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1 Introduction

The massive Yang-Mills theory with mass added by hand has served as one of the starting
points in the construction of the Standard Model [1], and was even considered as a possibility
of avoiding the hierarchy problem [2]. On first sight, it appears that this theory presents
difficulties for small values of mass, when treated by the standard approaches. The
propagator of the vector boson is singular in mass. Thus, at high energies, it approaches a
constant, indicating a power-counting non-renormalizable theory. Nevertheless, such an
argument might be misleading, as a similar propagator appears in the Proca theory [3], which
has been shown to be renormalizable when coupled to a conserved source [4]. Therefore,
as a first step in analysing renormalizability, most authors have applied the non-Abelian
generalisation of a field redefinition a la Stueckelberg [5, 6]. This brings the propagator
into a form indicating a power-counting renormalizable theory. It has been shown that
while the theory is finite for one-loop diagrams, it is not renormalizable for two or more
loops [7–12]. Recently, it was argued that the theory could be renormalizable in the sense
of an effective field theory [13]. Nevertheless, most of the studies have indicated that
besides renormalizability, another problem appears. At a first glance, the theory violates
unitarity. In studying the unitarity of the massive Yang-Mills theory, which was initiated
by the development of the cutting rules [14, 15], there were two interesting cases, based
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on the degrees of freedom of the theory. In the first case, only the transverse modes were
set on the external lines of the diagrams. This restriction was justified by the absence of
additional degrees of freedom in the massless theory, the longitudinal modes. It has been
shown that the theory is unitary up to a loop [16]. However, unitarity was violated at two
loops [17]. In the second case, the longitudinal modes were set on the external lines of
the diagrams. Then, the unitarity violation for energies ku ∼ g

m was already evident from
the tree diagrams [18–21]. Nevertheless, in [12], it was found that for two or more loops,
the singularities in the mass form a series in g2Λ2

m2 , where Λ is the cut-off scale. The same
series was also given in [16] while analysing the n-point functions which contained only
the longitudinal modes. This raised a question as to whether the re-summation of these
series could cure the mass singularities appearing within the perturbation theory. However,
due to the following argument, this possibility was excluded in [22]. Even when only the
transverse modes are set on the external lines, and tree level and one-loop diagrams are
considered, the massive theory does not smoothly approach the massless one for m→ 0 [22–
24]. The reason for this is the difference in the number of degrees of freedom in massive
and massless theories, according to [22]. From the perspective of physical continuity [25],
such a behaviour is unexpected. If we modify a certain theory through the introduction of
a new parameter, once we take the limit back to the original theory, the observable effects
should also smoothly approach those of the original theory. However, one might notice that
a similar kind of issue arises in the context of massive gravity. In massive linearized gravity
with the mass term of the Fierz-Pauli form [26], the discontinuity appears already for tree
level diagrams [22, 27, 28]. As a result, the predictions for Mercury’s perihelion precession
and the deflection of starlight differed from those obtained in General relativity. Similarly
to massive Yang-Mills theory, the reason for this disagreement lies in the longitudinal mode.
However, for massive gravity it was shown that this apparent discontinuity is resolved
through the Vainshtein mechanism [29, 30]. The nonlinear interactions that were not
considered in [22, 27, 28] cause the longitudinal mode to enter a strong coupling regime
at the Vainshtein radius, where they become of the same order as the kinetic term. As it
was demonstrated in [31], the essence of the Vainshtein scale lies in the minimal level of
quantum fluctuations for the fields. Beyond it, the longitudinal modes decouple from the
rest of matter and General relativity is restored up to small corrections [32]. In the case of
massive Yang-Mills theory, a similar conjecture was made in [21] — “. . . it appears highly
probable that outside perturbation theory, a continous zero-mass limit exists and the theory
is renormalizable.”. Using a decomposition of the vector field which resulted in a Lagrangian
containing non-polynomial terms, the authors of [21] have suggested that the massless limit
is smooth, and that the theory might be renormalizable, if these non-polynomial terms are
not perturbatively expanded. However, it was noted in [33] that for such a conclusion to
hold, it is not sufficient that all the terms which contain longitudinal modes vanish in the
massless limit at the level of the Lagrangian, as there is no guarantee that the same applies
to matrix elements. The subsequent studies were hence concerned with finding a way to treat
the Lagrangian which contains non-polynomial terms. In a promising attempt, [34–36] have
deduced conditions for unitarity in the Landau gauge theory and proposed a subtraction
scheme for the divergences. However, these conditions cannot be applied to the unitary
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gauge as well [37]. On the other hand, the authors of [38] have shown by applying several
field redefinitions which do not alter the S-matrix, that the non-polynomial theory can be
brought to the polynomial form resembling the one of [10]. This implied that the theory
is not renormalizable and unitary [39]. However, if the non-polynomial theory can be
algebraically reduced to a polynomial one, is that sufficient to conclude that the massless
limit is not smooth? Even though a field redefinition does not necessarily change the
S-matrix, it clearly changes the definition of the degrees of freedom. While the Lagrangian
which is polynomial in fields corresponds to a linear decomposition of the vector field [7–10],
the non-linear one introduces the non-polynomial terms in the Lagrangian [6]. Nevertheless,
we will show that only the non-linear decomposition of the vector field properly defines the
transverse and longitudinal modes. If we would have started with a linear one, we would
encounter an infinite amount of strong coupling scales, which disagree with the scale of the
unitarity violation, and also necessary field redefinitions.

The purpose of this paper is to show that the apparent violation of unitarity, and mass
singularity of the perturbative series are just artefacts of the perturbation theory. First, we
will show that these issues arise due to the properly defined longitudinal modes, which are
absent in the massless theory. Within the perturbation theory, only these modes enter the
strong coupling regime, at a Vainshtein scale which coincides with the scale of unitarity
violation. Evaluating the theory beyond the strong coupling scale, we will find that the
corrections to the transverse modes due to the longitudinal ones become suppressed by
the strong coupling scale, and hence decrease as we approach higher energies. Therefore,
we will show that the initial suggestion made in [21] was correct. The massless theory is
recovered up to a small correction, and the massless limit is smooth.

2 The basics of massive Yang-Mills theory

In this paper we will study the simplest model of massive Yang-Mills theory, in which
the mass term is added “by hand” to the Yang-Mills theory.1 The action of this model is
given by

S =
∫
d4x

[
−1

2 tr(FµνFµν) +m2 tr(AµAµ)
]
, (2.1)

where
Fµν = DµAν −DνAµ (2.2)

is the field strength tensor. The covariant derivative is given by

Dµ = ∂µ + igAµ (2.3)

and g is the coupling constant. We will assume that g � 1. The vector field Aµ is the 2× 2
hermitian matrix, which we will expand in terms of the generators of SU(2) as

Aµ = AaµT
a, with T a = σa

2 and a = 1, 2, 3. (2.4)

1To address the problems of renormalizability and unitarity arising due to the propagator (2.5), [40] have
initiated the consideration of various modified models of massive Yang-Mills theory (see e.g. [2, 39] for a
review). However, these models will not be of interest in this paper. We will instead focus on the simplest
possible model that is given by (2.1).
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Here, σa are the Pauli matrices. Main cause for the discontinuity in the massless limit, along
with the unitarity violation results from the propagator of the vector field. In momentum
space it is given by

∆̃ab
µν(k) =

(
−ηµν + kµkν

m2

)
iδab

k2 −m2 + iε
. (2.5)

The term containing the inverse power of mass is clearly problematic. At energy scales
k2 � m2 it tends to a constant and thus indicates a power counting non-renormalizable
theory. In this section we will show that the origin of this term lies in the longitudinal mode.

We will start our analysis with the free theory, by setting the coupling constant to zero.
In this case, the theory reduces to three Proca theories, one for each a = 1, 2, 3. Our first
goal is to analyse express the theory only in terms of the physical degrees of freedom. In
order to do so, we will first separate the temporal and spatial components of the vector
field. In addition, we will decompose the spatial part of the vector field according to the
irreducible representations of SO(3) group:

Aai = ATai + χ,i, where ATai,i = 0. (2.6)

Here, commas denote the derivatives with respect to the corresponding coordinate xµ.
The vectors ATai are the transverse modes and scalars χa are the longitudinal modes.
Substituting this decomposition into (2.1), we obtain

S = 1
2

∫
d4x

[
Aa0

(
−∆ +m2

)
Aa0 + 2Aa0∆χ̇a −

(
χ̇a∆χ̇a −m2χa∆χa

)
+
(
Ȧi

a
Ȧi

Ta −ATai,jATai,j −m2ATai ATai

)]
.

(2.7)

The point in this equation denotes a time derivative. As none of the time derivatives act on
the Aa0 components, we can conclude that these are not propagating. Therefore, we will
find the constraints that are fulfilled by them and insert the solutions back into the action.
Then, we will obtain the action which consists only of the propagating degrees of freedom.
By varying the action with respect to Aa0, we find the following constraints

(−∆ +m2)Aa0 = −∆χ̇a, (2.8)

whose solutions are given by
Aa0 = −∆

−∆ +m2 χ̇
a. (2.9)

Here, the operator 1
−∆+m2 should be understood in terms of the Fourier modes. Substitut-

ing (2.9) back into (2.7), we obtain

S = −1
2

∫
d4x

[
ATai (� +m2)ATai + χa(� +m2) m

2(−∆)
−∆ +m2χ

a

]
. (2.10)

Therefore, we can see that this theory has three physical degrees of freedom per colour, two
transverse modes and one longitudinal for each a = 1, 2, 3. In this action the longitudinal
mode is not canonically normalized. Defining the normalised variable as

χan =
√
−∆m2

−∆ +m2χ
a, (2.11)
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(2.10) becomes

S = −1
2

∫
d4x

[
ATai (� +m2)ATai + χan(� +m2)χan

]
. (2.12)

Let us now see from where the problematic term in the propagator (2.5) comes from.
Since the modes are now canonically normalised, it is easy to read of the corresponding
propagators from (2.12). They are given by

∆ab
χn

(k) = iδab

k2 −m2 and ∆Tab
ij (k) =

(
δij −

kikj

|~k|2

)
iδab

k2 −m2 , (2.13)

where the first one corresponds to the propagator of the longitudinal modes, and the second
to the propagator of the transverse modes. Using (2.11), we can now obtain the propagator
of the original longitudinal mode

∆ab
χ (k) = |

~k|2 +m2

m2|~k|2
iδab

k2 −m2 . (2.14)

This propagator has the same divergence in mass as (2.5). In fact, by considering separately
the components of (2.5), we can easily see that these will reduce to the combinations of
the propagators for the transverse and original longitudinal modes. Hence we can conclude
that the longitudinal modes will be the cause of the discontinuity in the massless limit and
the violation of unitarity.

In order to analyse the interacting theories in the following sections, we will use the
minimal level of the quantum fluctuations of the modes. In the case of a normalised quantum
field, the minimal level of quantum fluctuations is given by

(
k3

ωk

) 1
2 , where ωk =

√
k2 +m2

is the frequency of each mode ~k [41]. For energy scales k2 ∼ 1
L2 � m2, where L is the

corresponding length-scale, the minimal level of quantum fluctuations for the transverse
and normalized longitudinal modes is then given respectively by

δATaL ∼
1
L

and δχanL ∼
1
L
, a = 1, 2, 3. (2.15)

From here it follows that the minimal level of quantum fluctuations for the longitudinal
mode is given by

δχaL ∼
1
mL

, a = 1, 2, 3. (2.16)

3 From linear to nonlinear decomposition

We will now consider the interacting theory. We begin our analysis with the linear decom-
position of the vector field (2.6). As a first step, we will express the action (2.1) in terms
of these modes. For this purpose, we will first resolve the constraints satisfied by the A0
components and substitute them into the action. Varying the action (2.1) with respect to
A0, we obtain the following constraints:

(−∆+m2)Aa0 = −Ȧai,i−gεabcȦbiAci−gεabcAbiAc0,i−gεabc∂i(AbiAc0)−g2εfbcεfadAb0A
c
iA

d
i , (3.1)
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whose solution can be evaluated up to O
(
g2) as

Aa0 =D [χ̇a]− gεabc

−∆+m2

[
ȦbiA

c
i+(∆χb+2Abi∂i)D [χ̇c]

]
(3.2)

+ g2εfabεfcd

−∆+m2

{
(∆χb+2Abi∂i)

1
−∆+m2

[
ȦcjA

d
j+(∆χc+2Acj∂j)D

[
χ̇d
]]

+AbiAciD
[
χ̇d
]}
.

Here, χa is the longitudinal component of Aai , that we decompose according to (2.6), while
the operator D is given by

D[χ] = −∆
−∆ +m2χ. (3.3)

Substituting (3.2) into the action (2.1), we obtain the Lagrangian density

L=L0 +Lint, (3.4)

where

L0 =−1
2χ

a(�+m2)m
2(−∆)
−∆+m2χ

a− 1
2A

Ta
i (�+m2)ATai

and

Lint = gεabc
[

1
2χ

bχc,i�A
Ta
i − χ̇aχc,i

m2

∆
(
χ̇b,i

)
+χbATci �ATai

]

+ g2

2 ε
fabεfcd

[
χ̇aχ̇cχb,iχ

d
,i+

(
χ̇a,iχ

b
,i+ χ̇a∆χb

) 1
∆
(
χ̇c,jχ

d
,j + χ̇c∆χd

)
− 1

2χ
a
,iχ

c
,iχ

b
,jχ

d
,j

]
+O

(
gAT3

L
,
gm2ATχ2

L3 ,
g2ATχ3

L3

)
,

evaluated on scales 1
L2 ∼ k2 � m2. We have retained only the most significant terms and

denoted derivatives in the last line with 1
L . The complete expression up to and including

O
(
g2) can be found in the appendix. As in the free theory, the kinetic term for the

longitudinal modes is not canonically normalised. With respect to the normalised variable
defined in (2.11), the Lagrangian density is given by

L = L0 + Lint, (3.5)

where

L0 = −1
2χ

a
n(� +m2)χan −

1
2A

Ta
i (� +m2)ATai

and

Lint ∼ gεabc
[ 1

2m2χ
b
nχ

c
n,i�A

Ta
i −

1
m
χ̇anχ

c
n,i

1
∆
(
χ̇bn,i

)
+ 1
m
χbnA

Tc
i �ATai

]
+ g2

2m4 ε
fabεfcd

[
χ̇anχ̇

c
nχ

b
n,iχ

d
n,i +

(
χ̇an,iχ

b
n,i + χ̇an∆χbn

) 1
∆
(
χ̇cn,jχ

d
n,j + χ̇cn∆χdn

)
−1

2χ
a
n,iχ

c
n,iχ

b
n,jχ

d
n,j

]
.
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Inverse powers of mass indicate that at high energies unitarity will be violated. According
to [21], this corresponds to length scales Lu ∼ g

m . Let us now determine the strong coupling
scale of the theory. It is the scale for which the non-linear terms are of the same order as
the linear terms with respect to the equation of motion. Varying (3.4) with respect to χ,
we find the equation of motion satisfied by the longitudinal modes to be2

(�+m2)χa ∼ g

m2 ε
abc
[
χb,i�A

Tc
i +ATbi �ATci +m2

(
χc,i

1
∆ χ̈b,i+ χ̈bχc,i+ χ̈b∆χc+ χ̇b∆χ̇c

)]
+ g2

m2 ε
fabεfcdχb,i

[
∂i∂0
∆

(
χ̇c,jχ

d
,j + χ̇c∆χd

)
− χ̇cχ̇d,i− χ̈cχd,i+χd,i∆χc+χc,jχ

d
,ij

]
.

(3.6)

Varying (3.4) with respect to the transverse modes, we obtain

(� +m2)ATai ∼ gεabcP Tij
[1

2�
(
χbχc,j

)
+ATcj �χb + 2χb,µA

Tc,µ
j

]
, (3.7)

where
P Tij = δij −

∂i∂j
∆ (3.8)

is the transverse projector. In both (3.6) and (3.7) we have retained only the relevant terms.
We will now develop the perturbation theory by first expanding the fields into powers of
the coupling constant:

ATi = A
T (0)
i +A

T (1)
i + . . . and χ = χ(0) + χ(1) + . . . (3.9)

The modes AT (0)
i and χ(0) satisfy free equations of motion

(� +m2)ATa(0)
i = 0 and (� +m2)χa(0) = 0, (3.10)

whose solutions are plane waves. We will first analyse the transverse modes. The first-order
corrections are given by

(� +m2)ATa(1)
i ∼ gεabcP Tij

(
χb(0)
,µ χ

c(0),µ
,j + 2χb(0),µA

Tc(0)
i,µ

)
. (3.11)

Estimating ∂µ ∼ 1
L , we can evaluate these terms as

gεabcP Tij

(
χb(0)
,µ χ

c(0),µ
,j

)
∼ gχ2

L3 and gεabcP Tij

(
χb(0),µA

Tc(0)
i,µ

)
∼ gχAT

L2 . (3.12)

Taking into account the minimal level of quantum fluctuations for the modes (2.15), we can
estimate these terms further as

gχ2

L3 ∼
g

(mL)2 L3
and gχAT

L2 ∼ g

(mL)L3 . (3.13)

Since we consider scales 1
L2 � m2, the first term among these is most dominant. Therefore,

we can evaluate the first-order corrections for the transverse modes as

A
Ta(1)
i ∼ g

(mL)2 L
. (3.14)

2The results are independent of whether the original or the normalised longitudinal modes are used.

– 7 –



J
H
E
P
0
3
(
2
0
2
2
)
1
6
7

The scale of the strong coupling is the scale at which these corrections become of the same
order as the linear term AT (0) ∼ 1

L . Comparing the two terms, we find that the transverse
modes enter the strong coupling regime at scales

LTstr ∼
√
g

m
. (3.15)

This scale is larger than the scale characterising the breakdown of unitarity, Lu ∼ g
m , which

indicates that the transverse modes enter the strong coupling regime before the unitarity is
violated. Even though these scales usually coincide, their mismatch should not be surprising
given that they are physically distinct. While the scale of strong coupling arises at the
level of the equations of motion, the scale of unitarity violation is defined by the scattering
amplitudes. Still, one might suspect that the results in terms of transverse and longitudinal
modes are not necessarily in agreement with the earlier work of [12, 16, 22]. Nonetheless,
in the appendix, we will reproduce the discontinuity at one loop for the transverse modes
and show that the scale LTstr does not appear for either one-loop or two-loop corrections to
the propagator of the transverse modes. The most dominant contribution to the first-order
corrections for the longitudinal modes is given by

(� +m2)χa(1) ∼ gεabcχb(0)
,µ ∆χc(0),µ, (3.16)

and can be estimated as
χa(1) ∼ g

(mL)2 . (3.17)

When these corrections become of the same order as χ(0) ∼ 1
mL , the longitudinal mode

enters the strong coupling regime. This corresponds to the scale

Lstr ∼
g

m
, (3.18)

which is smaller than LTstr. Since the transverse modes enter the strong coupling regime ahead
of the longitudinal modes, the corrections (3.17) are no longer trustworthy. Nevertheless,
this should be taken with more caution, since there could be terms from higher order
corrections that might cause the strong coupling of longitudinal modes on the same scale
LTstr. For second-order corrections, this possibility arises from the following terms:

(� +m2)χa(2) ∼ g

m2 ε
abcχ

b(0)
,i �ATc(1)

i − g2

m2 ε
fabεfcdP Tij

(
χ
d(0),µ
,j χc(0)

,µ

)
(3.19)

First, we will set the transverse modes to zero. In this case, only the second term remains
and we can estimate these corrections as follows:

χ(2) ∼ g2

(mL)5 (3.20)

On the scale LTstr, they are of the same order as the linear term, and as a result, the
longitudinal mode enters the strong coupling regime. Below this scale, the minimal level of
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quantum fluctuations of the longitudinal mode is determined by the O
(
g2) terms in the

Lagrangian. We can estimate these terms as

Lint ⊃
g2χ4

L4 . (3.21)

If we define the new canonically normalised variable χn ∼ g
Lχ

2, we find that the minimal
level of quantum fluctuations for the longitudinal mode in the strong coupling regime is
given by

δχaL ∼
1
√
g
. (3.22)

Let us now consider the case with transverse modes. Substituting (3.11) into (3.19) cancels
the term which caused the strong coupling of the longitudinal modes at scales LTstr. This
implies that the longitudinal modes enter the strong coupling regime at scales lower than
LTstr. However, as soon as the transverse modes enter the strong coupling regime, the
relation (3.11) is no longer valid. Thus, the previous cancellation does not take place and
the second-order contributions to the longitudinal modes at the strong coupling scale LTstr
are given by

χ(2) ∼ g2(
mLTstr

)5 . (3.23)

This is of the same order of magnitude as the linear term for the longitudinal modes.
Therefore, the longitudinal modes also enter the strong coupling regime at the same scale
as the transverse modes. Below it, the most dominant terms in the interacting part of the
Lagrangian density are given by

Lint ∼
g

2ε
abcχbχc,i�A

Ta
i + g2

2
χ4

L4 . (3.24)

From the last term, it follows that the minimum level of quantum fluctuations for scales
L ≤ LTstr is given by (3.22). The quantum fluctuations for the transverse modes are then
determined by the first term. Since we can now evaluate it as

g

2ε
abcχbχc,i�A

Ta
i ∼

1
L3A

T , (3.25)

we see that the minimum level of quantum fluctuations remains the same as before. However,
it can be seen that this term has the same order of magnitude as the kinetic term for the
transverse modes, whereas in the case of the longitudinal modes, the latter term is more
dominant than the kinetic term. As a consequence, the transverse modes for scales L ≤ LTstr
are no longer properly defined. We can also see this from the equation of motion (3.7). The
first term on the left-hand side is the most dominant, and beyond the strong coupling scale
it can be evaluated as follows

g

2ε
abcP Tij�

(
χbχc,j

)
∼ 1
L3 . (3.26)

As this term has the same order as the linear one for the transverse modes at scales below
LTstr, we should include it in the kinetic term. In other words, we should redefine the
transverse modes as

ATai = BTa
i + g

2ε
abcP Tij

(
χbχc,j

)
, BTa

i,i = 0, (3.27)
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and repeat the whole procedure for the new transverse modes BTa
i . As soon as we replace

the old transverse modes by the new ones, the terms that induced a strong coupling scale
LTstr will drop out of the Lagrangian. However, a new strong coupling scale will then appear,

L̃Tstr ∼
g2/3

m
, (3.28)

which will require another redefinition. This shows us that even if we start with a linear
decomposition of the vector field in transverse and longitudinal modes, the theory leads to
a non-linear decomposition.

The analysis so far has shown us that the fields are not correctly defined if the
decomposition of the vector field is linear in fields. This is due to the fact that both
transverse and longitudinal modes enter the strong coupling regime at a scale which does
not match with that of the unitarity violation, as shown in the appendix. Although it is
unphysical for the transverse modes to become strongly coupled, this is resolved for scales
L < LTstr, since the nonlinear term causing the strong coupling remains of the same order as
the linear term. In other words, this means that the transverse modes have to be redefined.
In fact, the redefinition will be required until the strong coupling scale coincides with the
scale of unitarity violation. Thus, even if we start with a linear decomposition, we will
end up with a non-linear one. In the next section, we will see that the final decomposition
introduces non-polynomial terms into the Lagrangian. This clarifies the conclusions that
have emerged from the analysis of [38]. The fact that the Lagrangian resulting from a
nonlinear decomposition can be algebraically transformed into polynomial form is not
sufficient to conclude that the theory violates unitarity. The polynomial form corresponds
to fields which are not correctly defined.

4 The final strong coupling scale and beyond

Now we will consider the full non-linear decomposition of the vector field into transverse
and longitudinal modes. We will decompose the spatial part of the vector field as

Ai = ζATi ζ
† + i

g
ζ,iζ
†. (4.1)

Here, ζ is the unitary matrix given by

ζ = e−igχ, (4.2)

and the transverse modes satisfy
ATi,i = 0. (4.3)

Expanding ζ, the spatial component of the vector field becomes

Aai = ATai + χa,i − gεabc
(
ATbi χ

c + 1
2χ

b
,iχ

c
)
− g2

2 ε
fabεfcd

(
χbATci χd + 1

3χ
bχc,iχ

d
)
. (4.4)

We can see that the first redefinition of the transverse modes (3.27) coincides with the
transverse part of the second term at O (g). In contrast, both the longitudinal and transverse
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modes are now properly defined. If we denote the fields of the linear decomposition from
the previous section as χ̃ and ÃTi , the relation between the two pairs of fields is as follows:

χ̃ = ∂i
∆

[
ζATi ζ

† + i

g
ζ,iζ
†
]

and ÃTi = P Tij

[
ζATj ζ

† + i

g
ζ,jζ

†
]
. (4.5)

Following the same procedure as before, we will now express the action (2.1) only in terms
of the physical degrees of freedom. In matrix notation, the constraint (3.1) satisfied by the
A0 component has the following form:(
−∆ +m2

)
A0 = −Ȧi,i + ig[Ȧi, Ai] + ig (2 [Ai, A0,i] + [Ai,i, A0]) + g2 [Ai, [A0, Ai]] , (4.6)

where [ , ] is the commutator. The solution of (4.6) is given by

A0 = ζ
1
D

(
− i
g
m2ζ†ζ̇ + ig

[
ȦTi , A

T
i

])
ζ† + i

g
ζ̇ζ†, (4.7)

with 1
D

= 1
−∆ +m2 − 2ig[ATi , ∂i• ] + g2[ATi , [ATi , • ]]

. (4.8)

Here, • denotes the place where the expression acted upon by 1
D is to be inserted, once

1
D is perturbatively evaluated. Substituting (4.7) into the action (2.1), we obtain the
Lagrangian density

L=LT0 +Lχ0 +LTint +LTχint (4.9)

LT0 = tr
(
ȦTi Ȧ

T
i −ATi,jATi,j−m2ATi A

T
i

)
Lχ0 =−m

2

g2 tr
[
ζ†ζ̇

−∆
−∆+m2

(
ζ†ζ̇
)
−ζ†ζ,iζ†ζ,i

]
LTχint = 2im2

g
tr
{
−ATi ζ†ζ,i+m2ζ†ζ̇

1
D

[
ATi ,

1
−∆+m2∂i(ζ

†ζ̇)
]}

−m2 tr
{
ζ†ζ̇

1
D

[ȦTi ,ATi ]+[ȦTi ,ATi ] 1
D

(ζ†ζ̇)+m2ζ†ζ̇
1
D

[
ATi ,

[
ATi ,

1
−∆+m2 (ζ†ζ̇)

]]}
LTint = tr

{
−2igATi ATj

(
ATj,i−ATi,j

)
+g2

[
ȦTi ,A

T
i

] 1
D

[
ȦTj ,A

T
j

]
+g2

(
ATi A

T
j A

T
i A

T
j −ATi ATi ATj ATj

)}
.

We can see that now all terms containing the longitudinal modes appear multiplied by a
mass term. If we set m = 0, we obtain the massless theory, which agrees with [21].

4.1 The strong coupling scale

In order to verify the Vainshtein scale within the perturbative regime we will first expand
1
D and ζ. From the kinetic term of transverse modes, we can easily see that the expansion
in 1

D is possible at high energies as long as g � 1. On the other hand, the expansion in ζ
stops being valid for χ ∼ 1

g . Assuming that χ < 1
g , and expanding both 1

D and ζ, we obtain
the Lagrangian density at energies k2 � m2

L = L0 + Lint, (4.10)
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where

L0 = tr
[
−χ

(
� +m2

) −∆m2

−∆ +m2χ−A
T
i

(
� +m2

)
ATi

]

Lint ∼ tr
{
igm4[χ, χ̇] 1

∆(χ̇)− 2igm2ATi χχ,i − 2ig
[
ȦTi , A

T
i

] m2

∆ (χ̇)− 2igATi ATj (ATj,i −ATi,j)

+m2g2

6
(
χ,µχχ

,µχ− χ,µχ,µχ2
)
− g2m2

3 ATi [χ, [χ,i, χ]]
}
.

Here, we have kept only the most relevant terms. For simplicity, we will analyse the terms
of the Lagrangian with the original longitudinal modes, which are connected with the
canonically normalised ones via (2.11). Estimating the derivatives as ∂µ ∼ 1

L , we can
evaluate the interacting terms as

igm4[χ, χ̇] 1
∆(χ̇) ∼ gm4χ3, 2igm2ATi χχ,i ∼

gm2ATχ2

L
,

2ig
[
ȦTi , A

T
i

] m2

∆ (χ̇) ∼ gm2AT2χ 2igATi ATj ATj,i ∼
gAT3

L
,

m2g2

6 χ,µχχ
,µχ ∼ g2m2χ4

L2 and g2m2

3 ATi [χ, [χ,i, χ]] ∼ g2m2ATχ3

L
.

(4.11)

Taking into account the minimal level of quantum fluctuations for the fields (2.15), these
terms become

gm4χ3 ∼ gm

L3 ,
gm2ATχ2

L
∼ g

L4 , gm2AT2χ ∼ gm

L3

gAT3

L
∼ g

L4 ,
g2m2χ4

L2 ∼ g2

(mL)2 L4
and g2m2ATχ3

L
∼ g2

(mL)L4 .

(4.12)

The terms at O(g) will always be smaller than the kinetic terms for the longitudinal and
transverse modes due to the assumption for the coupling constant g � 1, and since we are
considering scales 1

L2 ∼ m2. However, this does not hold for the terms at O(g2). Among
these, the most dominant term contains the quartic power of the longitudinal mode. If one
compares it with the kinetic term, one then finds that the longitudinal modes enter the
strong coupling regime at scales

Lstr ∼
g

m
. (4.13)

For the transverse modes, the last term is most dominant. This term becomes of the same
order as the kinetic term at scale

L ∼ g2

m
, (4.14)

which is smaller than Lstr, and is therefore not trustworthy. Given that the most dominant
nonlinear terms correspond to O

(
g2), we will confirm the strong coupling scale also on

the level of the equations of motion. Varying the action corresponding to the Lagrangian
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density (4.10) with respect to the longitudinal modes, we obtain(
� +m2

)
χ ∼ 2ig

[
ATi , χ,i

]
− igm

2

∆ ([χ, χ̈]) + igm2
{

2
[
χ̇,

1
∆ (χ̇)

]
+
[
χ,

1
∆ (χ̈)

]}
+ 2ig 1

∆
([
ÄTi , A

T
i

])
+ g2

6 (2 [χ,µ, [χ, χ,µ]] + [χ, [χ,�χ]]) ,
(4.15)

while by variation with respect to the transverse modes we obtain(
� +m2

)
ATk = P Tki

{
2ig

(
−m2χχ,i +m2

[
ATi ,

1
∆ (χ̈)

]
+ 2m2

[
ȦTi ,

1
∆ (χ̇)

]

+2
[
ATj , A

T
i,j

]
+
[
ATj,i, A

T
j

])
− g2m2

3 [χ, [χ,i, χ]]
}
.

(4.16)

In order to develop the perturbation theory, we will expand the longitudinal and transverse
modes in powers of the coupling constant:

χ = χ(0) + χ(1) + . . . and ATi = A
T (0)
i +A

T (1)
i + . . . (4.17)

where χ(0) and AT (0)
i satisfy(

� +m2
)
χ(0) = 0 and

(
� +m2

)
A
T (0)
i = 0. (4.18)

The most dominant contributions to the first-order corrections are given by(
� +m2

)
χ(1) ∼ 2ig

[
ATi , χ,i

]
∼ g

(mL)L2 (4.19)

for the longitudinal modes. Hence, we can estimate

χ(1) ∼ g

mL
. (4.20)

Since χ(0) ∼ 1
mL , we can see that these corrections are smaller than the kinetic term provided

that g � 1. The first-order corrections to the transverse modes are given by(
� +m2

)
A
T (1)
k ∼ 2igP Tki

{
−m2χ(0)χ

(0)
,i + 2

[
A
T (0)
j , A

T (0)
i,j

]
+
[
A
T (0)
j,i , A

T (0)
j

]}
∼ g

L3 .

(4.21)
Therefore, we can estimate them as

A
T (1)
k ∼ g

L
. (4.22)

This term is always smaller than the linear term. The second-order corrections to the
longitudinal modes are given by(

� +m2
)
χ(2) ∼ g2

3
[
χ(0)
,µ ,

[
χ(0), χ(0),µ

]]
∼ g2

(mL)3 L2
. (4.23)

Therefore we can estimate them as

χ(2) ∼ g2

(mL)3 . (4.24)
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They become of the same order as the linear term at the scale

Lstr ∼
g

m
, (4.25)

which agrees with the strong coupling scale obtained from the Lagrangian density. The
second-order corrections to the transverse modes satisfy(

� +m2
)
A
T (2)
k ∼ −g

2m2

3 P Tik

{[
χ(0),

[
χ

(0)
,i , χ

(0)
]]}
∼ g2

(mL)L3 , (4.26)

and hence can be estimated as
A
T (2)
k ∼ g2

(mL)L. (4.27)

They become of the same order as the linear term A
T (0)
i at the scales

L ∼ g2

m
. (4.28)

However, this scale is smaller than one of the longitudinal modes. As the perturbation
theory for the longitudinal modes breaks down before this scale is reached, it can no longer
be trusted. In order to find the true corrections for the transverse modes, we need to
evaluate the theory beyond the strong coupling scale of the longitudinal modes.

4.2 Beyond the strong coupling scale

Let us now consider the theory at the Vainshtein scale Lstr. The analysis of the higher
order terms shows that on this scale there is an infinite number of terms of the form

Lint ⊃
∞∑
n=2

gnm2

L2 χn+2 (4.29)

which are just as relevant as the term n = 2, despite being suppressed for L > Lstr. The
reason for this is the minimal level of quantum fluctuations of the longitudinal mode at the
strong coupling scale:

δχLstr ∼
1
g
, (4.30)

which implies that the expansion of ζ is no longer valid. Therefore, to analyse the theory
beyond the strong coupling scale, we should leave ζ intact and return to the original
Lagrangian density (4.9).3 As a first step in determining the corrections to the transverse
modes, we will estimate the minimum level of quantum fluctuations of the longitudinal
modes. For energies k2 � m2, the corresponding kinetic term is that of the nonlinear sigma
model, and is given by

Lχ0 ∼
m2

g2 tr
(
ζ†,µζ

,µ
)

(4.31)

Instead of working with the SU(2) matrix ζ which we have parametrized as

ζ = e−igχ, (4.32)
3Note that it is still possible to expand the 1

D
operator.
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we will now consider its matrix elements

ζ =

 ζ∗2 ζ1

−ζ∗1 ζ2

 . (4.33)

Here, ζ1 and ζ2 are two complex fields which satisfy

|ζ1|2 + |ζ2|2 = 1. (4.34)

Furthermore, we will substitute

ζ1 = ρ1e
igθ1 and ζ2 = ρ2e

igθ2 . (4.35)

Inserting (4.35) into (4.34), we obtain

|ρ1|2 + |ρ2|2 = 1. (4.36)

Substituting further

ρ1 = ρ cos(gσ) and ρ2 = ρ sin(gσ), (4.37)

(4.34) becomes
|ρ|2 = 1. (4.38)

Setting ρ = 1, we obtain

ζ1 = cos(gσ)eigθ1 and ζ2 = sin(gσ)eigθ2 . (4.39)

In terms of the fields σ, ζ1 and ζ2, the Lagrangian density (4.31) becomes

Lχ0 = 1
2
[
4m2∂µσ∂

µσ + f2(σ)∂µθ1∂
µθ1 + p2(σ)∂µθ2∂

µθ2
]
, (4.40)

where
f2(σ) = 4m2 cos2 (gσ) and p2(σ) = 4m2 sin2 (gσ) . (4.41)

Clearly, these fields are not canonically normalised. In terms of the canonically normalised
variables

σn = 2mσ, ∂µθ1n = f(σ)∂µθ1, and ∂µθ2n = p(σ)∂µθ2, (4.42)

the Lagrangian density is given by

Lχ0 = 1
2 [∂µσn∂µσn + ∂µθ1n∂

µθ1n + ∂µθ2n∂
µθ2n] . (4.43)

The minimal level of quantum fluctuations of the normalised fields for scales k2 ∼ 1
L2 � m2

is given by
δσnL ∼

1
L
, δθn1L ∼

1
L
, and δθn2L ∼

1
L
. (4.44)
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Estimating sin(gσ) ∼ cos(gσ) ∼ O(1), we find the minimal level of quantum fluctuations of
the original fields:

δσL ∼
1
2g

k

kstr
, δθ1L ∼

1
2g

k

kstr
, and δθ2L ∼

1
2g

k

kstr
. (4.45)

Since we are considering the elements of ζ, it is natural that we also consider the matrix
elements of the transverse modes. We can write them in the following way:

ATi =


−Gi

2 −W+
i√
2

−W−
i√
2

Gi
2

 , (4.46)

where Gi is the real and W±i complex vector fields, which are transverse:

Gi,i = 0 and W±i,i = 0. (4.47)

Substituting (4.46) into LT0 , we obtain

LT0 = 1
2
[
∂µGi∂

µGi −m2GiGi
]

+ ∂µW
+
i ∂

µW−i −m
2W+

i W
−
i (4.48)

The kinetic terms imply

δGL ∼
1
L

and δW±L ∼
1
L
. (4.49)

Let us now analyse the interacting terms. We will start with the most problematic interaction.
The leading divergences for the transverse modes within perturbation theory are due to the
following term:

LTχint ⊃ −
2im2

g
tr
(
ATi ζ

†ζ,i
)
. (4.50)

Expressed in the form of matrix elements, it is given by

−2im2

g
tr
(
ATi ζ

†ζ,i
)

=−2im2
{
σ,i√

2

[
W−i e

ig(θ1+θ2)−W+
i e
−ig(θ1+θ2)

]
+iθ1,i

[
Gi cos2(gσ)− cos(gσ)sin(gσ)√

2

(
W−i e

ig(θ1+θ2)+W+
i e
−ig(θ1+θ2)

)]
+iθ2,i

[
Gi sin2(gσ)+ sin(gσ)cos(gσ)√

2

(
W−i e

ig(θ1+θ2)+W+
i e
−ig(θ1+θ2)

)]}
.

(4.51)

Or, in terms of the normalized fields, we have

−2im2

g
tr
(
ATi ζ

†ζ,i
)
∼−im

{
σn,i√

2
[W−i h−W+

i h
∗]+ iGi

[
θ1n,i cos

(
gσn
2m

)
+θ2n,i sin

(
gσn
2m

)]
+ i√

2

[
θ2n,i cos

(
gσn
2m

)
−θ1n,i sin

(
gσn
2m

)]
[W−i h+W+

i h
∗]
}
(4.52)
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with
h ∼ eig(θ1+θ2). (4.53)

Estimating

sin(gσ) ∼ O(1), cos(gσ) ∼ O(1) and h ∼ O(1), (4.54)

and taking into account the minimal level of quantum fluctuations for the fields (4.44), we
can evaluate this term as

− 2im2

g
tr
(
ATi ζ

†ζ,i
)
∼ g L

Lstr

1
L4 . (4.55)

We can see that the divergences in mass obtained in the framework of perturbation theory
have now disappeared. For scales L < Lstr, the most problematic term is now suppressed
by the coupling constant and the ratio of the scale L with the scale of the strong coupling.
Therefore, this term decreases as we approach smaller scales or higher energies. Furthermore,
this term also decreases as we approach a smaller mass, as in this case Lstr increases. We
will now show that the remaining interactions between longitudinal and transverse modes
give a smaller contribution in comparison to the interaction we have now considered. First
of all, we can see that these interactions contain the operator 1

D . Taking into account the
minimal level of quantum fluctuations for the transverse modes, this operator can always
be expanded with each term in higher powers of the coupling constant being smaller than
the previous one. Therefore, we can estimate this operator as

1
D
∼ 1
−∆ . (4.56)

Defining
Ω0 = ζ†ζ̇, (4.57)

we can write these interactions as

LTχint ⊃ tr
{

2im4

g
Ω0

1
∆

[
ȦTi ,

1
∆ (Ω0,i)

]
+2m2Ω0

1
∆
[
ȦTi ,A

T
i

]
−m4Ω0

1
∆

[
ATi ,

[
ATi ,

1
∆ (Ω0)

]]}
.

(4.58)
First we must to estimate Ω0. Let

Ω0 =

 ψ0 Φ0

−Φ∗0 −ψ0

 , (4.59)

with µ = 0, 1, 2, 3. The components of this matrix are given by

ψ0 = −ig(θ̇1 cos2(gσ) + θ̇2 sin2(gσ)) = − ig

2m(θ̇1n cos(gσ) + θ̇2n sin(gσ)) ∼ g

mL2 , (4.60)

and
Φµ = g[−σ̇ + i(θ̇1 − θ̇2) cos(gσ) sin(gσ)]eiθ1+θ2 ∼ g

mL2 . (4.61)
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Therefore, we can estimate
Ω0 ∼

g

mL2 . (4.62)

However, we have to be careful, because the interactions (4.58) include also the derivatives
of Ω0. Each derivative acting on it adds a factor of g

mL2 . For example, we have

∂µΩ0 ∼
g2

(mL)2 L2
. (4.63)

Having this in mind, we can evaluate the interactions (4.58) as

tr
{

2im4

g
Ω0

1
∆

[
ȦTi ,

1
∆ (Ω0,i)

]}
∼ g3

(
L

Lstr

)5
,

tr
{

2m2Ω0
1
∆
[
ȦTi , A

T
i

]}
∼ g2

(
L

Lstr

)2

and tr
{
−m4Ω0

1
∆

[
ATi ,

[
ATi ,

1
∆ (Ω0)

]]}
∼ g4

(
L

Lstr

)6
.

(4.64)

It should be noted that we have here taken into account that we are evaluating the corrections
for the transverse modes. Hence, in this case, the estimates must be equivalent to the
equations of motion. As a result, all derivatives and 1

−∆ must act on Ω0. As we can see,
these corrections are clearly subdominant compared to (4.55). Therefore, the leading order
corrections to the transverse modes due to the longitudinal modes are given by (4.55).
Equivalently, the corrections at the level of the equations of motion are given by

A
T (1)
i ∼ −im

2

g
ζ†ζ,i ∼

g

L3
L

Lstr
. (4.65)

Therefore, we have obtained the massless Yang-Mills theory up to small corrections that
disappear in the massless limit.

5 Conclusion

It is well-established that both massless and massive Yang-Mills theories are unitary and
renormalizable, if the mass of the gauge bosons is generated by the Brout-Englert-Higgs
mechanism [42? –45]. If, on the other hand, a mass term is added by hand, the standard
perturbative approach suggests that the theory is neither renormalizable nor unitary, since the
perturbative series is singular in the massless limit. In other words, there is a discontinuity
when mass is set to zero. This can be observed already from the propagator of the vector
fields, that tends to a constant at high energies and becomes infinite in the case of vanishing
mass. Although in [12] it was proposed that the perturbative series might be re-summed,
this proposal was soon discarded in [22] because of the existence of a discontinuity in the
1-loop corrections to the propagator. As a consequence, the massless limit appeared not to
be smooth. This is due to the longitudinal mode, a degree of freedom which is absent in
the massless theory.

Nevertheless, the purpose of this paper was to show that these issues are merely an
artefact of the standard perturbative approach. To begin with, we have pursued a conjecture
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given in [21], namely, a smooth massless limit could be possible outside of the perturbation
theory. We showed that, due to the nonlinear terms, the properly defined longitudinal
modes become strongly coupled at the scale coinciding with the unitarity violation scale.
As a result, singularities in mass that have emerged in the corrections to the transverse
mode can no longer be trusted — the perturbation theory for the longitudinal modes breaks
down before these singularities would become even relevant at all.

It is interesting to compare this theory to the one that in addition contains also a Higgs
field. If we were to rewrite the latter theory in terms of the gauge invariant variables [47],
and set the Higgs field to a constant, both theories would coincide. However, with a non-
constant field, the two theories differ because of the non-linear structure of the Lagrangian,
resulting from a constraint (4.34). Whereas this constraint is absent in the presence of
the Higgs field, in the theory with a mass term added by hand it remains, and hence the
resulting Lagrangian for the longitudinal modes corresponds to a nonlinear sigma model.

At the Vainshtein scale, this model cannot be perturbatively expanded. Nonetheless,
using the minimal level of quantum fluctuations of the fields, we found that it is still possible
to develop the perturbation theory for transverse modes beyond the strong coupling scale.
In fact, their corrections which were previously singular in the mass are now suppressed by
the strong coupling scale. When the mass approaches zero, the Vainshtein scale approaches
infinity and these corrections disappear. Thus, at high energies, the longitudinal modes
completely decouple from the transverse modes, which remain in the weakly coupled regime.
Therefore, the massless theory is restored up to small corrections. This leads us to the
conclusion that the conjecture made in [21] was correct. The massless limit of the massive
Yang-Mills theory is smooth.
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A The full Lagrangian density up to O (g2) and the Feynman rules

Here we will present the full Lagrangian density up to O
(
g2) for linearly defined transverse

and longitudinal modes, without the k2 � m2 approximation. We will also present the
corresponding Feynman rules. The following shorthand notation will be used:

D[χ] ≡ −∆
−∆ +m2 (χ) and F [χ] ≡ ∆ +m2

−∆ +m2χ, (A.1)
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where 1
−∆+m2 should be understood in the momentum space. Then, the Lagrangian density

up to O(g2) is given by

L=L0 +Lg+Lg2 , (A.2)

where

L0 =L0χ+L0AT

L0χ =−m
2

2 χa(�+m2)D[χa] L0AT =−1
2A

Ta
i (�+m2)ATai

Lg =Lgχ+LgAT +Lg2χAT +Lgχ2AT

Lgχ = gm2εabcD[χ̇a] 1
−∆+m2

(
χ̇b,i

)
χc,i LgAT = gεabcATaj,i A

Tb
i A

Tc
j

Lg2χAT = gεabc
{
D[χ̇a]

[
m2

−∆+m2

(
χ̇b,i

)
ATci +ȦTbi χ

c
,i

]
+ATaj,i χ

b
,iχ

c
,j

}
Lgχ2AT = gεabc

(
D[χ̇a]ȦTbi ATci +ATaj,i χ

b
,iA

Tc
j

)
L2
g =Lg2χ+Lg2AT +Lg23χAT +Lg22χ2AT +Lg2χ3AT

Lg2χ =−1
2g

2εfabεfcd
{
χb,iF [χ̇a,i]−∆(χb)D[χ̇a]

} 1
−∆+m2

{
χd,jF [χ̇c,j ]−∆(χd)D[χ̇c]

}
+ 1

2g
2εfabεfcd

[
D[χ̇a]χb,iD[χ̇c]χd,i−

1
2χ

a
,iχ

b
,jχ

c
,iχ

d
,j

]
Lg2AT =−1

2g
2εfabεfcd

{[
ȦTai ATbi

] 1
−∆+m2

[
ȦTcj ATdj

]
+ 1

2A
Ta
i ATbj A

Tc
i ATdj

}
Lg23χAT =−g2εfabεfcd

{
ȦTai χb,i+ATbi F [χ̇a,i]

} 1
−∆+m2

{
χd,jF [χ̇c,j ]−∆(χd)D[χ̇c]

}
+g2εfabεfcd

{
D[χ̇a]ATbi D[χ̇c]χd,i−χa,jATbi χd,iχc,j

}
Lg22χ2AT =−1

2g
2εfabεfcd

{
2
[
ȦTai ATbi

] 1
−∆+m2

[
ȦTcj χd,j +ATdj F [χ̇c,j ]

]
+
[
ȦTai χb,i+ATbi F [χ̇a,i]

] 1
−∆+m2

[
ȦTcj χd,j +ATdj F [χ̇c,j ]

]}
− 1

2g
2εfabεfcd

{
−D[χ̇a]ATbi ATdi D[χ̇c]+ATai ATbj χ

c
,iχ

d
,j

+ATai ATci χb,jχ
d
,j +ATai ATdj χb,jχ

c
,i

}
Lg2χ3AT =−g2εfabεfcd

{[
ȦTai ATbi

] 1
−∆+m2

[
ȦTcj χd,j +ATdj F [χ̇c,j ]

]
+ATai ATbj A

Tc
i χd,j

}
.

Let us now consider the Feynman rules. We can see that the longitudinal modes are
not normalised, and normalisation according to (2.11) would put the kinetic term into
the form of a standard massive scalar field. However, substituting the normalised vari-
ables in the interacting part of the Lagrangian would complicate the expressions for the
vertices. Therefore, we will work with the original longitudinal mode and express the
Feynman rules through it. It is easy to verify that the resulting expressions for the
diagrams are independent of this choice. To define the asymptotic states and find the
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expression for the propagator of the original longitudinal mode, one simply performs a
canonical normalisation and then rewrites the expressions in terms of the original mode.
In the following, we will only present the Feynman rules up to and including O(g). The
propagators for the longitudinal and transverse modes are each given in momentum space by

∆ab
χ (k) = |

~k|2 +m2

m2|~k|2
iδab

k2 −m2

∆Tab
ij (k) =

(
δij −

kikj

|~k|2

)
iδab

k2 −m2

At O(g) we have the following vertices, with all momenta outgoing which have been ordered
according to the number of the longitudinal lines.

V abc
3χ (k, p, q) = igm2εabc

[
|~k|2k0piqi

|~k|2 +m2

(
p0

|~p|2 +m2 −
q0

|~q|2 +m2

)

+ |~p|
2p0kiqi

|~p|2 +m2

(
q0

|~q|2 +m2 −
k0

|~k|2 +m2

)

+ |~q|
2q0kipi

|~q|2 +m2

(
k0

|~k|2 +m2
− p0
|~p|2 +m2

)]

V abc
i,2χ(k(i), p, q) = −gεabc

[
kµ (qµpi − pµqi) +m2k0

(
p0qi

|~p|2 +m2 −
q0pi

|~q|2 +m2

)

+ m2p0q0
(
|~p|2qi − |~q|2pi

)
(|~p|2 +m2)(|~q|2 +m2)

]

V abc
ij,χ(k, p(i), q(j)) = −igεabcδij

[
|~k|2k0

|~k|2 +m2
(p0 − q0)− kl(p− q)l

]
V abc
ijl (k, p, q) = gεabc [δil(k − q)j + δij(p− k)l + δjl(q − p)i]

(A.3)

B Massless Yang-Mills theory

In the massive Yang-Mills theory, we will only work with longitudinal and transverse modes.
When calculating the corrections to the propagator of the transverse modes, we want to
compare these contributions with the massless theory. We can see that the propagator of the
transverse modes in the massive case corresponds to the propagator of the Coulomb gauge
in the massless limit. The massless theory is evaluated along these lines in the radiation
gauge, where only the propagating degrees of freedom are taken into account. The action is
given by

S = −1
2

∫
d4x tr(FµνFµν). (B.1)
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First, we will decompose the vector field in terms of temporal and spatial part, Aa0 and Aai
with a = 1, 2, 3. Then, we obtain

S=
∫
d4x

{
1
2
[
Aa0(−∆)Aa0 +2Aa0Ȧai,i

]
+ 1

2(Ȧai Ȧai +Aaj,iAai,j−Aaj,iAaj,i)

+gεabc(−Ab0Aci Ȧai −AbiAc0Aa0,i+AbiAcjAaj,i)−
g2

4 ε
abcεaed(−2Ab0AciAe0Adi +AbiAcjAeiAdj )

}
.

(B.2)

As a next step, we can impose the radiation gauge condition:

Aai,i = 0.

As in the massive case, the temporal part does not propagate because no time derivatives
act on it. Therefore, the theory has only two propagation modes. Let us integrate out the
non-propagating component like in the massive case. The component A0 satisfies a system
of constraints (one for each a = 1, 2, 3):

−∆Aa0 = −Ȧai,i − gεabcȦbiAci − gεabcAbiAc0,i − gεabc∂i(AbiAc0)− g2εfbcεfadAb0A
c
iA

d
i (B.3)

Up to O (g), the solution of the constraints can be can be evaluated as

Aa0 = −gεabc 1
−∆

[
ȦbiA

c
i

]
+ 2g2εfabεfcd

1
−∆

[
(Abi∂i)

1
−∆

(
ȦcjA

d
j

)]
+O(g3), (B.4)

and the Lagrangian density is given by

L = L0 + Lint, (B.5)

where

L0 = −1
2A

Ta
i (�)ATai

and

Lint = gεabcATaj,i A
Tb
i A

Tc
j −

1
2g

2εfabεfcd
{[
ȦTai ATbi

] 1
−∆

[
ȦTcj ATdj

]
+ 1

2A
Ta
i ATbj A

Tc
i ATdj

}
.

We can see from the kinetic term that the minimal level of quantum fluctuations of the
transverse modes is given by

δATaL ∼
1
L
, a = 1, 2, 3. (B.6)

Also, we can notice that the vertex at O(g) exactly agrees with the vertex V abc
ijl (k, p, q) of

the massive theory, while the propagator corresponds to the one of transverse modes in the
massive case with mass set to zero:

∆Tab
ij (k) =

(
δij −

kikj

|~k|2

)
iδab

k2 .
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C Can we estimate LT
str from the Feynman diagrams?

We have seen that for a linear decomposition of the vector field, the transverse modes enter
the strong coupling regime at scales LTstr. However, the literature has so far had no mention
of unitarity breakdown at the same scales. Rather, it has been shown that the unitarity
breakdown occurs at energies ku ∼ m

g [17]. This corresponds to the two-loop correction of
the propagator of transverse modes, while at one loop there are no inverse powers of mass,
but the amplitude does not coincide with that of the corresponding massless theory [22].
With this in mind, one might wonder whether the Feynman rules we obtained for the theory
with linearly defined transverse and longitudinal modes would lead to different results. The
strong coupling was found at the level of the equations of motion for the transverse modes.
Therefore, it is reasonable to suspect that the violation of unitarity corresponding to the
same energies could occur as a result of the corrections to the propagator of the transverse
modes. First, we will analyse the one-loop contribution to the transverse modes, and show
that the results agree with [22]. After confirming that there is no violation of unitarity for
one-loop corrections, we will outline the proof of the absence of LTstr for two loops.

In a first step, we will show that the imaginary part of the corrections to the propagator
of the transverse modes in the massless limit does not agree with the massless theory. In
this search, we will follow an approach similar to [16, 17, 22] and calculate the imaginary
part of the corrections at the propagator of the vector field using the cutting rules [15]. The
reason why we focus on the imaginary part of the diagrams is its close connection to the
unitarity of the S-matrix. The condition that the S-matrix is unitary means that

S†S = 1 (C.1)

is satisfied, where S denotes the S-matrix. We can express the S-matrix through the
T -matrix by

S = 1 + iT. (C.2)

Then, if |a〉 , |b〉 , |c〉 denote the states of the system, the unitarity condition can be ex-
pressed as

2Im 〈b|T |a〉 = −
∑
c

〈b|T |c〉 〈c|T † |a〉 . (C.3)

From the perspective of diagrams, this corresponds to a cutting equation. Therefore, this
statement is equivalent to saying that the imaginary part of the diagram is given by the
sum over all possible cuts of the diagram [48]. This is just another way of expressing the
Optical theorem [49]. Let us now analyse the corrections to the propagator of transverse
modes at one loop in massive and massless case. The Feynman diagrams for the massive
theory are given in A. The massless theory will be evaluated in the Coulomb gauge, with
the Feynman rules given in B. In the massive case there are five diagrams contributing to
the corrections to the transverse modes:

– 23 –



J
H
E
P
0
3
(
2
0
2
2
)
1
6
7

Here, the dotted line represents the propagator for the transverse modes, while the full
line corresponds to the longitudinal modes. In the massless case only the first diagram
is present. The imaginary part of the diagrams corresponds to the sum over all possible
cuts [48]. Hence, the imaginary part of the last two diagrams automatically vanishes, and
we are left with the following cuts:

Cutting a certain propagator line corresponds to a replacement of the propagator with

∆̃ab
χ (k) = 2πθ(k0)δ(k2 −m2) |

~k|2 +m2

m2|~k|2
,

∆̃Tab
ij (k) = 2πθ(k0)δ(k2 −m2)δab

(
δij −

kikj

|~k|2

)
,

in the case of longitudinal and transverse modes respectively, and for a positive energy
flow [48]. In other words, cutting a propagator line sets the momenta corresponding to it
on-shell. This is the generalisation of the Cutkosky rules for our case. In the massless case
one has to make a following replacement

∆̃Tab
ij (k) = 2πθ(k0)δ(k2)δab

(
δij −

kikj

|~k|2

)
.

In all of the diagrams, we will denote the external momenta with p. These are already
on-shell, meaning that piεai (p) = 0, where the εaiσ(p) are polarisation vectors appearing due
to the transverse modes. The polarisation vectors satisfy∑

σ=1,2
εaiσ(p)εbjσ(p) =

(
δij −

pipj
|~p|2

)
δab.

First we will analyse the diagram containing only transverse modes. The imaginary part is
given by

ImΓT =
∫

d4k

(2π)3

∫
d4q

(2π)3 (2π)4δ(4)(p−k−q)θ(k0)δ(k2−m2)θ(q0)δ(q2−m2)εai (p)εbj(−p)T abij ,

where

T abij =V acd
ikl (−p,k,q)V bcd

jnz (p,−k,−q)
(
δkn−

kkkn

|~k|2

)(
δlz−

qlqz
|~q|2

)
, (C.4)

for the massive case, and

ImΓT =
∫

d4k

(2π)3

∫
d4q

(2π)3 (2π)4δ(4)(p− k − q)θ(k0)δ(k2)θ(q0)δ(q2)εai (p)εbj(−p)T abij , (C.5)

for the massless fields, with T abij given in the expression for the massive fields. We can see
that the vertex, which contains only transverse modes, coincides in both the massive and
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massless cases. As expected, there are no mass divergences in these expressions because
there are no longitudinal modes. Consequently, the first diagram exactly cancels with the
corresponding massless diagram for m→ 0.

The last diagram only provides terms that are multiplied by powers of the mass and
thus, it will disappear in the massless limit. This can be easily seen from the vertices of the
diagram. Let g be the internal moments corresponding to the longitudinal propagator and
k correspond to the transverse ones. These are put on-shell, as the cut passes through their
propagator lines, i.e. k2 = q2 = m2. Therefore, one of the vertices takes the form

V cad
il = −igm2εcadδil

1
|~q|2 +m2

(
2qnkn +m2|~q|2

)
. (C.6)

This cancels with the 1
m2 term arising from the longitudinal modes. However, since we

have two vertices, the second one will give an additional m2, and thus the contribution will
vanish in the massless limit.

In contrast to the first and last diagrams, the second one will give a difference when
compared to the massless theory. It’s imaginary part is given by

ImΓL =
∫

d4k

(2π)3

∫
d4q

(2π)3 (2π)4δ(4)(p−k−q)θ(k0)δ(k2−m2)θ(q0)δ(q2−m2)εai (p)εbj(−p)Iabij ,

(C.7)
where

Iabij = −1
4δ

ceδdf
|~k|2 +m2

|~k|2
|~q|2 +m2

|~q|2
V acd
i,2χ(−p, k, q)V bef

j,2χ(p,−k,−q). (C.8)

For k2 = q2 = m2 we have

V acd
i,2χ(−p, k, q) = −gm2εacdki

[
1 + 2m2k0q0

(|~k|2 +m2)(|~q|2 +m2)

]
, (C.9)

and similar for the other vertex. Keeping only the relevant terms, we obtain

Iabij = 1
2g

2δabkikj . (C.10)

This contribution, which is purely due to the longitudinal modes, is clearly preserved in
the massless limit. With this result, we are in agreement with the [22]. Moreover, we
can observe that the inverse powers of the mass are not present, and therefore there is no
possibility of the unitarity violation. We can note that the vertices that constitute the
second diagram correspond to the term in the Lagrangian which was responsible for the
strong coupling scale. Therefore, we will now examine whether there is a possibility that
the unitarity scale arises at the level of the two loops, where the diagrams are formed from
this vertex.

At two loops, there are two diagrams that could give us the unitarity violation corre-
sponding to the energy scales of the strong coupling. These are
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The cuts of the first diagram are given by

while for the second diagram we have

The largest possible mass divergence for these diagrams is ∼ g4

m8 , which means that there
is a possibility for the existence of LTstr. However, it is easy to show that this is not the
case. To show it, we need to confirm that at least one of the vertices V abc

i,2χ(k(i), p, q) will
be proportional to m2 at the lowest order. Let us consider the first diagram. Let p be the
external momenta, and k and l the internal momenta over which we integrate, with k on
the lowest line and l on the line above. We can first do a trick by inserting∫

d4k

∫
d4l =

∫
d4k

∫
d4l

∫
d4qδ(4) (p− k − l − q) (C.11)

into the expression for the imaginary part of the diagram. Cutting a line means that the
corresponding momenta are set on-shell. In all three cases with cuts we therefore have
k2 = m2. Let us now look at the first vertex appearing in the first two diagrams. Neglecting
the terms proportional in to m2, it is given by

V abc
i,2χ(−p(i), k, p− k) ∼ gεabc

(
−pµkµpi − p2ki

)
= −gεabcm2ki, (C.12)

where we have used that the external momentum is on-shell, meaning that εai (p)pi = 0 and
p2 = m2. An analogous calculation applies to the last diagram, except that it is now more
convenient to look at the last vertex rather than the first. Therefore, the first diagram
cannot provide the scale of the unitarity scale which would match the strong coupling scale.
Let us now look at the second diagram, and perform the same trick (C.11) to analyse the
cuts. The last two cuts cannot give LTstr. This is due to the first (or last) vertex, next to
which a cut is being made. This sets all three lines around the vertex on-shell, which makes
the vertex contain only the terms with m2. The first two cuts for the second diagram are
again equivalent. Let l lie on the line which passes through the loop. The cut over it leaves
us with the transverse projector in momentum space, for which we have

li

(
δij −

lilj

|~l|2

)
= 0. (C.13)

Let us now consider the vertex at the bottom of this line. If k is the loop momentum exiting
the vertex, we have

V abc
i,2χ(l(i), k,−l − k) ∼ gεabclµ (lµki − kµli) . (C.14)
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The last term vanishes since it is contracted with the transverse projector. Since the cut is
made through the middle line, this sets l on shell, and hence this vertex does not have terms
which are multiplied by mass. The analysis of the two loop corrections for the transverse
modes therefore suggests that LTstr does not appear in the diagrams.

Note that the diagrams presented here refer to AT and χ components, with the A0
component integrated out. To rewrite the results in terms of the Aµ fields, one can consult
the following section.

D Conversion of diagrams

Here we will present the rules of transforming a manifestly covariant diagram into a set of
manifestly non-covariant ones, rewritten only in terms of the longitudinal and transverse
modes (We will refer to the latter one as ATχ formulation) For simplicity, here we will
ignore the colour indices.

In order to do it, we first have to take into account that the ex-
ternal lines of manifestly covariant diagram carry external indices
µ = 0, 1, 2, 3. Based on this, there are 3 relevant types of external
propagators in ATχ formulation

1. transverse

2. longitudinal with a cross, which comes with a factor −ipi

3. longitudinal with a circle, which comes with a factor −ip0A(p)

where A(p) = ~p2

~p2+m2 and big grey circle corresponds to the rest of the diagram. These
factors should be multiplied with the corresponding type of the propagator

∆T
ij(p) = (δij −

kikj
~k2

) i

k2 −m2 for transverse modes

∆χ = 1
m2A(k)

i

k2 −m2 for longitudinal modes
(D.1)

For the longitudinal modes there are two kinds, since they come from Ai and A0. Now,
in an manifestly covariant theory, the diagram can be decomposed into transverse and
longitudinal parts according to the following rules

• Draw all combinations of the external propagators.

• Connect them with all possible vertices.

• The value of a given diagram then follows the usual Feynman rules, the only differ-
ence being that a diagram should now be multiplied by factors from three types of
propagators.
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Let’s consider as an example 1-loop diagram. Then all possible diagrams one could
form are given by
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