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ABSTRACT
We analyze the thermodynamic limit—modeled as the open-trap limit of an isotropic harmonic potential—of an ideal, non-relativistic Bose
gas with a special emphasis on the phenomenon of Bose–Einstein condensation. This is accomplished by the use of an asymptotic expansion
of the grand potential, which is derived by ζ-regularization techniques. Herewith, we can show that the singularity structure of this expansion
is directly interwoven with the phase structure of the system: In the non-condensation phase, the expansion has a form that resembles usual
heat kernel expansions. By this, thermodynamic observables are directly calculable. In contrast, the expansion exhibits a singularity of infinite
order above a critical density, and a renormalization of the chemical potential is needed to ensure well-defined thermodynamic observables.
Furthermore, the renormalization procedure forces the system to exhibit condensation. In addition, we show that characteristic features
of the thermodynamic limit, such as the critical density or the internal energy, are entirely encoded in the coefficients of the asymptotic
expansion.

© 2022 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0114640

I. INTRODUCTION
It is not often the case that the frontier of contemporary research is present in our daily life. Whenever one cooks water, enjoys snow, or

uses a magnet, one could ask how the rich qualitative collective properties of complex systems emerge from the relatively simple properties of
its constituents and especially how different macroscopic phases of matter are connected to its microscopic description. However, due to the
vast complexity of macroscopic systems, the precise answer to those questions is unknown in most cases.

A good illustration for the large gap between the understanding of microscopic and the determination of macroscopic phenomena is the
phase structure of Bose gases, since, despite their elementary microscopic description, a rigorous understanding of their phase structure is still
lacking in the most realistic scenarios.

In the above lines, Bose gases usually exhibit two phases. One of them is distinguished by a macroscopic occupation of the ground
state, what goes under the name of Bose–Einstein condensation (BEC). The corresponding phase transition occurs at low temperatures or
high densities and has been experimentally realized in different physical systems (cf. Refs. 1 and 2), which is intriguing and fascinating by its
own, since it constitutes a macroscopic quantum phenomenon, where the quantum concept of indistinguishability becomes apparent in the
macroscopic world. The occurrence of BEC was predicted by Bose3 and Einstein4–6 almost 100 years ago. They analyzed a non-interacting
case and argued that the system exhibits a macroscopically occupied ground state below a critical temperature. Nevertheless, a rigorous
demonstration of the occurrence of a phase transition in a realistic, interacting scenario was lacking for over 70 years. This changed drastically
in 2002 when Lieb and Seiringer proved the occurrence of Bose–Einstein condensation in the thermodynamic limit of a dilute Bose gas,7,8

which marked a huge progress in the understanding of the phase structure of continuous Bose systems. However, a rigorous understanding
in other realistic regimes or for general interactions has still not been achieved. For a good review on this issues, see also Ref. 9.
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The difficult situation in the interacting case also continuously stimulated research in the much tamer non-interacting case. The hope
could be that a new perspective on the non-interacting case also leads to valuable insights concerning the interacting case. Besides the textbook
treatment, which uses, for example, integral approximation techniques (cf. Ref. 10), notable other approaches are the loop gas technique (cf.
Refs. 11 and 12) as well as a recent method, which uses insights from algebraic quantum field theory (cf. Ref. 13). Another method for the
investigation of the phase structure of ideal Bose gases is the method of asymptotic expansions developed in Refs. 14–16. In those articles,
ζ-regularization techniques are used for the investigation of the small-β limit of trapped Bose gases. In the present paper, we will complement
those results by an analysis of the thermodynamic or open-trap limit using similar techniques.

Our motivation for the choice of this technique relies on the fact that in other situations, the form of such expansions has been proven
to be very robust with respect to smooth perturbations of the system. If one considers, for example, heat kernel expansions on manifolds, the
qualitative form of the expansion is insensitive to the geometry of the manifold, and its coefficients are calculable entirely in terms of geo-
metric invariants, which are both non-trivial statements (cf. Ref. 17). Hence, a hope could be that an asymptotic expansion of a characteristic
thermodynamic quantity, such as the grand potential, exhibits a similar robustness under perturbations of the system by smooth, repulsive 2-
body interactions and that the occurrence of condensation could be traced back to simple qualitative properties of this expansion. Therefore,
a first step is the investigation of the non-interacting case, which is achieved in this paper.

For the derivation of the asymptotics of the grand potential under the open-trap limit, we utilize ζ-regularization techniques, which
are mainly used in finite-temperature relativistic quantum field theory (cf., e.g., Refs. 18–20) and are rarely applied to problems in non-
relativistic quantum statistical mechanics. In particular, we use the Mellin–Barnes integral representation and the spectral ζ-function of the
1-particle Hamiltonian in order to extract information on the behavior of the grand partition function under the thermodynamic limit.
At this stage, we would like to phrase the point that the utility of spectral ζ-functions in the current situation relies on their capability to
translate qualitative properties of the eigenvalue distribution of an operator into precise analytic properties as the resolvents and the pole
structure.

Our paper is organized as follows: After introducing some preliminary notions regarding non-interacting, harmonically trapped Bose
gases, in Sec. III, the small-κ asymptotics of the grand potential for the different phase regions corresponding to negative, vanishing, and
positive renormalized chemical potential is derived. Thereby, we will see that the form of those asymptotic expansions differs drastically
in the different phases. In the non-condensation phase, the expansion of the grand potential resembles the form of usual heat Kernel
expansions. However, in the condensation phase, the chemical potential has to be a function of the trap-parameter κ, and the asymptotic
expansion exhibits a singularity of infinite order. In Sec. IV, we will utilize those expansions for the calculation of thermodynamic quan-
tities. We will calculate the average particle density and the average energy density in the non-condensation region in Sec. IV A and will
derive an expression for the critical density in Sec. IV B. For the analysis of the condensation phase, we draw an analogy to the procedure
of renormalization in quantum field theory: By a renormalization of the chemical potential, it is possible to cancel the “unphysical” diver-
gencies and render all observables finite. This will be explained in Sec. IV C, where also the corresponding renormalization conditions are
introduced. In Sec. IV D, the conjectured form of the κ-dependent chemical potential is presented, and it is proven that it satisfies two of
the three renormalization conditions. Finally, we will investigate the properties of the condensation phase in Sec. IV E. It is shown that
the conjectured κ-dependent chemical potential yields finite results for the considered thermodynamic observables and hence satisfies all
renormalization conditions. Furthermore, it is shown that the system exhibits condensation in this regime. Concluding remarks are given
in Sec. V.

II. THE NON-INTERACTING, HARMONICALLY TRAPPED IDEAL BOSE GAS
In this section, we will review the necessary prerequisites regarding the quantum statistics of the isotropic harmonic oscillator potential.

We consider an ideal Bose gas in v ≥ 1 dimensions confined to a harmonic oscillator trap. The 1-particle Hamiltonian is given by

Tκ ∶= −Δ + κ2
∣x⃗∣2, (1)

where κ > 0 is the considered oscillator constant. The eigenvalues of this operator are given by (cf. Ref. 21)

E(v)n1 ,...,nv
(κ) = 2κ[

v

∑
i=1

ni +
v

2
] (2)

for n1, . . . , nv ∈ N. The full many-body Hamiltonian is then given by the standard second quantization (cf. Refs. 10 and 22),

Hκ ∶= dΓ(Tκ), (3)

on the bosonic Fock space. The grand canonical potential of the harmonically trapped Bose gas is then given by (cf. Ref. 10)

Ω(v)(κ; β, μ) = ln[tr(e−β(Hκ−μN)
)], (4)
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where N is the bosonic number operator, β is the inverse temperature, and μ is the chemical potential. Expression (4) is well-defined for the
parameter ranges β > 0, κ > 0, and −∞ < μ < E(v)0 (κ). Here, E(v)0 (κ) = κv denotes the lowest energy eigenvalue of the 1-body Hamiltonian
Tκ. As the starting point of our investigation, we will use a sum representation of (4), which is obtained by expanding the logarithm and
utilizing a trace formula (cf. Theorem 5.11 of Ref. 22) for second quantized operators on Fock space,

Ω(v)(κ; β, μ) =
∞

∑
n1 ,...,nv=0

∞

∑
N=1

zN

N
exp[−βNE(v)n1 ,...,nv

(κ)]. (5)

Here, we have defined the rapidity z ∶= eβμ, which will be used in the following as an equivalent replacement for the chemical potential μ.

III. ASYMPTOTIC EXPANSIONS OF THE GRAND POTENTIAL
We now want to expand the infinite sum (5) in an asymptotic expansion in the trap parameter κ. This will be realized by utilization of

ζ-regularization methods. The starting point is the Mellin–Barnes integral representation (cf. Ref. 16),

e−a
=

1
2πi∫

σ+i∞

σ−i∞
a−sΓ(s)ds, (6)

which is valid for ∣arg(a)∣ < π
2 − δ, with δ ∈ (0, π

2 ] and σ > 0.
Before we apply the integral formula (6) on the sum representation (5), we want to investigate a simpler situation in order to make the

procedure clear (cf. Sec. 6 of Ref. 16). Consider the following more elementary sum:

S(κ) =
∞

∑
l=1

e−κl. (7)

By applying (6), we can write (7) as

S(κ) =
∞

∑
l=1

1
2πi∫

σ+i∞

σ−i∞
(κl)−sΓ(s)ds. (8)

Now recall that the Riemann ζ-function is given for Re(s) > 1 by its convergent sum representation (cf. Ref. 23),

ζR(s) =
∞

∑
l=1

l−s. (9)

Hence, by demanding σ > 1, we are allowed to interchange the sum and the integral in (8) and obtain

S(κ) =
1

2πi∫
σ+i∞

σ−i∞
κ−sΓ(s)ζR(s)ds. (10)

In analogy to Ref. 16, the strategy for finding the small-κ behavior is to shift the integration contour to the left. By the residue theorem, crossing
the singularities of the integrand gives then polynomial contributions in κ−1. In the case of (10), the rightmost pole of the integrand is given
by the pole of ζR(⋅) at s = 1, and the other poles can be found at s = −2n with n ∈ N. We therefore shift the integral contour to σ̃ ∈ (−1, 0) and
obtain

S(κ) = κ−1
−

1
2
+ Sres(κ), (11)

where we used Ress=1(ζR(s)) = Ress=0(Γ(s)) = 1 and where the residual term Sres(κ) is given by

Sres(κ) =
1

2πi∫γ(σ̃)
κ−sΓ(s)ζR(s)ds. (12)

Here, γ(σ̃) denotes a path in the complex plane, which goes from σ − i∞ to σ + i∞, but intersects the real line at σ̃ ∈ (−1, 0). This term gives
contributions in O(κ) and is, hence, of no relevance for us, since we are only interested in the small-κ behavior. Thus, we neglect the concrete
form of this contribution and obtain the following asymptotic expansion:
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S(κ) = κ−1
−

1
2
+O(κ). (13)

We now use the same strategy to derive expansions of the form (11) for the grand potential (5). We will see that we need two different strategies
for μ ≤ 0 and μ > 0.

A. Negative chemical potential
We will now derive the small-κ asymptotics of the grand potential in the case μ < 0 or equivalently in the case ∣z∣ < 1. Therefore, we apply

the Mellin–Barnes integral representation (6) on the exponential in (5) and obtain

Ω(v)(κ; β, μ) =
1

2πi

∞

∑
n1 ,...,nv=0

∞

∑
N=1

zN

N ∫
σ+i∞

σ−i∞
β−sN−sE(v)n1 ,...,nv

(κ)−sΓ(s)ds. (14)

In contrast to the situation depicted before, the Riemann ζ-function is not sufficient for the analysis of this expression. Instead, we need the
Barnes ζ-function (see Sec. 2.2 of Ref. 16) whose convergent sum representation is for v ∈ N, s > v, c > 0, and r > 0, given by

ζ(v)B (s, c∣r) = ∑
n1 ,...,nv∈N0

[c + r(n1 + ⋅ ⋅ ⋅ + nv)]
−s. (15)

If c = 0, it is understood that the sum ranges over n1, . . . , nv ≠ (0, . . . , 0). In addition, the polylogarithm is for ∣z∣ < 1 and any complex order
r ∈ C given by the following absolute convergent sum:23

Lir(z) =
∞

∑
N=1

zN

Nr . (16)

If we demand σ > v, we are allowed to interchange the sums and the integral in (14) and obtain the following expression for the grand
potential:

Ω(v)(κ; β, μ) =
1

2πi∫
σ+i∞

σ−i∞
κ−sβ−sLis+1(z)ζ(v)B (s, v∣2)Γ(s)ds. (17)

The location and residues of the poles for all functions appearing in the integrand are known. In particular, Lis+1(z) has no poles for ∣z∣ < 1
(cf. Ref. 23) and Γ(s) has, as before, simple poles at −N0. The Barnes ζ-function has poles at z = 1, . . . , v (cf. Ref. 16) with residues,

Ress=k(ζ
(v)
B (s, c∣r)) =

(−1)v+k

(k − 1)!(v − k)!
r−vB(v)

v−k(c, r). (18)

Furthermore, its value at zero26 is given by (cf. Ref. 16)

ζ(v)B (0, c∣r) =
(−1)v

v
r−vB(v)v (c, r). (19)

Here, B(v)m (c, r) denotes generalized Bernoulli polynomials defined as

e−xt

(1 − e−rt)v
= (
−1
r
)
v ∞

∑
n=0

(−t)n−v

n!
B(v)n (x, r). (20)

By shifting the contour to the left, we can write now (17)—analogously to (11)—as

Ω(v)(κ; β, μ) =
v

∑
k=0

κ−ka(v)
−k (β, μ) + Sres(κ; β, μ), (21)

where the coefficients a(v)k (β, μ) are given by

a(v)
−k (β, μ) =

⎧⎪⎪
⎨
⎪⎪⎩

β−kLik+1(z)Γ(k)Ress=k(ζ
(v)
B (s, v∣2)), k ∈ {1, . . . , v},

Li1(z)ζ(v)B (0, v∣2), k = 0,
(22)
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and the residual term Sres(κ; β, μ) is given by

Sres(κ) =
1

2πi∫γ(σ̃)
κ−sβ−sLis+1(z)ζ(v)B (s, v∣2)Γ(s)ds. (23)

Here, γ(σ̃) denotes again a contour that intersects the real axis at σ̃ ∈ (−1, 0) and goes from σ − i∞ to σ + i∞.

B. Vanishing chemical potential
The case μ = 0 (or equivalently z = 1) works analogously to the case μ < 0. The only difference is that the sum over N in (14) reduces now

to a Riemann ζ-function. By this, we obtain as an expression for the grand potential in the case μ = 0,

Ω(v)(κ; β, μ) =
1

2πi∫
σ+i∞

σ−i∞
κ−sβ−sζR(s + 1)ζ(v)B (s, v∣2)Γ(s)ds. (24)

Here, again σ > v is required. As before, one shifts the contour to the left and obtains the small-κ asymptotics,

Ω(v)(κ; β, μ) =
v

∑
k=0

κ−ka(v)
−k (β, μ) + Sres(κ; β, μ). (25)

The coefficients a(v)
−k (β, μ) are then given by

a(v)
−k (β, μ) =

⎧⎪⎪
⎨
⎪⎪⎩

β−kζR(k + 1)Γ(k)Ress=k(ζ
(v)
B (s, v∣2)), k ∈ {1, . . . , v},

Ress=0(ζR(s + 1)Γ(s))ζ(v)B (0, v∣2), k = 0,
(26)

and the residual term Sres(κ; β, μ) is given by

Sres(κ; β, μ) =
1

2πi∫
σ̃+i∞

σ̃−i∞
κ−sβ−sζR(s + 1)ζ(v)B (s, v∣2)Γ(s)ds. (27)

γ(σ̃) denotes again a contour that intersects the real axis at σ̃ ∈ (−1, 0) and goes from σ − i∞ to σ + i∞.

C. Positive chemical potential
If the chemical potential in (5) is positive (or equivalently, if ∣z∣ > 1), the previous strategy does not work. The reason for this is twofold.

On the one hand, the allowed parameter range for the chemical potential in (4) is μ ∈ (−∞, E(v)0 (κ)), and hence, one has to choose a
κ-dependent μ, i.e., a map,

μ : κ ∈ (0,∞)↦ μ(κ) ∈ (0, E(v)0 (κ)). (28)

On the other hand, the sum representation of the polylogarithm∑∞N=1 zN N−s−1 is, in general, not convergent for ∣z∣ > 1, and hence, one is not
allowed to interchange the sums and the integral in (14).

To circumvent this problem, we derive a different sum representation of the grand potential by expanding the exponential that contains
the chemical potential. Afterward, we will then apply the same strategy as before on the remaining spectral functions. This gives a small-κ
asymptotics, where the coefficients are given as power series in the renormalized chemical potential. The motivation for this strategy relies on
the observation that for a positive, κ-dependent chemical potential, the thermodynamic limit corresponds to a weak coupling regime, since
μ(κ)→ 0 as κ→ 0. When an adequate representation of the κ-dependent chemical potential as a series in κ is given—which will be derived in
Sec. IV C—this can be reinserted into the expression for the grand potential, yielding again a small-κ asymptotics.

Before starting with this program, we have to perform some preliminary steps. First, the occurring spectral functions will be much
more convenient if we perform a redefinition of the chemical potential and the energy eigenvalues by subtracting the zero point energy.
We define

μ̃(κ) = μ(κ) − E(v)0 (κ), (29a)

Ẽ(v)n1 ,...,nv
(κ) = E(v)n1 ,...,nv

(κ) − E(v)0 (κ), (29b)

and in particular, we set z̃(κ) = eβμ̃ (κ). Observe that this implies μ̃(κ) < 0 and z̃(κ) < 1. Since we are interested in the phenomenon of
Bose–Einstein condensation, we further split up the grand potential and separate the ground state contribution,
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Ω(v)(κ; β, μ(κ)) = Ω(v)0 (κ; β, μ(κ)) +Ω(v)1 (κ; β, μ(κ)), (30a)

where Ω(v)0 and Ω(v)1 are given by

Ω(v)0 (κ; β, μ(κ)) =
∞

∑
N=1

N−1 exp(βNμ̃(κ)) (30b)

and

Ω(v)1 (κ; β, μ(κ)) =
∞

∑
N=1

∑
(n1 ,...,nv)≠(0,...,0)

N−1 exp(−βN(Ẽ(v)n1 ,...,nv
(κ) − μ̃(κ))). (30c)

Since z̃(κ) < 1, the ground state contribution can also be written as

Ω(v)0 (κ; β, μ(κ)) = − ln(1 − exp(βμ̃(κ))). (31)

For the treatment of Ω(v)1 , we expand

exp(βNμ̃(κ)) =
∞

∑
m=0

1
m!

βmNmμ̃(κ)m (32)

and insert this into (30c), which gives

Ω(v)1 (κ; β, μ) =
∞

∑
m=0

∞

∑
N=1

∑
(n1 ,...,nv)≠(0,...,0)

1
m!

βmNm−1μ̃(κ)m exp(−βNẼ(v)n1 ,...,nv
(κ)). (33)

We now apply as before the Mellin–Barnes integral (6), which gives

Ω(v)1 (κ; β, μ) =
∞

∑
m=0

μ̃(κ)m

m! ∫
σm+i∞

σm−i∞
βm−sκ−sζR(s + 1 −m)ζ(v)B (s, 0∣2)Γ(s)ds, (34)

where σm > max{v, m} is required for interchanging the sums over N and (n1, . . . , nv) in (33) with the integrals.
The summands of (34) can then be calculated by the same strategy as before. By shifting the integral contour to σ̃ ∈ (−1, 0), one obtains

polynomial contributions in κ−1. As before, the remaining integrals are then collected in Sres(κ; β, μ(κ)). By ordering the resulting expression
in powers of κ, we obtain the small-κ asymptotics,

Ω(v)1 (κ; β, μ) =
∞

∑
k=0

κ−ka(v)
−k (β, μ(κ)) + Sres(κ; β, μ(κ)), (35)

where the coefficients a(v)k (β, μ(κ)) are given as power series in μ̃(κ). Explicitly, we obtain for the coefficients,

a(v)0 (β, μ(κ)) = − ln(β) +
∞

∑
m=1

μ̃(κ)m

m!
βmζR(1 −m)ζ(v)B (0, 0∣2) (36a)

+ Ress=0(ζR(s + 1)Γ(s))ζ(v)B (0, 0∣2)

and

a(v)
−k (β, μ(κ)) =

∞

∑
m=0,m≠k

μ̃(κ)m

m!
βm−kζR(k + 1 −m)Ress=k(ζ

(v)
B (s, 0∣2))Γ(k)

+
μ̃(κ)k

k!
Γ(k)Ress=k(ζR(s + 1 − k)ζ(v)B (s, 0∣2)) (36b)
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for k = 1, . . . , v and

a(v)
−k (β, μ(κ)) =

μ̃(κ)k

k!
Γ(k)ζ(v)B (k, 0∣2) (36c)

for k ≥ v + 1. All together, we then have the small-κ asymptotics,

Ω(v)(κ; β, μ(κ)) = Ω(v)0 (κ; β, μ(κ)) +Ω(v)1 (κ; β, μ(κ)), (37a)

Ω(v)0 (κ; β, μ(κ)) = − ln(1 − exp(βμ̃(κ))), (37b)

Ω(v)1 (κ; β, μ) =
∞

∑
k=0

κ−ka(v)
−k (β, μ(κ)) + Sres(κ; β, μ(κ)) (37c)

in the case of positive, κ-dependent chemical potentials, where the coefficients a(v)k (β, μ(κ)) are given by (36a)–(36c) and the residual term is
given by

Sres(κ; β, μ(κ)) =
∞

∑
m=0

μ̃(κ)m

m! ∫γ(σ̃)
βm−sκ−sζR(s + 1 −m)ζ(v)B (s, 0∣2)Γ(s)ds. (38)

Here, γ(σ̃) denotes as before a contour that intersects the real axis at σ̃ ∈ (−1, 0) and goes from σ − i∞ to σ + i∞.
At the first glimpse, the apparent singularity of infinite order in the asymptotic expansion (37c) seems to be unphysical, since it suggests

that also all observables should exhibit a singularity of this type. The resolution of this problem relies on a good choice of the κ-dependent
chemical potential μ(κ) ∈ (0, E(v)0 (κ)). This will be discussed in Sec. IV C and onward.

D. Summary
We want to give a short, qualitative summary on the derived asymptotic expansions. In the cases μ < 0 and μ = 0, the asymptotic

expansion has the form

Ω(v)(κ; β, μ) =
v

∑
k=0

κ−ka(v)
−k (β, μ) + Sres(κ; β, μ), (39)

while in the case μ > 0, one has to consider a renormalized chemical potential κ ∈ (0,∞)↦ μ(κ) ∈ (0, E(v)0 (κ)), and the asymptotic expansion
exhibits a singularity of infinite order,

Ω(v)(κ; β, μ(κ)) = − ln(1 − z̃(κ)) +
∞

∑
k=0

κ−ka(v)
−k (β, μ(κ)) + Sres(κ; β, μ(κ)). (40)

The coefficients are given explicitly by (22) for the case μ < 0, by (26) for the case μ = 0, and by (36a)–(36c) for the case of positive, κ-dependent
μ. The forms of the residual terms are also given explicitly by (23), (27), and (38).

IV. BEHAVIOR UNDER THE THERMODYNAMIC LIMIT
We will now utilize the small-κ asymptotics of the grand potential as derived in Sec. III for analyzing the phase structure of the considered

Bose gas in the thermodynamic limit κ→ 0.27

A. Thermodynamic quantities in the non-condensation phase
We investigate the behavior of some thermodynamic quantities under the limit κ→ 0 for fixed, negative chemical potential μ < 0 and

arbitrary inverse temperature β > 0. The average particle number and the average energy are given by their standard expressions,

N(v)(κ; β, μ) ∶= ⟨N⟩κ,β,μ = β−1 ∂

∂μ
Ω(v)(κ; β, μ), (41a)

E(v)(κ; β, μ) ∶= ⟨Hκ⟩κ,β,μ = −
∂

∂β
Ω(v)(κ; β, μ). (41b)

By applying those relations on the small-κ asymptotics (21), we directly obtain small-κ asymptotics for those quantities,
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N(v)(κ; β, μ) =
v

∑
k=0

n(v)
−k (β, μ)κ−k

+O(κ), (42a)

E(v)(κ; β, μ) =
v

∑
k=0

e(v)
−k (β, μ)κ−k

+O(κ). (42b)

Here, the coefficients n(v)k (β, μ) and e(v)k (β, μ) are explicitly given by

n(v)
−k (β, μ) ∶=

⎛

⎝

1
β
∂a(v)
−k (β, μ)
∂μ

⎞

⎠
, (43a)

e(v)
−k (β, μ) ∶=

⎛

⎝
−
∂a(v)
−k (β, μ)
∂β

⎞

⎠
. (43b)

By utilizing the identity24

d
dx

Lin(x) =
1
x

Lin−1(x) (44)

and applying it on the expressions for the coefficients a(v)
−k (β, μ) given in (22), we see that the coefficients n(v)

−k (β, μ) and e(v)
−k (β, μ) of above

expansions are all well-defined and non-zero for k ∈ {0, . . . , v}. In particular, we hence obtain that the average particle number (42a) and the
average energy (42b) exhibit a singularity of order κ−v . This is not surprising since in the thermodynamic limit, the particle number (and
hence also other extensive quantities) should diverge. The meaningful quantities in this regime are, hence, governed by densities. For this,
we consider the inverse trap parameter κ−1 as the characteristic length scale of the problem, which makes it plausible to think of κ−v as the
characteristic volume of the harmonic trap (for this viewpoint, see also Refs. 11 and 12). This motivates us to define the particle- and the
energy-density as28

ρ(v)(κ; β, μ) ∶= κvN(v)(κ; β, μ), (45a)

ρ(v)E (κ; β, μ) ∶= κvE(v)(κ; β, μ). (45b)

We see then that under the thermodynamic limit κ→ 0, the expressions for the average density and the average energy are directly given by
the coefficients n(v)−v (β, μ) and e(v)−v (β, μ) in (43a) and (43b). If one inserts the expressions for the coefficients a(v)−v , one then obtains

ρ(v)(β, μ) ∶= lim
κ→∞

ρ(v)(κ; β, μ) = 2−vβ−vLiv(z), (46a)

ρ(v)E (β, μ) ∶= lim
κ→∞

ρ(v)E (κ; β, μ) = v2−vβ−v−1Liv+1(z). (46b)

Finally, we want to show that no condensation occurs for μ ≤ 0. Therefore, consider the average ground-state occupation density given by
(cf. Ref. 15)

ρ(v)0 (κ; β, μ) =
κv

β
∂

∂μ
Ω(v)0 (κ; β, μ) = κv(1 − exp[−β(E(v)0 (κ) − μ)]). (47)

We then see that ρ(v)0 (κ; β, μ)→ 0 as κ→ 0 for μ ≤ 0.

B. The critical density
In Sec. IV A, we have analyzed the thermodynamic limit of an ideal Bose gas for μ ≤ 0. By observing that the function

μ ∈ (−∞, 0)↦ ρ(v)(β, μ) (48)

is strictly monotonically increasing, we can easily calculate the maximal density ρ(v)c (β) that can be attained in this phase,

ρ(v)c (β) ∶= sup
μ<0

ρ(v)(β, μ) = lim
μ→0

ρ(v)(β, μ). (49)

This maximal density will be called the critical density. By recalling Liv(1) = ζR(v) (cf. Ref. 24), we then obtain
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ρ(v)c (β) = 2−vβ−vζR(v), (50)

which is finite for v ≥ 2, infinite for v = 1, and is equivalent to the results of Ref. 12 if one takes their different conventions into account.
Hence, one has to choose an adequate positive, κ-dependent chemical potential to obtain higher densities. This causes the system to exhibit
condensation as we will show in Sec. IV E.

C. Renormalization of the chemical potential

From now on, let v ≥ 2. We have seen that the critical density ρ(v)c (β) is finite in this case, and hence, one has to use a κ-dependent,
positive chemical potential to obtain higher densities ρ̄ > ρ(v)c (β). If one recalls the form of the small-κ asymptotics (40), it is a priori not
clear that there exist such κ-dependent chemical potentials, which yield meaningful results for thermodynamic observables in the limit
κ→ 0. Nevertheless, as discussed before, this situation corresponds to a weak coupling regime, where the κ-dependent chemical potential
satisfies μ(κ) ∈ (0, E(v)0 (κ)) with the zero-point energy behaving as E(v)0 (κ)→ 0 as κ→ 0. This suggests that taking the thermodynamic
limit corresponds to the consideration of arbitrary small neighborhoods around μ = 0, and hence, the asymptotic expansions obtained for
κ→ 0 should not differ so drastically in the two cases μ ≤ 0 and μ > 0. Our strategy will now be to analyze if there exist such κ-dependent
chemical potentials, which yield a finite density ρ̄ in the limit κ→ 0 and which regularize the small-κ asymptotics, such that it exhibits
only a singularity of finite order. More precisely stated, the question is, hence, for any ρ̄ > ρ(v)c (β), if there exists a κ-dependent chemical
potential,

μρ̄ : κ ∈ (−∞, 0)↦ μρ̄(κ) ∈ (0, E(v)0 (κ)), (51)

which satisfies the following conditions, which will be called renormalization conditions in the sequel:

(i) limκ→0 μρ̄(κ) = 0.
(ii) limκ→0 ρ(v)(β, μρ̄(κ)) = ρ̄.

(iii) For all k > v, it holds that the coefficient a(v)
−k (β, μρ̄(κ)) in (40) lies in O(κk+1

).

Before we show that there exist such μρ̄(κ), we would like to draw an analogy to the renormalization procedure in quantum field theory, to
justify, why we call this procedure a renormalization of the chemical potential. Therefore, recall, how observables are calculated in quantum
field theory (cf., e.g., Ref. 25): A theory is specified by a Lagrangian, which contains several microscopic (“bare”) parameters, such as the
mass or the coupling. If one tries naively to calculate observables by the evaluation of Feynman diagrams, one obtains divergent integrals.
To cure these problems, one follows a two-step strategy. First, an UV-regulator, say, a cut-off frequency Λ, is introduced to render the
observables finite. In a second step, which is called renormalization, the microscopic parameters are chosen to be regulator-dependent in
a way specified by certain renormalization conditions, which ensure that all occurring divergencies in the observables are canceled. After
this procedure, the theory is reparametrized: The parameters of the theory are not given by the microscopic parameters anymore but by
renormalized, physical parameters determined by the remaining degrees of freedom of the renormalization prescription. In the so-called on-
shell schemes, for example, the renormalized parameters are explicitly defined as the outcomes of certain diagrams, which can be interpreted
as measurements.

Observe now that our situation is quite similar. Therefore, one has to view the trap-parameter κ as an IR-regulator and the chemical
potential μ as a microscopic (“bare”) parameter of the system. If one then tries to calculate observables in the condensation phase (μ > 0) in a
naive way, one obtains that all observables diverge as the IR-regulator is removed (i.e., as κ→ 0). The reason for this is that the grand potential
exhibits a singularity of infinite order, as it is shown by the asymptotic expansion (37c). Our strategy is then to choose a regulator-dependent
(i.e., κ-dependent) chemical potential μ(κ), which cancels all occurring divergencies in the observables. As before, the precise form of this
regulator-dependence is determined by certain renormalization conditions, namely, in our case by the above conditions (i)–(iii). After this
renormalization procedure, the observables do not depend on a microscopic parameter μ anymore (especially, we see that a fixed, positive μ is
not a meaningful parameter in the condensation phase) but on the macroscopic parameter ρ̄ defined by the renormalization prescription. In
our case, this parameter is defined as the outcome of a density measurement and could be called, in light of above analogy, the renormalized
chemical potential. Hence, we see that a choice of a κ-dependent μ, as determined by the above conditions (i)–(iii), resembles the procedure
of renormalization in high energy physics, and therefore, we call this procedure a renormalization of the chemical potential and the above
conditions renormalization conditions.

In Secs. IV D and IV E, we will perform this procedure. Therefore, we will show in Sec. IV D that κ-dependent chemical potentials
satisfying the renormalization conditions (i) and (iii) exist and, hence, cure the singularity of infinite order in the asymptotic expansion of the
grand potential. In Sec. IV E, we will then show that those κ-dependent μ satisfy the second renormalization condition and calculate additional
thermodynamic observables.

D. Renormalized asymptotic expansions in the condensation phase

The first renormalization condition is trivially satisfied since μρ̄(κ) ∈ (0, E(v)0 (κ)), while the last renormalization condition ensures
that the small-κ asymptotics exhibits only finitely many singularities. We show in this subsection that there exists a renormalized
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chemical potential μρ̄(κ), which satisfies the first and the third renormalization condition. The second renormalization condition will then be
shown in Sec. IV E.

We guess the form of the κ-dependent chemical potential as

μρ̄(κ) = E(v)0 (κ) − [ρ̄ − ρ(v)c (β)]
−1

κv +O(κv+1
). (52)

Since E(v)0 (κ)→ 0 as κ→ 0, the κ-dependent chemical potential (52) trivially satisfies the first renormalization condition. We further have,
by recalling (36c), that a−k(β, μ(κ)) is for k > v, given by

a−k(β, μρ̄(κ)) = k−1
(μρ̄ (κ) − E(v)0 (κ))

k
ζ(v)B (k, 0∣2) (53)

and, hence, lies in O(κvk
). Consequently, the first and the third renormalization condition are satisfied. By this, we obtain that the form of

the asymptotic expansion of the grand potential attains the following form if a renormalized chemical potential (52) is inserted and if one
assumes that the residual term lies in O(κ):

Ω(v)(κ; β, μρ̄(κ)) = Ω(v)0 (κ; β, μρ̄(κ)) +Ω(v)1 (κ; β, μρ̄(κ)), (54a)

Ω(v)0 (κ; β, μρ(κ)) = − ln(1 − z̃ρ̄(κ)), (54b)

Ω(v)1 (κ; β, μρ̄(κ)) =
v

∑
k=0

κ−ka(v)
−k (β) +O(κ). (54c)

Here, the coefficients a(v)
−k (β) are given by

a(v)
−k (β) = β−kζR(k + 1)Γ(k)Ress=k(ζB(s, 0∣2)) (55a)

for k = 1, . . . , v and

a(v)0 (β) = − ln(β) (55b)

for k = 0, where we dropped the contributions in O(κ). We hence see that the small-κ asymptotics of Ω(v)1 with renormalized chemical
potential almost completely resembles the form of the small-κ asymptotics in the case μ = 0. The second renormalization condition will be
investigated in Subsection IV E.

E. Thermodynamic quantities in the condensation phase
We now perform an analogous analysis as in Sec. IV A. Thereby, we show that the renormalized chemical potential (52) yields finite

expressions for the considered thermodynamic quantities and, hence, especially satisfies the second renormalization condition from Sec. IV C.
As in Sec. IV A, the average particle density and the average energy density are given by

ρ(v)(κ; β, μρ̄(κ)) = κvβ−1 ∂

∂μ
Ω(v)(κ; β, μρ̄(κ)), (56a)

ρ(v)E (κ; β, μρ̄(κ)) = −κv
∂

∂β
Ω(v)(κ; β, μρ̄(κ)). (56b)

If one inserts the small-κ asymptotics (54a)–(54c) together with the expressions for the coefficients (55a) and (55b) in those expressions, one
obtains the following expression for the densities in the thermodynamic limit:

ρ(v)(β, ρ̄) ∶= lim
κ→0

ρ(v)(κ; β, μρ̄(κ)) = ρ̄, (57)

ρ(v)E (β, ρ̄) ∶= lim
κ→0

ρ(v)E (κ; β, μρ̄(κ)) = ρ(v)E (β, 0). (58)

Finally, we want to analyze if the system exhibits condensation. As in Sec. IV A, the expression for the average ground-state occupation density
is given by
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ρ(v)0 (κ; β, μρ̄(κ)) =
κv

β
∂

∂μ
Ω(v)0 (κ; β, μρ̄(κ)), (59)

and one obtains by a direct calculation that

lim
κ→0

ρ(v)0 (κ; β, μ) = ρ̄ − ρ(v)c (β). (60)

Hence, the system exhibits condensation.

V. CONCLUSION
In this article, we have presented a detailed analysis of the thermodynamic or open-trap limit of harmonically trapped Bose gases by

the method of asymptotic expansions. In particular, our results for the renormalized chemical potential and the critical density are equiv-
alent to the results of Ref. 12 if one takes their different conventions into account. A natural question is now that if the current method
is also of any use in the case of elementary interactions. For this, one has to analyze how a perturbation of the energy-spectrum alters
the analytic properties of the occurring spectral functions. A first step in this direction would be to consider elementary interactions—as
repulsive contact-interactions or rapidly decaying 2-body potentials—in the present framework up to first order in Rayleigh–Schrödinger
perturbation theory. One could then analyze the weak-coupling regime analogously to the analysis of Sec. III C by trying to separate the
spectral ζ-functions of the unperturbed problem from the contributions caused by the perturbation. It could be possible to obtain true
asymptotic series for the grand partition function, where the coefficients are then not only given as series in the renormalized chemical
potential alone but also as series in the coupling λ of the interaction Hamiltonian. However, this analysis lies beyond the scope of the current
article.
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