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1 Introduction

De Sitter space-time (dS) is arguably the most relevant and, at the same time, simple
model for the early, and late time evolution of the Universe in a cosmological setting. It
is a maximally symmetric solution of the Einstein equations with a positive cosmological
constant, hence experiencing accelerated expansion. Overwhelming observational evidence
points to the fact that in the distant past our universe went through a phase of accelerated
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expansion called inflation, while the asymptotic future seems to be described by an accel-
erated expansion as well. Both of these scenarios may be approximately described by a de
Sitter space-time.

Furthermore, to explain the spectrum of density fluctuations in the cosmic microwave
background (CMB) [2] and structure formation in the universe, which originate from the
early stage of the universe, it is important to understand quantum field theory in this
background. Nevertheless, despite its relevance, this topic is much less developed than
quantum field theory in Anti-de Sitter space-time (AdS) let alone Minkowski space-time.
This is mainly due to conceptual and technical difficulties since dS, in contrast to AdS,
does not posses a globally defined time-like Killing vector, which makes the choice of a
vacuum more ambiguous and the definition of an asymptotic region, relevant for scattering
experiments, much more challenging.

In this paper we would like to advance the study of QFT in dS by calculating the
one-loop corrections to the cosmological correlation function of a conformally coupled real
scalar field with a quartic self-interaction. One of our main motivations is to make sense
of the notion of holography in the cosmological context. Similar to AdS, one can define a
conformal boundary for dS which, however, is given by a space-like surface at future infinity,
in contrast to AdS. It is therefore not possible to fix boundary conditions in the same way
as in AdS since this is incompatible with unitary time evolution. Nevertheless, one expects
a CFT description of the bulk theory in dS on the boundary since the symmetry group of
dS acts on the future boundary as the euclidean conformal group.

There have been many attempts to implement the concept of holography in dS, start-
ing with [3]. Most of them focus on the calculation of the wave function of the universe [4]
for the Bunch-Davies vacuum [5]. In this case, there is a straightforward relation to the
situation in AdS. Calculations of the expansion coefficients to the wave function have been
pushed forward recently, using direct integration, unitarity methods, Mellin space, differ-
ential representations and polytopes [6–18]. As the wave function itself is, however, not an
observable these results are more of a conceptual rather than phenomenological value. In
principle one could obtain a cosmological correlation function by taking expectation values
from this wave functional, but this approach is impractical in reality since it requires non
perturbative knowledge of the wave function which, for interacting theories, is technically
out of reach at the moment, at least to our knowledge.

Another approach, which we will follow in this work, is to evaluate the correlation
function directly by performing a path integral along a closed time contour, the so called
Schwinger-Keldysh or in-in formalism [19, 20]. This approach has lead to several interesting
results and the development of new techniques [1, 21–29]. We are going to take advan-
tage of progress made in [26–28] to express the cosmological correlation functions in the
Schwinger-Keldysh formalism as a sum over euclidean AdS (EAdS) Witten diagrams which
was expressed in [1] as an auxiliary EAdS action. Here we calculate the four-point func-
tions up to one-loop order by direct integration in position space, applying the formalism
developed in [30] to evaluate EAdS Witten diagrams. Interestingly, the Witten diagrams
up to this order do not contain any elliptic integrals, in contrast to EAdS, and therefore
can all be expressed in terms of single-valued multiple polylogarithms. We then compare
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Cosmological correlator CFT CFT(OS
n,l,O

A
n,l, [O1O2]n,l)

︷ ︸︸ ︷
GFF(O1)×GFF(O2)

Wave function CFT CFTΨ[π] × CFTΨ[φ]

Figure 1. Deformations of the generalized free field (GFF) CFTs in the wave function CFTs
(down) and cosmological correlator CFT (up). OS

n,l and OA
n,l are orthogonal linear combinations of

[O1O1]n,l and [O2O2]n,l (see section 4.1).

the late time cosmological correlator to the conformal block expansion which allows us to
extract the data of the dual CFT.

We find that the CFT is given by a deformation of a direct product of generalized free
fields. However, in contrast to the CFT corresponding to the expansion of the wave func-
tion, the cosmological CFT contains three different trajectories of double trace operators
due to the mixing of fields with different boundary conditions pictured in figure 1.

We find that the cosmological correlators obey several CFT consistency conditions
at different loop orders reflecting the fact the boundary theory is in fact a CFT. The
second order (one-loop) anomalous dimensions for the double trace operators : O1�n∂lO1 :,
: O2�n∂lO2 : and : O1�n∂lO2 :, derived in section 4 for all n and l,

γ
(2)S
n>0,l>0 = − γ2

l(l + 1); γ
(2)A
n>0,l>0 = − γ2

(2n+ l)(2n+ l + 1)
γ

(2)
n,2l>0 = γ

(2)S
n,2l>0; γ

(2)
n,2l+1>0 = γ

(2)A
n,2l+2 , (1.1)

highlight an interesting symmetry between the anomalous dimensions at different spins.
From the bulk perspective, this is could be a consequence of the symmetry in the EAdS
action in eq. (3.3), enforced by the Schwinger-Keldysh formalism and the fact that we take
a conformally coupled scalar field. We do not expect this symmetry to hold for general
masses. The equations for γ(2)S

n>0,l>0 and γ
(2)
n,l>0 even show a degeneracy for the conformal

dimensions of these operators for all twists ∆n,l − l, which seems quite remarkable.
This paper is organised as follows: in section 2 we briefly review the Schwinger-Keldysh

formalism in the context of QFT in dS, define the propagators and give the auxiliary EAdS
action first derived in [1]. Section 3 is where we present the calculation of the cosmological
correlation function in terms of EAdS Witten diagrams and in section 4 we compare the
results to a conformal block expansion on the boundary and extract anomalous dimensions.
We conclude in section 5 with a short summary of the results and some suggestions for fur-
ther investigation. The expression for the Witten diagrams are collected in the appendix A
for the cross diagram and appendix B for the one-loop diagram. The single-valued multi-
ple polylogarithms entering these evaluations are collected in the appendix C. The OPE
coefficients are conformal blocks for generalized field are recalled in appendix D.
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J−

J+

η = 0

η
=
−∞η =const

Figure 2. Conformal diagram of dS in the Poincaré patch.

2 Perturbative QFT in de Sitter space

The main reason why Quantum field theory in dS is less straightforward than in AdS is the
fact that it does not have a globally defined time-like Killing vector in all patches relevant
for cosmology, leading to a time-dependent classical background. In this section we will
describe how to deal with this issue.

2.1 Schwinger-Keldysh formalism in de Sitter space

To calculate expectations values of a time dependent background the Schwinger-Keldysh
formalism is well suited. For this one specifies the initial vacuum and calculates the ex-
pectation value of local field insertions φ(X1) · · ·φ(Xn). Here we will work on the Poincaré
patch parametrized by coordinates X = (~x, η) as in figure 2, which is given by the lower
half space

H−d+1 := {X = (~x, η) : ~x ∈ Rd, η < 0} (2.1)

equipped with the metric

ds2 = 1
a2η2 (−dη2 + d~x2) . (2.2)

In the interaction picture we then have

〈
φ(~x1, η) · · ·φ(~xn, η)

〉
BD =

〈
0BD

∣∣∣U †I (−∞, η)φ(~x1, η) · · ·φ(~xn, η)UI(−∞, η)
∣∣∣ 0BD〉〈

0BD
∣∣∣U †I (−∞, η)UI(−∞, η)

∣∣∣ 0BD〉 .

(2.3)
Here |0BD〉 is the Bunch-Davies vacuum to be defined below, while UI and U †I are the
time-ordered and anti-time ordered evolution operator in the interaction picture given by

UI(η0, η) := T

{
e−i
∫ η
η0

dη̃HI(η̃)
}
, U †I (η0, η) := T̄

{
ei
∫ η
η0

dη̃HI(η̃)
}
, (2.4)
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where HI is the interaction Hamiltonian and T and T̄ denote time- and anti-time ordering
respectively. The Bunch-Davies vacuum condition is imposed at η → −∞. The denomi-
nator in equation (2.3) cancels vacuum bubble contributions, just as in flat space.

There are two ways to perform this calculation. One is to expand the exponentials in
UI and U †I and use Wick contraction on the left and right of the insertions to calculate
the correlator. Denoting the fields on the time ordered side of the integral by φT (X), the
anti-time order fields by φA(X) and the field insertions on the time slice at future infinity
by φ̄(~x), we have the Wick contractions

φT/A(X1)φT/A(X2)→ ΛT/A,T/A(X1, X2) , (2.5)

where

ΛTT (X1, X2) =
〈

0
∣∣T{φ(X1)φ(X2)}

∣∣ 0〉 , ΛAA(X1, X2) =
〈

0
∣∣∣T̄{φ(X1)φ(X2)}

∣∣∣ 0〉 (2.6)

are time- and anti time-ordered correlators, while ΛTA(X1, X2) and ΛAT (X1, X2) are the
retarded and advanced Green functions respectively. Similarly,

φT/A(X1)φ̄(~x2)→ Λ̄T/A(X1, ~x2) , (2.7)

where Λ̄T/A(X1, ~x2) is obtained from ΛTT or ΛAA by taking X2 → ~x2 to the future space-
like conformal boundary of dS.

A free massive scalar field in dS evolves according to the Klein-Gordon equation

(−�dS +m2)φ = 0 , (2.8)

where the d’Alembertian is related to the quadratic Casimir of the SO(d + 1, 1) isometry
group of dS as C2 = − 1

a2�dS . Comparing this with the weight ∆ and spin ` representations
of the conformal group in d Euclidean dimensions with

C2 = ∆(∆− d) + `(`+ d− 2), (2.9)

we recover the familiar relation between the mass of a scalar field and the scaling dimension
on the boundary

∆(∆− d) = −m
2

a2 ⇐⇒ ∆± = d

2 ±

√
d2

4 −
m2

a2 . (2.10)

These equations are invariant under the shadow transformation ∆→ d−∆, which relates
two unitarily equivalent representations.

We can label the irreducible representations by the spin of the SO(d) part. We have
a Lorentzian field theory and the states appearing should therefore correspond to unitary
representations of the symmetry group SO(d+ 1, 1). The scaling dimension ∆, which can
take complex values restricted by unitarity, is restricted to fall into different classes. The
most relevant ones to our analysis are the principal and complementary series.

– 5 –
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The equations of motion guarantee, that any free field transforms in a unitary irre-
ducible representation of the de Sitter group. Heavy fields with mass 4m2 > a2d2 in dS
correspond to the principal series which exists for any spin `. They have a complex valued
scaling dimension

∆ = d

2 + iν with ν ∈ R. (2.11)

Light fields in dS with mass 0 ≤ 4m2 < a2d2 correspond to the complementary series given
by the real valued dimension

∆ = d

2 + ν with ν ∈ R, (2.12)

where −d
2 < ν < d

2 for ` = 0 and 1− d
2 < ν < d

2 − 1 for ` > 0. As we will discuss later this
class of representations will be most relevant to us, since we will consider a conformally
coupled field. For more details on this topic we refer the interested reader to [31].

EAdS can be constructed from the same ambient Minkowski space as dS with the
same signature of the metric. Therefore, we could conclude that the Hilbert space of EAdS
should be constructed from unitary irreducible representations of SO(d + 1, 1). But this
is well-known not to be the case. The scaling dimension for EAdS can be obtained by
setting a → ia in equation (2.10). The value for ∆ is therefore always real and the fields
transform under unitary irreducible representations of SO(d, 2) the symmetry group of the
Lorentzian version of EAdS. This is not a problem since QFT in EAdS is a euclidean field
theory. Only after Wick rotation to Lorentzian AdS the Hilbert space should be given by
unitary representations which it clearly does.

The situation for dS is different. In the four-point function that we analyse in our
perturbative calculation, we will see that there are operators appearing in the spectrum
with arbitrary dimensions not obeying any SO(d + 1, 1) unitarity constraints. However,
since there is no operator state correspondence in dS, this does not really pose a problem,
it just hints at the fact that the relation between the bulk and boundary degrees of freedom
is more obscure in dS than in AdS. These points have been raised recently in the context
of a proposed cosmological bootstrap in [1, 25].

Here we will focus on the four-point function of a scalar field theory with interaction
term ∫ η

−∞
Hintdη = λ

4!

∫
H−
d+1

dd+1X

(aη)d+1φ
4(X). (2.13)

The four-point function evaluated at future infinity is given by

lim
η→η0

〈
φ(η, ~x1)φ(η, ~x2)φ(η, ~x3)φ(η, ~x4)

〉
≡
〈
φ0(~x1)φ0(~x2)φ0(~x3)φ0(~x4)

〉
. (2.14)

Let us begin with the disconnected part

〈
φ0(~x1)φ0(~x2)φ0(~x3)φ0(~x4)

〉
=
〈
φ0(~x1)φ0(~x2)

〉 〈
φ0(~x3)φ0(~x4)

〉
+
〈
φ0(~x1)φ0(~x3)

〉 〈
φ0(~x2)φ0(~x4)

〉
+
〈
φ0(~x1)φ0(~x4)

〉 〈
φ0(~x2)φ0(~x3)

〉
, (2.15)

where each two-point function is just given by the propagator Λ with both legs taken to
future infinity.

– 6 –
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The first order term in the coupling constant λ has two contributions

W0 = −iλ
∫
H−
d+1

dd+1X

(aηT )d+1 Λ̄T ( ~x1, X)Λ̄T ( ~x2, X)Λ̄T ( ~x3, X)Λ̄T ( ~x4, X)

+ iλ

∫
H−
d+1

dd+1X

(aηA)d+1 Λ̄A( ~x1, X)Λ̄A( ~x2, X)Λ̄A( ~x3, X)Λ̄A( ~x4, X) , (2.16)

from contractions with the time-ordered and the anti-time-ordered Hamiltonian. We per-
form this integral after a Wick rotation for ηT and ηA individually, such that we do not
cross the branch cut,

ηT → e−i
π
2 z; ηA → ei

π
2 z . (2.17)

With this transformation we can write the cross diagram as

W0 = −λ
∫
H+
d+1

dd+1X

(az)d+1 Λ̄T ( ~x1, X)Λ̄T ( ~x2, X)Λ̄T ( ~x3, X)Λ̄T ( ~x4, X)

− λ
∫
H+
d+1

dd+1X

(az)d+1 Λ̄A( ~x1, X)Λ̄A( ~x2, X)Λ̄A( ~x3, X)Λ̄A( ~x4, X) , (2.18)

where now, X := (~x, z).
To define the propagator we consider the euclidean version of dS, which is a sphere.

Upon Wick rotating back to dS and restricting to the Poincaré patch this fixes the vacuum
as the Bunch-Davies or euclidean vacuum (see [32–34]). The propagator for a scalar field
of mass m between two bulk points X and Y on the sphere reads1

ΛS(X,Y ) = NdS 2F1

(
∆+,∆−; d+ 1

2 ; K(X,Y )− 1
2K(X,Y )

)
, (2.20)

with
K(X,Y ) = 1

a2∑d
i=0X

iY i
(2.21)

is the inverse of the geodesic distance and

NdS = Γ(∆+)Γ(∆−)
(4π) d+1

2 Γ
(
d+1

2

) , (2.22)

is a normalization constant. The Green function in dS is obtained from equation (2.20)
by Wick rotating back and restricting to the Poincaré patch, which we will denote by
Λ(K(X,Y )). To obtain the correct time ordering for the Feynman propagator when taking
the flat limit, we have to obtain the correct behaviour across the branch cut at 0 <

K(X,Y ) < 1 which coincides with the region of time-like separation. We therefore demand
1The Gauß hypergeometric function is defined as

2F1 (a, b; c; z) := Γ(c)
Γ(b)Γ(c− b)

∫ 1

0
tb−1(1− t)c−b−1(1− zt)−adt (2.19)

for <(b) > 0 and <(c) > 0.

– 7 –
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that the commutator between two fields at space-like separation should vanish, while at
time-like separation it should be non-vanishing. Expressed in terms of two-point functions
of the vacuum state defined by the analytic continuation of (2.20), this means〈

0
∣∣[φ(X), φ(Y )]

∣∣ 0〉 = Λ(K(X,Y ))− Λ(K(Y,X)). (2.23)

For this expression to be non-vanishing for time-like separation we have to demand that
we approach the branch cut from above and below depending on the time-ordering. In the
Poincaré patch this means doing the replacement K(X,Y ) → K(X,Y ) − iεsgn(ηx − ηy),
where ε is an infinitesimal, positive, real parameter. The two-point function with the
correct behaviour across the branch cut is therefore given by

ΛTA(X,Y ) := Λ
(
K(X,Y )− iεsgn(ηx − ηy)

)
, (2.24)

with 0 ≤ ε� 1. The time ordered Feynman two-point function is given by

ΛTT (X,Y ) :=
〈

0
∣∣T{φ(X1)φ(X2)}

∣∣ 0〉
= θ(ηx − ηy)ΛTA(X,Y ) + θ(ηy − ηx)ΛTA(Y,X). (2.25)

This can be written in a more compact form replacing K(X,Y )→ K(X,Y ) + iε in (2.20),
where we used that K(X,Y ) expressed in local Poincaré coordinates is given by

K(X,Y ) = 2ηxηy
η2
x + η2

y − (~x− ~y)2 . (2.26)

The time ordered Feynman Green function in dS is therefore given by

ΛTT (X,Y ) = NdS 2F1

(
∆+,∆−; d+ 1

2 ; K(X,Y )− 1
2K(X,Y ) − iε

)
, (2.27)

while the anti-time ordered two-point function is given by

ΛAA(X,Y ) :=
〈

0
∣∣∣T̄{φ(X1)φ(X2)}

∣∣∣ 0〉 ,
= θ(ηx − ηy)ΛTA(Y,X) + θ(ηy − ηx)ΛTA(X,Y ),
= Λ(K(X,Y )− iε). (2.28)

These Green functions define the Bunch-Davies or euclidean vacuum. Let us mention that
this is not the unique de Sitter invariant vacuum. There is an infinite space of de Sitter
invariant vacua parametrised by two continuous parameters [35]. All these vacua have
singularities at points related by the antipodal map and therefore do not provide the correct
flat limit. The Bunch-Davies vacuum is therefore special from a physical perspective.
Also, from a cosmological point of view, the Bunch-Davies vacuum seems to be the only
reasonable choice, since it gives mode functions for the field that behave like in flat space
when going to the infinite past or to wavelengths much smaller than the horizon. From
now on we will only work in the Bunch-Davies vacuum.

– 8 –
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Note, that, contrary to EAdS, we cannot fix the fall-off behaviour of the Green function
at future infinity to be either ∼ K∆+ or ∼ K∆− . This is due to the fact that we can always
rewrite the Bunch-Davies propagator as a sum of the propagators with a definite fall-off
behaviour. By applying the following identities for the hypergeometric function

2F1

(
a, b; a+ b+ 1

2 ; z
)

= (1− 2z)−aF
(
a

2 ,
a+ 1

2 ; a+ b+ 1
2 ; 4z(z − 1)

(1− 2z)2

)
(2.29)

and

2F1(a, b; c, z) = Γ(c)Γ(c− a− b)
Γ(c− a)Γ(c− b)2F1(a, b; a+ b+ 1− c; 1− z)

+ Γ(c)Γ(a+ b− c)
Γ(a)Γ(b) (1− z)c−a−b2F1(c− a, c− b; 1 + c− a− b; 1− z) ,

(2.30)

we can rewrite the hypergeometric function in (2.20) as

2F1

(
∆+,∆−; d+ 1

2 ; K − 1
2K

)
=

Γ
(
d+1

2

)
Γ
(
∆− − d

2

)
Γ
(

∆−
2

)
Γ
(

∆−+1
2

) K∆+

× 2F1

(
∆+
2 ,

∆+ + 1
2 ; ∆+ −

d− 2
2 ;K2

)
+ (∆+ ↔ ∆−) .

(2.31)

With this formula we can express the time ordered Bunch-Davies propagator (2.27) in
terms of propagators with fall-off behaviour

ΛTT (X,Y ) = 1
2πΓ

(
∆+ −

d

2

)
Γ
(

∆− −
d

2

)(
∆+ −

d

2

)
×
(
ΛTT (X,Y,∆−) + ΛTT (X,Y,∆+)

)
.

(2.32)

Here we introduced the propagator with a definite fall off behaviour as the Wick rotation
of the propagator in EAdS

ΛTT (X,Y,∆) = ad−1

4π d+1
2

Γ
(

∆+1
2

)
Γ
(

∆
2

)
Γ
(
∆− d

2 + 1
)

×K(X,Y )∆
2F1

(
∆
2 ,

∆ + 1
2 ; ∆− d− 2

2 ;K(X,Y )2 − iε
) (2.33)

with equivalent expressions for ΛAA and ΛTA.
Following the same conventions as for the AdS/CFT case we introduce the bulk-to-

boundary propagator as the limit of the bulk-to-bulk propagator taking on leg to future
infinity

Λ̄T/A(X1, ~x2) := lim
η0:=η2→0

ΛT/A,T/A(X1, X2). (2.34)

– 9 –
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It does not matter if the boundary limit is taken with a time- or anti- time ordered point
since there is no notion of time ordering at future infinity. The bulk-to-boundary propagator
reads

Λ̄T/A(X1, ~x2) =
Γ
(
∆+ − d

2

)
Γ
(
∆− − d

2

) (
∆+ − d

2

)
2π ×

×
(
η

∆−
0 Λ̄(K,∆−) + η

∆+
0 Λ̄(K,∆+) + · · ·

)
,

(2.35)

where we introduced the bulk to boundary propagators with definite late-time fall-off be-
haviour as

Λ̄(K,∆±) = N∆±
(2η2)∆±

((~x2 − ~x1)2 − η2
2)∆± ∓ iε

. (2.36)

Focusing on the conformally coupled case with ∆± = d±1
2 and using equation (2.36)

and the Wick rotation (2.17) we can recast the four-point function (2.18) up to the second
subleading order in η0 → 0 as

W0 =− λ
∫
H+

4

dd+1X

(az)d+1

(
η

4∆−
0 Λ̄(K,∆−)Λ̄(K,∆−)Λ̄(K,∆−)Λ̄(K,∆−)

− η2(∆−+∆+)
0 Λ̄(K,∆+)Λ̄(K,∆+)Λ̄(K,∆−)Λ̄(K,∆−)

+ η
4∆+
0 Λ̄(K,∆+)Λ̄(K,∆+)Λ̄(K,∆+)Λ̄(K,∆+) + · · ·

)
. (2.37)

The evaluation of the tree-level four-point function is therefore reduced to a calculation
in EAdS, with two different boundary conditions contributing, corresponding to conformal
dimensions ∆+ and ∆−.

We could proceed with this calculation diagram by diagram, which is the way this
relation between cosmological correlator and EAdS Witten diagrams was first written down
in [26–28]. However, as shown in [1], there is an elegant way to rewrite the dS action
with the Schwinger-Keldysh contour directly in terms of an auxiliary EAdS action, from
which the cosmological correlation functions can be extracted by straightforward functional
derivation. We will review this formulation in the next subsection.

2.2 Auxiliary action for EAdS

In this section we review the derivation of section 3 of [1], for the auxiliary action for
computing de Sitter correlators.

The closed time evolution between two in-states from the infinite past can be expressed
by a path integral with closed time curves. Then a correlation function is given by taking
functional derivatives of the time and anti-time ordered sources jT and jA of the partition
function

Z[jT , jA] =
∫

DφTDφAeiSc+i
∫

(φT jT+φAjA), (2.38)

with the closed time action given by

iSc = i

0∫
−∞

dηdd~x
ηd+1

{
−1

2(∂φT )2 − 1
2m

2φ2
T − V (φT ) + 1

2(∂φA)2 + 1
2m

2φ2
A + V (φA)

}
.

(2.39)

– 10 –
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Performing the Wick rotation η = ze±iπ2 as described above, the action becomes

iSc = −
∞∫
0

dzdd~x
zd+1

eiπ
d−1

2

(1
2(∂φT )2 − 1

2m
2φ2

T − V (φT )
)

+ e−iπ
d−1

2

(1
2(∂φA)2 − 1

2m
2φ2

A − V (φA)
) (2.40)

As discussed above the classical solution of a free scalar field in de Sitter is given by
φ(η, ~x) = φ+(η, ~x) + φ−(η, ~x) with

φ+(η, ~x) :=
∫

d3~y Λ̄∆+(η, ~x− ~y)φ+
0 (~y),

φ−(η, ~x) :=
∫

d3~y Λ̄∆−(η, ~x− ~y)φ−0 (~y), (2.41)

where φ±(η, ~x)→ η∆± , for η → 0. Under the Wick rotation we get

φ(ze±i
π
2 , ~x) = e±i

π
2 ∆+φ+(z, ~x) + e±i

π
2 ∆−φ−(z, ~x), (2.42)

which plugged in the action leads to

iSc = −
∞∫
0

dzdd~x
zd+1

e−iπ
(
∆+− d−1

2

)
2

(
(∂φ+)2 −m2φ+2)+ e−iπ

(
∆−− d−1

2

)
2

(
(∂φ−)2 −m2φ−

2)
+ e−i

π
2
(
∂φ−∂φ+ −m2φ−φ+

)
+ 1

2e+iπ
(
∆+− d−1

2

) (
(∂φ+)2 −m2φ+2)

+ 1
2eiπ

(
∆−− d−1

2

) (
(∂φ−)2 −m2φ−

2)+ ei
π
2
(
∂φ−∂φ+ −m2φ−φ+

)
− eiπ

d−1
2 V

(
e−i

π
2 ∆+φ+ + e−i

π
2 ∆−φ−

)
− e−iπ

d−1
2 V

(
ei
π
2 ∆+φ+ + ei

π
2 ∆−φ−

),
(2.43)

leading to the result, derived in [1],

iSc = −
∞∫
0

dzdd~x
zd+1

− sin

π(∆+ −
d

2

)((∂φ+)2 −m2φ+2)

− sin

π(∆− −
d

2

)((∂φ−)2 −m2φ−
2)

− eiπ
d−1

2 V
(
e−i

π
2 ∆+φ+ + e−i

π
2 ∆−φ−

)
− e−iπ

d−1
2 V

(
ei
π
2 ∆+φ+ + ei

π
2 ∆−φ−

).
(2.44)
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We want to study a theory in dS with the potential V (φ) = λ
4!φ

4. In that case the
action (2.44) becomes

iSc = −
∞∫
0

dzdd~x
zd+1

− sin

π(∆+ −
d

2

)((∂φ+)2 −m2φ+2)+ (φ+,∆+ ↔ φ−,∆−)

+ 2λ
4!

(
φ+4 sin

(
π

2 (3∆+ −∆−)
)

+ 6φ+2
φ−

2 sin
(
πd

2

)
+ φ−

4 sin
(
π

2 (3∆− −∆+)
)

+ 4φ+3
φ− sin(π∆+) + 4φ−3

φ+ sin(π∆−)
).

(2.45)

In this work we consider the case of the conformally coupled scalar with ∆+ = d+1
2

and ∆− = d−1
2 with odd boundary dimensions d. The action (2.45) then becomes

iSc = −
∞∫
0

dzdd~x
zd+1

[
−
(
(∂φ+)2 −m2φ+2)+

(
(∂φ−)2 −m2φ−

2)

−(−1)
d−1

2
2λ
4!
(
φ+4 − 6φ+2

φ−
2 + φ−

4)]
.

(2.46)

This action can now be used to calculate correlation functions in dS, showing to all
orders in perturbation theory, that cosmological correlators can be expressed in terms of
EAdS Witten diagrams. The leading contributions in the late time expansions are given
by calculating the EAdS correlators of the field φ−. Note however, that this field alone will
not give a consistent CFT at the boundary, since there will be mixing interaction vertices
between φ− and φ+. To be able to describe the CFT on the boundary we have to take into
account the subleading terms in the late time expansion of the cosmological correlator as
well. We also notice that the kinetic term in the action is not necessarily positive, leading
to ghost-like behaviour of one of the fields. This would be a problem if we wanted to
interpret this action as describing a bulk theory in EAdS, however, since we only us this
action as a tool to describe a theory in dS, we should treat these signs only as a way to
keep track of the correct relative prefactors in the expansion.

3 de Sitter correlation functions from EAdS Witten diagrams

In this section we focus entirely on the conformally coupled scalar field. As we noticed,
perturbatively, this can be treated like a theory of two interacting scalar fields with bound-
ary scaling dimensions ∆+ = d+1

2 and ∆− = d−1
2 in EAdS, governed by the action (2.46)

– 12 –
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for odd boundary dimension. The propagators (2.33) then read

ΛTT
(
X,Y,

d− 1
2

)
=
ad−1Γ

(
d−1

2

)
2(2π) d+1

2

(
K(X,Y )

1−K(X,Y )

) d−1
2

1 +
(

1−K(X,Y )
1 +K(X,Y )

) d−1
2

 ,
(3.1)

ΛTT
(
X,Y,

d+ 1
2

)
=
ad−1Γ

(
d−1

2

)
2(2π) d+1

2

(
K(X,Y )

1−K(X,Y )

) d−1
2

1−
(

1−K(X,Y )
1 +K(X,Y )

) d−1
2

 .
(3.2)

We will then be able to use the formalism of [30] for evaluating the Witten diagrams. From
now, we specialize to the case of d = 3.

To avoid unnecessary prefactors in the calculation we are changing the normalisation
of the fields as φ± → φ±/

√
2 and the coupling constant as λ→ 2λ

SEAdS =
∞∫
0

dzd3~x

z4

[
− 1

2
(
(∂φ+)2 −m2φ+2)+ 1

2
(
(∂φ−)2 −m2φ−

2)

+ λ

4!
(
φ+4 − 6φ+2

φ−
2 + φ−

4) ]
.

(3.3)

The L-loop Witten diagrams between sets of fields of dimensions ∆1 and ∆2 are de-
noted by

W∆1∆2∆3∆4,D
L,dS (~x1, ~x2, ~x2, ~x4). (3.4)

The case (∆1,∆2,∆3,∆4) = (1, 1, 1, 1) is evaluated in section 3.2.1, (∆1,∆2,∆3,∆4) =
(2, 2, 2, 2) is evaluated in section 3.2.2, and the mixed correlators with (∆1,∆2,∆3,∆4) =
(2, 2, 1, 1) and permutations are evaluated in section 3.2.3.

Using the normalization of the fields and the coupling constant introduced in (2.46)
and the conformal mappings as described in [30], we can write a generic EAdS four-point
Witten diagram with equal external dimensions ∆ as

W∆∆∆∆,D
L,dS (~x1, . . . , ~x4) = a4(

4π2)2L+4W
∆∆∆∆,D
L (~x1, . . . , ~x4), (3.5)

where W
∆∆∆∆,D
L is the corresponding Witten diagram in EAdS with standard normaliza-

tion of the propagator as defined in [30]. The four-point function with mixed boundary
conditions will be given by acting with the differential operator, defined in section 3.2
of [30], onto the corresponding legs of the ∆ = 1 Witten diagrams. All calculations will be
done in the loop dependent dimensional regularisation scheme introduced and described in
section 3.1.2 of [30].
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3.1 Two-point functions

If we represent the propagators as

Λ(X,Y ; 1) = X Y , Λ(X,Y ; 2) = X Y (3.6)

then the loop corrections to the boundary two-point function up to order λ2 for ∆ = 1
correspond to the diagrams

x1 x2 x1 x2 x1 x2 x1 x2

x1 x2 x1 x2 x1 x2 x1 x2

x1 x2 x1 x2 x1 x2 . (3.7)

For ∆ = 2 the diagrams are the same up to replacing the external lines by the ∆ = 2 bulk
to boundary propagator.

Using the results from [36], it can be checked that the integrals appearing in (3.7)
all reduce to a divergent piece times a mass-shift term. We can therefore use the same
argument that the renormalized mass should be fixed at the value “measured” at the
boundary, which in our case fixes the leading order fall off behaviour at future infinity
to ∆ = 1. As a result, we can ignore the loop corrections to the two point function in
the following calculation of the four-point function, and we will draw the renormalised
propagators as

Λ(X,Y ; 1) = X Y , Λ(X,Y ; 2) = X Y . (3.8)

3.2 Four-point functions

Recalling (2.42), the dominant term contribution to the bulk scalar field φ is contained in
φ−. From this one may conclude that the four-point correlation function at future infinity

– 14 –
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is given by calculating the correlation functions of the auxiliary field φ− at the boundary
of EAdS, with action (2.46). However considering only φ− as a boundary field one will
not be able retrieve all the information of the dual CFT. This can also be seen form the
bulk action (2.46) in which φ− and φ+ are coupled. To access the full CFT information
we rather have to expand the four-point function to second subleading order in η0, that is〈

φ0( ~x1)φ0( ~x2)φ0( ~x3)φ0( ~x4)
〉

= η
4∆−
0

〈
φ−( ~x1)φ−( ~x2)φ−( ~x3)φ−( ~x4)

〉
+ η

2(∆−+∆+)
0

(〈
φ+( ~x1)φ+( ~x2)φ−( ~x3)φ−( ~x4)

〉
+
〈
φ+( ~x1)φ−( ~x2)φ+( ~x3)φ−( ~x4)

〉
+
〈
φ+( ~x1)φ−( ~x2)φ−( ~x3)φ+( ~x4)

〉)
+ η

4∆+
0

〈
φ+( ~x1)φ+( ~x2)φ+( ~x3)φ+( ~x4)

〉
. (3.9)

3.2.1
〈
φ−φ−φ−φ−

〉
The contributions to the leading term of the late time expansion of the four-point correla-
tion function in equation (3.9) is given by

〈
φ−(x1)φ−(x2)φ−(x3)φ−(x4)

〉
=


x1

x2

x3

x4

+ 2 perm.

− λ
x1

x2

x3

x4

+ λ2

2


x1

x2

x3

x4

+ 2 perm.

+ λ2

2


x1

x2

x3

x4

+ 2 perm.

+ O(λ3).

(3.10)

• The disconnected part is given by the product of two-point functions
〈
φ−(x1)φ−(x2)

〉〈
φ−(x3)φ−(x4)

〉
+
〈
φ−(x1)φ−(x3)

〉〈
φ−(x2)φ−(x4)

〉
+
〈
φ−(x1)φ−(x4)

〉〈
φ−(x2)φ−(x3)

〉
= 22a4

(4π2)2
1

x2
12x

2
34

(
1 + v + v

1− Y

)
. (3.11)

Here we follow the notation and conventions of [30] for the cross-ratio

v = x2
12x

2
34

x2
14x

2
23

= ζζ̄; 1− Y = x2
13x

2
24

x2
14x

2
23

= (1− ζ)(1− ζ̄) . (3.12)

where x2
ij = |~xi − ~xj |2.

• The cross terms is given by the ∆ = 1 term in EAdS

W
1111,D
0 (ζ, ζ̄) = 1

2
v∆

x2
12x

2
34

∫
RD

dDX
‖X − u1‖2(D−4)

1

‖X‖2
∥∥∥X − uζ∥∥∥2

‖X − u1‖2
, (3.13)
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where the norm is defined with a euclidean signature

‖X‖2 = z2 + ~x2 (3.14)

and the radial coordinate z is expressed with the help of the normal vector to the
boundary u = (0, 0, 0, 1) such that

u ·X = z. (3.15)

• For the one-loop contributions we use the following expression for the square of the
propagator:

Λ̃(X1, X2; ∆)2 = (u ·X1)2 (u ·X2)2

‖X1 −X2‖4
+ (u ·X1)2 (u · σ(X2))2∥∥X1 − σ(X2)

∥∥4

− (−1)∆

2

u ·X1 u ·X2

‖X1 −X2‖2
+ u ·X1 u · σ(X2)∥∥X1 − σ(X2)

∥∥2

 , (3.16)

where σ(X) is the antipodal map after Wick rotation

σ(~x, z) = (~x,−z). (3.17)

We have used that the bulk-to-bulk propagator without the normalisation factor is
given by for ∆ = 1 and ∆ = 2.

Λ̃(X1, X2,∆) = (u ·X1)(u ·X2)
‖X1 −X2‖2

− (−1)∆ (u ·X1)(u · σ(X2))∥∥X1 − σ(X2)
∥∥2 , (3.18)

together with the identity

(u ·X1)(u ·X2)
‖X1 −X2‖2

(u ·X1)(u · σ(X2))∥∥X1 − σ(X2)
∥∥2 = 1

4

(u ·X1)(u ·X2)
‖X1 −X2‖2

+ (u ·X1)(u · σ(X2))∥∥X1 − σ(X2)
∥∥2

 .
(3.19)

Then, by regrouping contributions from the ∆ = 1 and ∆ = 2 fields propagating in
the loops in (3.10), one can see that for the sum, over ∆, of the propagators squared
the cross-terms cancel so that

Λ̃(X1, X2; 1)2 + Λ̃(X1, X2; 2)2 = 2(u ·X1)2 (u ·X2)2

‖X1 −X2‖4
+ 2(u ·X1)2 (u · σ(X2))2∥∥X1 − σ(X2)

∥∥4 .

(3.20)
After unfolding the integral to the whole space R4 the one-loop contribution, in the
s-channel, for four external scalars of the same dimension ∆ adds up to

x1

x2

x3

x4

+

x1

x2

x3

x4

(3.21)

= 24∆a4

(4π2)6

∫
(RD)2

dDXdDY (u ·X)2∆−2(u · Y )2∆−2

‖X − Y ‖4‖X − x1‖2‖X − x2‖2‖Y − x3‖2‖Y − x4‖2
,
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with similar expressions for the other channels. Finally, performing the conformal
mappings as described in [30] the integrand of equation (3.21) takes the form

W
∆,4−2ε,s
1,div = (ζζ̄)∆

(x2
12x

2
34)∆

∫
R2D

d4−2εX1d4−2εX2(u·X1)2∆−2(u·X2)2∆−2

‖X1‖2∆
∥∥∥X1−uζ

∥∥∥2∆
‖X2−u1‖2∆−4ε‖X1−u1‖−4ε‖X1−X2‖4

,

(3.22)
where the subscript “div” indicates that the integral is divergent and ε = 4−D

2 is
a regulator. The contributions to the other channels are given in the appendix in
equation (B.1).

These integrals were already calculated in [30] and the results are given in appendix B.1.
Note that, because of (3.20), the elliptic sector, which was present in the one-loop EAdS
computation for ∆ = 1, cancels out. By consequence, the loop integrals are linearly
reducible [37] and thus can be expressed in terms of multiple polylogarithms using the
program HyperInt [38]. The entire four-point function then becomes

〈
φ−(x1)φ−(x2)φ−(x3)φ−(x4)

〉
= 22a4

(4π2)2

 1
x2

12x
2
34

(
1+v+ v

1−Y

)
− 22λ

(4π2)2W
1111,4−4ε
0 (v,Y )

+ 22λ2

(4π2)4

−3π2

ε
W

1111,4−4ε
0 (v,Y )+ π4v

2x2
12x

2
34

∑
i∈{s,t,u}

L1,i
0 (v,Y )

+O(λ3)

 .
(3.23)

The integrals W1111,4−4ε
0 (v, Y ) and L1,i

0 have been evaluated in [30]. We have recalled their
expressions in (B.10) for L1,i

0 .

3.2.2
〈
φ+φ+φ+φ+

〉
The contributions to the φ+φ+φ+φ+ term of the late time expansion of the four point
correlation function in equation (3.9) are given by

〈
φ+(x1)φ+(x2)φ+(x3)φ+(x4)

〉
=


x1

x2

x3

x4

+ 2 perm.

− λ
x1

x2

x3

x4

+ λ2

2


x1

x2

x3

x4

+ 2 perm.

+ λ2

2


x1

x2

x3

x4

+ 2 perm.

+ O(λ3).

(3.24)

• The cross term is again just given by the same expression as the ∆ = 2 cross in
EAdS, given in appendix A.

– 17 –



J
H
E
P
0
8
(
2
0
2
2
)
1
3
9

• Since the squares of the bulk-to-bulk propagators are the same, similar arguments as
for the ∆ = 1 case hold, i.e. the result can be written as a sum of the divergent and
finite parts of the one-loop Witten diagrams with ∆ = 2. The details are given in
appendix B.3

The entire four-point function at this order is therefore given by

〈
φ+(x1)φ+(x2)φ+(x3)φ+(x4)

〉
= 24a4

(4π2)2

 1
x4

12x
4
34

(
1 + v2 + v2

(1− Y )2

)

− 24λ

(4π2)2W
2,4−4ε
0 − 24λ2

(4π2)4

− 3π2

ε
W

2222,4−4ε
0 (v, Y )

+ 3π2W2222,4
0 (v, Y ) + 1

2
∑

j∈{s,t,u}
W

2222,j
1,fin (v, Y ) + π4v

2x2
12x

2
34

∑
i∈{s,t,u}

L2,i
0 (v, Y )

+ O(λ3)


(3.25)

where W
2222,j
1,fin and L2,i

0 have been calculated in [30] and recalled in (B.26) and (B.27) re-
spectively. In fact, as described in [30] there is a differential relation between the correlators
with φ+ and φ− external legs. We will make use of this in the next subsection.

3.2.3 Mixed correlators

Additionally, we have the correlation functions of φ+ with φ−, which are sub-leading in the
late-time expansion. They are equivalent up to permutation of the operators φ−(xi), φ+(xj)
so we will only calculate

〈
φ+(x1)φ+(x2)φ−(x3)φ−(x4)

〉
and discuss the other combinations

at the end of section 3.3.
The diagrams we calculate are given by

〈
φ+(x1)φ+(x2)φ−(x3)φ−(x4)

〉
=

x1

x2

x3

x4

+ λ

x1

x2

x3

x4

− λ2


1
2

x1

x2

x3

x4

+ 1
2

x1

x2

x3

x4

+

x1

x2

x3

x4

+

x1

x2

x4

x3


+ O(λ3). (3.26)

• The disconnected part only contains the product of two propagators and is therefore
given by

〈
φ+(x1)φ+(x2)φ−(x3)φ−(x4)

〉
= 23a4

22(4π2)2
1

x4
12x

2
34

(3.27)
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• The tree-level contribution can be inferred from (3.13) by acting on the latter with

H12 = 1
x2

12

(
2∆− 2v ∂

∂v

)
. (3.28)

Thus,

W 2211,4−4ε
0.dS (~x1, . . . , ~x4) = 26a4

(4π2)4
1
4H12W

1111,4−4ε
0 (~x1, . . . , ~x4). (3.29)

To compute the right-hand-side we express W1111,4−4ε
0 (~x1, . . . , ~x4) in parametric rep-

resentation and act with H12 before expanding the result in ε. See section 3.2 of [30]
and appendix A for more details with W

2211,4−4ε
0 (~x1, . . . , ~x4) there, related to (3.29) as

W 2211,4−4ε
0,dS (~x1, . . . , ~x4) = 26a4

(4π2)4W
2211,4−4ε
0 (~x1, . . . , ~x4) . (3.30)

The one-loop contributions can be obtained in the same way. We observe that the
sum of the first two terms contains a term like equation (3.20). The same arguments
apply therefore for the cancellation of the mixed terms and, we get

1
2

x1

x2

x3

x4

+ 1
2

x1

x2

x3

x4

= 1
2

26a4

(4π2)6

∫
(RD)2

dDXdDY (u ·X)2

‖X − Y ‖4‖X − x1‖4‖X − x2‖4‖Y − x3‖2‖Y − x4‖2
.

(3.31)

It is not hard to see that this integral is given by acting with H12 on W
1,4−2ε,s
1,div giving

W 2211,4−2ε,s
1,dS (~x1, . . . , ~x4) = 1

2
26a4

(4π2)6
1
4H12W

1,4−2ε,s
1,div (~x1, . . . , ~x4),

=: 26a4

(4π2)6W
2211,4−2ε,s
1 (~x1, . . . , ~x4) (3.32)

where W
2211,4−2ε,s
1 is given in appendix B.2.

For the last two terms we use the fact that the propagators can be expressed as (see
section 2.3 of [30] for details):

Λ(X,Y ; 1) = −
(
a

2π

)2
 zw

‖X − Y ‖2
+ zw∥∥X − σ(Y )

∥∥2

 ,
Λ(X,Y ; 2) = −

(
a

2π

)2
 zw

‖X − Y ‖2
− zw∥∥X − σ(Y )

∥∥2

 . (3.33)

– 19 –



J
H
E
P
0
8
(
2
0
2
2
)
1
3
9

Therefore the product appearing in the Witten diagrams is given by:

Λ(X,Y ; 1)Λ(X,Y ; 2) =
(
a

2π

)4
 (zw)2

‖X − Y ‖4
− (zw)2∥∥X − σ(Y )

∥∥4

 (3.34)

We can unfold the region of integration of the last two diagrams from (H+
D)2 to R2D by

using that the measure of integration is odd under the action of the antipodal map, like
the product of propagators in (3.34). We then have

x1

x2

x3

x4

∝
∫

(H+
D)2

dDXdDY
z4w4

 (zw)2

‖X − Y ‖4
− (zw)2∥∥X − σ(Y )

∥∥4



× (zw)3

‖X − x1‖4‖Y − x2‖4‖X − x3‖2‖Y − x4‖2
(3.35)

since
∥∥X − σ(Y )

∥∥2 = (~x − ~y)2 + (z + w)2 we unfold the Y integral to the full space RD

to get

(3.35) =
∫
H+
D

dDX
z4

∫
RD

dDY
w4

(zw)2

(‖X − Y ‖2)2
(zw)3

(‖X − x1‖2‖Y − x2‖2)2‖X − x3‖2‖Y − x4‖2
.

(3.36)
We then unfold the z integration to the full space RD to get

(3.35) = 1
2

∫
RD

dDX
z4

∫
RD

dDY
w4

(zw)2

(‖X − Y ‖2)2
(zw)3

(‖X − x1‖2‖Y − x2‖2)2‖X − x3‖2‖Y − x4‖2
.

(3.37)
Including the correct normalization we end up with

x1

x2

x3

x4

=1
2

26a4

(4π2)6

∫
(RD)2

dDXdDY

× (u ·X)(u · Y )
‖X − Y ‖4‖X − x1‖4‖Y − x2‖4‖X − x3‖2‖Y − x4‖2

.

(3.38)

Again, this integral is given by acting with H12 on W
1,4−2ε,t
1,div in equation (B.1). The same

applies to the last diagram with respect to W
1,4−2ε,u
1,div and we obtain for these two contri-

butions

W 2211,4−2ε,i
1,dS (~x1, . . . , ~x4) = 1

2
26a4

(4π2)6
1
4H12W

1,4−2ε,i
1,div (~x1, . . . , ~x4),

=: 26a4

(4π2)6W
2211,4−2ε,i
1 (~x1, . . . , ~x4) (3.39)
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where W
2211,4−2ε,i
1 with i ∈ {s, t, u} is given in appendix B.2. The complete four-point

function is therefore given by

〈
φ+(x1)φ+(x2)φ−(x3)φ−(x4)

〉
= 23a4

(4π2)2

 1
x4

12x
2
34

+ 23λ

(4π2)2W
2211,4−4ε
0

− 23λ2

(4π2)4

(
− 3π2

ε
W

2211,4−4ε
0 +

∑
i∈{s,t,u}

W
2211,4,i
1,finite

) .
(3.40)

with W
2211,4,i
1,finite given in equations (B.17). The correlation functions〈

φ+(x1)φ−(x2)φ+(x3)φ−(x4)
〉

and
〈
φ+(x1)φ−(x2)φ−(x3)φ+(x4)

〉
can be obtained from

this result by exchanging external points accordingly. This, however, only works after
regularisation as we will discuss in the next section.

3.3 Renormalization and finite result

To simplify the calculation in EAdS we changed the normalisation of the fields φ± and the
coupling constant λ in the auxiliary action (2.46). However if we want to interpret our
result in terms of a de Sitter calculation we have to reverse that procedure, especially if
we want to compare the β function with the well-known flat-space result. At leading order
they should coincide, since the leading short distance divergence does not depend on the
global geometry.

Following the same arguments as in section 4.2.1 in [30], we introduce the renormalized
coupling constant λR through the divergent bare coupling as λ = λR(aµ)µ2ε + δλ. Then,
up to finite terms, the connected part of the four-point functions is given by

2
∑

i
∆ia4

(8π2)4 (µa)4ε
(

2λRW∆1∆2∆3∆4,4−4ε
0 + λ2

R

16π4
3π2

ε
W

∆1∆2∆3∆4,4−4ε
0

)

= 2
∑

i
∆ia42

(8π2)4 (µa)4ε
(
λR + 3λ2

R

32π2ε

)
W

∆1∆2∆3∆4,4−4ε
0

=: 2∆1+···+∆4a42
(8π2)4 µ2ελW∆1∆2∆3∆4,4−4ε

0 . (3.41)

This determines the counter-term

δλ = −3λ2
Rµ

2ε

32π2ε
(3.42)

while the finite logµ contribution to λ gives rise to the Callan-Symanzik equation

0 = d
d logµλ, (3.43)

which leads to the leading order contribution to the beta function

β = 3λ2
R

16π2 + O(λ3
R) (3.44)

coinciding with the flat space result.
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After renormalisation with a minimal subtraction scheme and restoring the canonical
normalisation of the fields and coupling constant, from a dS point of view, we obtain the
following finite results for the four-point functions with equal external dimensions ∆− = 1
or ∆+ = 2

〈
φ±(x1)φ±(x2)φ±(x3)φ±(x4)

〉
= 22∆±a4

(8π2)2

 1
x

2∆±
12 x

2∆±
34

1 + v∆± + v∆±

(1− Y )∆±


− 22∆±2λR

(8π2)2 W
∆±∆±∆±∆±,4
0 + 22∆±4λ2

R

(8π2)4

∑
i∈{s,t,u}

W
∆±∆±∆±∆±,i
1,finite

, (3.45)

where W
1111,4
0 is given in (A.1), W2222,4

0 is given in (A.5), W1111,i
1,finite are given in (B.9) and

W
2222,i
1,finite are given in (B.25). The mixed correlator is given by

〈
φ+(x1)φ+(x2)φ−(x3)φ−(x4)

〉
= a4

8π4

 1
x4

12x
2
34

+ λR
4π4W

2211,4
0 + λ2

R

128π8

∑
i∈{s,t,u}

W
2211,i
1,finite

,
(3.46)

where the term W
2211,4
0 is given in (A.4) and W

2211,i
1,finite are given in (B.17).

Note, that we considered the tree-level four-point function in D = 4−4ε dimensions in
equation (3.41), meaning that the counter term contains a finite piece, given by the coeffi-
cient of the O(ε) contribution to W

∆1∆2∆3∆4,4−4ε
0 . As discussed in section 4.2.1 of [30] this

is done to restore the global AdS symmetry in the bulk, guaranteeing that the renormalized
four-point function transforms homogeneously under dilatations on the boundary. As a con-
sequence one should be able to obtain the four-point functions

〈
φ+(x1)φ−(x2)φ+(x3)φ−(x4)

〉
and

〈
φ+(x1)φ−(x2)φ−(x3)φ+(x4)

〉
by simple permutation of the external points in equa-

tion (3.46), resulting in transformations on the conformal cross-ratios.
Concretely, the correlation function

〈
φ+(x1)φ−(x2)φ+(x3)φ−(x4)

〉
is obtained

from (3.46) by making the replacements x2 ↔ x3 which corresponds to ζ → 1−ζ, ζ̄ → 1− ζ̄
or (v, 1−Y )→ (1−Y, v). Similarly,

〈
φ+(x1)φ−(x2)φ−(x3)φ+(x4)

〉
is obtained from (3.46)

by making the replacements x2 ↔ x4 which corresponds to ζ → 1
ζ , ζ̄ →

1
ζ̄
or (v, 1− Y )→

(1/v, (1 − Y )/v). We checked explicitly, that this holds for our result, providing an ad-
ditional test for the loop dependent regularisation scheme introduced in [30] to restore
the conformal symmetry on the boundary, which is a priori broken by naive dimensional
regularisation.

4 Conformal block expansion

We have seen in the last section that we can interpret the leading- and subleading expansion
coefficients of the field at late times as operators, O1 and O2, of dimension ∆ = 1 and
∆ = 2 respectively, living on the euclidean R3 hypersurface at future infinity. Furthermore,
since we have an auxiliary EAdS action for the correlation functions of the latter, we
conclude that the theory on the boundary should, at least perturbatively, be described by
a dual CFT.
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In total there are five different four-point functions to be considered for describing this
CFT. We write the possible OPEs between the operators O1 and O2 schematically as

O1(x1)×O1(x2) ∼
∑
Õ

a11
Õ
Õ(x2),

O2(x1)×O2(x2) ∼
∑
Õ

a22
Õ
Õ(x2), (4.1)

O1(x1)×O2(x2) ∼
∑
Õ

a12
Õ
Õ(x2) ,

where aij
Õ

are OPE coefficients and “∼” means that the contributions of descendant oper-
ators are implicit.

In terms of conformal blocks [39], the general form of the five four-point functions we
have to consider is〈

O1(x1)O1(x2)O1(x3)O1(x4)
〉

= 1
x2

12x
2
34

∑
Õ,l

(a11
Õ

)2GÕ,l, (4.2a)

〈
O2(x1)O2(x2)O1(x3)O1(x4)

〉
= 1
x4

12x
2
34

∑
Õ,l

a22
Õ
a11
Õ
GÕ,l, (4.2b)

〈
O2(x1)O1(x2)O2(x3)O1(x4)

〉
= 1

(x2
12x

2
34) 3

2

(
x2

24
x2

13

) 1
2 ∑

Õ,l

(a12
Õ

)2GÕ,l, (4.2c)

〈
O2(x1)O1(x2)O1(x3)O2(x4)

〉
= 1

(x2
12x

2
34) 3

2

(x2
24x

2
13) 1

2

x2
14

∑
Õ,l

(a12
Õ

)2GÕ,l, (4.2d)

〈
O2(x1)O2(x2)O2(x3)O2(x4)

〉
= 1
x4

12x
4
34

∑
Õ,l

(a22
Õ

)2GÕ,l. (4.2e)

where GÕ,l is the conformal block for the primary field Õ. In the following we will denote
the square of the OPE coefficients by capital letters, that is

A∆1∆2
O

:= (a∆1∆2
O )2. (4.3)

Since we have no three-point functions due to the quartic vertex none of the “single trace”
operators O1 and O2 will appear in the OPE.

The spectrum of “double trace” operators for the disconnected part can be read off
from the corresponding four-point functions by conglomeration as described in [40]. The
possible primary operators are given by

: O1�
n∂lO1 :, : O2�

n∂lO2 :, : O2�
n∂lO1 : (4.4)

which we will denote by
[O1O1]n,l , [O2O2]n,l , [O2O1]n,l (4.5)

respectively. They have the corresponding scaling dimension 2 + 2n + l, 4 + 2n + l and
3+2n+l with n, l ∈ N. Recall that in the scalar four-point function we can only distinguish
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operators by their scaling dimension, which may be the same for different values of n and
l. Furthermore, while the dimensions of O1 and O2 are determined by the (renormalized)
mass m, which is fixed for a conformally coupled bulk scalar, we may expect that the
“double trace” operators pick up anomalous dimensions due to the bulk interaction term.

4.1 Correlation functions with degenerate conformal block expansion

Let us first consider the four-point functions (4.2a), (4.2b) and (4.2e). By examining the
bulk diagrams we notice, that we will have mixing between the double trace operators in the
double OPE. If the two-point function between the operators [O1O1]n+1,l and [O2O2]n,l does
not vanish they are not a good basis for the conformal block expansion. Instead, we choose
a basis of operators OS

n,l and OA
n,l both with scaling dimension ∆S/A

n,l = 2 + 2n + l + O(λ)
and spin l such that they are orthogonal, i.e. at O(λ0) they have the two point functions〈

OS
n,l(x1)OA

n,l(x2)
〉

= 0;〈
OS
n,l(x1)OS

n,l(x2)
〉

=
〈
OA
n,l(x1)OA

n,l(x2)
〉

= 1
2
〈

[O1O1]n,l(x1)[O1O1]n,l(x2)
〉
, (4.6)

where the additional factor of 1/2 guarantees canonical normalization of the final result.
Combining (4.1), (4.4) and (4.6) we then write

O1 ×O1 ∼ 1 +
∑
n, l2∈N

a1,1
[O1O1]n,l [O1O1]n,l ≡ 1 +

∑
n, l2∈N

(a1,1
OS
n,l

OS
n,l + a1,1

OA
n,l

OA
n,l) (4.7)

O2 ×O2 ∼ 1 +
∑
n, l2∈N

a2,2
[O2O2]n,l [O2O2]n,l ≡ 1 +

∑
n, l2∈N

(a2,2
OS
n,l

OS
n,l + a2,2

OA
n,l

OA
n,l) , (4.8)

where the OPE coefficients a∆,∆
[O∆O∆]n,l for the generalized free field are given in the ap-

pendix D.
To find the OPE coefficients of the operators in the orthogonal basis we can express

the four-point functions of the generalized free field in terms of conformal blocks as

〈
O1(x1)O1(x2)O1(x3)O1(x4)

〉∣∣∣
λ0

= 1
x2

12x
2
34

1 +
∑
n, l2∈N

(
A1,1

OS
n,l

+A1,1
OA
n,l

) 1
2G

0,0
∆n,l

 , (4.9a)

〈
O2(x1)O2(x2)O2(x3)O2(x4)

〉∣∣∣
λ0

= 1
x4

12x
4
34

1 +
∑
n, l2∈N

(
A2,2

OS
n,l

+A2,2
OA
n,l

) 1
2G

0,0
∆n,l

 , (4.9b)

〈
O2(x1)O2(x2)O1(x3)O1(x4)

〉∣∣∣
λ0

= 1
x4

12x
2
34

1 +
∑
n, l2∈N

(
a2,2
OS
n,l

a1,1
OS
n,l

+ a2,2
OA
n,l

a1,1
OA
n,l

) 1
2G

0,0
∆n,l

 ,
(4.9c)

with the equation for the conformal blocks Ga,b∆n,l
given in the appendix D. We used the fact

that the conformal blocks for operators with the same dimension and spin are identical,
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meaning they coincide for OS
n,l and OA

n,l. Comparing this expansion to the generalized
free field, we see immediately that the OPE coefficients in the new basis must obey the
following conditions

A1,1
OS
n,l

+A1,1
OA
n,l

= 2A1,1
[O1O1]n,l ; A2,2

OS
n,l

+A2,2
OA
n,l

= 2A2,2
[O2O2]n−1,l

;

a2,2
OS
n,l

a1,1
OS
n,l

+ a2,2
OA
n,l

a1,1
OA
n,l

= 0 . (4.10)

Note, that from the second condition it follows that a2,2
OS0,l

= a2,2
OA0,l

= 0, since A2,2
[O2O2]−1,l

= 0.
Eq. (4.10) does not determine the zeroth order OPE coefficients uniquely. We have

to proceed to first order in λ to obtain additional conditions to fix them. We expect the
operators OS

n,l and OA
n,l to receive anomalous dimensions from the interaction term in the

bulk

∆S/A = 2 + 2n+ l +
∞∑
i=0

γ
(i)S/A
n,l (4.11)

with γ(i)S/A
n,l of order λi in the coupling constant. A convenient parametrization is to expand

the squared OPE coefficients and conformal blocks in γ [40, 41]:

A
∆,∆
O
S/A
n,l

= A∆,∆
O
S/A
n,l

+ (γ(1)S/A
n,l + γ

(2)S/A
n,l )A∆,∆(1)

O
S/A
n,l

+ 1
2(γ(1)S/A

n,l )2A
(2)∆,∆
O
S/A
n,l

+ · · · (4.12)

a
1,1
OS
n,l

a
2,2
OS
n,l

= a1,1
O
S/A
n,l

a2,2
O
S/A
n,l

+ (γ(1)S/A
n,l + γ

(2)S/A
n,l )a1,1(1)

O
S/A
n,l

a
2,2(1)
O
S/A
n,l

+ 1
2(γ(1)S/A

n,l )2a
1,1(2)
O
S/A
n,l

a
2,2(2)
O
S/A
n,l

+ · · ·

G
0,0
∆(n,l),l

= G0,0
∆(n,l),l + (γ(1)S/A

n,l + γ
(2)S/A
n,l )

∂G0,0
∆,l

∂∆

∣∣∣∣∣∣
∆(n,l)︸ ︷︷ ︸

G′0,0∆(n,l),l

+1
2(γ(1)S/A

n,l )2 ∂
2G0,0

∆,l
∂∆2

∣∣∣∣∣∣
∆(n,l)︸ ︷︷ ︸

G′′0,0∆(n,l),l

+ · · · ,

(4.13)

where the expansion of a1,1
OS
n,l

a
2,2
OS
n,l

can be obtained by expanding
√
A

2,2
O
S/A
n,l

A
1,1
O
S/A
n,l

, providing

us with an additional consistency check for our calculation.
In the following we will go in detail through the process of extracting the anomalous

dimensions and OPE coefficients up to second order in λ. Since this part is quite technical,
we highlighted the main result, which are the first and second order anomalous dimensions.

First order calculation. The first order contributions in λ to the four-point func-
tions (4.9) are then given by

〈
O∆(x1)O∆(x2)O∆(x3)O∆(x4)

〉∣∣∣
λ1

= 1(
x2

12x
2
34

)∆×

∑
n, l2∈N

(
(γ(1)S
n,l A

∆,∆
OS
n,l

+ γ
(1)A
n,l A∆,∆

OA
n,l

)G′0,0∆(n,l),l
+
(
γ

(1)S
n,l A

∆,∆(1)
OS
n,l

+ γ
(1)A
n,l A

∆,∆(1)
OA
n,l

)
G0,0

∆(n,l),l

)

(4.14a)
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〈
O2(x1)O2(x2)O1(x3)O1(x4)

〉∣∣∣
λ1

= 1
x4

12x
2
34

∑
n, l2∈N

(
(γ(1)S
n,l a

1,1
OS
n,l

a2,2
OS
n,l

+ γ
(1)A
n,l a1,1

OA
n,l

a2,2
OA
n,l

)G′0,0∆(n,l),l

+
(
γ

(1)S
n,l a

2,2(1)
OS
n,l

a
1,1(1)
OS
n,l

+ γ
(1)A
n,l a

2,2(1)
OA
n,l

a
1,1(1)
OA
n,l

)
G0,0

∆(n,l),l

)
. (4.14b)

We compare this expansion to the bulk calculation. Keeping in mind that the derivative
of a conformal block produces a term ∝ log v we notice that the logarithmic terms in the
four-point functions give us three additional conditions on the free OPE coefficients a1,1

O
S/A
n,l

and a2,2
O
S/A
n,l

, while also introducing two new unknown quantities in the first order anomalous

dimensions γ(1)S
n,l and γ(1)A

n,l . Comparing to the bulk results, the additional conditions for
l = 0 are

γ
(1)S
n,l A

1,1
OS
n,l

+ γ
(1)A
n,l A1,1

OA
n,l

= λ

16π2A
1,1
[O1O1]n,l ,

γ
(1)S
n,l A

2,2
OS
n,l

+ γ
(1)A
n,l A2,2

OA
n,l

= λ

16π2A
2,2
[O2O2]n−1,l

(4.15)

γ
(1)S
n,l a

2,2
OS
n,l

a1,1
OS
n,l

+ γ
(1)A
n,l a2,2

OA
n,l

a1,1
OA
n,l

= λ

16π2a
1,1
[O1O1]n,la

2,2
[O2O2]n−1,l

.

For n > 0, equations (4.10) and (4.15) require either γ(1)S
n,l or γ(1)A

n,l to vanish. This choice
is a matter of convention as OS and OA have not been defined separately so far. We
choose γ(1)A

n>0,l = 0. Then the solution for the zeroth order OPE coefficients and first order
anomalous dimensions is

A1,1
OS
n,l

= A1,1
OA
n,l

= A1,1
[O1O1]n,l ; A2,2

OS
n,l

= A2,2
OA
n,l

= A2,2
[O2O2]n−1,l

, (4.16)

a1,1
OS
n,l

a2,2
OS
n,l

= −a1,1
OA
n,l

a2,2
OA
n,l

=
√
A1,1

[O1O1]n,lA
2,2
[O2O2]n−1,l

, (4.17)

γ
(1)S
n,l = γδ0,l; γ

(1)A
n,l = 0 with γ := λ

16π2 . (4.18)

From the pieces without logarithmic terms we can access information about the first order
OPE coefficients. Since we chose γ(1)A

n,l = 0 this determines only the OPE coefficients
for OS

n,l:

A
1,1(1)
OSn,0

= 1
2
∂

∂n
A1,1

OSn,0
; A

2,2(1)
OSn,0

= 1
2
∂

∂n
A2,2

OSn,0
for n ≥ 1 . (4.19)

Note that the first order OPE coefficients of the four-point function with mixed external
dimensions are determined by the four-point functions with equal dimensions as

a
2,2(1)
O
S/A
n,0

a
1,1(1)
O
S/A
n,0

=
A

2,2(1)
O
S/A
n,0

A1,1
O
S/A
n,0

+A2,2
O
S/A
n,0

A
1,1(1)
O
S/A
n,0

2
√
A1,1

O
S/A
n,0

A2,2
O
S/A
n,0

, for n ≥ 1 , (4.20)

therefore providing an additional consistency check for the calculation, which our result
passes.
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For n = 0 the situation is a bit more complicated. Since a2,2
O
S/A
0,l

= 0 we do not
have the additional condition on the difference of the anomalous dimensions coming from
equation (4.14b). We therefore find from equation (4.14a) that

γ
(1)S
0,0 A1,1

OS0,0
+ γ

(1)A
0,0 A1,1

OA0,0
= 2γA1,1

[O1O1]0,0 , (4.21)

and since the expansion of equation (4.14a) with ∆ = 2 starts with O(v2) we need to have

γ
(1)S
0,0 A

2,2(1)
OS0,0

+ γ
(1)A
0,0 A

2,2(1)
OA0,0

= 0. (4.22)

The expansion of the bulk result for equation (4.14b) starts already at order O(v) but since
it does not contain any log(v) terms at that order we get the additional condition

γ
(1)S
0,0 a

2,2(1)
OS0,0

a
1,1(1)
OS0,0

+ γ
(1)A
0,0 a

2,2(1)
OA0,0

a
1,1(1)
OA0,0

= 2γ. (4.23)

Second order calculation. At second order in λ, the contributions from the conformal
block expansion are given by〈

O∆(x1)O∆(x2)O∆(x3)O∆(x4)
〉∣∣∣
λ2

= 1
(x2

12x
2
34)∆

∑
n, l

2 ∈N

(
1
2

(
(γ(1)S
n,l )2+(γ(1)A

n,l )2
)
A∆,∆

OS
n,l

G′′0,0
∆(n,l),l

+
(

(γ(1)S
n,l )2A

∆,∆(1)
OS

n,l

+(γ(1)A
n,l )2A

∆,∆(1)
OA

n,l

)
G′0,0

∆(n,l),l
+ 1

2

(
(γ(1)S
n,l )2A

∆,∆(2)
OS

n,l

+(γ(1)A
n,l )2A

∆,∆(2)
OA

n,l

)
G0,0

∆(n,l),l

+ (γ(2)S
n,l +γ(2)A

n,l )A∆,∆
OS

n,l

G′0,0
∆(n,l),l

+
(
γ

(2)S
n,l A

∆,∆(1)
OS

n,l

+γ(2)A
n,l A

∆,∆(1)
OA

n,l

)
G0,0

∆(n,l),l

)
(4.24a)

and〈
O2(x1)O2(x2)O1(x3)O1(x4)

〉∣∣∣
λ2

= 1
x4

12x
2
34

∑
n, l

2 ∈N

(
1
2

(
(γ(1)S
n,l )2−(γ(1)A

n,l )2
)
a1,1
OS

n,l

a2,2
OS

n,l

G′′0,0
∆(n,l),l

+
(

(γ(1)S
n,l )2a

1,1(1)
OS

n,l

a
2,2(1)
OS

n,l

+(γ(1)A
n,l )2a

1,1(1)
OA

n,l

a
2,2(1)
OA

n,l

)
G′0,0

∆(n,l),l

+(γ(2)S
n,l −γ

(2)A
n,l )a1,1

OS
n,l

a2,2
OS

n,l

G′0,0
∆(n,l),l

+
(
γ

(2)S
n,l a

1,1(1)
OA

n,l

a
2,2(1)
OS

n,l

+γ(2)A
n,l a

1,1(1)
OA

n,l

a
2,2(1)
OA

n,l

)
G0,0

∆(n,l),l

+ 1
2

(
(γ(1)S
n,l )2a

1,1(2)
OS

n,l

a
2,2(2)
OS

n,l

+(γ(1)A
n,l )2a

1,1(2)
OA

n,l

a
2,2(2)
OA

n,l

)
G0,0

∆(n,l),l

)
, (4.24b)

where all single trace primaries have the same weight in the first equation. Again we
compare this to the results from the bulk calculation. The terms proportional to log(v)2

provide us with a consistency check between the first and second order calculation. We find(
γ

(1)S
0,0

)2
A1,1

OS0,0
+
(
γ

(1)A
0,0

)2
A1,1

OA0,0(
γ

(1)S
0,0 A1,1

OS0,0
+ γ

(1)A
0,0 A1,1

OA0,0

)2 = 1
2A1,1

[O1O1]0,0

; (4.25)

(
γ

(1)S
n>0,0

)2
+
(
γ

(1)A
n>0,0

)2

(
γ

(1)S
n>0,0 + γ

(1)A
n>0,0

)2 =

(
γ

(1)S
n>0,0

)2
−
(
γ

(1)A
n>0,0

)2

(
γ

(1)S
n>0,0 − γ

(1)A
n>0,0

)2 = 1 (4.26)
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from which it follows that γ(1)A
n>0,0 = 0 in consistency with the first order calculation, while

for n = 0 we find that

γ
(1)S
0,0 = γ

(1)A
0,0 = γ; A1,1

OS0,0
+A1,1

OA0,0
= 2A1,1

[O1O1]0,0 . (4.27)

From condition (4.22) it follows then, that

A
2,2(1)
OS0,0

+A
2,2(1)
OA0,0

= 0, (4.28)

and from equation (4.23) we get

a
2,2(1)
OS0,0

a
1,1(1)
OS0,0

+ a
2,2(1)
OA0,0

a
1,1(1)
OA0,0

= 2. (4.29)

The expansion of equation (4.24b) starts at order O(v), where the terms at that or-
der contain log(v) terms and terms purely polynomial in v, Y . The logarithmic terms can
be absorbed by imposing equation (4.23) providing an additional consistency check be-
tween the first and second order calculation. The polynomial parts give γ(2)S

0,0 a
2,2(1)
OS0,0

a
1,1(1)
OS0,0

+

γ
(2)A
0,0 a

2,2(1)
OA0,0

a
1,1(1)
OA0,0

, which can only be solved, if we go to the next order in λ.

The expansion of
〈
O2(x1)O2(x2)O2(x3)O2(x4)

〉∣∣∣
λ2

starts at O(v), where the terms at
this order are purely polynomial in v and Y . These terms can be absorbed by choosing

A
2,2(2)
OS0,0

+A
2,2(2)
OA0,0

= 1. (4.30)

The coefficients of the log(v) terms give us access to the sum and difference between the
second order anomalous dimensions. We obtain the following results

γ
(2)S
n>0,l>0 + γ

(2)A
n>0,l>0 = − γ2

l(l + 1) −
γ2

2n+ l
+ γ2

2n+ l + 1 ,

γ
(2)S
n>0,l>0 − γ

(2)A
n>0,l>0 = − γ2

l(l + 1) + γ2

2n+ l
− γ2

2n+ l + 1 , (4.31)

If l = 0 we find the following

γ
(2)S
n>0,0 + γ

(2)A
n>0,0 = 3H(1)

2n γ
2 − γ2

2n(2n+ 1) − γ
2,

γ
(2)S
n>0,0 − γ

(2)A
n>0,0 = 3H(1)

2n γ
2 + γ2

2n(2n+ 1) − 7γ2, (4.32)

with H(1)
n = ∑n

m=1 1/m the harmonic number, which implies that

γ
(2)S
n>0,l>0 = − γ2

l(l + 1); γ
(2)A
n>0,l>0 = − γ2

(2n+ l)(2n+ l + 1) ,

γ
(2)S
n>0,0 = 3γ2

2n∑
m=1

1
m
− 4γ2; γ

(2)A
n>0,0 = − γ2

2n(2n+ 1) + 3γ2. (4.33)
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Remarkably the anomalous dimensions for OS
n>0,l>0 seem to be completely degenerate for

all values of n and the dimension for OA
n,l>0 can be brought into the general form

∆A
n,l>0 = ∆̄A

n,l −
γ2

(∆̄A
n,l − 2)(∆̄A

n,l − 1)
+ O(γ3) (4.34)

where ∆̄A
n,l = ∆A

n,l|λ=0 = 2 + 2n + l. For the n = 0 trajectory we can again only make a
statement about the sum

γ
(2)S
0,0 + γ

(2)A
0,0 = −2γ2; γ

(2)S
0,l>0 + γ

(2)A
0,l>0 = − γ2

l(l + 1) . (4.35)

4.2 Correlation functions with non-degenerate conformal block expansion

The four-point functions
〈
O2(x1)O1(x2)O2(x3)O1(x4)

〉
and

〈
O2(x1)O1(x2)O1(x3)O2(x4)

〉
provide us with the OPE of

O1 ×O2 ∼
∑
n,l∈N

a1,2
[O1O2]n,l [O1O2]n,l. (4.36)

Since the two-point function between these operators vanishes, the OPE will be regular.
The double trace operators appearing in the free four-point function are the double trace
operators [O1O2]n,l with scaling dimension ∆n,l = 3+2n+l. Since they have odd dimensions
for even spin and even dimensions for odd spin, they can be distinguished from the operators
OS
n,l and OA

n,l in the OPE and the conformal block expansion will be non-degenerate.
The free four-point functions are given by

〈
O2(x1)O1(x2)O2(x3)O1(x4)

〉∣∣∣
λ0

= 1
(x2

12x
2
34) 3

2

(
x2

24
x2

13

) 1
2 ( v

1− Y

) 3
2
, (4.37a)

〈
O2(x1)O1(x2)O1(x3)O2(x4)

〉∣∣∣
λ0

= 1
(x2

12x
2
34) 3

2

(
x2

24x
2
13

) 1
2

x2
14

v
3
2

√
1− Y

. (4.37b)

Expanding in terms of conformal blocks gives

〈
O2(x1)O1(x2)O2(x3)O1(x4)

〉∣∣∣
λ0

= 1
(x2

12x
2
34) 3

2

(
x2

24
x2

13

) 1
2 ∑
n,l∈N

A2,1
[O2O1]n,lG

1
2 ,

1
2

∆n,l
, (4.38a)

〈
O2(x1)O1(x2)O1(x3)O2(x4)

〉∣∣∣
λ0

= 1
(x2

12x
2
34) 3

2

(
x2

24x
2
13

) 1
2

x2
14

∑
n,l∈N

A2,1
[O2O1]n,lG

1
2 ,−

1
2

∆n,l
, (4.38b)

where the squared OPE coefficients are given in the appendix D. A major difference with
respect to the OPE of the correlation functions in the previous section is the fact that now
also operators with odd spin l contribute.

At first order in the bulk coupling λ we can determine the first order anomalous
dimensions and OPE coefficients through

〈
O2(x1)O1(x2)O2(x3)O1(x4)

〉∣∣∣
λ1

= 1
(x2

12x
2
34) 3

2

(
x2

24
x2

13

) 1
2

×

∑
n,l∈N

γ
(1)
n,l

(
A2,1

[O2O1]n,lG
′
1
2 ,

1
2

∆n,l
+A

2,1(1)
[O2O1]n,lG

1
2 ,

1
2

∆n,l

)
, (4.39a)
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〈
O2(x1)O1(x2)O2(x3)O1(x4)

〉∣∣∣
λ1

= 1
(x2

12x
2
34) 3

2

(
x2

24x
2
13

) 1
2

x2
14

×

∑
n,l∈N

γ
(1)
n,l

(
A2,1

[O2O1]n,lG
′
1
2 ,−

1
2

∆n,l
+A

2,1(1)
[O2O1]n,lG

1
2 ,−

1
2

∆n,l

)
. (4.39b)

Comparing with the bulk calculation gives the result

γ
(1)
n,l = γδ0,l; A

2,1(1)
[O2O1]n,0 = 1

2
∂

∂n
A2,1

[O2O1]n,0 . (4.40)

The result is the same for both of the above four-point functions showing the consistency
of the calculation.

At second order in λ we get the following conformal block expansion

〈
O2(x1)O1(x2)O2(x3)O1(x4)

〉∣∣∣
λ2

= 1
(x2

12x
2
34) 3

2

(
x2

24
x2

13

) 1
2

×

∑
n,l∈N

[
γ

(2)
n,l

(
A2,1

[O2O1]n,lG
′
1
2 ,

1
2

∆n,l
+A

2,1(1)
[O2O1]n,lG

1
2 ,

1
2

∆n,l

)

+1
2

(
γ

(1)
n,l

)2 (
A2,1

[O2O1]n,lG
′′

1
2 ,

1
2

∆n,l
+ 2A2,1(1)

[O2O1]n,lG
′
1
2 ,

1
2

∆n,l
+A

2,1(2)
[O2O1]n,lG

1
2 ,

1
2

∆n,l

)]
, (4.41a)

〈
O2(x1)O1(x2)O1(x3)O2(x4)

〉∣∣∣
λ2

= 1
(x2

12x
2
34) 3

2

(
x2

24x
2
13

) 1
2

x2
14

×

∑
n,l∈N

[
γ

(2)
n,l

(
A2,1

[O2O1]n,lG
′
1
2 ,−

1
2

∆n,l
+A

2,1(1)
[O2O1]n,lG

1
2 ,−

1
2

∆n,l

)

+1
2

(
γ

(1)
n,l

)2 (
A2,1

[O2O1]n,lG
′′

1
2 ,−

1
2

∆n,l
+ 2A2,1(1)

[O2O1]n,lG
′
1
2 ,−

1
2

∆n,l
+A

2,1(2)
[O2O1]n,lG

1
2 ,−

1
2

∆n,l

)]
. (4.41b)

Again the coefficient of the log(v)2 term provides us with a consistency check between the
first and second order calculation which our results pass. From either (4.41a) or (4.41b)
we can determine the second order anomalous dimensions. As it should be they lead to
identical results given by the following formulas:

γ
(2)
n,0 = 3γ2

2n+1∑
m=1

1
m
− 7γ2,

γ
(2)
n,l>0 =

−
γ2

l(1+l) for l mod 2 = 0
− γ2

(l+2n+2)(l+2n+1) for l mod 2 = 1.
(4.42)

Comparing to the results from the previous section we notice a striking similarity. The
anomalous dimensions of [O1O2]n,2l>0 and OS

n,2l>0 are the same while for [O1O2]n,2l+1 we
find a form similar to OA

n,2l

∆n,2l+1 = ∆̄n,2l+1 −
γ2

(∆̄n,2l+1 − 2)(∆̄n,2l+1 − 1)
+ O(γ3), l ≥ 0 (4.43)
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with ∆̄n,l = ∆n,l|λ=0 = 3 + 2n + l. Note that ∆A
n,l>0 in (4.34) only has contributions for

even spin, while (4.43) applies to odd spins.

4.3 The whole picture

Let us summarize the results of this rather technical section: we confirmed the proposal
in [1, 26–28], that cosmological four-point functions can be described by a CFT dual to an
effective field theory in Euclidean AdS, by describing explicitly the CFT dual to conformally
coupled scalar φ4 theory at loop level. The CFT consists of two scalar single-trace operators
O1 and O2 with scaling dimension ∆ ∈ {1, 2} and an infinite tower of three types of double-
trace operators OS

n,l, OA
n,l with dimension ∆̄S/A

n,l = 2 + 2n+ l and [O1O2]n,l with dimension
∆̄n,l = 3 + 2n+ l. For OS

n,l and OA
n,l the spin l can only take even integer values, while for

[O1O2]n,l it can take all integer values.
The operator OS

n,l receives anomalous dimensions encoded in the four-point functions〈
O∆(x1)O∆(x2)O∆(x3)O∆(x4)

〉
and

〈
O2(x1)O2(x2)O1(x3)O1(x4)

〉
and so does OA

n,l. Sim-
ilarly, the operator [O1O2]n,l receives anomalous dimensions from the four-point function〈
O2(x1)O1(x2)O2(x3)O1(x4)

〉
or, equivalently,

〈
O2(x1)O1(x2)O1(x3)O2(x4)

〉
. However, the

spectrum contains operators with all integer spins instead of only even spins, which was
the case for OS

n,l and OA
n,l. Interestingly, there is a simple relation between the anomalous

dimensions of OS
n,l, OA

n,l and [O1O2]n,l given by

γ
(2)
n,2l>0 = γ

(2)S
n,2l>0, γ

(2)
n,2l+1>0 = γ

(2)A
n,2l+2 l > 0. (4.44)

This relation seems to suggest a symmetry between the operators OA
n,l,O

S
n,l and [O1O2]n,l,

which could have several origins. One possible explanation is the special choice for the
scaling dimension of the single-trace operators, ∆± ∈ {1, 2}. It is easily checked that for
different values of ∆± the relative coefficients between the vertices in (2.45) change and
even new vertices of the form φ+3

φ− are generated. The cancellation of the elliptic sector,
discussed in section 3.2, does not occur anymore, and we expect the integrals to have a very
different structure. As we do not have a simple form for the propagator for general values
of ∆ the technical implementation of the explicit loop calculation, necessary to check this
claim, is much more involved, and we leave it for future studies. For conformal coupling
in odd d the propagator simplifies to a rational function of K and the auxiliary EAdS
action (3.3) is always the same. We therefore expect the general structure of the results,
including the apparent symmetry to hold for those cases as well.

On the other hand, for generic scaling dimension of the single trace operators, the
action (2.46) still displays a symmetry due to the fact that all vertices have the same
coupling constant λ, which look fine-tuned in the general class of φ4 theories in EAdS.
Possibly, the apparent symmetry in the anomalous dimensions of the double trace operators
is related to this.

Comparing with previous work [10, 30] we can draw the following picture. Starting
from the theory in the bulk we can calculate either the Bunch-Davies wave function [10]
or the cosmological correlation functions as we did here. The Bunch-Davis wavefunction
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is defined as

Ψ[φ0(x)] = lim
η′→−∞(1+iε)

∫
φ(0,x)=φ0(x)
φ(η′,x)=0

DφeiS[φ] or

Ψ̃[π0(x)] =
∫

Dφ0ei
∫

d3xφ0(x)π0(x)Ψ[φ0] , (4.45)

where φ0 and π0(x) denote the value of the bulk field and its canonically conjugate momen-
tum at the boundary respectively. From a dS point of view Ψ[π0] corresponds to choosing
Neumann instead of Dirichlet boundary conditions at future infinity.

Performing a semiclassical expansion of (4.45) one finds that the Bunch-Davis wave
function has an interpretation as a generating functional for a CFT at future infinity. A
conformally coupled scalar field in dS, without self-interactions, will give rise to a direct
product of CFTs of two generalized free fields, where Ψ[φ0(x)] corresponds to the external
dimension ∆ = 2 while Ψ[π0(x)] to ∆ = 1. Introducing interactions in the bulk theory
deforms the theory on the boundary. However, no non-trivial OPEs between O1 and O2 are
introduced. Thus, the deformations will only affect the ∆ = 1 and ∆ = 2 sector separately
and the theory keeps its product structure. In [10] it was shown that the deformed CFT
obtained in this way is identical to that obtained from a bulk theory in EAdS considered
in [30, 36, 42].

The cosmological correlator CFT introduces non-trivial OPE’s between O1 and O2.
Thus, the deformed CFT looses its product structure. Additionally, a new tower of double
trace operators [O1O2]n,l receives anomalous dimensions due to the new mixing vertex
introduced by the Schwinger-Keldysh formalism. Curiously we noticed, that the anomalous
dimensions generated for these new operators are the same as the ones already found for
OS
n,l and OA

n,l.
There is, however, a relation between the CFT of the Bunch-Davies wave function and

that of cosmological correlators. This can be seen by expressing a cosmological correlation
function as

〈
φ0(x1)φ0(x2)φ0(x3)φ0(x4)

〉
=
∫

Dφ0Ψ∗[φ0]Ψ[φ0]φ0(x1)φ0(x2)φ0(x3)φ0(x4) (4.46)

or, equivalently,〈
φ0(x1)φ0(x2)φ0(x3)φ0(x4)

〉
=∫

Dφ0Dπ0ei
∫

d3xφ0(x)π0(x)Ψ̃[π0]Ψ[φ0]φ0(x1)φ0(x2)φ0(x3)φ0(x4) ,
(4.47)

where in the second step we used the inverse Fourier transformation of (4.45) as is ex-
plained in [1]. Analogous expressions exist for π0(x). The CFT of cosmological correlators
can therefore be understood as a functional integral over the wavefunction CFTs with all
possible boundary conditions, where the mixing between the two kinds boundary condi-
tions contained in the Fourier exponential. This is analogous to the mixing vertex that
was introduced in section 2.1 resulting from the Schwinger-Keldysh contour.
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Finally, let us note, that the expression (4.46) is merely of conceptual value since it
requires the exact knowledge of the wavefunctionals to perform the integral. From (4.46)
it is not even clear that the result of the functional integration should preserve conformal
symmetry. Computationally, the way to go is through the Schwinger-Keldysh formalism
and the auxiliary EAdS action, introduced in [1] and reviewed in section 2.2. The two
different ways to deform the generalized free field is schematically depicted in figure 1.

5 Outlook

The goal of this work was to extend the technique of mapping EAdS Witten diagrams
to flat space Feynman integrals, developed in [30], to calculate cosmological correlation
functions in a de Sitter background. We achieved this goal for a conformally coupled, field
with quartic self-interaction, by applying the Schwinger-Keldysh formalism in the form
of [1], where it was shown that the calculation can be mapped to an equivalent problem
for an auxiliary EAdS action.

We succeeded to extract anomalous dimensions of “double trace” operators appearing
in the conformal block expansion of the four point functions up to one-loop order. As
suspected, we find that the cosmological correlator CFT differs from the Bunch-Davies
wave function CFT. Furthermore, there is no straightforward way to obtain the conformal
data of the latter from the former.

Interestingly, we find an apparent symmetry between different operators in the OPE’s.
We expect this to be explained by either the special choice of the field masses, the con-
straints coming from the Schwinger-Keldysh contour, or a combination of both. To further
investigate this phenomenon, one would have to consider different masses of the fields
which, however, is very nontrivial due to the complicated structure of the propagator in
those cases.

Another way to proceed would be to test if this symmetry still holds for higher-loop
contributions. The cancellations in the loop integrals discussed in section 3.2, points to
some simplifications regarding the corresponding calculation in EAdS. Especially, the dia-
grams given by multiple bubbles attached after one another, which are expressible in terms
of single-valued multiple polylogarithms at any loop order.

One can also try to make contact with the cosmological bootstrap program by express-
ing our results for the two- and four-point function in momentum space (with respect to
the three-dimensional space-like hypersurface). This can be of use since, to our knowledge,
loop corrections have not been available in that formalism so far. It would be interesting
to analyze the connection with the position space results of this work.

Another interesting avenue is to make contact with inflationary cosmology which de-
viates form the de Sitter geometry but, for the two-point function in momentum space the
violation of scale-invariance manifests itself only in the spectral index. Perhaps, there is a
similarly tractable pattern for three- and four-point functions along the lines of [24].
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A Cross diagrams

The leading term is given by the ∆ = 1 result from EAdS, which in dimensional regulari-
sation in D = 4− 4ε have been evaluated in appendix B of [30] and is given by

W
1111,4−4ε
0 (ζ, ζ̄) = π2

x2
12x

2
34

(
ζζ̄

2iD(ζ, ζ̄)
ζ − ζ̄

+ εW1111,4
0,ε (ζ, ζ̄) + O(ε2)

)
. (A.1)

with

W
1111,4
0,ε (ζ, ζ̄) = ζζ̄π2

x2
12x

2
34

(
f1(ζ, ζ̄)
ζ − ζ̄

− 2iD(ζ, ζ̄)
ζ − ζ̄

log(ζζ̄) + 2iD(ζ, ζ̄)
ζ − ζ̄

log((1− ζ)(1− ζ̄))
)
,

(A.2)
where D(ζ, ζ̄) is the Bloch-Wigner diloagarithm in (C.4) and f1(ζ, ζ̄) is given in (C.5). The
sub-leading terms are given by either acting with H12,H13 or H14 on the cross term for
∆ = 1, before expanding in D = 4−4ε. We obtain the following parametric representations

W
2211,4−4ε
0 = π2−2ε(ζζ̄)2Γ(2− 2ε)

4Γ(1− 4ε)x4
12x

2
34

×
∫

(RP+)2

dα1dα2dα3α1α
−4ε
2 α3

(α1 + α2 + α3)
(
α2α3(1− ζ)(1− ζ̄) + α1(α2 + α3ζζ̄)

)2−2ε . (A.3)

We obtain for the O(1) terms

2x4
12x

2
34

π2(ζζ̄)2W
2211,4
0 = (ζ + ζ̄ − 2)2iD(ζ, ζ̄)

(ζ − ζ̄)3 − ζ + ζ̄ − 2ζζ̄
2ζζ̄(ζ − ζ̄)2 log((1− ζ)(1− ζ̄))− log(ζζ̄)

(ζ − ζ̄)2 .

(A.4)
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The sub-sub-leading term is given by the ∆ = 2 result from EAdS, which in dimensional
regularisation in D = 4− 4ε is given by

W
2222,4
0 (ζ, ζ̄) = 3π2

4x4
12x

4
34

×

(ζζ̄)2
(4ζ2ζ̄2−(ζ+ζ̄)3+2ζζ̄(ζ+ζ̄)2+2(ζ+ζ̄)2−8ζζ̄(ζ+ζ̄)+4ζζ̄

(ζ−ζ̄)4
2iD(ζ, ζ̄)
ζ−ζ̄

+ (ζ+ζ̄)2−3ζζ̄(ζ+ζ̄)+2ζζ̄
(ζ−ζ̄)4 log(ζζ̄)

+ 3ζζ̄(ζ+ζ̄)−2(ζ+ζ̄)2+3(ζ+ζ̄)−4ζζ̄
(ζ−ζ̄)4 log((1−ζ)(1−ζ̄))+ 1

(ζ−ζ̄)2

)
+εW2222,4

0,ε +O(ε2)

 .
(A.5)

with the coefficient of the order ε term

W
2222,4
0,ε =

3(ζζ̄)2
(
−
(
ζ+ζ̄

)3
+2
(
ζ+ζ̄

)2
ζζ̄+2

(
ζ+ζ̄

)2
−8ζζ̄

(
ζ+ζ̄

)
+4ζ2ζ̄2+4ζζ̄

)
2(ζ−ζ̄)5

f2

−
4i(ζζ̄)2

(
−3
(
ζ+ζ̄

)3
+5
(
ζ+ζ̄

)2
ζζ̄+5

(
ζ+ζ̄

)2
−12ζζ̄

(
ζ+ζ̄

)
+4ζ2ζ̄2+4ζζ̄

)
D(ζ, ζ̄)

(ζ−ζ̄)5

+
3(ζζ̄)2

(
−2
(
ζ+ζ̄

)2
+3ζζ̄

(
ζ+ζ̄

)
+3ζ+3ζ̄−4ζζ̄

)
2(ζ−ζ̄)4

(
Li1 (ζ)Li1

(
ζ̄
)

+Li1,1 (1, ζ)+Li1,1
(

1, ζ̄
))

−
3ζζ̄

(
−
(
ζ+ζ̄

)2
ζζ̄+3

(
ζ+ζ̄

)
ζ2ζ̄2−2ζ2ζ̄2

)
2(ζ−ζ̄)4

log(ζζ̄) log((1−ζ)(1−ζ̄))

−
ζζ̄

((
ζ+ζ̄

)3
ζζ̄+

(
ζ+ζ̄

)3
−18

(
ζ+ζ̄

)2
ζζ̄+8

(
ζ+ζ̄

)
ζ2ζ̄2+8ζζ̄

(
ζ+ζ̄

)
+24ζ2ζ̄2

)
4(ζ−ζ̄)4

log((1−ζ)(1−ζ̄))

+
3(ζζ̄)2

(
−
(
ζ+ζ̄

)2
+3ζζ̄

(
ζ+ζ̄

)
−2ζζ̄

)
4(ζ−ζ̄)4

log2(ζζ̄)+

+

(ζζ̄)2
(
−
(
ζ+ζ̄

)4
+
(
ζ+ζ̄

)3
ζζ̄+10

(
ζ+ζ̄

)3
−18

(
ζ+ζ̄

)2
ζζ̄+8

(
ζ+ζ̄

)
ζ2ζ̄2−8

(
ζ+ζ̄

)2

−4ζζ̄
(
ζ+ζ̄

)
+16ζ2ζ̄2+8ζζ̄

)
log(ζζ̄)

4(ζ−ζ̄)4(1−ζ)(1−ζ̄)
(A.6)
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B One-loop diagrams

B.1 Leading term ∆1 = ∆2 = ∆3 = ∆4 = 1

The leading term is given by the correlation function of the ∆ = 1 scalar field in EAdS,
with only the divergent part contributing.

W
∆,4−2ε,s
1,div = (ζζ̄)∆

(x2
12x

2
34)∆

∫
R2D

d4−2εX1d4−2εX2(u ·X1)2∆−2(u ·X2)2∆−2

‖X1‖2∆
∥∥∥X1 − uζ

∥∥∥2∆
‖X2 − u1‖2∆−4ε‖X1 − u1‖−4ε‖X1 −X2‖4

,

W
∆,4−2ε,t
1,div = (ζζ̄)∆

(x2
12x

2
34)∆

∫
R2D

d4−2εX1d4−2εX2(u ·X1)2∆−2(u ·X2)2∆−2

‖X1‖2∆
∥∥∥X2 − uζ

∥∥∥2∆
‖X2 − u1‖2∆−4ε‖X1 − u1‖−4ε‖X1 −X2‖4

W
∆,4−2ε,u
1,div = (ζζ̄)∆

(x2
12x

2
34)∆

∫
R2D

d4−2εX1d4−2εX2(u ·X1)2∆−2(u ·X2)2∆−2

‖X1‖2∆
∥∥∥X2 − uζ

∥∥∥2∆
‖X1 − u1‖2∆−4ε‖X2 − u1‖−4ε‖X1 −X2‖4

(B.1)

The parametric representation is given by

• For the s-channel

W
1,4−2ε,s
1,div = 2π4−2εζζ̄

Γ(−2ε)x2
12x

2
34

∫
(RP+)4

5∏
i=1

dαi
α−1−2ε

3 α−2ε
1 α5(U s)−1−ε

(F s)1−2ε (B.2)

with

U s := (α2 + α3 + α4)α5 + (α2 + α3 + α4 + α5)α1

F s := α4(α3α5 + α1(α3 + α5))(1− ζ)(1− ζ̄) + α2α4(α1 + α5)ζζ̄
+ α2(α3α5 + α1(α3 + α5)) (B.3)

• For the t-channel

W
1,4−2ε,t
1,div = 2π4−2εζζ̄

Γ(−2ε)x2
12x

2
34

∫
(RP+)4

5∏
i=1

dαi
α−1−2ε

2 α−2ε
3 α5(U t)−1−ε

(F t)1−2ε (B.4)

with

U t := (α1 + α2)(α3 + α4) + (α1 + α2 + α3 + α4)α5

F t := α4((α1 + α2)α3 + (α2 + α3)α5)(1− ζ)(1− ζ̄) + α1α2(α3 + α4 + α5)
+ α1α5(α3 + α4ζζ̄) (B.5)

• For the u-channel

W
1,4−2ε,u
1,div = 2π4−2εζζ̄

Γ(−2ε)x2
12x

2
34

∫
(RP+)4

5∏
i=1

dαi
α−1−2ε

1 α−2ε
4 α5(Uu)−1−ε

(F )1−2ε (B.6)
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with

Uu := (α1 + α2)(α3 + α4) + (α1 + α2 + α3 + α4)α5

F u := α3α4α5 + α1α3(α4 + α5) + α2(α4α5 + α1(α3 + α4 + α5))(1− ζ)(1− ζ̄)
+ α2α3(α4 + α5ζζ̄). (B.7)

The result is given by

W
1,4−2ε,i
1,div = −π

2

ε
W

1,4−4ε
0 + W

1111,i
1,finite withi = s, t, u , (B.8)

where W
1111,i
1,finite for each channel is given by

W
1111,i
1,finite = π4v

2x2
12x

2
34
L1,i

0 (B.9)

where the integrals L1,i
0 for i ∈ {s, t, u} are known from EAdS calculations and

obtained in appendix C.1.3 of [30], with the result

L1,s
0 (ζ, ζ̄) = f1(ζ, ζ̄)− 2i log(ζζ̄)D(ζ, ζ̄)

ζ − ζ̄
(B.10)

L1,t
0 (ζ, ζ̄) = f1(ζ, ζ̄)− 2i log((1− ζ)(1− ζ̄))D(ζ, ζ̄)

ζ − ζ̄
(B.11)

L1,u
0 (ζ, ζ̄) = f1(ζ, ζ̄)

ζ − ζ̄
. (B.12)

B.2 Sub-leading term ∆1 = ∆2 = 2 ∆3 = ∆4 = 1

The subleading terms are given by either acting with H12,H13 or H14 on the divergent
part of the ∆ = 1 result. In the parametric representation we obtain

• For the s-channel

W
2211,4−2ε,s
1 = π4−2ε(ζζ̄)2(1− 2ε)

4Γ(−2ε)x4
12x

2
34

∫
(RP+)4

4∏
i=1

dαi
α2α4α5(α1 + α5)α−2ε

1 α−2ε−1
3 (U s)−ε−1

(F s)−2(ε−1)

(B.13)
with U s and F s given in (B.3).

• For the t-channel

W
2211,4−2ε,t
1 = π4−2ε(ζζ̄)2

4Γ(−2ε))x4
12x

2
34

∫
(RP+)4

4∏
i=1

dαi
α1α

−1−2ε
2 α4α

2
5(U t)−1−ε(1− 2ε)

(F t)−2(ε−1)

(B.14)
with U t and F t given in (B.5).
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• For the u-channel

W
2211,4−2ε,u
1 = π4−2ε(ζζ̄)2

4Γ(−2ε))x4
12x

2
34

∫
(RP+)4

4∏
i=1

dαi
α−1−2ε

1 α2α3α
−2ε
4 α2

5(U)−1−ε(1− 2ε)
(F u)−2(ε−1)

(B.15)
with Uu and F u given in (B.7).

Integrating over the Feynman parameters and expanding in ε we find the following
structure for each diagram

W
2211,4−2ε,i
1 = −π

2

ε
W

2211,4−4ε
0 + W

2211,i
1,finite + O(ε2) with i = s, t, u (B.16)

where the finite part W1,finite for each diagram is given by

4x4
12x

2
34

π4(ζζ̄)2W
2211,s
1,finite = ζ + ζ̄ − 2

(ζ − ζ̄)3 f1 −
(ζ + ζ̄ − 2) log(ζζ̄)

(ζ − ζ̄)3 2iD(ζ, ζ̄) + 4iD(ζ, ζ̄)
ζζ̄(ζ − ζ̄)

− log(ζζ̄)(log((1− ζ)(1− ζ̄))− log(ζζ̄) + 4)
(ζ − ζ̄)2

− 2(ζ + ζ̄ − 2ζζ̄) log((1− ζ)(1− ζ̄))
ζζ̄(ζ − ζ̄)2

(B.17a)

4x4
12x

2
34

π4(ζζ̄)2W
2211,t
1,finite = ζ + ζ̄ − 2

(ζ − ζ̄)3 (f1 + 2f2) + 2iD(ζ, ζ̄)
ζζ̄(ζ − ζ̄)

− 4 log(ζζ̄)
(ζ − ζ̄)2 + ζ + ζ̄ − 2ζζ̄

ζζ̄(ζ − ζ̄)2 f3

(B.17b)
4x4

12x
2
34

π4(ζζ̄)2W
2211,u
1,finite = ζ + ζ̄ − 2

(ζ − ζ̄)3 f1 + 2iD(ζ, ζ̄)
ζζ̄(ζ − ζ̄)

+ 2(2ζζ̄ − ζ − ζ̄)
ζζ̄(ζ − ζ̄)2 log((1− ζ)(1− ζ̄))

− ζ + ζ̄

ζζ̄(ζ − ζ̄)2 log(ζζ̄) log((1− ζ)(1− ζ̄))− 4 log(ζζ̄)
(ζ − ζ̄)2

(B.17c)

where D(ζ, ζ̄), f1, f2 and f3 are given in appendix C.

B.3 Sub-sub-leading term ∆1 = ∆2 = ∆3 = ∆4 = 2

The sub-sub-leading term is given by the correlation function of the ∆ = 2 scalar field in
EAdS, with only the divergent part contributing. The parametric representation is given

• For the s-channel

W
2222,4−2ε,s
1,div = 4π4−2ε(ζζ̄)2

16Γ(−2ε)x4
12x

4
34

∫
(RP+)4

5∏
i=1

dαi
α−1−2ε

3 α−2ε
1 α5(U s)−1−ε

(F s)3−2ε

× Fs(ζ, ζ̄, ε;α1, α2, α3, α4, α5),

(B.18)

with U s and F s given in (B.5).
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• For the t-channel

W
2222,4−2ε,t
1,div = 4π4−2ε(ζζ̄)2

16Γ(−2ε)x4
12x

4
34

∫
(RP+)4

5∏
i=1

dαi
α−1−2ε

2 α−2ε
3 α5(U t)−1−ε

(F t)3−2ε

× Ft(ζ, ζ̄, ε;α1, α2, α3, α4, α5),

with U t and F t given in (B.5).

• For the u-channel

W
2222,4−2ε,u
1,div = 4π4−2ε(ζζ̄)2

16Γ(−2ε)x4
12x

4
34

∫
(RP+)4

5∏
i=1

dαi
α−1−2ε

1 α−2ε
4 α5(Uu)−1−ε

(F u)3−2ε

× Fu(ζ, ζ̄, ε;α1, α2, α3, α4, α5),

(B.19)

with Uu and F u given in (B.7).

The expansion of the prefactors starts at O(ε) so only integrals that diverge at least
with ε−1 contribute to the final result. When only keeping those terms, the functions Fs, Ft
and Fu are given by:

Fs =C1(α2
1α2α4α

2
5+2α1α2α3α4α

2
5+α2α

2
3α4α

2
5)

+C2(α1α
2
2α4α

2
5+α2

2α3α4α
2
5+α2

1α
2
2α4α5)+C3(α2

1α
2
4α

2
5+2α1α3α

2
4α

2
5+α2

3α
2
4α

2
5)

+C4(α2
1α2α

2
4α5+α1α2α

2
4α

2
5+α2α3α

2
4α

2
5)+C5(2α1α

2
2α

2
4α5+α2

2α
2
4α

2
5+α2

1α
2
2α

2
4)

+α2
1α

2
2α

2
5+2α1α

2
2α3α

2
5+α2

2α
2
3α

2
5

(B.20)

Ft =C1(α2
1α

2
3α4α5+α1α

2
2α4α

2
5+2α1α2α3α4α

2
5+α1α

2
3α4α

2
5)+C2(α2

1α2α4α
2
5+α2

1α3α4α
2
5)

+C3(α2
2α

2
4α

2
5+2α2α3α

2
4α

2
5+α2

3α
2
4α

2
5+α2

1α
2
3α

2
4+2α1α

2
3α

2
4α5)

+C4(α2
1α3α

2
4α5+α1α2α

2
4α

2
5+α1α3α

2
4α

2
5)+C5α

2
1α

2
4α

2
5

+α2
1α

2
2α

2
5+2α2

1α2α3α
2
5+α2

1α
2
3α

2
5

(B.21)
Fu =C1(α2

1α2α3α5+2α1α2α3α4α
2
5+α2

2α3α
2
4α5+α2α3α

2
4α

2
5)

+C2(α1α2α
2
3α

2
5+α2

2α
2
3α4α5+α2α

2
3α4α

2
5)+C3(α2

1α
2
2α

2
5+2α1α

2
2α4α

2
5+α2

2α
2
4α

2
5)

+C4(α1α
2
2α3α

2
5+α2

2α3α4α
2
5)+C5α

2
2α

2
3α

2
5+α2

1α
2
3α

2
5+2α1α

2
3α4α

2
5+α2

2α
2
3α

2
4

+2α2α
2
3α

2
4α5+α2

3α
2
4α

2
5

(B.22)

with the coefficients Ci given by

C1 = (1− 6ε)(ζ + ζ̄ − ζζ̄) + 8ε− 2, (B.23)
C2 = −(1− 6ε)ζζ̄ − 1 + 2ε,
C3 = (4ζζ̄ε2 − 4ε2(ζ + ζ̄) + 8ε2 − 4ε+ 1)(1− ζ)(1− ζ̄),

C4 = 8ζ2ζ̄2ε2 − 8ζζ̄ε2(ζ + ζ̄) + ζζ̄
(
8ε2 + 4ε− 2

)
+ (1− 2ε)(ζ + ζ̄) + 2ε− 1,

C5 = 4ζ2ζ̄2ε2 + ζζ̄
(
4ε2 − 4ε+ 1

)
.
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Integrating over the Feynman parameters we obtain the result for the channels i = s, t, u

W
2222,4−2ε,i
1 = −π

2

ε
W

2222,4−4ε
0 + 3π2W2222,4

0 + 3π4

8x4
12x

4
34
L2,i

0 + 1
2W

2222,i
fin + O(ε2) (B.24)

where L2,i
0 and W

2,4,i
fin are known from EAdS calculations and given in [30]. After a minimal

substraction scheme, i.e. subtracting the term −π2

ε W
2,4−4ε
0 the remaining finite piece is

given by

W
2222,i
1,finite = 3π2W2222,4

0 + 3π4

8x4
12x

4
34
L2,i

0 + 1
2W

2222,i
fin . (B.25)

where W2222,4
0 is given in (A.5), the contributions W2222,i

fin were denoted W
2,4,i
fin and evaluated

in appendix C.1.2 of [30] and L2,i
0 were evaluated in appendix C.1.3 of [30]. We recall the

results here for completeness

W
2222,s
1,fin = π4

8
(ζζ̄)2

(x12x34)4

(
(ζ+ζ̄−2)8iD(ζ, ζ̄)

(ζ−ζ̄)3
+ (4ζ−2)ζ̄−2ζ

ζζ̄(ζ−ζ̄)2
log((1−ζ)(1−ζ̄))− 4log(ζζ̄)

(ζ−ζ̄)2

)

W
2222,t
1,fin = π4

8
(ζζ̄)2

(x12x34)4

(
− (ζ+ζ̄)8iD(ζ, ζ̄)

(ζ−ζ̄)3
+ (4ζ−2)ζ̄−2ζ

(1−ζ)(1−ζ̄)(ζ−ζ̄)2
log(ζζ̄)− 4log((1−ζ)(1−ζ̄))

(ζ−ζ̄)2

)

W
2222,u
1,fin = π4

8
(ζζ̄)2

(x12x34)4

(
− ((4ζ−2)ζ̄−2ζ)4iD(ζ, ζ̄)

(ζ−ζ̄)3
+ 2(ζ+ζ̄)

(ζ−ζ̄)2
log(ζζ̄)

−2(ζ+ζ̄−2) log((1−ζ)(1−ζ̄))
(ζ−ζ̄)2

)
(B.26)

L2,s
0 (ζ, ζ̄)·(ζ−ζ̄)5 =

((
ζ+ζ̄

)2
−3
(
ζ+ζ̄

)
ζ ζ̄+2ζ ζ̄

)
f3(ζ, ζ̄)

+
(
−
(
ζ+ζ̄

)3
+2
(
ζ+ζ̄

)2
ζ ζ̄+2

(
ζ+ζ̄

)2
−8
(
ζ+ζ̄

)
ζ ζ̄+4ζ2ζ̄2+4ζ ζ̄

)
f1(ζ, ζ̄)

−2 i
(

2ζ3ζ̄+8ζ2ζ̄2+2ζ ζ̄3−ζ3−11ζ2ζ̄−11ζ ζ̄2−ζ̄3+2ζ2+8ζ ζ̄+2 ζ̄2
)

ln
(
ζ ζ̄
)
D(ζ, ζ̄)

−4 i
(
ζ3ζ̄+6ζ2ζ̄2+ζ ζ̄3−ζ3−7ζ2ζ̄−7ζ ζ̄2−ζ̄3+2ζ2+4ζ ζ̄+2 ζ̄2

)
D(ζ, ζ̄)

−2
(
ζ−ζ̄

)
ζ ζ̄
(
ζ+ζ̄−2

)
ln
(
ζ ζ̄
)

+
(

2ζ ζ̄−ζ−ζ̄
)(

ζ−ζ̄
)(

ζ+ζ̄−2
)

ln
(

(−1+ζ)
(
−1+ζ̄

))
+2
(
ζ−ζ̄

)3

(B.27)
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L2,t
0 (ζ, ζ̄)·(ζ−ζ̄)5 =

(
(3ζ−2) ζ̄2+

(
3ζ2−8ζ+3

)
ζ̄−2ζ2+3ζ

)
f4(ζ, ζ̄)

+
(

(2ζ−1) ζ̄3+
(

8ζ2−11ζ+2
)
ζ̄2+

(
2ζ3−11ζ2+8ζ

)
ζ̄−ζ3+2ζ2

)
f1(ζ, ζ̄)

+2 i
(

(−2ζ+1) ζ̄3−
(

8ζ2−11ζ+2
)
ζ̄2−

(
2ζ3−11ζ2+8ζ

)
ζ̄

+(−2+ζ)ζ2) ln
(

(1−ζ)
(

1−ζ̄
))

D(ζ, ζ̄)

−4 i
(
ζ ζ̄3+

(
6ζ2−8ζ+1

)
ζ̄2+ζ

(
ζ2−8ζ+6

)
ζ̄+ζ2

)
D(ζ, ζ̄)

−
(

2ζ ζ̄−ζ−ζ̄
)(

ζ2−ζ̄2
)

ln
(
ζ ζ̄
)

+2
(

1−ζ̄
)

(1−ζ)
(
ζ−ζ̄

)(
ζ+ζ̄

)
ln
(

(1−ζ)
(

1−ζ̄
))

+2
(
ζ−ζ̄

)3

(B.28)

L2,u
0 (ζ, ζ̄)·(ζ−ζ̄)5 =

(
ζ2+4ζ ζ̄+ζ̄2−3ζ−3 ζ̄

)
f5(ζ, ζ̄)

+
(

2ζ3ζ̄+8ζ2ζ̄2+2ζ ζ̄3−ζ3−11ζ2ζ̄−11ζ ζ̄2−ζ̄3+2ζ2+8ζ ζ̄+2 ζ̄2
)
f1(ζ, ζ̄)

−4 i
(

2ζ3ζ̄+4ζ2ζ̄2+2ζ ζ̄3−ζ3−7ζ2ζ̄−7ζ ζ̄2−ζ̄3+ζ2+6ζ ζ̄+ζ̄2
)
D(ζ, ζ̄)

−
(

2ζ ζ̄−ζ−ζ̄
)(

ζ−ζ̄
)(

ζ+ζ̄
)

ln
(
ζ ζ̄
)

+
(

2ζ ζ̄−ζ−ζ̄
)(

ζ−ζ̄
)(

ζ+ζ̄−2
)

ln
(

(1−ζ)
(

1−ζ̄
))

+2
(
ζ−ζ̄

)3

(B.29)

C Recurring expressions

In this appendix we collect the recurring expressions entering the evaluation of the Witten
diagrams. These expressions are single-valued multiple polylogarithms. The evaluation
of the parametric form of the Witten diagram is done using HyperInt [38]. We will the
conventions of this work for the multiple polylogarithms

Lis1,...,sk(x1, . . . , xk) :=
∞∑

0<p1<···<pk

xp1
1
ps11
· · ·

xpkk
pskk

for |x1 · · ·xi| < 1, ∀i ∈ {1, . . . , k} .

(C.1)
The sum s1 + s2 + · · ·+ sk is referred to as the weight of the multiple polylogarithm.

Some useful definitions and identities are

Li1 (x) = − log(1− x) , (C.2)

Li1,1 (y, x) = Li2
(
x(y − 1)

1− x

)
− Li2

(
x

x− 1

)
− Li2 (xy) , (C.3)

and the (single-valued) Bloch-Wigner dilogarithm given by:

D(ζ, ζ̄) = 1
2i

(
Li2 (ζ)− Li2

(
ζ̄
)
− 1

2 log(ζζ̄)
(
Li1 (ζ)− Li1

(
ζ̄
)))

. (C.4)
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Some other recurring expressions are weight 3 single-valued multiple-polylogarithms

f1(ζ, ζ̄) = Li3 (ζ)− Li3
(
ζ̄
)

+ Li2,1 (1, ζ)− Li2,1
(
1, ζ̄

)
+ 2Li2,1

(
ζ,
ζ̄

ζ

)
− 2Li2,1

(
ζ̄,
ζ

ζ̄

)
+ Li1,2

(
ζ,
ζ̄

ζ

)
− Li1,2

(
ζ̄,
ζ

ζ̄

)

− 2Li1
(
ζ̄

ζ

)
Li2 (ζ)− Li2

(
ζ̄

ζ

)
Li1 (ζ) + 2Li1

(
ζ

ζ̄

)
Li2

(
ζ̄
)

+ Li1
(
ζ̄
)
Li2

(
ζ

ζ̄

)

+ log(ζζ̄)

Li1,1
(
ζ̄,
ζ

ζ̄

)
− Li1,1

(
ζ,
ζ̄

ζ

)
+ Li1 (ζ)Li1

(
ζ̄

ζ

)
− Li1

(
ζ̄
)
Li1

(
ζ

ζ̄

) ,
(C.5)

f2(ζ, ζ̄) = 1
2

(
Li2 (ζ)Li1

(
ζ̄
)
− Li2

(
ζ̄
)
Li1 (ζ)

)
+ Li1,2 (1, ζ)− Li1,2

(
1, ζ̄

)
+ 1

2

(
Li2,1 (1, ζ)− Li2,1

(
1, ζ̄

))
+ 1

2 log
(
ζζ̄
)(
−Li1,1 (1, ζ) + Li1,1

(
1, ζ̄

))
(C.6)

f3(ζ, ζ̄) = −(Li1,1 (1, ζ) + Li1,1
(
1, ζ̄

)
) + 1

2
(
log(ζζ̄) + 4

)
log((1− ζ)(1− ζ̄))

− log(1− ζ) log(1− ζ̄)
(C.7)

For a detailed discussion of these functions and their properties we refer the interested
reader to [43–46].

D OPE coefficients and conformal blocks

The squared OPE coefficients for a canonically normalized double trace operator [OiOj ]n,l
in an OPE between Oi and Oj for a generalized field has been calculated in [40] and is
given by

Ai,j[OiOj ]n,l =
(−1)l

(
∆i− d

2 +1
)
n

(
∆j− d

2 +1
)
n

(∆i)l+n(∆j)l+n

l!n!
(
l+ d

2

)
n

(∆i+∆j+n−d+1)n(∆i+∆j+2n+l−1)l
(
∆i+∆j+n+l− d

2

)
n

,

(D.1)

where (x)n := Γ(x+n)
Γ(x) is the Pochhammer symbol. The conformal block for a multiplet of

dimension ∆ and spin l in a four-point function with external dimensions ∆1,∆2,∆3 and
∆4 in d = 3 space-time dimensions has been calculated in [47] and is given by

Ga,b∆,l(ṽ, Ỹ ) =
∞∑
k=0

ṽ
∆−l

2 +k
2k∑
m=0

Ak,mfk,m(Ỹ ), (D.2)

with

fk,m(Ỹ ) = Ỹ l−m
2F1

(
∆ + l

2 + k −m− a, ∆ + l

2 + k −m+ b,∆ + l + 2k − 2m; Ỹ
)
,

(D.3)
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and

Ak,m(∆) =
bm2 c∑

m1,m2=0
(−1)m+m1+14m1+m2 (−l)m(−bm/2c))m1+m2(k − bm/2c) + 1/2)m1

m!m1!m2!(k −m+m1)!

×
(∆− 1)2k−m(3/2−∆)m−k−m1−m2(l −∆ + 2)2(bm/2c−m2)−n

(∆ + l −m− 1)2k−m(∆ + l)2(k+m1−bm/2c)−m

×
∏

α∈{±a,±b}

((1
2(∆ + l) + α

)
k−m+m1

(1
2(∆− l − 1) + α

)
m2

)
(1 + (4ab− 1)(n mod 2)).

(D.4)

where a = ∆1−∆2
2 and b = ∆3−∆4

2 and the conformal cross ratios are defined in a slightly
different way as

ṽ = v

1− Y ; 1− Ỹ = 1
1− Y . (D.5)

Note that we use a slightly different normalization compared to [47].

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited. SCOAP3 supports
the goals of the International Year of Basic Sciences for Sustainable Development.
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