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Abstract
Many operational weather services use ensembles of forecasts to generate proba-
bilistic predictions. Computational costs generally limit the size of the ensemble
to fewer than 100 members, although the large number of degrees of freedom in
the forecast model would suggest that a vastly larger ensemble would be required
to represent the forecast probability distribution accurately. In this study, we
use a computationally efficient idealised model that replicates key properties of
the dynamics and statistics of cumulus convection to identify how the sampling
uncertainty of statistical quantities converges with ensemble size. Convergence
is quantified by computing the width of the 95% confidence interval of the sam-
pling distribution of random variables, using bootstrapping on the ensemble
distributions at individual time and grid points. Using ensemble sizes of up to
100,000 members, it was found that for all computed distribution properties,
including mean, variance, skew, kurtosis, and several quantiles, the sampling
uncertainty scaled as n−1∕2 for sufficiently large ensemble size n. This behaviour
is expected from the Central Limit Theorem, which further predicts that the
magnitude of the uncertainty depends on the distribution shape, with a large
uncertainty for statistics that depend on rare events. This prediction was also
confirmed, with the additional observation that such statistics also required
larger ensemble sizes before entering the asymptotic regime. By considering two
methods for evaluating asymptotic behaviour in small ensembles, we show that
the large-n theory can be applied usefully for some forecast quantities even for
the ensemble sizes in operational use today.

K E Y W O R D S

asymptotic convergence, distributions, ensembles, idealised model, sampling uncertainty, weather
prediction

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the
original work is properly cited.
© 2022 The Authors. Quarterly Journal of the Royal Meteorological Society published by John Wiley & Sons Ltd on behalf of the Royal Meteorological Society.

Q J R Meteorol Soc. 2023;149:677–702. wileyonlinelibrary.com/journal/qj 677

https://orcid.org/0000-0002-2318-9032
http://twitter.com/@kirsten_tempest
https://orcid.org/0000-0002-7431-8164
https://orcid.org/0000-0002-8867-707X
http://creativecommons.org/licenses/by/4.0/
http://wileyonlinelibrary.com/journal/QJ
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fqj.4410&domain=pdf&date_stamp=2023-03-22


678 TEMPEST et al.

1 INTRODUCTION

Probabilistic forecasting is currently used by many
operational forecasting facilities. In comparison with
deterministic forecasting, it provides important benefits.
Probabilistic forecasting allows for flow-dependent uncer-
tainty to be quantified and evolved in time, which in turn
allows for a probability to be attached to the meteorologi-
cal prediction (Leutbecher and Palmer, 2008). As a result,
the economic value of a probabilistic forecast is generally
higher than that of a deterministic forecast (Zhu et al.,
2002).

The quality of probabilistic forecasts has improved
steadily in recent years (Bauer et al., 2015), through a com-
bination of improvements to the observing system and
data assimilation (DA) methods as well as the formula-
tion of numerical models, including the representation
of model error through stochastic parameterisations (e.g.
Bouttier et al., 2012; Jankov et al., 2017; Rasp et al., 2017;
Hirt et al., 2019; Sakradzija et al., 2020). On the other hand,
it is well known that initial condition and model errors,
combined with the chaotic nature of the atmosphere, lead
to an intrinsic limit on the predictability of the atmosphere
(Lorenz, 1969). However, the error-growth experiments of
Selz and Craig (2021) suggest that an additional 4–5 days of
predictability can still be gained by further improvements
to the forecasting system.

Despite huge increases in computing power, one aspect
of the forecasting system that has not changed much is
ensemble size. Operational ensembles typically have sizes
of 20–50 members (Buizza et al., 2000; Reinert et al., 2020;
Met Office, 2022), and apparently the improvements in
forecast skill that might be obtained from a larger ensem-
ble do not justify the costs of more members. Buizza et al.
(1998) and Raynaud and Bouttier (2017) compared the
benefits of increased ensemble size with those of higher
resolution for global and regional forecasting systems,
respectively. Both studies found that either ensemble size
or resolution increases could be more beneficial, depend-
ing on factors such as forecast lead time and the quan-
tity being predicted. Other improvements such as a bet-
ter quantification of the initial and model uncertainties
may also improve the forecast. Leutbecher (2019) pro-
vides a theoretical framework for the modest increases
in forecast skill with increasing ensemble size. A num-
ber of different skill scores were evaluated, and results
from European Centre for Medium-Range Weather Fore-
casts (ECMWF) ensembles with up to 200 members were
compared with theoretical expectations for ensembles of
different sizes under the assumptions that the ensemble is
reliable and the members are exchangeable. Under these
assumptions, for example, the continuous ranked proba-
bility score (CRPS) of an ensemble of size n is equal to

the score for an infinite ensemble multiplied by a factor
(1 + 1∕n). This shows that improvements in CRPS will
be small once the ensemble size has reached a few tens
of members, and useful estimates can often be obtained
with even smaller ensembles. Similar results were found
for other scores, with the notable exception of the quan-
tile score (QS) for the more extreme quantiles close to
0 or 1, where convergence required much larger ensem-
ble sizes. As shown by Richardson (2001), such forecasts
are particularly important to users with low cost/loss
ratios.

The sensitivity for extreme quantiles is perhaps unsur-
prising, since the frequency distribution of a forecast
quantity (hereafter referred to simply as the distribu-
tion) from an ensemble of up to 50 members is unlikely
to be accurate for rare events that are sampled infre-
quently. In research environments, larger ensemble sizes
have been considered. For example, Lin et al. (2020) eval-
uated a measure of hurricane strength, nondimensional
damage, that depends nonlinearly on wind speed and
is sensitive to extremes. They found that a 100-member
ensemble was not large enough to resolve the relevant
part of the wind-speed distribution, whereas an ensem-
ble size of 1,000 gave much improved results. Likewise,
Jacques and Zawadzki (2015) chose to use a 1,000-member
ensemble to describe the background covariance struc-
ture required for DA, since multivariate combinations of
values may be sampled infrequently even when the indi-
vidual values are not rare. This effect is magnified fur-
ther by the fact that multivariate distributions may have
extremely non-Gaussian properties, even when derived
from quasi-Gaussian marginals (Poterjoy, 2022). Such
behaviour is particularly problematic in DA, where dis-
tributions are often assumed to be multivariate Gaus-
sian in form. A quantitative evaluation of the impor-
tance of ensemble size in DA was provided by Kondo
and Miyoshi (2019), who used the 10,240 member global
ensemble of Miyoshi et al. (2014) and measured the degree
of non-Gaussianity for different ensemble sizes. It was
found that approximately 1,000 members were generally
required to represent characteristics of non-Gaussian dis-
tributions such as skewness and kurtosis.

The preceding studies show that the skill of ensemble
predictions depends on the resolution of the distribution
produced by the forecast ensemble, where the ensemble
size is of direct importance, but also on its reliability, how
well the ensemble reproduces observations, and the user
requirements that determine which properties of the dis-
tribution are of interest. In this article, we will investigate
the dependence of sampling uncertainty on ensemble size,
and leave questions of reliability and score against obser-
vations for future work. This will allow us to consider the
effects of the different distribution shapes that arise for

 1477870x, 2023, 752, D
ow

nloaded from
 https://rm

ets.onlinelibrary.w
iley.com

/doi/10.1002/qj.4410 by C
ochrane G

erm
any, W

iley O
nline L

ibrary on [29/09/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



TEMPEST et al. 679

different forecast variables and lead times, and provides
a basis for future work to quantify the contributions of
different sources of uncertainty in the ensemble. The
present study builds on the results from a 1,000-member
convective-scale ensemble (Craig et al., 2022), but uses
an idealised model where it is possible to use very large
ensemble sizes to examine the convergence of any variable
of interest.

A first idea of how forecast distribution shapes vary as
a function of lead time is given by the conceptual model
proposed by Craig et al. (2022) (see their figure 1). Most DA
systems assume that the distributions are close to Gaus-
sian during the assimilation cycle. In the free forecast, the
distribution will broaden as uncertainty increases and will
start to deviate from Gaussianity as nonlinear processes
become important. The shape of the distribution may
develop long tails (extreme events) and multiple peaks
(weather regimes). At long lead times, it will converge to
a smoother climatological distribution. Looking at fore-
casts of winds, temperatures, cloud, and precipitation from
a 1,000-member convective-scale ensemble, Craig et al.
(2022) found evidence for this progression, but, perhaps
more importantly, they found that all the distributions
they observed for different variables and lead times could
be categorised into three basic shapes: quasi-Gaussian,
highly skewed, and multimodal, with different conver-
gence properties. These results are limited, however, by
the data set available, which consists of a small number
of forecast days for a particular season and geographical
region.

The most interesting result of Craig et al. (2022) was
that, for all distribution shapes and most forecast variables,
the width of confidence intervals of ensemble estimates
decreased with increasing ensemble size n following a uni-
versal scaling law n−1∕2. The forecast variables included
the mean, standard deviation, and 95th percentile of tem-
perature and humidity, as well as the probability of pre-
cipitation exceeding certain thresholds. The n−1∕2 scal-
ing was found for sufficiently large n for all quantities,
except some 95th percentiles and probability of precipi-
tation exceeding large thresholds. It is possible that the
scaling would eventually be observed for ensemble sizes
larger than 1,000 members. This convergence behaviour is
expected from the Central Limit Theorem (CLT), whereby,
for a large number n of independent and identically dis-
tributed (iid) random variables, the sampling distribution
of the summation of the random variables will be normally
distributed without dependence on the initial distribution
shape (Dekking et al., 2005). Furthermore, the standard
error of this sampling distribution will be proportional to
n−1∕2 in the limit of large n. Convergence in the uncertainty
of the ensemble mean with ensemble size according to this
theory was illustrated by Leutbecher (2019) for a Gaussian

distribution and for an example of 500-hPa geopotential
over the Northern Hemisphere.

While the n−1∕2 scaling of the uncertainty with ensem-
ble size is independent of the underlying distribution, the
absolute magnitude is not. For a given quantile level, the
standard deviation of the ensemble sample estimate of that
quantile is given by

𝜎np =
1
√

n

√
p(1 − p)
f 2(qp)

, (1)

where 𝜎np is the standard deviation of the quantile sam-
pling distribution, n is the number of ensemble members,
and f is the probability density at qp, the true theoret-
ical quantile corresponding to p, where p ∈ (0, 1) is the
quantile level (Stuart and Ord, 2000; Gneiting, 2014). The
first term on the right-hand side of Equation 1 shows
the expected scaling with ensemble size, while the second
term shows that the uncertainty is inversely proportional
to the frequency of occurrence of the quantile, that is, pre-
dictions of rare events are less confident. For sufficiently
large n, Equation 1 provides an estimate of how many
ensemble members would be required in order to have
a specific level of sampling uncertainty for a particular
quantile level of a meteorological variable, and how this
changes depending on quantile level. This is illustrated
in Figure 1, which shows the ensemble size required to
reach a given level of sampling uncertainty for different
quantile levels for a Gaussian-distributed variable, com-
puted from Equation 1. The figure shows that, as one
requires increased certainty in the estimate of the quan-
tile level p, more members are required. Furthermore,
as the quantile level gets more extreme (further away
from the median), the uncertainty increases for any given
number of ensemble members, varying inversely with the
underlying Gaussian distribution shown in Figure 1a. It is
unknown whether this equation will be useful for mete-
orological data, however, due to not knowing the exact
underlying probability density function (PDF) and not
necessarily having sufficient ensemble members for the
asymptotic results to be accurate.

In cases where asymptotic scaling is actually observed,
it should be possible to approximate the number of ensem-
ble members required to reach a given level of sampling
uncertainty for a statistical quantity of a forecast vari-
able. For example, if a forecaster wants to approximate
the number of members required to reach a certain accu-
racy in the spread of a measurement of temperature over
Munich, asymptotic scaling could be used. This would
work by quantifying how the data the forecaster has with
the current sized ensemble scales with n−1∕2, and then
extrapolating this until it reaches the level of sampling
uncertainty that is wanted.
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F I G U R E 1 (a) Probability density of a Gaussian as a function
of quantile p and (b) showing the corresponding ensemble size
(contours) required to reach a given level of sampling
uncertainty (y-axis) for different quantile levels (x-axis)

In this article, we assess the relevance of the asymp-
totic theory to ensemble weather prediction by considering
a computationally efficient idealised ensemble forecast-
ing system. We will investigate the ensemble sizes
required to obtain the asymptotic scaling law for dif-
ferent quantities and their dependence on the underly-
ing distribution. Finally, we will consider how to obtain
information about convergence from ensembles of limited
size.

In Section 2, the model and methods are presented. An
idealised model is selected and the setup of the idealised
prediction system is described, along with the methods
that are carried out on the subsequent ensemble data. The
first part of Section 3 evaluates whether the distributions
from the idealised prediction system are of a form similar
to those from Craig et al. (2022). The results of explor-
ing the convergence behaviour are reported in Section 3.2.
In Section 3.3, two methods of estimating the sampling
uncertainty at larger ensemble sizes using only a smaller
ensemble are discussed. The main results are summarised
in the conclusions in Section 4.

2 MODEL AND METHODS

For this study, a model is required which represents the
basic processes of convection in the midlatitude atmo-
sphere. This encompasses having spatial and time scales
representative of convective processes and being capable
of modelling nonlinear processes. It must, in addition,
be computationally inexpensive, so that ensemble sizes of
order (105) can be examined efficiently. We employ a
one-dimensional idealised model for cumulus convection
(Würsch and Craig, 2014, hereafter referred to as WC14),
which was developed for convective-scale DA. This model
features a simple representation of convective updrafts
and downdrafts, but with enough complexity to mimic the
nonlinear dynamics of the convective life cycle and the
spatially intermittent and non-Gaussian statistics of a con-
vecting atmosphere. In Section 2.1 the model of WC14 is
described, and in Section 2.2 we assess whether this model
achieves the requirements stated above. The idealised pre-
diction system built on the basis of the idealised model
is presented in Section 2.3, before the methods used are
outlined in Section 2.4.

2.1 Model

The one-dimensional idealised model (WC14) uses a mod-
ified version of the shallow-water equations for a single
fluid layer. Conditional instability that leads to convection
is modelled by a modification of the buoyancy term when
the fluid level is lifted sufficiently, and a rain equation is
introduced to allow for the creation of negatively buoyant
downdrafts. The model state is specified by three variables:
wind u, height h, and rain r, illustrated in Figure 2. These
are described by the following equations:

𝜕u
𝜕t
+ u𝜕u

𝜕x
+ 𝜕(𝜙 + c2r)

𝜕x
= Ku

𝜕
2u
𝜕x2 + F, (2)

Z = h +H, (3)

𝜙 =

{
𝜙c + gH, Z > Hc

g(H + h), otherwise

}

, (4)

𝜕h
𝜕t
+ 𝜕(uh)

𝜕x
= Kh

𝜕
2h
𝜕x2 , (5)

𝜕r
𝜕t
+ u 𝜕r

𝜕x
= Kr

𝜕
2r
𝜕x2 − 𝛼r −

{
𝛽
𝜕u
𝜕x
, Z > Hr and 𝜕u

𝜕x
< 0

0, otherwise,
(6)
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TEMPEST et al. 681

F I G U R E 2 Snapshots of the domain at four time points for the three model variables. Thresholds (described in text) are shown in the
height field [Colour figure can be viewed at wileyonlinelibrary.com]

where H is the height of the topography, h is the fluid
depth (referred to as “height”), and Z = H + h the abso-
lute fluid layer height. Note that in the present study we do
not include orography, so that H = 0 and therefore Z = h.
From selecting the initial fluid level height, h0, to be 90 m,
the gravity-wave speed is 30 m ⋅ s−1, as in WC14. The dif-
fusion constants used are Ku = 2 × 103 m2 ⋅ s−1

,Kh = 6 ×
103 m2 ⋅ s−1, and Kr = 10 m2 ⋅ s−1.

If h is greater than a first threshold (h > Hc = 90.02 m),
then the buoyancy at that grid point is increased by set-
ting the geopotential, 𝜙, to a relatively low constant, 𝜙c,
which is chosen to be 899.77 m2 ⋅ s−2. This encourages
more fluid into this region, thereby increasing h further.
This process is analogous to the buoyant updraft phase of a
cloud, whereby the level of free convection has been passed
by a saturated fluid parcel. Therefore, when h crosses the
threshold Hc, that grid point is said to contain a cloud.

If h crosses a second threshold ( h > Hr = 90.4 m) and
wind is converging on this grid point, then rain (scaled by
𝛽, which is set to 0.1) is produced. Where rain exists, it
adds a negative term to the geopotential, reducing buoy-
ancy and tending to create downward motion, leading to
the collapse of the cloud. Rain is removed from the domain
by a linear relaxation of rate 𝛼, with value 1.4 × 10−4s−1.
This allows for rain to remain at a grid point even if there is
no longer a cloud, thereby disincentivising another cloud
to form immediately afterwards at the same location. An
example of the growth and decay of a short-lived cloud
occurs at x = 22 km in Figure 2. The height crosses the

rain threshold at t = 20 min, the negative buoyancy due to
the rain changes the convergent wind to divergent, and the
height perturbation has disappeared by t = 104 min, while
the rain amount decays more gradually.

Throughout the simulation, gravity waves perturb the
height field, initiating and inhibiting convection. In addi-
tion, to model the contribution of boundary-layer turbu-
lence to convective initiation, convergent and divergent
perturbations F are added to the wind field at every time
step. These are of the form of a normalised first-order
derivative of a Gaussian function. This odd function is
multiplied by an amplitude, ū, which has value 8.95 ×
10−3ms−1. Convergent perturbations encourage h to reach
the first threshold in height ( Hc), initiating the updraft
phase of a cloud.

The numerical implementation of the model is based
on WC14, with a second-order centred finite-difference
approximation on a staggered grid alongside a RAW filter
for time-smoothing (Williams, 2009; 2011). The time step
is modified here to 4 s and the RAW filter parameter to 0.7,
for numerical stability. The integrated height field over the
domain does not change in time, signifying that the model
is mass-conserving under this numerical approximation.

2.2 Properties of the model solutions

The example in Figure 2 shows that the evolution of the
simulated cloud life cycle occurs on realistic time scales.
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682 TEMPEST et al.

F I G U R E 3 Hovmöller diagram showing the evolution of the height field across a section of the domain over the 24-hr period of the
free run [Colour figure can be viewed at wileyonlinelibrary.com]

For the updraft phase of a cloud, the time between a cloud’s
initiation (h > Hc) and rain formation (h > Hr) is approx-
imately 15 min. For the downdraft phase, the half-life of
rain is approximately 1 hr and the overall lifetime of a
cloud (h > Hc) with one updraft and one downdraft is
between 1 and 2 hr. Multiple phases of a cloud can exist,
as shown in Figure 3, which displays the evolution of the
height field in time using a Hovmöller diagram. Longer
lasting clouds exist, featuring several up- and downdraft
phases in their evolution (marked by multiple regions with
darker shades of green). Splitting of convective updrafts
and initiation of new clouds in the vicinity of existing
clouds can also be observed.

With a total domain size of 500 km and a horizontal
resolution of 500 m, there is a cloud coverage of approx-
imately 5% of the domain at any instant. The widths of
clouds are logarithmically distributed, with a mean of
1.2 km and a maximum width of 7.5 km, which is in agree-
ment with WC14. This corresponds to an average of 20.8
clouds in the domain at any given time. The statistics of
cloud size and number are stationary in time, and the spa-
tial locations of the clouds are close to random, with the
distance between clouds following an exponential distri-
bution (not shown). This agrees with the theory detailed
in Craig and Cohen (2006) and the numerical experiments
of Cohen and Craig (2006). Overall, the temporal and
spatial distributions produced by the idealised model are
reasonable for a convecting atmosphere. This, along with
the computationally inexpensive nature of the modified
shallow-water equations, makes it a suitable model for our
experiments.

2.3 Idealised prediction system

A Numerical Weather Prediction (NWP) system is created,
based upon the idealised model. A truth run is initialised,
along with a 500 member ensemble for DA, which will
be used to initialise a larger forecast ensemble. The truth
run and ensemble members are initialised with a homo-
geneous state of no background wind, no rain, and a
constant initial height (h0) of 90 m, and all simulations
are run for 1,000 time steps with independent realisa-
tions of the stochastic forcing term to spin up the model
fields.

After initialisation, the ensemble Kalman filter (EnKF)
DA (Evensen, 1994) is cycled 50 times. Observations were
assimilated every 5 min at every grid point for each model
variable. The observations were obtained by adding a
Gaussian (log-normal) noise to the wind and height (rain)
fields. This noise has an error of approximately 10% of the
maximum deviation from that variable’s mean value. A
forecast-error covariance localisation (Gaspari and Cohn,
1999) is further implemented, with a localisation radius of
2 km. For more details on the DA used in this system, see
Ruckstuhl and Janjić (2018) and Ruckstuhl et al. (2021).
After 50 cycles, the root mean square error (RMSE) had
converged to an approximately constant value. The DA
ensemble size of 500 members was chosen based on the
results of Ruckstuhl and Janjić (2018) comparing RMSE as
a function of ensemble size.

For the free forecast, the ensemble size was expanded
to 100,000 members by copying the initial conditions of
the DA 200 times each, as even with an idealised setup it
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was prohibitive to run the DA with all 100,000 members.
This procedure is sufficient, since the stochastic forcing
causes members that start with identical initial conditions
to decorrelate rapidly. This was verified by computing the
Pearson correlation coefficient of the height field over the
domain between ensemble members that started with dif-
ferent initial conditions, compared with those that started
with identical initial conditions. The forecast ensemble, as
well as the truth run, was run for 24 hr, and data were
saved every four model minutes. The ability to run such
a large ensemble was the primary motivation for using an
idealised model.

The NWP system described here models different
sources of forecast error. The EnKF provided initial con-
ditions with an approximately Gaussian error. Along with
this, the stochastic perturbations to the wind field provide
model error. On the other hand, due to the cyclic domain,
there are no boundary condition errors.

2.4 Statistical analysis

The analysis of the ensemble forecasts will focus on two
types of statistics. The shape of the distributions of model
variables is of particular interest, along with their diver-
gence from being Gaussian-distributed. Furthermore, the
nature of the decrease of sampling uncertainty as an
ensemble becomes larger is of importance, for which sta-
tistical inference will be employed.

2.4.1 Non-Gaussian statistics

To test how close the forecast distributions are to being
Gaussian-distributed, we employ the same measures as
used by Kondo and Miyoshi (2019). These are sample
skewness, sample excess kurtosis, and Kullback–Leibler
divergence (KL divergence). Skewness, the third moment
of the distribution, measures the symmetry of the data.
Kurtosis, the fourth moment of the distribution, measures
the density at the tails of the data. For a Gaussian dis-
tribution, skewness and excess kurtosis are zero. The KL
divergence is a direct measure of the difference between
two distributions. In this study, the KL divergence is used
to measure the distance of a histogram of a distribution
from the ensemble from that of a reference Gaussian PDF.
As such, the lower the score, the closer the distribution
from the ensemble is to being Gaussian-distributed, and
a subjective threshold is chosen to determine whether
that distribution can then be considered Gaussian. Scores
above 0.3 are considered here to be non-Gaussian, which
is slightly higher than the threshold used by Kondo and
Miyoshi (2019).

2.4.2 Statistical inference

Each finite-sized data set (x1, x2, … , xn) of length n created
by an ensemble with n members is just one realisation of
the random variables (X1,X2, … ,Xn) from a distribution
F, and, as such, each of the sample statistics (e.g. sample
mean xn = (x1 + x2 + · · · + xn)∕n) is just one possible real-
isation of a random variable (e.g. Xn = (X1 + X2 + · · · +
Xn)∕n) (Dekking et al., 2005). For inference of a population
characteristic of F that the sample statistic is estimating (in
this case the sample mean is estimating the expectation 𝜇),
the distribution function of the random variable (in this
example Xn) will determine the associated uncertainty of
the estimation.

If this underlying distribution F is unknown, nonpara-
metric bootstrapping (Davison and Hinkley, 1997) is a
powerful tool used to infer information about its charac-
teristics. This has been used previously in meteorological
applications (e.g. Feng et al., 2011). Bootstrapping assumes
that the estimate F̂ is an accurate realisation of F. Non-
parametric bootstrapping is resampling with replacement
from a data set where all data points have equal prob-
abilities 1∕n, to create a “bootstrapped” random sample
(X∗

1 ,X
∗
2 , … ,X∗

n ), of the same length as the original sam-
ple. From each bootstrapped random sample, the desired
sample statistic can be calculated (in this case the boot-
strapped sample mean x∗n). The distribution of this statistic
(the random variable of the bootstrapped mean X

∗
n) can

then be used to construct confidence intervals and make
inferences for the chosen characteristic of F. Using this
probability distribution as an approximation for that of the
distribution of a random variable, in this case Xn, is known
as the bootstrap principle (Dekking et al., 2005).

For the analysis of uncertainty in this article, boot-
strapping will be performed on the distributions obtained
from the forecast ensemble described above. The
100,000-member distribution (F̂) will be assumed to be
an accurate realisation of the underlying distribution,
F. For each distribution, the bootstrapping procedure
is repeated 10,000 times in order to remove noise from
the sampling distributions of the statistics of interest. Of
particular interest is how the uncertainty of these sam-
pling distributions decreases as ensemble size increases.
For this purpose, a sampling distribution array of length
10,000 will be created for various ensemble sizes obtained
as subsets of the full forecast ensemble. In order to ensure
each data point in the distribution had equal weight in
the bootstrapping procedure, a jackknife-after-bootstrap
analysis was carried out (not shown: Davison and Hink-
ley, 1997). For what is to follow, it has been determined
that no one data point had any significant influence.

For the construction of the confidence intervals, the
percentile method is employed, where, for the 95% level,
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684 TEMPEST et al.

the 2.5th and 97.5th percentile of the random variable’s
sampling distribution are the lower and upper bounds
to the interval. This is deemed to be appropriate, due to
not having knowledge of the underlying distribution and
the mostly symmetric nature of the sampling distributions
obtained from our bootstrapping procedures.

3 RESULTS AND DISCUSSION

3.1 Distributions from the idealised
prediction system

The idealised prediction system defined in the previ-
ous section reproduces the basic processes of convection
and is computationally efficient. The first question to be
addressed is whether the forecast distributions generated
during the ensemble forecast are representative of a real
NWP ensemble system. In this section, distributions will
be extracted from the idealised system and their evo-
lution and shape analysed and compared with those of
distributions extracted from a 1,000-member NWP ensem-
ble (Craig et al., 2022).

Throughout this study, distributions from the ensem-
ble will be extracted for a single position and time, and as
a result will contain 100,000 data points (unless stated).
The evolution in time of the shape of the distributions was
different, depending on whether the initial condition pro-
duced by the DA contained a cloud at the chosen grid point
or not. The following subsection therefore will show dis-
tributions of the three variables of the idealised model for
both initially cloudy and noncloudy grid points.

3.1.1 Evolution of the wind variable

Figure 4 shows distributions of the wind variable at four
time points in the evolution of the free run at initially
cloudy and noncloudy grid points. In each histogram, 100
bins are calculated in order to resolve the shapes of the dis-
tributions clearly. The histograms are normalised so that
the integral is one, with the result that the narrow bin
interval leads to probability densities greater than one. The
distribution extracted from an initially cloudy grid point
shows an increase in spread and tail density until 80 min.
At 24 min there is a shift in the mean towards positive

(a) (b) (c) (d)

(e) (f) (g) (h)

F I G U R E 4 Wind variable distributions from the 100,000-member ensemble at initially (a,b,c,d) cloudy and (e,f,g,h) noncloudy grid
points after (a,e) 4, (b,f) 24, and (c,g) 80 min, and (d,h) at 24 hr of free run, overlaid by a Gaussian and Laplace PDF. Non-Gaussian statistics
corresponding to the distributions are detailed in Table 1 [Colour figure can be viewed at wileyonlinelibrary.com]
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TEMPEST et al. 685

T A B L E 1 Non-Gaussian statistics of wind distributions. Table entries are [skewness, kurtosis, KL divergence]

Starting conditions After: 4 min 24 min 80 min 24 hr

Cloudy [0.026, 1.309, 0.029] [−0.374, 1.431, 0.018] [−0.423, 1.450, 0.024] [−0.073, 5.356, 0.159]

Noncloudy [−0.102, 1.789, 0.024] [−0.539, 7.498, 0.070] [−0.222, 6.051, 0.078] [0.016, 5.282, 0.160]

(a) (b) (c) (d)

(e) (f) (g) (h)

F I G U R E 5 Height variable distributions from the 100,000-member ensemble at initially (a,b,c,d) cloudy and (e,f,g,h) noncloudy grid
points after (a,e) 4, (b,f) 24, and (c,g) 80 min, and (d,h) at 24 hr of free run, overlaid by a Gaussian or bimodal Gaussian PDF. Non-Gaussian
statistics corresponding to the distributions are detailed in Table 2 [Colour figure can be viewed at wileyonlinelibrary.com]

wind, but the mean relaxes gradually to zero again, as seen
at 80 min. The distribution at 24 hr is centred around zero.
At the initially noncloudy grid point, the distribution fol-
lows a similar evolution, except at 24 and 80 min where the
mean remains near zero. Table 1 documents three statistics
that characterise the non-Gaussianity of the distributions
presented in Figure 4. It is clear from the kurtosis that
density increases at the tails and the distributions at both
grid points become a bit less Gaussian as time evolves. It
is interesting to note that the kurtosis of the distribution
at the grid point that began with no cloud increases at a
faster rate than that at the grid point that started the free
run with a cloud. The symmetry of the distributions (small
skewness) throughout the evolution is also clear.

At all time points and for both grid points, KL diver-
gence (Table 1) is below 0.3 and as such a Gaussian
PDF fits the distributions well. Figure 4 also shows a

reference Laplace distribution for comparison. In some
cases, the Laplace form can fit aspects of the distribution
more effectively than a Gaussian. This is seen at 4 min
and at climatology for both grid points where the Laplace
form captures the peak of the distribution well. Jacques
and Zawadzki (2015) also found their 1,000-member back-
ground wind distributions from a convection-resolving
forecast to be approximated well by a Laplace PDF.

3.1.2 Evolution of the height variable

As with the wind variable, the evolving shapes of the
height variable distributions (Figure 5) are analysed. The
histogram of the height variable at 4 min at the grid point
initially containing a cloud shows a single peak with
mean above the Hc threshold of 90.02 m. As the ensemble
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686 TEMPEST et al.

T A B L E 2 Non-Gaussian statistics of height distributions. Entries of table are [skewness, kurtosis, KL Divergence]

Starting conditions After: 4 min 24 min 80 min 24 hr

Cloudy [0.352, 1.017, 0.032] [−0.737, 1.029, 0.052] [0.244, −1.310, 0.558] [4.470, 20.828, 1.332]

Noncloudy [2.206, 43.841, 0.060] [10.872, 159.423, 0.738] [8.037, 80.440, 0.896] [4.426, 20.492, 1.319]

members diverge, some no longer contain a cloud, leading
to a second peak which is centred below Hc. This shift
can be detected at 24 min, but is clearly visible by 80 min.
The formation of a second peak is accompanied by a large
increase in KL divergence (Table 2). As time goes on, den-
sity in the histogram increasingly shifts to the noncloudy
peak (peak with mean below Hc) until the climatological
distribution is reached, in which only a few members con-
tain a cloud at that location. The cloudy peak (peak with
mean above Hc) is then very small in comparison with
the noncloudy peak and the bimodality is hardly visible.
The evolution of the distribution for the first 80 min at the
grid point that did not initially contain a cloud is roughly
opposite to that of the initially cloudy grid point. In this
case, the initially noncloudy members gathered below the
Hc threshold gradually diverge, with a few members even-
tually forming clouds to produce a second peak above this
threshold.

At 4 min, the distributions at both grid points still show
the approximately Gaussian distribution produced by the
DA. After 24 and 80 min, a bimodal Gaussian fits the dis-
tributions well, for grid points that started both without
and with a cloud. This deviation from a simple Gaussian is
consistent with the increase in KL divergence to above 0.3
(Table 2) at these grid and time points.

3.1.3 Evolution of the rain variable

The evolution of the rain variable distributions are shown
in Figure 6. Note the log scaled x-axis. The ensemble mem-
bers below a certain threshold (3 × 10−5) are considered
to have no rain and are not plotted. Instead, the percent-
age of ensemble members that have rain is stated above
each panel. The number of bins is reduced to 50, in order
to observe this reduced number of members clearly. In
the case of the grid point beginning with a cloud, it con-
tained a cloud that had not yet precipitated. At 4 min,
therefore, many of the ensemble members had not yet pre-
cipitated. The fraction of members with rain increases up
until 80 min, at which time 75% of the members contain
rain, compared with 4% at 4 min. Rain is removed by a
sink function that is proportional to the rain amount, so
that the largest rain amounts experience the most rapid
decline, with the result that the peak of the distribution
shifts towards smaller values between 24 and 80 min. This

is also seen in the strong increase of skewness in Table 3.
As the members at 24 hr become decorrelated, there is
no well-defined peak as seen at 24 and 80 min. A similar
evolution occurs at the grid point that did not initially con-
tain a cloud. However, as the members were not primed
to produce rain (they did not already contain a cloud in
the updraft phase) fewer members had developed rain at
24 and 80 min. The increase in skewness over the evolu-
tion at both grid points is reflected in the divergence from
Gaussianity indicated by the KL divergence in Table 3.

When there is significant rain (>0.1% of members),
the rain distribution fits a gamma PDF, and, to a lesser
extent, a log-normal PDF, well. This distribution shape
was also found by Scheuerer and Hamill (2015), where
a censored, shifted gamma PDF is fitted in the statistical
post-processing of an ensemble reforecast’s accumulated
precipitation distributions. Note that Figure 6f contains
only 17 members with rain; however, it appears it can also
be approximated by a gamma/log-normal PDF.

3.1.4 Comparison with NWP model

Finally, it is important to evaluate whether the form and
evolution of the distributions are representative of those
found in full NWP systems. The rain and wind speed
variables of the idealised model correspond directly with
variables of a NWP model, but the height variable requires
some interpretation. The most important consideration is
that when the height exceeds a certain threshold the buoy-
ancy becomes positive and the grid point is considered to
contain a cloud. We therefore identify h with the satura-
tion deficit, or relative humidity, variables that capture the
atmospheric variability inside and outside clouds.

For each of the three model variables, the evolution
of the distribution shapes has been analysed at a vari-
ety of different grid points. It was found that the wind
was reasonably well described by a Gaussian or Laplace
PDF, height by Gaussian mixture, and rain by a Gamma
distribution. This can be compared with the study of
1,000-member ensemble forecasts using an NWP model by
Craig et al. (2022), where it was found that the distribu-
tions of all the forecast variables examined fell into one
of three broad categories: quasi-Gaussian, multimodal,
or highly skewed. The parameterised fits for the three
variables of the idealised model are thus representative
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F I G U R E 6 Rain variable distributions from the 100,000-member ensemble at initially (a,b,c,d) cloudy and (e,f,g,h) noncloudy grid
points after (a,e) 4, (b,f) 24, and (c,g) 80 min, and (d,h) at 24 hr of free run. Percentages above histograms show the number of members
containing rain, which is shown in the histogram. Overlaid by gamma and lognormal PDF. Non-Gaussian statistics corresponding to the
distributions are detailed in Table 3 [Colour figure can be viewed at wileyonlinelibrary.com]

T A B L E 3 Non-Gaussian statistics of rain distributions. Table entries are [skewness, kurtosis, KL divergence]

Starting conditions After: 4 min 24 min 80 min 24 hr

Cloudy [2.164, 7.897, 0.927] [0.070, −0.285, 0.054] [1.023, 1.539, 0.097] [1.388, 3.021, 0.362]

Noncloudy [0.116, −0.706, 2.033] [0.511, −0.542, 0.457] [1.409, 2.536, 0.346]

of the three categories that characterise the NWP ensem-
ble forecasts. Furthermore, the evolution in time of the
model variable distributions follows the conceptual model
proposed by Craig et al. (2022) as described in Section 1.
Based on these results, we anticipate that the convergence
characteristics of the distributions with ensemble size will
also be representative of the behaviour of real-world NWP
systems.

A preliminary analysis of the bivariate distributions
was carried out in addition. Bivariate distributions were
created from pairs of distributions of the same vari-
able, but at different time points, and from pairs of dis-
tributions of different variables, but at the same time
points. At early time steps of the free run, it was found
that bivariate distributions were generally Gaussian, with
the exception of those including rain. As time evolved,

non-Gaussianity developed as expected, including in those
bivariate distributions where both marginal distributions
remained Gaussian. This was seen for the case of the
bivariate distribution of wind at two different time points,
where structures similar to those from the simple model
employed by Poterjoy (2022) were created.

3.2 Sampling uncertainty convergence

The convergence of sampling uncertainty of statistical
properties as ensemble size increases is now analysed. Fol-
lowing Craig et al. (2022), statistical inference is carried out
on selected distributions from the ensemble in the free-run
component of the idealised prediction system to identify
the nature of the convergence of sampling uncertainty. We

 1477870x, 2023, 752, D
ow

nloaded from
 https://rm

ets.onlinelibrary.w
iley.com

/doi/10.1002/qj.4410 by C
ochrane G

erm
any, W

iley O
nline L

ibrary on [29/09/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

http://wileyonlinelibrary.com


688 TEMPEST et al.

F I G U R E 7 Continuous and dotted coloured lines are the width of the 95% confidence interval (CI) of the sampling distribution of the
mean for (a) wind, (b) height, and (c) rain model variables. The continuous line uses distributions from Figures 4c, 5c, and 6c. The dotted line
uses distributions from Figures 4h, 5h, and 6h. Light and dark grey lines are fitted to continuous and dotted lines respectively, see the text for
details. The corresponding width spans 5% above and below the fitted line. The fitted parameter is shown in the legend. The number of
ensemble members used for fitting is catalogued in Table A1 in Appendix A [Colour figure can be viewed at wileyonlinelibrary.com]

investigate further how sampling uncertainty convergence
is sensitive to the shape of the distribution and the statistic
being evaluated.

3.2.1 Universal convergence scaling
characteristic

The analysis of convergence will focus on two cases: the
80-min forecast for an initially cloudy grid point and the
24-hr forecast for an initially noncloudy grid point. As
can be seen from panels c and h of Figures 4, 5, and 6,
these two cases include the main distribution types found
in the forecasts. Note that, for the rain distributions, the
zero-rain data points that are omitted from the plots are
included in all computations of forecast statistics. For
each of the 100,000-member distributions, 10,000 boot-
strap distributions were created. Sampling distributions
of random variables were then constructed by calculat-
ing the desired statistical property for each of the 10,000
bootstrapped distributions. For smaller sample sizes of
1–200 members drawn from the 100,000-member dis-
tribution, the random variable sampling distribution of
length 10,000 is calculated for every ensemble size. From
200–100,000 members, the random variable sampling
distribution is calculated in steps of 100 members. The
width of the confidence interval between the 2.5th and
97.5th percentiles of the random variable sampling dis-
tribution, which we define as the convergence measure,
is subsequently plotted as a function of ensemble size
using a log–log scale. The convergence measure is fitted to
the expected scaling behaviour of y = an−1∕2 using linear
regression in log space, where a quantifies how the con-
vergence measure scales with n. The range of values used

for each fit is detailed in Appendix A. We will describe
a forecast statistic as being in the asymptotic regime if
the width of the 95% confidence interval of the random
variable sampling distribution (the convergence measure)
appears to be converging as n−1∕2 with ensemble size.

The width of the 95% confidence interval of the sam-
pling distribution of the mean, as a function of ensemble
size n, is shown in Figure 7 for the three model variables
for the two cases. The fitted power-law lines, which scale
as n−1∕2, follow the width of the 95% confidence interval
well for each distribution and model variable, except at
ensemble sizes below 10 for the height and rain distribu-
tions. The decrease of the standard error of the sample
mean proportional to n−1∕2 is an expected result of the CLT.
However, the lines corresponding to the two cases are off-
set from each other, that is, the fitted a values are different.
In the case of the mean wind, the difference is small, but
for the other variables it is greater than a factor of two.
While the asymptotic scaling of the uncertainty appears
to be independent of the shape of the underlying distribu-
tion, the absolute width of the confidence interval is not.
Finally, we note that the convergence measures are sim-
ilar for rain distributions that both included and did not
include zero-rain members (not shown). This is the case
for all the results in this study, and for this reason only the
convergence measures including the zero-rain members
are shown.

The convergence of the sampling distribution for the
variance is shown in Figure 8. The power-law scaling
of n−1∕2 is seen again in all distributions. As expected,
the CLT is applicable not only to the mean but also to
other forecast statistics. The number of members required
until convergence appears to follow n−1∕2 is generally
larger than for the mean (Figure 7), and there is an
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TEMPEST et al. 689

F I G U R E 8 As in Figure 7, but for the sampling distribution of the variance [Colour figure can be viewed at wileyonlinelibrary.com]

F I G U R E 9 As in Figure 7, but for sampling distributions of different quantile levels, p. The legend labels the different quantiles
[Colour figure can be viewed at wileyonlinelibrary.com]

overestimation of the width made by the fit at smaller
ensemble sizes. This is in line with Craig et al. (2022), who
discovered that more members are required in the stan-
dard deviation compared with the mean in order to achieve
convergence as predicted in the asymptotic limit.

The convergence of various quantile sampling distri-
butions is shown in Figure 9. With enough members,
it is clear that in most cases the convergence measure
scales as n−1∕2, with wider confidence intervals for more
extreme quantiles, as well as more members required to
reach the asymptotic regime. This scaling behaviour has
also been observed in the skewness and kurtosis (not
shown), indicating the universality of the n−1∕2 scaling
of sampling uncertainty with ensemble size as long as
enough members are used. The exception was the 0.999
quantile. It could be seen to scale approximately as n−1∕2,
but there was more variability than for the lower quan-
tiles. As such, it is unclear if it has reached the asymp-
totic convergence regime. Another anomalous behaviour
is the apparent downward jump in three of the conver-
gence lines (at p = 0.3, 0.375, and 0.4) for the height
distribution. We will see in the next section that this is
likely due to these quantile levels being situated near the

minimum between the two peaks of the height distribu-
tion, located at p = 0.375. Since these height values are
relatively rare, large ensemble sizes are required to pro-
vide confident estimates of the distribution shape in this
region.

3.2.2 Dependence on distribution shape

In Section 3.2.1, we found that the convergence measure
scales as n−1∕2 with ensemble size for a sufficiently large
ensemble. However, the constant a, and hence the abso-
lute width of the confidence interval, depended on the
forecast statistic and on the case being considered. To
understand these results better, this section will investigate
systematically the effects of the underlying distribution
of a forecast variable on the sampling uncertainty for
different forecast statistics.

For the wind variable, the distributions for the two
cases initially with and without a cloud are very sim-
ilar (Figure 4c and h). The widths of the confidence
intervals for the estimates of the means are also very sim-
ilar (Figure 7a). When the distribution shapes are less
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690 TEMPEST et al.

similar, as for the height and rain distributions in Figures 5
and 6, the differences become substantial. This may be
related to the fact that the distribution of the wind vari-
able is near-Gaussian in form, so that the density is greatest
near the mean, whereas the multimodal or skewed dis-
tributions of the other variables have larger density away
from the mean.

The width of the confidence interval for estimates of
the ensemble variance also shows differences between the
two cases (Figure 8), but for this statistic it is the wind
variable for which the difference is largest, while both the
height and rain plots show less sensitivity. This may again
relate to where the density of the underlying distribution
is located, but the connection is less clear.

For confidence intervals of the quantile estimates
shown in Figure 9, the majority of convergence lines are
displaced from one another. For the unimodal distribu-
tion of wind and rain, the further the quantile is from the
median, the larger the width of the 95% confidence inter-
val. Hence more uncertainty is attached to those quantiles
at the tails compared with those at the centre of the dis-
tribution. This behaviour is expected from Equation 1,
which states that the standard deviation of a quantile
estimate will be inversely proportional to the density of
the underlying distribution at the quantile value. The
behaviour for the height variable is more complex, with
large sampling uncertainties for intermediate quantile
values. This is also consistent with Equation 1, how-
ever, since the bimodal distribution of h has a minimum

near the p = 0.375 quantile, leading to wide confidence
intervals there.

To show visually the importance of the distribution
shape on the convergence of the forecast statistics, contour
plots are created showing the ensemble size, n, required
to obtain a desired sampling uncertainty for a range of
quantiles from a distribution. The values are computed
using Equation 1, where the underlying distribution, f ,
is obtained as a kernel density estimation (KDE) using
data from the 100,000-member distribution, using the
Scott method to calculate the bandwidth. This leads to the
underlying distribution being well represented, but can
also lead to the resulting contour lines wavering slightly.
Every quantile between 0.01 and 0.99 is calculated in
steps of 0.01. Using Equation 1 to estimate a required
ensemble size requires knowledge of the underlying dis-
tribution. In practice, this must be estimated from an
available ensemble, which will typically be much smaller
than 100,000 members. For comparison, results will also
be shown that are calculated using the bootstrap method
employed previously, with three subensemble sizes (50,
100 and 500 members).

Figure 10 shows the resulting contour plot for
the near-Gaussian wind distribution (Figure 4c), which
resembles the result for a true Gaussian in Figure 1. It can
be seen that, for quantiles further away from the median,
the number of members required to obtain the same level
of uncertainty increases. Similarly, as one moves verti-
cally downwards at a fixed quantile level p, the number of
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F I G U R E 10 Contours show the
number of members required to
achieve a standard deviation of the
quantile sampling distribution
according to Equation 1 for quantile
levels ranging from 0.01 to 0.99 in
steps of 0.01 for the distribution
of Figure 4c. White lines show an
estimate using the bootstrapping
technique [Colour figure can be
viewed at wileyonlinelibrary.com]
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members required to reach smaller levels of uncertainty
increases. As expected, the tails of distributions are more
uncertain compared with the peak of the distribution in a
unimodal case.

The white lines show estimates obtained with small
ensemble sizes. As the number of ensemble members
decreases, the estimated value starts to fall below the large
ensemble estimate. This is most visible for the 50-member
white line. This corresponds to the overestimation of the
asymptotic fit in Figure 9a, particularly observable at the
0.95 and 0.99 quantile levels. As the uncertainty calculated
in Equation 1 is proportional to n−1∕2, large deviations
between the contours and white lines indicate that the
bootstrapped data are not yet converging as n−1∕2 for that
given ensemble size.

As with the wind distribution, a contour plot of n
is calculated for the height distribution (Figure 5c) and
this is visualised in Figure 11. Unlike for the wind, there
is a peak in uncertainty centred around the 0.4 quantile
level, which, as noted previously, corresponds to the min-
imum between the two peaks of the underlying height
distribution. This emphasises that any quantile levels cor-
responding to rare events (such as a trough in the distribu-
tion) need more members to obtain the same uncertainty
level as at other quantile levels. Since the peak at larger
heights (cloudy grid points) is smaller than the other peak,
larger ensemble sizes are required for quantiles in this
region. A curious feature seen in Figure 11 is the slight
decrease in uncertainty in both the large-ensemble and
bootstrapped estimates above the 0.96 quantile level. This

level corresponds to the rain threshold in Equation 6. Any
grid points that surpass this height immediately experi-
ence a reduction in buoyancy due to the presence of rain,
so that the tail of the distribution is truncated and height
values just above this level are not as rare as might be
expected. As a result, fewer ensemble members are needed
to estimate these quantile levels.

The contour plot of n using the distribution from the
rain variable (Figure 6c) is shown in Figure 12. The skew-
ness of the distribution is evident in the asymmetric nature
of the contours, with the least uncertain region occurring
between p of 0.2 and 0.3 (instead of 0.5). As expected, any
p estimate for values outside this region would be more
uncertain for the equivalent ensemble size. The longer
the tail is, the larger the uncertainty. As the distribution
is positively skewed, the quantile levels situated above the
peak show larger uncertainties than below. A decrease
in uncertainty, analogous to that found for large p in
Figure 11, is also seen here, but for quantiles below p of
0.02. As before, this is due to the probability density of
f remaining higher than expected, perhaps because the
exponential removal of rain leads to an accumulation of
rain values close to the zero bound.

3.3 How big an ensemble do I need?

An important benefit of simple asymptotic scaling for the
width of confidence intervals is that an estimation of the
number of ensemble members needed to reduce sampling

F I G U R E 11 As in Figure 10 but
with a height distribution from
Figure 5c [Colour figure can be viewed
at wileyonlinelibrary.com]
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F I G U R E 12 As in Figure 10 but with a rain distribution from Figure 6c [Colour figure can be viewed at wileyonlinelibrary.com]

uncertainty to a desired level can be made. This is, of
course, only true if the ensemble size is large enough to
show that the asymptotic regime is reached. As shown
in the previous section, asymptotic convergence could be
demonstrated with the 100,000-member idealised ensem-
ble for most statistical properties. It is inconceivable, how-
ever, with current computing resources to consider using
a 100,000-member NWP ensemble in practice. Hence it
is of importance to understand how the asymptotic con-
vergence behaviour may be identified in ensembles of a
significantly smaller size. In this section, we will apply two
approaches to estimating convergence properties when
only small ensembles are available. First, we consider
whether asymptotic convergence can be established based
on a bootstrap estimate of the uncertainty of the conver-
gence measure from a small ensemble. A second method
is then proposed based on a parametric fit of the small
ensemble output to an appropriate standard PDF for which
the convergence properties can be computed precisely.

3.3.1 Bootstrapping using smaller
ensemble sizes

If only a small ensemble is available for a forecast, it is still
possible to construct a bootstrap estimate of confidence

intervals as before, but these estimates may not be use-
ful if the small ensemble is not representative of the full
distribution. To investigate this issue, we first construct
confidence intervals based on different small ensembles
drawn from the 100,000 members computed previously,
to see whether the convergence behaviour is consistent.
Figure 13 shows convergence curves for a sample of fore-
cast variables, namely the variance and selected quantiles
of the wind, height, and rain distributions (see Figures 4c,
5c, and 6c respectively). This includes variables that con-
verge for relatively small ensemble sizes, as well as more
extreme values that occur only rarely. The plots show con-
vergence curves computed by bootstrapping from ensem-
bles of size 50, 100, 500 and 1,000. Each calculation is
repeated 10 times for different small ensembles of the
given size. For reference, the curves constructed from the
100,000-member ensemble are also plotted.

For the variables on the top row of Figure 13, even
50 members is sufficient to identify the asymptotic con-
vergence regime, with the width of the confidence interval
scaling as n−1∕2. It is interesting that the correct scaling
behaviour is found for the estimates based on smaller
ensemble sizes, although there is spread in the curves,
which generally increases as the ensemble becomes
smaller and there is an offset from the 100,000 member
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F I G U R E 13 Width of 95% CI of the sampling distribution of (a) variance and (d) 95th percentile of wind distribution (Figure 4c), (b)
variance and (e) 30th percentile of height distribution (Figure 5c), and (c) variance and (f) 99.9th percentile of rain distribution (Figure 6c) as
a function of ensemble size. Convergence measures are calculated 10 times using different sizes of ensemble (50, 100, 500 and 1,000
members), which are different samples of the full 100,000 distribution. The convergence measure calculated using all 100,000 members is in
black in the background [Colour figure can be viewed at wileyonlinelibrary.com]

black line. Figure 13d shows an example in which asymp-
totic scaling is seen only for estimates based on ensem-
ble sizes of 500 members or larger. The curves based on
smaller ensemble sizes show a range of slopes, giving a
clear indication that the ensemble is not large enough to
show convergence behaviour. Note, however, that, while it
is unlikely, it is not impossible to find a small ensemble that
gives the n−1∕2 slope by chance. Figure 13e shows the inter-
esting case of the 30th percentile of the height distribution,
near the minimum between the two peaks. As noted ear-
lier, small ensembles do not have sufficient resolution to
distinguish the peaks, and show asymptotic behaviour for
a limited range of n before dropping to the true conver-
gence curve when n becomes sufficiently large. The curves
based on small ensembles all follow this behaviour, but if
the ensemble is not large enough to resolve the two peaks
of the height distribution, it will appear as though the
asymptotic regime has been reached. Finally, the extreme
rain example in Figure 13f shows no evidence of conver-
gence for any of the ensemble sizes considered here.

The previous figure shows that if an ensemble is large
enough to be in the asymptotic convergence regime for a
forecast variable, the scaling behaviour will be seen in plots

of the confidence interval, but with a random offset that
would affect the accuracy of an extrapolation of the results
to large ensemble sizes. If the ensemble is not large enough
to show asymptotic convergence, the results show a large
variability among different realisations of the small ensem-
ble. In practice, this variability will not be seen, because
only a single realisation of the ensemble will be available.
However, multiple realisations can be generated by boot-
strap resampling, and we pose the question of whether
a set of ensembles generated this way shows the same
variability as an ensemble drawn from the full distribution.

Figure 14 investigates this for the case of a 50-member
ensemble. For reference, blue lines show convergence
curves for 10 ensembles drawn from the 100,000 member
data set. These are overplotted with 100 curves gener-
ated from 100 ensembles generated by resampling a single
50-member ensemble. For most of the forecast variables,
the resultant spread (red lines) is similar to that of the blue
lines. This is the case for all the variance and extreme quan-
tile measures, except for a slight overestimation of uncer-
tainty of the 30th percentile of height. This suggests that it
will often be possible to determine whether a given ensem-
ble forecast is large enough to produce asymptotic scaling
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F I G U R E 14 (a–f) As in Figure 13. Blue lines are green lines from Figure 13. One sampled distribution of size 50 from the
original 100,000-member ensemble was bootstrapped to obtain 100 distribution samples of size 50. The convergence measure calculated from
these distributions is shown in red. The sampled distribution used for red lines has its own convergence measure shown in black [Colour
figure can be viewed at wileyonlinelibrary.com]

behaviour. If this is the case, the estimate of the sampling
uncertainty can reliably be extrapolated to predict how
uncertainty will decrease with ensemble size.

3.3.2 Parameterisation of distributions

As we have seen, it is possible to determine whether the
sampling uncertainty of a statistical property of an ensem-
ble’s prognostic variable is converging asymptotically or
not. For many quantities of interest, however, especially
extreme events, the conclusion will be that the ensem-
ble is too small and the estimates of sampling uncertainty
will not be reliable. In this section, we explore the poten-
tial of using a priori knowledge of the distribution of
a forecast variable to provide improved estimates from
such small ensembles. Figures 4,5, and 6 showed how
distributions from the free run of the idealised predic-
tion system can be classified into three categories. It is
then possible to estimate using a small number of mem-
bers how the distribution with a much larger ensemble
would look by assuming one of these three categories as
the underlying PDF. The convergence measure can then

be calculated using a smaller ensemble. For example, in
the case of a Gaussian fit, the mean and standard devia-
tion parameters would be calculated from the data. With
this fitted Gaussian, a dataset of members of any size
could be generated. This dataset could then be used to cal-
culate the convergence measure using the bootstrapping
method as before. In the following, both the full ensem-
ble and 50 members from the 100,000-member ensemble
are used to create parameterised distributions, the result-
ing convergence of which will be compared. From the
results, we can conclude whether the parameterisation
technique can calculate the convergence measure accu-
rately, and how accurate it is when only 50 members
are used.

The convergence measure of the mean calculated using
distributions generated from a parametric fit of a wind
and height distribution (Figures 4c and 5c, respectively)
is shown in Figure 15. The parameterisations (Gaussian
for wind and bimodal Gaussian for height), which used
two different sizes of ensemble for parameterisation (each
shown by grey and black lines), showed good agree-
ment with the convergence calculated using the original
100,000-member ensemble data.
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The convergence measure of the variance could be esti-
mated approximately by parameterisation of the ensemble
distribution (Figure 16). The convergence measure cal-
culated with the two parameterisations, however, is dis-
placed for both distributions. In the case of the wind
distribution, the parameterisation creates an underlying
PDF that has smaller variance. This leads to the result-
ing sampling distribution of variance being smaller and
hence produces a narrower 95% confidence interval. This
is also the reason for the shift in the case of the height dis-
tribution. Note that using more than 50 members for the
parameterisation does not improve the results greatly.

The use of parameterisation to estimate the sampling
uncertainty of quantiles is now investigated. In Figure 10,
it was found that, when estimating f with a KDE using
the full 100,000-member ensemble, Equation 1 gave a good
approximation to the bootstrapped measurements of con-
vergence, indicating that the convergence of uncertainty
was described well by asymptotic theory. This was gen-
erally also the case for the height and rain model vari-
ables. The black contours of Figure 17a show the num-
ber of ensemble members required for a certain stan-
dard deviation of the quantile sampling distribution for
a range of quantiles as before, but now calculated using
a Gaussian parameterisation for f . We use 50 members
from Figure 4c to estimate the Gaussian parameters.
Although the parameterisation estimate of the conver-
gence measure seems relatively accurate, the Gaussian is
not fitted precisely to the KDE (grey lines), which was

estimated with 100,000 members. There is an underes-
timation of uncertainty below p of 0.3 due to the KDE
density being smaller than the Gaussian density in this
region. When the KDE is estimated using 50 members
from the ensemble for f , it gives an imprecise estimate
of the uncertainty (purple lines). The difference in accu-
racy between the KDE estimated from 50 members and
the parameterisation when 50 members are used is clear.
At small ensemble sizes, the parameterisation method has
a much greater accuracy than using KDE for estimat-
ing f in Equation 1. This is also the case for the height
and rain distributions discussed below (not shown). When
100,000 members are used to fit the Gaussian (contours
of Figure 17b), there is a lesser underestimation of uncer-
tainty below p of 0.3. However, 50 members generally gives
closer alignment to the KDE than estimation with 100,000
members.

A bimodal Gaussian parameterisation of the height dis-
tribution shown in Figure 5c is used to estimate the conver-
gence of sampling uncertainty in the quantiles (Figure 18).
Unlike nonparametric methods, the fitted bimodal distri-
bution always produces a qualitatively correct structure,
but, when only 50 members are used for the fit, the p value
at which the transition between the two peaks occurs is
displaced by about 0.15 and it is no longer a good estima-
tion of the convergence measure. When 100,000 members
are used to parameterise, the uncertainty estimate is closer
to the KDE using 100,000 members for its estimation, but
with slight over- and underestimation of uncertainty in
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F I G U R E 15 (a) Red and (b) green lines are width of 95% CI of sampling distribution of mean for (a) wind distribution (Figure 4c) and
(b) height distribution (Figure 5c), calculated using bootstrapping using the 100,000-member ensemble data. Black lines show convergence
using data generated from a fitted parameterisation that used 100,000 members from the ensemble. Grey lines show convergence using data
generated from a fitted parameterisation that used 50 members from the ensemble [Colour figure can be viewed at wileyonlinelibrary.com]
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F I G U R E 16 As in Figure 15, but for the sampling distribution of the variance [Colour figure can be viewed at wileyonlinelibrary.com]
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F I G U R E 17 Contours created as in Figure 10, but using (a) 50 and (b) 100,000 members from the distribution of Figure 4c to
parameterise f . The grey line shows the outline of the contour of Figure 10. The purple line (a) is the result from using a KDE estimated using
only 50 members for f [Colour figure can be viewed at wileyonlinelibrary.com]

regions. Only the bimodal Gaussian parameterisation cal-
culated using 50 members from the ensemble captures the
decrease in uncertainty above the 0.96 quantile level.

Parameterising the rain distribution of Figure 6c with
a Gamma PDF results in reasonable uncertainty esti-
mates of the convergence of the sampling uncertainty of
quantiles (Figure 19). In the two uncertainty estimates
from each of the parameterisations, there is a slight
underestimation at small p values below 0.2. This under-
estimation is larger, and occurs for a larger range of

quantiles, for the parameterisation that used only 50
members. The underestimation occurs due to the dif-
ference in the density of the tails of the KDE and the
parameterised distributions. The decrease in uncertainty
below the 0.02 quantile level is not captured by either
method.

From Figures 15–19, it is clear that using a relatively
small number of members to calculate the convergence
measure by using a parameterised distribution can be rea-
sonably accurate. It has been found that 50 members are
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F I G U R E 18 Contours created as in Figure 11, but using (a) 50 and (b) 100,000 members from the distribution of Figure 5c to
parameterise f . The grey line shows the outline of the contour of Figure 11 [Colour figure can be viewed at wileyonlinelibrary.com]
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F I G U R E 19 Contours created as in Figure 12, but using (a) 50 and (b) 100,000 members from the distribution of Figure 6c to
parameterise f . The grey line shows the outline of the contour of Figure 12 [Colour figure can be viewed at wileyonlinelibrary.com]

enough to estimate the convergence measure of the mean
and variance, as well as quantiles of “simple” unimodal
distributions. More members would be required for dis-
tributions with a multimodal shape. It has been seen that
there is little benefit in using a KDE approximation to the
full distribution with a small number of ensemble mem-
bers to estimate the uncertainty of quantiles. As there is
no limit to how many members can be generated from
a parametric fit, this method can be used to obtain the
characteristics of the asymptotic convergence as long as
the shape of the underlying distribution is captured.

4 CONCLUSIONS

Operational probabilistic forecasting is limited to rela-
tively small ensemble sizes due to high computational
costs. This can impact how representative of the truth
the underlying distribution is by creating a sampling
uncertainty. While the sampling uncertainty is expected
to decrease with increasing ensemble size, it is difficult
to determine what ensemble size is required to reduce
it to a desired level. In this study we used an idealised
prediction system, which replicates the key processes of
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convection, to identify how sampling uncertainty of statis-
tical properties converges with ensemble size and to assess
the relevance of asymptotic theory to ensemble weather
prediction.

The one-dimensional idealised prediction system
employed in this study was evaluated by comparing the
ensemble distribution shapes for the three prognostic vari-
ables with corresponding quantities from a 1,000-member
ensemble based on a full convection-permitting numeri-
cal model (Craig et al., 2022). Shapes of these distributions
over a 24-hr evolution in the free run were found to fit into
three categories: quasi-Gaussian, multimodal, and highly
skewed, as in Craig et al. (2022). As expected from previous
work, the distributions became less Gaussian-distributed
in time, as expected due to nonlinear convective pro-
cesses (Zhang, 2005; Legrand et al., 2016; Kondo and
Miyoshi, 2019; Kawabata and Ueno, 2020; Craig et al.,
2022; Poterjoy, 2022).

In the limit of large n, the sampling uncertainty (width
of confidence interval) was found to scale universally as
n−1∕2. This applied to statistical properties including the
mean, variance, quantiles between 0.01 and 0.99 as well as
0.999, skewness, and kurtosis. The point at which asymp-
totic convergence is reached, and the magnitude of the
sampling uncertainty, depends on the statistical quantity
and the distribution shape. In general, the more the statis-
tic depends on extreme or infrequent values, the more
members are required to reach convergence. Since this
behaviour does not depend on the distributions being
Gaussian, this conclusion should continue to hold for
multivariate distributions, where non-Gaussianity is often
stronger than for marginals. However, due to the larger
uncertainty associated with quantities from multivariate
distributions, we expect that the absolute level of uncer-
tainty (width of confidence intervals) would be larger than
for their unimodal counterparts. We also expect that more
members would be required for asymptotic convergence to
be reached.

For the quantiles, the dependence of sampling uncer-
tainty on distribution shape could be described by
Equation 1, which states that the sampling uncertainty
is inversely proportional to the frequency of occurrence
of a quantile. The applicability of this equation to the
simulated large ensemble distributions highlights the rel-
evance of asymptotic theory to ensemble weather predic-
tion. This observed theory can be used to provide an alter-
native method to estimate how adding ensemble members
would improve a probabilistic forecast and, in extension,
to determine how large an ensemble should be. This way
of thinking contrasts with studies such as Leith (1974),
which provides a specific number of members required
to achieve sufficient precision in a specific aspect of an
ensemble. Rather, the asymptotic convergence provides a

scaling rule that can be used to answer the question of how
large an ensemble should be based on individual ensemble
requirements, provided the ensemble is sufficiently large
for the theory to apply.

The question of how to apply the asymptotic theory to
small ensembles, where it is not obvious that the large n
theory is applicable, was addressed in two ways. First, the
uncertainty of the convergence measure could be used to
determine whether asymptotic convergence had already
been reached. If this was not the case, parameterisation
of the underlying distribution could be employed. In this
case, a good estimate of the convergence measure could
be calculated if an appropriate form for the distribution
shape was assumed. In an operational setting, the under-
lying distributions could potentially be obtained from
reforecasts.

The ability to quantify the convergence of sampling
uncertainty of statistical quantities in ensembles of opera-
tional size allows us to address the question of how many
ensemble members are needed. For example, an opera-
tional forecaster would like to know whether it would be
worthwhile investing in expanding the current 50-member
NWP ensemble to 100 members, and is particularly inter-
ested in the ability to estimate the spread of tempera-
ture over Munich accurately. To answer this question, the
forecaster would like to calculate the convergence measure
of the variance statistic for the temperature variable. The
first thing required is to check whether asymptotic the-
ory can be applied, by calculating the uncertainty in the
convergence measure. This is done by bootstrapping the
50-member ensemble 100 times to obtain 100 distributions
of length 50. With each of these distributions, the con-
vergence measure is then calculated. The forecaster finds
no divergence in the measures, similar to the green lines
of Figure 13a, that is, the convergence is in the asymp-
totic regime. This enables visualisation of how the 95%
confidence interval width will decrease as extra ensemble
members are added to the 50-member NWP ensemble and
hence how the accuracy of the estimate of the range of tem-
perature over Munich will increase as more members are
added. Knowledge of how many members to aim for in the
future to obtain a certain level of sampling uncertainty can
hence be calculated.

The idealised prediction system developed in this study
does not contain the complexity of a full NWP system. This
made it possible to create a huge ensemble, which allowed
us to look extensively at the convergence behaviour of
the sampling uncertainty. Many physical processes and
sources of error in the atmosphere are, however, not repre-
sented in the idealised system. Therefore results from more
complex systems are vital to have, in combination with
those from this study (e.g. Craig et al., 2022). One missing
aspect is the dependence on weather regime, particularly
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the influence of weak and strong forcing of convection
(Keil et al., 2014; 2020). Furthermore, this study did not
consider techniques to inflate the effective ensemble size,
such as the neighbourhood method, and how they may
affect the convergence behaviour (Ebert, 2009; Ben Boual-
lègue et al., 2013; Hagelin et al., 2017). Finally, a homoge-
neous domain and boundary conditions were used, which
resulted in all grid points following a similar evolution
in their distribution shapes, with the only important dis-
tinction being whether they started the simulation with
or without a cloud. An important example would be the
effects of orography (Bachmann et al., 2020). These are
areas for future research.

A final caveat is that the method here considers only
sampling uncertainty and its dependence on ensemble
size. Other sources of error in ensemble predictions,
including model error and initial-condition error result-
ing from limited observations or approximations in the DA
system, will limit the accuracy of probabilistic forecasts
regardless of ensemble size.
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Ruckstuhl, Y.M. and Janjić, T. (2018) Parameter and state esti-
mation with ensemble kalman filter based algorithms for
convective-scale applications. Quarterly Journal of the Royal
Meteorological Society, 144, 826–841. URL: https://rmets.
onlinelibrary.wiley.com/doi/abs/10.1002/qj.3257

Sakradzija, M., Senf, F., Scheck, L., Ahlgrimm, M. and Klocke, D.
(2020) Local impact of stochastic shallow convection on clouds and
precipitation in the tropical atlantic. URL: http://hdl.handle.net/
hdl:21.14106/5c5f8a957ceea8e7d07e1ceb08cae837d90899a7.

Scheuerer, M. and Hamill, T.M. (2015) Statistical postprocessing
of ensemble precipitation forecasts by fitting censored, shifted
gamma distributions. Monthly Weather Review, 143, 4578–4596.
URL: https://journals.ametsoc.org/view/journals/mwre/143/11/
mwr-d-15-0061.1.xml

Selz, T. and Craig, G. (2021). The transition from intrinsic to practical
predictability of midlatitude weather.

Stuart, A. and Ord, J. (2000) Kendall’s Advanced Theory of Statistics.
Arnold Publishers.

Williams, P.D. (2009) A proposed modification to the robert–asselin
time filter. Monthly Weather Review, 137, 2538–2546. URL:
https://journals.ametsoc.org/view/journals/mwre/137/8/
2009mwr2724.1.xml

 1477870x, 2023, 752, D
ow

nloaded from
 https://rm

ets.onlinelibrary.w
iley.com

/doi/10.1002/qj.4410 by C
ochrane G

erm
any, W

iley O
nline L

ibrary on [29/09/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://rmets.onlinelibrary.wiley.com/doi/abs/10.1002/qj.49712555417
https://rmets.onlinelibrary.wiley.com/doi/abs/10.1002/qj.49712555417
https://www.ecmwf.int/node/9607
https://rmets.onlinelibrary.wiley.com/doi/abs/10.1002/qj.3135
https://rmets.onlinelibrary.wiley.com/doi/abs/10.1002/qj.3135
https://doi.org/10.1175/MWR-D-19-0060.1
https://journals.ametsoc.org/view/journals/mwre/143/7/mwr-d-14-00243.1.xml
https://journals.ametsoc.org/view/journals/mwre/143/7/mwr-d-14-00243.1.xml
https://journals.ametsoc.org/view/journals/mwre/145/4/mwr-d-16-0160.1.xml
https://journals.ametsoc.org/view/journals/mwre/145/4/mwr-d-16-0160.1.xml
https://journals.ametsoc.org/view/journals/mwre/148/1/mwr-d-18-0367.1.xml
https://journals.ametsoc.org/view/journals/mwre/148/1/mwr-d-18-0367.1.xml
https://doi.org/10.5194/acp-20-15851-2020
https://doi.org/10.5194/acp-20-15851-2020
https://npg.copernicus.org/articles/26/211/2019/
https://npg.copernicus.org/articles/23/1/2016/
https://rmets.onlinelibrary.wiley.com/doi/abs/10.1002/qj.3387
https://rmets.onlinelibrary.wiley.com/doi/abs/10.1002/qj.3387
https://www.sciencedirect.com/science/article/pii/S0021999107000812
https://www.sciencedirect.com/science/article/pii/S0021999107000812
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.2153-3490.1969.tb00444.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.2153-3490.1969.tb00444.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.2153-3490.1969.tb00444.x
https://www.metoffice.gov.uk/research/weather/ensemble-forecasting/mogreps
https://www.metoffice.gov.uk/research/weather/ensemble-forecasting/mogreps
https://www.metoffice.gov.uk/research/weather/ensemble-forecasting/mogreps
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2014GL060863
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2014GL060863
https://journals.ametsoc.org/view/journals/mwre/150/6/MWR-D-21-0228.1.xml
https://journals.ametsoc.org/view/journals/mwre/150/6/MWR-D-21-0228.1.xml
https://rmets.onlinelibrary.wiley.com/doi/abs/10.1002/qj.3159
https://rmets.onlinelibrary.wiley.com/doi/abs/10.1002/qj.3159
https://rmets.onlinelibrary.wiley.com/doi/abs/10.1002/qj.49712757715
https://rmets.onlinelibrary.wiley.com/doi/abs/10.1002/qj.49712757715
https://npg.copernicus.org/articles/28/111/2021/
https://npg.copernicus.org/articles/28/111/2021/
https://rmets.onlinelibrary.wiley.com/doi/abs/10.1002/qj.3257
https://rmets.onlinelibrary.wiley.com/doi/abs/10.1002/qj.3257
http://hdl.handle.net/hdl:21.14106/5c5f8a957ceea8e7d07e1ceb08cae837d90899a7
http://hdl.handle.net/hdl:21.14106/5c5f8a957ceea8e7d07e1ceb08cae837d90899a7
https://journals.ametsoc.org/view/journals/mwre/143/11/mwr-d-15-0061.1.xml
https://journals.ametsoc.org/view/journals/mwre/143/11/mwr-d-15-0061.1.xml
https://journals.ametsoc.org/view/journals/mwre/137/8/2009mwr2724.1.xml
https://journals.ametsoc.org/view/journals/mwre/137/8/2009mwr2724.1.xml


TEMPEST et al. 701

Williams, P.D. (2011) The raw filter: An improvement to the
robert–asselin filter in semi-implicit integrations. Monthly
Weather Review, 139, 1996–2007. URL: https://journals.ametsoc.
org/view/journals/mwre/139/6/2010mwr3601.1.xml

Würsch, M. and Craig, G.C. (2014) A simple dynamical model of
cumulus convection for data assimilation research. Meteorologis-
che Zeitschrift, 23, 483–490. URL: https://doi.org/10.1127/0941-
2948/2014/0492

Zhang, F. (2005) Dynamics and structure of mesoscale error
covariance of a winter cyclone estimated through short-range
ensemble forecasts. Monthly Weather Review, 133, 2876–2893.
URL: https://journals.ametsoc.org/view/journals/mwre/133/10/
mwr3009.1.xml

Zhu, Y., Toth, Z., Wobus, R., Richardson, D. and Mylne, K. (2002) The
economic value of ensemble-based weather forecasts. Bulletin of

the American Meteorological Society, 83, 73–83. URL: http://www.
jstor.org/stable/26215325

How to cite this article: Tempest, K.I., Craig,
G.C. & Brehmer, J.R. (2023) Convergence of forecast
distributions in a 100,000-member idealised
convective-scale ensemble. Quarterly Journal of the
Royal Meteorological Society, 149(752), 677–702.
Available from: https://doi.org/10.1002/qj.4410

 1477870x, 2023, 752, D
ow

nloaded from
 https://rm

ets.onlinelibrary.w
iley.com

/doi/10.1002/qj.4410 by C
ochrane G

erm
any, W

iley O
nline L

ibrary on [29/09/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://journals.ametsoc.org/view/journals/mwre/139/6/2010mwr3601.1.xml
https://journals.ametsoc.org/view/journals/mwre/139/6/2010mwr3601.1.xml
https://doi.org/10.1127/0941-2948/2014/0492
https://doi.org/10.1127/0941-2948/2014/0492
https://journals.ametsoc.org/view/journals/mwre/133/10/mwr3009.1.xml
https://journals.ametsoc.org/view/journals/mwre/133/10/mwr3009.1.xml
http://www.jstor.org/stable/26215325
http://www.jstor.org/stable/26215325


702 TEMPEST et al.

APPENDIX A

T A B L E A1 Convergence measure data used for fitting of y = an−1∕2. Data up to a certain ensemble size cut-off (column 4) were not
used in the fitting procedure

Model variable Distribution Statistic Fitting cut-off

Wind Figure 4c Mean 0

Variance 100

0.6 quantile 0

0.7 quantile 0

0.95 quantile 100

0.99 quantile 200

0.999 quantile 2,000

Figure 4h Mean 0

Variance 100

Height Figure 5c Mean 3

Variance 100

0.3 quantile 500

0.375 quantile 80,000

0.4 quantile 2,000

0.6 quantile 30

0.999 quantile 1,000

Figure 5h Mean 3

Variance 100

Rain Figure 6c Mean 3

Variance 100

0.6 quantile 5

0.7 quantile 5

0.95 quantile 100

0.99 quantile 300

0.999 quantile 70,000

Figure 6h Mean 3

Variance 100
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