weather
will be required to assess the value of a selected member
ensemble. But it might also be that the 20 member GEFS
ensemble does not adequately represent the large-scale
uncertainty in this case, and the addition of random per-
turbations fails to compensate. In this case, it would be
beneficial to use boundary conditions from a larger or even
multimodel global ensemble (Marsigli et al., 2014).

We now examine the rate of convergence of the forecast
estimates by plotting the width of the confidence inter-
val as a function of the ensemble size N. If the ensemble
size is large enough, and the underlying distribution is

well behaved (e.g., has finite moments), the Central Limit
Theorem (CLT) states that for a large number of inde-
pendent and identically distributed random variables, the
sampling distribution of the normalized sum will tend
towards a normal distribution without dependence upon
the underlying distribution’s shape (Dekking et al., 2005).
The standard error of the mean of this sampling distribu-
tion will then be proportional to N−1/2. This normality of
the sampling distribution can also be extended to a wide
range of other statistics, including those of the standard
deviation and of quantiles (Walker, 1968). The width of
the 95% confidence interval is a multiple of the sampling
distribution’s standard error, and can also be expected to
converge as N−1/2. However, this behavior is only expected
in the limit of large ensemble size, and it is not certain
whether it will be observed for the meteorological distri-
butions and ensemble sizes available here.
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The first column of Figure 11 shows that for all three
forecast variables, for random and neighborhood ensem-
bles, the width of the confidence interval for the ensemble
mean decreases proportional to N−1/2. It is quite striking
that the convergence follows the asymptotic law even
for ensemble sizes of less than 10 members. The confi-
dence intervals for the neighborhood estimates are always
narrower than for the estimates based on a single grid
point, consistent with a larger effective ensemble size. The
difference is substantial for precipitation and humidity.
By shifting the neighborhood curve to the right, we can
estimate that the effective increase in ensemble size is
approximately a factor of 3. Since the neighborhood con-
tains 315 grid points, this shows that there is substantial
correlation between the variability at different locations
within the region. Interestingly, this ratio is consistent with
an effective correlation length of approximately (315/3)1/2

≈ 10 grid points. In a numerical model, parameterized and
numerical diffusion cause nearby grid points to be cor-
related, so that only features larger than 5-6 times the
grid length are accurately resolved. The correlation length
estimated here is about twice this size, suggesting that
the effective ensemble size may be limited by physical
interactions in space, rather than by the effective model
resolution, as proposed in Section 3.2.

For the estimates of standard deviation of tempera-
ture and saturation deficit, and of precipitation exceeding
0.1 mm h−1 (second column of Fig. 11), the N−1/2 scal-
ing appears to hold for ensemble sizes of 100 or greater,
but the deviations for smaller ensemble sizes are often
significant. For the 95th percentile and probability of pre-
cipitation exceeding 5.0 mm h−1 (third column of Fig. 11),
the N−1/2 scaling is convincing only for the neighborhood
method, which has a larger effective ensemble size than
the estimates based on a single grid point.

4 CONCLUSIONS
AND DISCUSSION

Probabilistic weather forecasts are limited by cost to small
ensemble sizes. The errors resulting from these small
sizes are difficult to assess since we do not know the
distribution of a forecast variable that a large ensemble
would see, and how many ensemble members would be
required to accurately sample it. In this study, we have
examined a 1,000-member convection-permitting ensem-
ble forecast to determine what types of distribution arise
for different forecast variables, and how well these dis-
tributions are represented by smaller ensembles of dif-
ferent sizes. We also consider the performance of fore-
casts based on neighborhood statistics or area-averaged
quantities.

When interpreting the results of this investigation, a
number of limitations need to be kept in mind. The fore-
casts are for a single period of convective weather over
a specific geographical region. The results are presented
for a single forecast, which is typical of this period, but
may not be typical of other regions or weather types.
The ensemble has only 1,000 members, which we have
found to be sufficient to represent some forecast quanti-
ties such as ensemble means, but not others that are more
sensitive to extreme events. Furthermore, for practical rea-
sons not all forecast quantities of interest were examined.
Some particularly interesting variables to explore would
be the probability of precipitation exceeding a threshold,
which depends strongly on the number of members with
zero precipitation, or near-surface winds and temperatures
where interactions with the boundary constrain the fore-
cast distributions. Despite these limitations, we believe
that some of our results can be applied more generally, and
we focus on these in the following discussion.

The main conclusions of this work are:

1. Three distribution types. All of the histograms pro-
duced by the 1,000-member ensemble fell into three
categories: quasi-normal, highly skewed, and mixture.
These are very general and loosely defined categories,
so it is also important to note what was not observed.
In particular, the distributions are well-behaved, in the
sense that there was no evidence of power-law tails
or other extreme forms in Figures 7–9, which might
prevent the estimates for a forecast quantity from con-
verging with increasing ensemble size (Fig. 10).

This conclusion is likely to depend on the space
and time-scales of the forecast. In a short-range,
limited-area forecast, such as those considered here,
the initial and boundary conditions strongly constrain
the forecast, and in particular the probability of outlier
events. Longer-range forecasts covering a larger spatial
domain would allow a wider range of events, and might
need larger ensemble sizes to estimate their probabili-
ties. It is possible that as long as predictability is not lost,
that is the forecast is constrained by the initial condi-
tions, the forecast distribution will be constrained to fall
into the three categories found here, but this can only
be determined by further experimentation.

2. Universal asymptotic convergence law. For
”well-behaved” forecast quantities, which, as noted
above, seems to include all those considered in the
present study, we expect the estimates to converge
with ensemble size. In the limit of large ensemble size
N, the distribution of the estimates for different sam-
ples of a given size should approach a Gaussian form,
with the width of the confidence interval decreasing
as N−1/2 . This scaling law was indeed found in the
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1,000-member ensemble for all three of the example
variables examined here, for some forecast quantities.
The ensemble mean always followed the expected scal-
ing as did the standard deviation for sufficiently large
ensemble size. The scaling law was not unambiguously
observed for the 95th percentile or probability of high
precipitation rates, except where the neighborhood
method was used to increase the effective ensemble
size beyond 1,000. The precise ensemble size required
to give a desired accuracy (size of confidence interval)
will be specific to the forecast being considered, but
once the ensemble is large enough to follow the N−1/2

scaling law, the available results can be extrapolated to
estimate the required ensemble size for any other given
level of accuracy.

The results of this study suggest that in deciding
what size of ensemble is needed for a particular fore-
casting problem, it is important to consider whether
the ensemble is large enough for the asymptotic con-
vergence behavior to be established. It is significant
that for the forecast problems considered here, the
ensemble sizes of 40–100 currently used in operational
weather forecasting are more than adequate to show
convergence of the ensemble mean, and in most cases
sufficient for the standard deviation, although clearly
inadequate for more extreme events such as the 95th
percentile. It is tempting to speculate that, since the
operational ensembles are often evaluated in terms of
their standard deviation (RMS spread), relative to the
mean error, the current ensemble sizes have been cho-
sen as the minimum necessary to give a useful estimate
of spread.

3. Neighbourhood and averaging methods can be effec-
tive. The results of Section 3.2 show that both the
neighborhood and averaging methods can reduce the
sampling error associated with small ensemble size.
Both methods depend on the small-scale variability of
the forecast quantity being uncorrelated in space. For
the neighborhood method, the additional points in the
neighborhood then provide independent realisations
of the variability, leading to a larger effective ensem-
ble size. A quantitative estimate of this increase for
ensemble mean precipitation or humidity showed that
an increase in effective ensemble size corresponds to
a correlation length of about 10 grid points, which is
larger than the effective resolution of the model and
may be evidence of some degree of convective organiza-
tion. Forecasts of area-averaged quantities, on the other
hand, gain accuracy by averaging out the uncorrelated
spatial variability within the averaging region.

Since both of these methods rely on random vari-
ability in space, their success for the convection fore-
casts considered here cannot be generalized to other

phenomena such as fog or synoptic weather sys-
tems which have smoother spatial structures. Even
for 500-hPa temperature in the current forecasts, the
two methods brought no benefit. This suggests that
convective-scale ensemble forecasting systems may be
able to use smaller ensemble sizes than the global sys-
tems used for medium-range forecasting. It is also pos-
sible that sub seasonal to seasonal forecasts, where the
synoptic weather systems can sometimes be regarded as
small-scale noise, would again benefit from averaging
or neighborhood methods.

The most important conclusion of this work is to recast
the question of ensemble size in terms of the asymptotic
convergence behavior of forecast quantities. While one can
conceive of theoretical distributions that will not show
this behavior, we are not aware of any evidence that they
arise in practical ensemble prediction problems. Indeed,
for such a distribution, one would need to define in what
sense it is predictable at all.

More important from a practical point of view, is
the question of how to demonstrate and measure con-
vergence without starting with a very large ensemble
as a prerequisite. The obvious approach would be to
compute confidence intervals (using bootstrapping) for
sub-ensembles of different sizes, up to the currently avail-
able size. If, as speculated above, current ensembles are
near the minimum size required to show scaling for the
standard deviation, experiments using a modest increase
in size, e.g. two or three times, might be enough to show
convergence.
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