
Journal of Cosmology and
Astroparticle Physics

     

PAPER • OPEN ACCESS

Effective dynamics of scalar cosmological
perturbations from quantum gravity
To cite this article: Luca Marchetti and Daniele Oriti JCAP07(2022)004

 

View the article online for updates and enhancements.

You may also like
Emergent Friedmann dynamics with a
quantum bounce from quantum gravity
condensates
Daniele Oriti, Lorenzo Sindoni and Edward
Wilson-Ewing

-

Effective dynamics for non-reversible
stochastic differential equations: a
quantitative study
Frédéric Legoll, Tony Lelièvre and
Upanshu Sharma

-

Quantification of coarse-graining error in
Langevin and overdamped Langevin
dynamics
M H Duong, A Lamacz, M A Peletier et al.

-

This content was downloaded from IP address 79.213.158.122 on 29/09/2023 at 21:55

https://doi.org/10.1088/1475-7516/2022/07/004
/article/10.1088/0264-9381/33/22/224001
/article/10.1088/0264-9381/33/22/224001
/article/10.1088/0264-9381/33/22/224001
/article/10.1088/1361-6544/ab34bf
/article/10.1088/1361-6544/ab34bf
/article/10.1088/1361-6544/ab34bf
/article/10.1088/1361-6544/aaced5
/article/10.1088/1361-6544/aaced5
/article/10.1088/1361-6544/aaced5


J
C
A
P
0
7
(
2
0
2
2
)
0
0
4

ournal of Cosmology and Astroparticle Physics
An IOP and SISSA journalJ

Effective dynamics of scalar
cosmological perturbations from
quantum gravity

Luca Marchettia,b,c and Daniele Oritib
aDipartimento di Fisica, Università di Pisa,
Lungarno Antonio Pacinotti 43, 56126 Pisa, Italy
bArnold Sommerfeld Center for Theoretical Physics,
Ludwig-Maximilians-Universität München,
Theresienstrasse 37, 80333 München, Germany
cIstituto Nazionale di Fisica Nucleare, sezione di Pisa,
Largo Bruno Pontecorvo 3, 56127 Pisa, Italy

E-mail: luca.marchetti@phd.unipi.it, daniele.oriti@physik.lmu.de

Received February 24, 2022
Revised May 11, 2022
Accepted May 24, 2022
Published July 4, 2022

Abstract.We derive an effective dynamics for scalar cosmological perturbations from quantum
gravity, in the framework of group field theory condensate cosmology. The emergent spacetime
picture is obtained from the mean-field hydrodynamic regime of the fundamental theory,
and physical observables are defined using a relational strategy applied at the same level of
approximation, in terms of suitable collective states of the GFT field. The dynamical equations
we obtain for volume and matter perturbations lead to the same solutions as those of classical
GR in the long-wavelength, super-horizon limit, but differ in other regimes. These differences
could be of phenomenological interest and make contact between fundamental quantum
gravity models and cosmological observations, indicating new physics or limitations of the
fundamental models or of the approximations leading to the effective cosmological dynamics.

Keywords: quantum cosmology, Cosmological perturbation theory in GR and beyond,
quantum gravity phenomenology

ArXiv ePrint: 2112.12677

c© 2022 The Author(s). Published by IOP Publishing
Ltd on behalf of Sissa Medialab. Original content from

this work may be used under the terms of the Creative Commons
Attribution 4.0 licence. Any further distribution of this work must
maintain attribution to the author(s) and the title of the work,
journal citation and DOI.

https://doi.org/10.1088/1475-7516/2022/07/004

mailto:luca.marchetti@phd.unipi.it
mailto:daniele.oriti@physik.lmu.de
https://arxiv.org/abs/2112.12677
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1088/1475-7516/2022/07/004


J
C
A
P
0
7
(
2
0
2
2
)
0
0
4

Contents

1 Introduction 1

2 GFT effective relational cosmology: kinematics 4
2.1 GFT models and their Fock structure 5
2.2 Continuum geometries, effective relationality and GFT condensates 10

3 GFT effective relational cosmology: dynamics 13
3.1 Classical system 13
3.2 GFT averaged dynamics 14
3.3 Background and perturbed equations of motion 17

4 Effective relational dynamics of physical quantities 18
4.1 Volume evolution 20
4.2 Matter evolution 22

5 Summary and discussion 26
5.1 Summary and outlook 26
5.2 Approximations and assumptions 28

5.2.1 Kinematic assumptions 28
5.2.2 Dynamic assumptions 30

A Perturbation theory in harmonic gauge 32
A.1 Harmonic condition 32
A.2 Dynamics 33

B Derivation of reduced wavefunction dynamics 35

1 Introduction

In the last decades, cosmological observations have reached a remarkable level of precision, and
have been shown to be compatible with a rather simple picture of the universe: a flat, (almost)
Friedmann-Robertson-Walker (FRW) solution of General Relativity (GR) which includes a
positive cosmological constant Λ and a cold dark matter component (ΛCDM paradigm) [1].

Despite the simplicity of the resulting picture, the success of modern cosmology is due
to the interplay between different physical ingredients, each highly non-trivial [2–6]: (i) GR,
describing how the fluids modelling the matter content of the universe interact with gravity,
in particular providing a framework in which the anisotropies and inhomogeneities that we
observe today in the Cosmic Microwave Background (CMB) radiation and the large scale
structures can be traced back to primordial ones [7]; (ii) some detailed microscopic physics,
describing the interactions (or lack of thereof) among the cosmological fluids (e.g. through
the relativistic Boltzmann equation [8], a combination of the first two points); (iii) finally,
inflation [9–11] (or some alternative model of the very early universe [12]), providing a natural
argument for the assignment of the initial conditions and a physical mechanism for the
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generation of the primordial perturbations acting as seeds of cosmic structure formation (see
e.g. [13] for a review). It is then clear that, in order to extract cosmology in all of its glory from
quantum gravity (QG), the theory needs to answer questions of very different physical nature.

Any successful candidate QG theory should be able to reproduce these results, in some
approximation, and possibly help to clarify the nature of the exotic forms of matter and energy
(e.g. the aforementioned cosmological constant and cold dark matter) which, surprisingly
enough, compose the vast majority of our universe. These represent established (in their
observational consequences) but still rather mysterious (in their fundamental physical nature)
ingredients of modern cosmology. Moreover, QG is also expected to shed light on the very
early phase of the universe, associated to the cosmological singularity predicted by GR, where
the whole semi-classical framework on which modern cosmology is based is likely to break
down, and that it is simply not accounted for in current models. Moreover, this is all the
more important, since cosmology could be one of the best observational testing grounds for
fundamental theories of QG.

To extract cosmology from fundamental QG formalisms is, in fact, a difficult challenge.
This is especially true in QG approaches based on structures that are not immediately related
to continuum fields and that are formulated in a manifestly background independent manner.

Even just reproducing the purely GR part of cosmological models (item (i) above) is far
from being a simple task, for the following reasons. First of all, it requires the determination
of appropriate continuum and classical limits of the theory, two limits that are in general
distinguished and independent in QG [14]. The continuum limit, in particular, requires control
over the collective quantum dynamics and appropriate coarse-graining of the fundamental,
microscopic degrees of freedom [15], both being highly non-trivial tasks as experience with any
quantum many-body system shows. Second, due to the absence of any manifold or spacetime
structure in background independent QG (a feature inherited directly from the classical
background independence of GR), time evolution and spatial localization in QG cannot be
defined in terms of the usual manifold structures on which effective field theory relies, and can
only be intended in a relational sense, i.e., they can only be defined with respect to physical
degrees of freedom. This relational strategy, already subtle at the classical level [16], becomes
more tricky at the quantum level (see e.g. [17] for a detailed discussion). For quantum gravity
theories suggesting an emergent spacetime scenario, this is even more true [18].

Classically, a relational framework can be implemented through the use of relational
observables [16, 19, 20] (see [21] for a review), gauge invariant extensions of phase space
functions (associated to some physical quantities) which encode the relative change with
respect to other phase space functions (associated to other physical quantities). For instance,
a common choice to describe relational time evolution consists in minimally coupling the
gravitational theory with a massless scalar clock (models of type II in [22]), which is in
fact well behaved enough to allow, for instance, for a reduced loop quantization of the
system [23]. When inhomogeneities, arguably the most important quantities for precision
cosmology measurements, are included in the picture, spatial rods need also to be employed.
Again, this is commonly achieved by introducing simple matter degrees of freedom to be used
as reference fields; in particular, one usually chooses models with four pairs of scalar degrees
of freedom and second class constraints (models of type I in the notation of [22]). Once the
second class constraints are solved, four degrees of freedom are eliminated and the remaining
ones are used as relational frame [22]. An example of such models is the Brown-Kuchař dust
introduced in [24–26]. They were used in fact in [27, 28] in order to define a cosmological
perturbation theory in terms of relational quantities.

– 2 –



J
C
A
P
0
7
(
2
0
2
2
)
0
0
4

The very definition of relational evolution and localization in an emergent QG theory
(whose fundamental degrees of freedom are only indirectly related to continuum and classical
quantities), however, is complicated by the fact that the quantities that we would classically
manipulate in order to recast their relative change as relational evolution and localization
are simply absent in the fundamental description. They are expected to be only available
in the continuum limit, after an appropriate coarse graining of the microscopic degrees of
freedom [18].

These challenges are obviously not only technical, but also conceptual.
In order to overcome them, one will need both guidance from physical non-QG experience

and a flexible QG formalism. Group Field Theories (GFTs) [29, 30] offer both, and are
thus promising candidate QG frameworks where the possibility of extracting continuum
cosmological physics from the fundamental theory is actually very concrete. They are
quantum and statistical field theories defined on a group manifold (not interpreted as a
“spacetime” manifold), typically characterized by non-local and combinatorial interactions. In
this respect, they are generalizations of matrix models [31, 32], and as examples (together
with, e.g., random tensor models [33–35]) of models defined within a broader Tensorial Group
Field Theory (TGFT) formalism, i.e. tensorial field theory models which share the same
non-local combinatorial pattern of interactions. More precisely, GFTs are TGFT models
characterized by tensors whose data can be given a “quantum geometric” interpretation. As
a result of this structure, GFTs offer interesting connections to other QG approaches, like
LQG [36–38], spin foam models [39–41], simplicial gravity models [41–44] and dynamical
triangulations [45–48].

Because of their field theoretic nature, GFTs offer tools and techniques that may prove
helpful to tackle the above challenges. For instance, renormalization group techniques can
be employed to study the continuum limit of the theory and the possible presence of phase
transitions [49–52]. Alternatively, one could also employ a mean-field approach [53] to
effectively describe the macroscopic dynamics (and also the critical behavior [54, 55]) of
the microscopic quantum gravitational many-body system. This perspective, which we will
also adopt below, guides the extraction of cosmological physics from the hydrodynamics of
GFTs [56]. In particular, this has been achieved in the recent literature by considering the
mean-field dynamics of condensate states [53, 57–63], i.e. states characterized by the simplest
possible collective behavior of the fundamental GFT quanta (see however [64] for a more
“state agnostic” approach).

Due to their macroscopic properties, these states have also been used to implement an
effective notion of relational evolution in [18] with respect to a massless scalar field clock. This
effective notion of relationality, being defined only for emergent (and averaged) quantities,
bypasses several technical and conceptual difficulties related to its definition for microscopic
QG degrees of freedom. Many intriguing results have been obtained from the effective
relational GFT condensate cosmology framework, by making use of an EPRL-like GFT
model (see [53] and section 2.1 for more details). In particular, two regimes of the resulting
emergent relational dynamics are worth mentioning [18, 53, 65]. First, a continuum classical
regime, characterized by a large number of GFT quanta, which matches the flat Friedmann
cosmological dynamics. Second, a bouncing regime, characterized by a possible (depending
on the impact of quantum fluctuations and on initial conditions) averaged resolution of the
cosmological singularity into a quantum bounce. Moreover, phenomenological studies on the
GFT interactions connected them to geometric inflation [66] and phantom dark energy [67].
These results have also been obtained recently using an extended Barrett-Crane (BC) model,

– 3 –



J
C
A
P
0
7
(
2
0
2
2
)
0
0
4

which suggests that the emergent behavior of these theories may in fact be universal (at least at
this level of approximation and for the few observables that have been considered so far) [68].

Motivated by the success of these homogeneous and isotropic results, some pioneering
works have tried making the first steps towards the study of small inhomogeneities [69–71].
In particular, in [69, 70] it was explored the possibility for the production of primordial
perturbations from quantum fluctuations of operators. However, the operators studied
in [69, 70] did not yet have a solid relational interpretation. In [71], instead, the evolution of
long wavelength perturbations was studied through the separate universe framework, already
applied successfully also to Loop Quantum Gravity (LQG) [72]. Here, we aim to provide a
generalization of the results obtained in [71] also to smaller wavelengths and in terms of an
effective localization of perturbations in terms of a proper relational matter frame consisting
of four minimally coupled scalar fields. This kind of matter can be seen as the corresponding
model of type II associated to the model of type I, and it was shown in [73] not to allow for a
reduced loop quantization of the system. This, however, is not a restriction for our purposes,
since we are only aiming for an effective relational description of the kinematic quantum
gravity system, and not for a reduced phase space quantization.

The main objective of this work is to attempt to reproduce part (i) of the above list of
ingredients making up modern cosmology, also for what concerns inhomogeneous cosmological
perturbations (in both geometry and matter sectors), leaving e.g. the (equally important)
task of reproducing part (iii) (which was instead the one considered by [69, 70]) to future
works. More precisely, in section 2, we will review the kinematics of the GFT models we are
interested in (i.e. EPRL-like and extended BC) and we will in particular introduce coherent
states which are peaked in “pre-matter” variables associated to the minimally coupled massless
scalar fields we want to use as a physical frame. In section 3, instead, we will specify the
classical system we want to reproduce, whose matter content will be characterized by five
minimally coupled massless scalar fields, four of which will make up the matter reference
frame and will be assumed to have negligible contribution to the energy-momentum budget
of the universe. The remaining field, whose interplay with geometry dominates the resulting
evolution of the universe, will be assumed to include small inhomogeneities with respect to
the matter frame. Moreover, in section 3, we will also show how dynamical equations for the
macroscopic quantities determining the condensate state can be obtained from a mean-field
quantum GFT dynamics. In section 4, we will study how geometry and matter physical
quantities evolve with respect to the matter fields frame, and we will discuss in particular the
possibility of matching the results with GR (in harmonic gauge) in an appropriate limit. The
results will be discussed in section 5, where we will also point out future research directions.
Finally, in appendix A we have reviewed how a first order harmonic gauge can be imposed
classically, while in appendix B we have reported the detailed computations leading to the
results concerning dynamics of section 3.

2 GFT effective relational cosmology: kinematics

In this section, we will review the basic notions of the GFT formalism necessary for the
extraction of effective relational cosmological dynamics. More precisely, in section 2.1 we
will first briefly review the definition of two models used in the literature for cosmological
applications, i.e., the EPRL-like and the extended Barret-Crane (BC) models. Then, we will
discuss the Fock structure of these theories, in particular when minimally coupled massless
scalar fields are included as additional degrees of freedom.
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We will then continue in section 2.2 by introducing a certain class of states which can be
associated, at least in some limit, to continuum geometries, and which can be in fact also used
to define an effective notion of relationality, thus paving the way to the study of cosmological
small relational inhomogeneities.

2.1 GFT models and their Fock structure

As mentioned in section 1, GFTs are field theories describing a field ϕ : Gd → C. The specific
choice of the group manifold G, of the dimension d and of the (combinatorial) action SGFT,
together with additional restrictions on the fields, characterize a given GFT model, as we
will see explicitly below with two examples. These data are chosen so that the perturbative
expansion of the partition function of the theory around the Fock vacuum can be matched
with spinfoam or lattice gravity models. The amplitudes of such expansion, therefore, can
be seen as discretized d-dimensional spacetimes and geometries, with the group theoretic
data characterizing the GFT being associated to discretized gravitational quantities. As a
consequence of this construction, the boundary states of the theory, and thus the fundamental
quanta of the theory, can be seen as d−1-simplices. When d = 4, as we will consider from now
on, these states can be seen as quantum tetrahedra whose geometric properties are encoded in
the group-theoretic data. In this sense, in the GFT approach to QG the classical spacetime is
expected to “emerge” from the collective behavior of the fundamental “pre-geometric quanta”
of the theory.

EPRL-like and extended BC. The extraction of continuum cosmological physics from
GFTs has been first obtained by considering an EPRL-like GFT model (see e.g. [53]). However,
it has been recently shown [68] that the vast majority of the results obtained within the
EPRL-like model can be similarly obtained in an extended BC model. This would suggest
that while the two models differ1 e.g. in the implementation of the simplicity constraint
(see below), they still belong to the same continuum universality class, a feature already
emphasized in [74].

Here we will briefly review the kinematic structure of these models. With kinematic
structure, we mean the kind of additional restrictions that are imposed on the GFT field
in order to satisfy the so-called closure and the simplicity constraints. Geometrically, these
constraints represent the fact that the bivectors associated to the faces of the fundamental
tetrahedra sum to zero and are simple, respectively. These are nothing but the discrete
counterparts of the imposition of gauge invariance and Plebanski geometricity condition in
the continuum, respectively. How these conditions are imposed in a GFT characterizes the
specific GFT model one is constructing.

Extended BC model. The extended BC model considered in [68] is a Lorentzian version of
the model defined in [75], which is in turn a generalization of the original BC model [76–
78] which allows for a non-ambiguous (i.e. commuting) imposition of the closure and
simplicity constraints. The group domain of the field is given by four copies of SL(2,C),
but it is extended to include a timelike normal X ∈ H3, where H3 = SL(2,C)/SU(2)
is the 3-hyperboloid, so ϕ(GI)→ ϕ(GI ;X), where ϕ(GI ;X) ≡ ϕ(G1, . . . , G4;X), with
each GI being an element of SL(2,C).

1For instance, the EPRL model, contrarily to the BC model, incorporates explicitly the Barbero-Immirzi
parameter.
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Simplicity and closure are then defined with respect to the normal X as follows:

ϕ(GI ;X) = ϕ(G1g1, . . . , G4g4;X) , ∀ gI ∈ SU(2)X , (2.1a)
ϕ(GI ;X) = ϕ(GIh−1;h ·X) , ∀h ∈ SL(2,C) , (2.1b)

where SU(2)X is the SU(2) subgroup of SL(2,C) stabilizing X. From the above
expressions it is clear that the normal X has the only purpose of defining consistently
the above constraints. As such, as we will mention below, it is not a dynamical variable.

EPRL-like model. For cosmological applications, an EPRL-like GFT model has been imple-
mented by following slightly different steps from the above extended BC model. Indeed,
in the approach followed by [53, 57], one starts from a GFT defined on G = SU(2),
with the details of the embedding of this SU(2) subgroup inside SL(2,C) (characterizing
the appropriate imposition of the simplicity constraint of the model) being encoded in
general in the kinetic and interaction terms of the action.2 This still guarantees that the
amplitudes of the perturbative expansion of the partition function of the model match
those of the EPRL spinfoam model, but allows the use of kinematic structures which are
easier to handle and, importantly, which offer a more direct geometric interpretation.
Indeed, when the closure constraint is imposed similarly to equation (2.1b) (but without
an explicit notion of normal):

ϕ(gI) = ϕ(gIh) , ∀h ∈ SU(2) , (2.2)

where ϕ(gI) ≡ ϕ(g1, . . . , g4) with each gI ∈ SU(2), the resulting boundary states
and fundamental quanta of the theory can be seen as open spin-networks, i.e. nodes
from which four links are emanating which are decorated with the equivalence class
of geometrical data [{gI}] = {{gIh}, h ∈ SU(2)}. This correspondence between the
fundamental structures of the theory and spin-network allows for a straightforward
connection with LQG, which may in particular prove helpful to gain insights for the
extraction of continuum physics [79].

As mentioned above, we will from here on explain the basic ideas underlying the extraction of
cosmology from GFTs by working within an EPRL-like model for simplicity. However, we
will emphasize similarities and differences between the two models where important, and we
will resort to a unified notation where useful.

Group representation basis. The interpretation we have provided above of the boundary
states of the theory as spin-network states is even more clear when working in the spin
representation. This can be done by expanding the field satisfying (2.2) on a basis of functions
on L2(G4/G), with G = SU(2). By denoting ~ξ = {jI ,mI , ι} the labels characterizing these
basis functions, we have

ϕ(gI) =
∑
ι

∑
jI

∑
mI ,nI

ϕj1,...,j4;ι
m1,...,m4

[ 4∏
i=1

√
d(ji)Dji

mini(gI)
]
Ij1,...,j4;ι
n1,...,n4 ≡

∑
~ξ

ϕ~ξψ~ξ(gI) , (2.3)

2In principle, the simplicity constraint can be imposed at the level of the kinetic term, of the interactions,
or both [57]. Each of these choices will in general result in different quantum theories. As we will see below,
however, in this paper the precise details of the interaction and kinetic kernels will not be important so our
results will encompass all the above choices.
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where Ij1,...,j4;ι
n1,...,n4 is an SU(2) intertwiner obtained from the right-diagonal invariance of the

GFT field. Exactly because of the choice G = SU(2), the boundary states are in fact clearly
decorated with spin-network vertex data ~ξ. More precisely, jI and mI are respectively spin
and angular momentum projection associated to the open edges of a given vertex, while ι
represents the intertwiner quantum number associated to the vertex itself.

Of course, a similar decomposition can be performed for the GFT field operator of
the extended BC model, the difference in this case being of course the field domain itself.
The representation theory of G = SL(2,C) is clearly more involved than the one for SU(2).
However, for the purposes of this paper, we will only need some basic facts. Unitary irreducible
representations of SL(2,C) are labelled by (ρ, ν), with3 ρ ∈ R and ν ∈ Z/2. The imposition
of the simplicity constraint (2.1a) then forces ν = 0 [68]. As a result, once integrating away
the normal, one finds [68]

ϕ(GI) ≡
∫

H3
dXϕ(GI ;X) =

∫
dρI

∑
jI ,lI

∑
mI ,nI

ϕρIjImI

[ 4∏
i=1

(4ρ2
i )D

(ρi,0)
jimilini

(gI)
]
BρI
lInI

, (2.4)

where dρI ≡
∏4
i=1 dρi, D(ρi,0)

jimilini
(gI) are representation matrices, with ji and li being positive

half-integers and mi ∈ {−ji, . . . , ji}, ni ∈ {−li, . . . , li}. Finally, BρI
lInI

is the Barret-Crane
intertwiner,

BρI
lInI
≡
∫

H3
dX

4∏
i=1

D
(ρi,0)
jimi00(X) . (2.5)

Notice that, being the intertwiner space one-dimensional, there is no intertwiner label ι in this
case, contrarily to what we have seen in equation (2.3). Despite this difference, equations (2.3)
and (2.4) share many obvious similarities.

Fock structure. GFTs can naturally be formulated in the language of second quantization.
To this purpose, one defines the field operators ϕ̂, ϕ̂† satisfying the commutation relations:

[ϕ̂(gI), ϕ̂†(g′I)] = IG(gI , g′I) , (2.6a)
[ϕ̂(gI), ϕ̂(g′I)] = [ϕ̂†(gI), ϕ̂†(g′I)] = 0 , (2.6b)

where IG(gI , g′I) is a Dirac delta distribution on the space G4/G, with G = SU(2). For the
extended BC model, instead, the commutation relations would read

[ϕ̂(GI ;X), ϕ̂†(G′I ;X ′)] = IBC(GI ;X,G′I ;X ′) , (2.7a)
[ϕ̂(GI , X), ϕ̂(G′I , X ′)] = [ϕ̂†(GI , X), ϕ̂†(G′I , X ′)] = 0 , (2.7b)

where, similarly as before, IBC(GI ;X,G′I ;X ′) is the identity on the space L2(SL(2,C)4 ×H3)
which preserves the symmetries (2.1). Upon quantization, the modes ϕ~ξ of the decompo-
sition (2.3) are quantized and become creation and annihilation operators ϕ̂~ξ and ϕ̂†~ξ

for
spin-network vertices, which satisfy[

ϕ̂~ξ, ϕ̂
†
~ξ′

]
= δ~ξ,~ξ′ ,

[
ϕ̂~ξ, ϕ̂~ξ′

]
=
[
ϕ̂†~ξ
, ϕ̂†~ξ′

]
= 0 . (2.8)

3Strictly speaking, this is only true for the principal series, which we will restrict to here. For more details
see [68] and references therein.
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The Fock space is then constructed as usual from the repeated action of the creation operator
on the vacuum state |0〉 annihilated by all ϕ̂~ξs, whose n-particle states satisfy

ϕ̂~ξ |n~ξ〉 =
√
n~ξ |n~ξ − 1〉 ,

ϕ̂~ξ |n~ξ〉 =
√
n~ξ + 1 |n~ξ + 1〉 .

It is possible to show that the Fock space constructed in this way shares many similarities with
the kinematical Hilbert space of LQG [80], since it encodes very similar degrees of freedom.

As usual in the second quantized approach, one can construct quantum observables out
of the quantized field operators which act on states of the Fock space. The simplest example
of such operators is the number operator4

N̂ ≡
∫

dgI ϕ̂†(gI)ϕ(gI) , (2.9)

whose eigenvalues characterize different sectors of the GFT Fock space, since they count the
number of quanta present in a given state. A general second quantized operator then reads

Ôn+m ≡
∫

(dgI)m(dhI)nOm+n(g1
I , . . . , g

m
I , h

1
I , . . . , h

n
I )

m∏
i=1

ϕ̂†(giI)
n∏
j=1

ϕ̂(hjI) , (2.10)

where the matrix elements Om+n can be obtained either from quantum simplicial considera-
tions, or, in the case G = SU(2) that we are considering here, from the LQG matrix elements
between spin-network vertex states. This construction is of course independent on the specific
representation of the Hilbert space one chooses to work with. For instance, a generic one-body
operator characterized by a creation and an annihilation operator can be written as

Ô2 =
∑
~ξ~ξ′

O2(~ξ, ~ξ′)ϕ̂†~ξϕ̂~ξ′ . (2.11)

One-body operators, typically associated to macroscopic observables, are clearly of great
interest for the extraction of emergent continuum physics, and will thus be those that we will
focus on from here on.

Coupling massless scalar fields. As discussed in section 1, in this paper we aim to
describe relational cosmological inhomogeneities. To this purpose, it is necessary to identify
a set of relational rods and clock to use as physical frame. A very simple choice of such
physical frame consists in four minimally coupled free massless scalar fields.5 Here, therefore,
we introduce “pre-matter” data alongside the purely geometric ones discussed above, which
by construction can be associated to n scalar fields. Indeed, the inclusion of such pre-matter
degrees of freedom to the GFT is performed in such a way that the perturbative expansion of
the GFT partition function matches the discrete path-integral of the simplicial gravity model

4For the extended BC case, as a consequence of the fact that the GFT field operator depends on the normal
X, which is however non-dynamical, equation (2.9) becomes

N̂ ≡
∫

H3
dX
∫

dGI ϕ̂†(GI ;X)ϕ(GI ;X) .

5Indeed, as we will see in section 3, this choice remarkably simplifies the quantum dynamics.
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minimally coupled with the massless scalar fields one wants to reproduce (see [81] for more
details). This clearly changes the precise form of the GFT action, which now has to take into
account the discretized matter-geometry coupling, but it also impacts the kinematics of the
GFT model. Indeed, consider as an example the case in which we want to include one single
scalar field. Since the scalar field is “discretized” on the simplicial structures corresponding
to the GFT boundary states, the very same GFT field domain has to be enlarged in order to
account for the additional matter data χ ∈ R:

ϕ̂(gI) −→ ϕ̂(gI , χ) , H1 = L2(SU(2)4/SU(2))→ L2(SU(2)4/SU(2)× R) , (2.12)

where H1 is the one-particle Hilbert space of the model. Notice that both these modifications
to the dynamics and kinematics of the model happen regardless of the precise GFT model
(e.g. EPRL-like or extended BC model). In particular, the arguments presented here in the
exemplifying case of the EPRL-like model apply identically to the extended BC one.

Clearly, if one wants to introduce more (say n) than one minimally coupled massless
scalar field, the group field operator becomes ϕ̂(gI , χa) ≡ ϕ̂(gI , χ1, . . . , χn), with a = 1, . . . , n.
Of course, the commutation relation in (2.6a) has to be changed consistently, so that[

ϕ̂(gI , χa), ϕ̂†
(
hI , (χ′)a

)]
= IG(gI , hI)δ(n) (χa − (χ′)a

)
. (2.13)

Importantly, this change on the kinematic structure of the Fock space is reflected also in
the second quantized operators, which now involve integrals over all the possible values of
χa ∈ Rn. For instance, the number operator reads

N̂ =
∫

dnχ
∫

dgI ϕ̂†(gI , χa)ϕ̂(gI , χa) . (2.14a)

A crucial quantity for describing cosmological geometries is the volume operator

V̂ =
∫

dnχ
∫

dgI dg′I ϕ̂†(gI , χa)V (gI , g′I)ϕ̂(g′I , χa) , (2.14b)

whose matrix elements V (gI , g′I) are defined from those of the first quantized volume operator
in the group representation.6

The presence of “pre-matter” data allows for the construction of a set of observables
naturally related to them, through polynomials and derivatives with respect to χa for each
a = 1, . . . , n. In particular, the two fundamental, self-adjoint ones that can be obtained in
this way are the “scalar field operator” and the “momentum operator” [53]:

X̂b ≡
∫

dnχ
∫

dgI χbϕ̂†(gI , χa)ϕ̂(gI , χa) , (2.14c)

Π̂b = 1
i

∫
dnχ

∫
dgI

[
ϕ̂†(gI , χa)

(
∂

∂χb
ϕ̂(gI , χa)

)]
, (2.14d)

whose expectation values on appropriate semi-classical and continuum states should be
associated to the scalar field itself and possibly its momentum, which are at the core of a
relational definition of dynamics and evolution [18], as we will briefly review below.

6Such an operator is diagonal in the spin representation, with eigenvalues ∼ j3/2 for the EPRL-like model
we are considering here and ∼ ρ3/2 for the extended BC model.
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2.2 Continuum geometries, effective relationality and GFT condensates

In order to describe the relational evolution of cosmological small inhomogeneities, one
necessary step is to identify a class of quantum states which admit some “proto-geometric”
interpretation in terms of approximate continuum geometries. This allows to define an
effective notion of relational evolution, whose general definition in a “pre-geometric” sector of
an emergent quantum gravity theory (such as a GFT) is instead technically and conceptually
very complicated [18], as we have discussed in section 1. Such “proto-geometric” states are
expected to be the result of some form of coarse-graining over the fundamental, microscopic
degrees of freedom, and thus to show some form of collective behavior. In a sense, they
are associated to a hydrodynamic description of the underlying quantum gravity model.
The simplest form of such collective behavior is shown by coherent (or, more commonly,
condensate) states, where each fundamental quantum is associated to the same condensate
wavefunction:

|σ〉 = Nσ exp
[∫

dnχ
∫

dgI σ(gI , χa)ϕ̂†(gI , χa)
]
|0〉 (2.15a)

= Nσ exp

∫ dnχ
∑
~ξ

σ~ξ(χ
a)ϕ̂†~ξ(χ

a)

 |0〉 ,
where

Nσ ≡ e−‖σ‖
2/2, (2.16a)

‖σ‖2 =
∫

dnχ
∫

dgI |σ(gI , χa)|2 ≡ 〈N̂〉σ . (2.16b)

By definition, such coherent states are eigenstates of the field operator:

ϕ̂(gI , χa) |σ〉 = σ(gI , χa) |σ〉 , ϕ̂~ξ(χ
a) |σ〉 = σ~ξ(χ

a) |σ〉 . (2.17)

States of the form (2.15a) have been used in the past literature to show the intriguing results
about the extraction of homogeneous and isotropic cosmological physics from GFTs mentioned
in section 1. Moreover, they allow for a simple implementation of an effective description of
relational quantities, as we explain below.

Symmetries of the condensate wavefunction. Before discussing how an effective rela-
tional framework can be implemented, let us mention some important symmetry assumptions
that are often made on the condensate wavefunction. Let us also emphasize that the imposi-
tion of symmetry properties of the condensate wavefunction is conceptually different from a
symmetry reduction procedure. Indeed, the first is a condition on a collective macroscopic
quantity, while the latter acts on the fundamental microscopic degrees of freedom (though
technically in the case of a coherent state like the one in (2.15a) the collective wavefunction
is also the wavefunction of each microscopic tetrahedron).

A first important symmetry that is imposed on the condensate wavefunction is a diagonal
left-invariance:

σ(gI , χa) = σ(hgI , χa) , ∀h ∈ SU(2) . (2.18)

This condition can be seen as an average over the relative embedding of the tetrahedron in
su(2) [53]. As a consequence of this imposition, the domain of the condensate wavefunction
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is isomorphic to the space of all the spatial metrics at a point, or, equivalently, to minisuper-
space [58]. This very same result holds also in the case of the extended BC model, with a similar
averaging procedure (now over all configurations involving a preferred hypersurface normal
and thus only for the integrated condensate wavefunction with respect to the normal X) [68].

An additional assumption that is often imposed on the condensate wavefunction is its
isotropy [53] (assumption KS2). This drastically simplifies the continuum dynamics, since the
condensate wavefunction effectively turns out to depend on only one spin label j:

σ(gI , χa) =
∞∑
j=0

σj(χa)I∗jjjj,ι+m1m2m3m4I
jjjj,ι+
n1n2n3n4

√
d(j)4

4∏
i=1

Dj
mini(gI) , (2.19)

where d(j) = 2j + 1 and ι+ is the largest eigenvalue of the volume operator compatible with
j. Therefore, the condensate wavefunction in spin representation reads

σ~ξ(χ
a) ≡ σ{j,~m,ι+}(χ

a) = σj(χa)I
jjjj,ι+
m1m2m3m4 . (2.20)

Importantly, a similar result holds also for the extended BC model, with the dynamical part
of the condensate wavefunction σρ(χa), effectively depending on the continuous representation
label ρ [68]. As a consequence, it is useful to define a label υ which can be identified with ρ
or j depending on the specific model chosen (extended BC or EPRL-like, respectively).

For instance, in terms of this new label, we can write the expectation value of the number
and the volume operators on an isotropic coherent state as

〈N̂〉σ =
∑∫
υ

|συ(χa)|2 , 〈V̂ 〉σ =
∑∫
υ

Vυ|συ(χa)|2 , (2.21)

with the ∑∫ symbol indicating that, depending on whether υ = ρ or υ = j, the right-hand-sides
of the above equations will involve an integral or a sum, respectively.

Effective relationality in GFT: CPSs. Let us now discuss a way to implement an
effective relational description of physical quantities in the GFT formalism. As we have
mentioned above, in [18] an effective framework for the relational evolution of geometric
observables with respect to a scalar field clock was constructed by making use of Coherent
Peaked States (CPSs). As the name suggests, these are coherent states of the form (2.15a)
whose wavefunction has however strong peaking properties on the scalar field variables. For
instance, for a single scalar field clock, we would have

σε(gI , χ0) ≡ ηε(gI ;χ0 − x0, π0)σ̃(gI , χ0) , (2.22)

where the peaking properties around x0 are encoded in the peaking function ηε with a typical
width given by ε. Of course, in order for the peaking properties to be effective, one wants ε to
be very small, ε� 1. However, one cannot just take ε→ 0, because as a consequence of the
Heisenberg uncertainty principle, the fluctuations of the operator Π̂0 defined in equation (2.14d)
would become arbitrarily large, which is certainly not ideal if one wants to interpret the
scalar field as a classical clock, at least in some appropriate limit. In order to guarantee
the existence of such classical clock regime, in [18, 65] the condensate wavefunction (2.22)
was also assumed to be dependent on the parameter π0, satisfying επ2

0 � 1. As a concrete
example of the above peaking function, one can consider a Gaussian [18, 65]:

ηε(χ0 − x0, π0) ≡ Nε exp
[
−(χ0 − x0)2

2ε

]
exp[iπ0(χ0 − x0)] , (2.23)
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with a normalization constant Nε and where, as a first ansatz, it was assumed that the peaking
function is independent on the group variables gI . Therefore, the reduced wavefunction σ̃
(which is assumed not to spoil the peaking properties of ηε) encodes all the geometric properties
of the state, and in particular shows the symmetries discussed above. Its specific form will be
determined by dynamical considerations in section 3. By construction, these states satisfy, in
the limit of small ε (see [18, 65] for more details):

〈χ̂0〉σ ≡
〈X̂0〉σ
〈N̂〉σ

' x0 , (2.24)

where the expectation value in the above equation is computed with respect to states with
condensate wavefunction given by (2.22). Notice that we are defining a scalar field operator
here through the intensive version of the second quantized operator X̂0 in equation (2.14c).
As a consequence of the above equation, change with respect to x0 can be associated to
evolution with respect to the averaged clock. In this sense, the CPSs realize a notion of
effective relational evolution of averaged geometric quantities with respect to the physical clock
(x0), with the effective approach becoming increasingly accurate the smaller one takes ε and
the larger 〈N̂〉σ grows. Indeed, it has been shown in [65] that this latter condition, typically
associated to an emergent regime and dynamically related to a very large value of the relational
clock |x0|, is what ultimately allows for a suppression of fluctuations of both geometric and
clock variables. In this large 〈N̂〉σ regime, the evolution of expectation values of geometric
quantities with respect to x0 can thus be interpreted as classical relational dynamics.7

The physical interpretation of the CPSs is then clear: they assign a distribution of spatial
geometries for each value of the peaking parameter x0 ∈ R, i.e., to each value the scalar field
clock takes on average. As such, in the emergent limit of large number of particles (and ε� 1)
one can see them as the quantum equivalent of leaves of a χ-foliation of spacetime.

A similar construction can be performed if one is interested in describing also relational
inhomogeneities of physical quantities. Assume that the spacetime dimension is d, with d ≤ n.
Then, the condensate state with condensate wavefunction given by

σεµ,πµ;xµ(gI , χa) =

d−1∏
µ=0

ηεµ(χµ − xµ, πµ)

 σ̃(gI , χa) , (2.25)

where the peaking function8 ηεµ(gI ;χµ−xµ, πµ) can be taken to a Gaussian as in equation (2.23)
for each µ = 0, . . . , d− 1, would encode the distribution of spatial geometric data for each
point xµ of the physical manifold coordinatized by the frame fields χµ. By construction,
the expectation value of the intrinsic version of the second quantized field operators X̂µ in
equation (2.14c) on the above states is approximately given by

〈χ̂µ〉σ ≡
〈X̂µ〉σ
〈N̂〉σ

' xµ , (2.26)

thus characterizing the change with respect to xµ as physical. These will be the fundamental
states that we will consider from now on. Before concluding this discussion, let us also

7On the other hand, when 〈N̂〉σ cannot be taken to be large, quantum fluctuations on both geometric and
clock variables may become large, thus suggesting that the averaged evolution at the core of the effective
relational approach may not be reliable anymore [65].

8Here we are assuming, as for the single scalar field case, that εµ � 1 and εµπ2
µ � 1 for each µ = 0, . . . , d−1.
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emphasize that the implementation of relational evolution through the CPSs (and thus, also
their physical interpretation) that we have reviewed here for an EPRL-like model, can be
identically realized also for the extended BC model, with the simple substitution gI → (GI ;X)
in all the above equations [68].

3 GFT effective relational cosmology: dynamics

The main aim of this section is to obtain the dynamical equations which, once solved, determine
the specific form of the reduced condensate wavefunction σ̃. The microscopic GFT action
SGFT determining these equation is in turn obtained by comparison with an appropriate
simplicial gravity model (see e.g. the discussion in section 2.1). Therefore, in section 3.1,
we will specify which kind of classical system we are interested in. Then, in section 3.2 we
will obtain the dynamical equations determining the evolution of the reduced condensate
wavefunction from the imposition of averaged GFT quantum equations of motion. Finally,
in section 3.3, we will define background and perturbed quantities, and we will consistently
study the dynamical equations at zeroth and first order in the small perturbations.

3.1 Classical system

The system we want to describe is classically composed by d + 1 massless scalar fields
minimally coupled to gravity. We also assume that d of these fields, which we call χµ,
µ = 0, . . . , d − 1, give a negligible contribution to the total energy-momentum tensor of
the system, while the contribution coming from the remaining scalar field, which we call φ,
is dominant (assumption DS4). The d scalar fields χµ, therefore, can be thought as “test
fields” which we would naturally use to define a material reference system, for instance using
harmonic coordinates xµ (see appendix A for more details). The field φ is assumed to be
almost homogeneous with respect to the material coordinate system (or, equivalently to the
harmonic frame), meaning that φ = φ̄+ δφ, with φ̄ = φ̄(t), t ≡ x0, being the homogeneous
component of the field.

Matter action and symmetries. At the classical level, therefore, we assume a matter
action of the form

Sm[χµ, φ] = −1
2

∫
d4x
√
−ggab∂aχ0∂bχ

0 + λ

2

d∑
i=1

∫
d4x
√
−ggab∂aχi∂bχi

− αφ
2

∫
d4x
√
−ggab∂aφ∂bφ , (3.1a)

= 1
2

∫
d4x
√
−gM (λ)

µν g
ab∂aχ

µ∂bχ
ν − αφ

2

∫
d4x
√
−ggab∂aφ∂bφ , (3.1b)

where αφ � 1, and λ = ±1, so that M (+1)
µν = ηµν , while M (−1)

µν = −δµν . The choice λ = −1
corresponds to the natural matter coupling of four free, massless and minimally coupled scalar
fields in classical gravity, in which all of them are treated on identical footing. Moreover, only
when λ = −1 one is guaranteed to have the appropriate sign for the energy (density) of the four
fields. On the other hand, when λ = +1, the second term in the action has an opposite sign
with respect to the first and the third one. As we will see below, the GFT action is constructed
so that it respects the symmetries of the classical matter action [18, 53, 69], and in particular it
is symmetric under a rotation of the four scalar fields, with signature of the rotation depending
the value of λ. Given this, one would expect the choice λ = +1 to the appropriate one for
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the interpretation of the above four scalar fields as a relational frame. However, as we have
argued above, such an interpretation is available only at an emergent level and in an effective
sense; as a consequence, only the symmetry properties of macroscopic variables (entering in
the definition the CPSs) actually determine the emergent signature of the effective frame,
which may well be independent of the signature of the orthogonal transformation relating
the fields in the action. In order to see this clearly below, and to keep things as general as
possible, leaving it to the effective cosmological dynamics to fix some of the ambiguities, we
will not restrict to a specific choice of λ = ±1, keeping any λ-dependence explicit.

As we have just mentioned, the symmetries of the above action play an important role
in determining the form of the GFT action. These are (cfr. [82]):

Translations. χµ → χµ + kµ and φ→ φ+ k, for each µ = 0, . . . , d− 1.

Reflections. χµ → −χµ and φ→ −φ, for each µ = 0, . . . , d− 1.

Lorentz transformations/Euclidean rotations. When λ = +1 (resp. λ = −1), transformations
R ∈ SO(1, 3) (resp. SO(4)) acting as χµ → Rµνχ

ν are a symmetry of the Lagrangian
for each µ = 0, . . . , d− 1.

3.2 GFT averaged dynamics

Analogously to what has been done in [53, 65], here we will only extract an effective mean-field
dynamics from the full quantum equations of motion. In other words, we will only consider
the imposition of the quantum equations of motion averaged on the states that we consider to
be relevant for an effective relational description of the cosmological system (assumption DS2),
which, in our case, would be coherent states |σεµ ;xµ, πµ〉 as in equation (2.15a) whose
condensate wavefunction is assumed to take the form (2.25) (assumptions KS1 and KS3):〈

δSGFT[ϕ̂, ϕ̂†]
δϕ̂†(gI , xµ)

〉
σεµ ;xµ,πµ

≡
〈
σεµ ;xµ, πµ

∣∣∣∣δSGFT[ϕ̂, ϕ̂†]
δϕ̂†(gI , xµ)

∣∣∣∣σεµ ;xµ, πµ
〉

= 0 . (3.2)

Here, SGFT is the GFT action, whose specific form will be discussed below. While perfectly
consistent with the effective and approximate nature of the relational framework discussed in
the previous section, the imposition of only an averaged form of equations of motion is clearly
a strong truncation of the microscopic quantum dynamics, which is expected to be justified
in general only in the emergent regime of very large number of particles (see the disucssion in
section 2.2 and in footnote 7).

Moreover, for the purposes of this work, we will be interested in observables capturing
only isotropic perturbations (e.g. the volume operator (2.14b)). For this reason, not only we
will assume that the reduced wavefunction is isotropic, in the sense explained in section 2.2
(so that the expectation value of the volume operator reduces to (2.21)), but we will also
consider a condensate state whose peaking properties are isotropic as well (assumption KC2):

σε,δ,π0,πx;xµ(gI , χµ, φ) = ηε(χ0 − x0;π0)ηδ(|χ− x|;πx)σ̃(gI , χµ, φ) , (3.3)

where |χ−x|2 = ∑d
i=1(χi−xi)2. For the moment we will also assume (assumption KC1) that

the parameter δ is a complex quantity, C 3 δ = δr+iδi, but with a positive real part, necessary
for the peaking properties of the states, δr > 0. As we will see below, allowing a complex
width for the rods peaking function allows the perturbation equations to be dependent on a
derivative kernel with emergent Lorentz signature.
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GFT action. Having made these premises, we now specify the form of SGFT. As explained
in section 2.1, SGFT depends on the precise spinfoam (or simplicial gravity) model coupled
with d+ 1 massless scalar fields one wants to reproduce. While the EPRL-like and extended
BC models differ on their domain (respectively SU(2) and SL(2,C)×H3) and on the precise
way the simplicity constraint is imposed, thus resulting in (in principle) different kinetic and
interaction kernels, they are both defined by an action including a quadratic kinetic term and
a non-local interaction term U +U∗ (the star representing complex conjugation) of simplicial9
type characterized by 5 powers of the field operator, SGFT = K + U + U∗.

The resulting form of the action is however quite complicated to handle for most practical
applications. For this reasons, one often makes some additional simplifying assumptions on
SGFT [18, 53]:

• First of all, one imposes that the field symmetries of the classical action are preserved
at the quantum level, meaning that they are also symmetries of the GFT action SGFT
(assumption DS1). In the case considered here, the symmetries to be respected are those
highlighted in the section above: invariance under Lorentz transformations/Euclidean
rotations, shifts, and reflections. This greatly simplifies the form of the interaction and
kinetic terms, which read, in the EPRL-like case10 [18, 53]

K =
∫

dgI dhI
∫

ddχ ddχ′ dφ dφ′ ϕ̄(gI , χ)K(gI , hI ; (χ− χ′)2
λ, (φ− φ′)2)ϕ(hI , (χ′)µ, φ′) ,

U =
∫

ddχ dφ
∫ ( 5∏

a=1
dgaI

)
U(g1

I , . . . , g
5
I )

5∏
`=1

ϕ(g`I , χµ, φ) ,

where (χ−χ′)2
λ ≡ sgn(λ)M (λ)

µν (χ−χ′)µ(χ−χ′)ν and where K and U are the respectively
the aforementioned kinetic and interaction kernels encoding information about the
EPRL-like model and, in particular, about the specific Lorentzian embedding of the
theory.

• The second simplifying assumption that is often made in cosmological applications is
that one is interested in a “mesoscopic regime” where interactions are in fact essentially
negligible (assumption DS3). Clearly, this can only be a transient regime, and one
expects that, eventually, interactions do become important (see e.g. [62, 67, 83], for some
works which study the phenomenological implications of the inclusion of interactions).

Dynamical equations. Under both these assumptions, and performing a Fourier transform
with respect to the variables φ and φ′, one can see that the averaged quantum equations of
motion reduce to∫

dhI
∫

ddχK(gI , hI ;χ2
λ, πφ)ηε(χ0;π0)ηδ(|χ|;πx)σ̃(hI , χ0 + x0,χ + x, πφ) = 0 , (3.4)

9These kind of interactions are called simplicial because they represent the gluing of 5 different tetrahedra
in order to form a 4-simplex, the basic building block of a 4-dimensional discretized manifold.

10Similar expressions hold for the extended BC model, provided that one extends the domain of the GFT
fields and kinetic interaction kernels as gI → (GI ;X). Moreover, since the normal X is non-dynamical, the
interaction kernel does not depend on it. As a consequence, only the integrated field (2.4) becomes important
at the level of interactions. The kinetic kernel instead depends on the normal in a localized way, imposing
X = X ′, with X and X ′ being the arguments of ϕ̄ and ϕ respectively. We refer to [68] for more details on the
action of the extended BC model.
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where πφ is the variable canonically conjugate to φ with respect to the Fourier transform.
Expanding K and σ̃ in power series around χ0 = 0, χ = 0 [18], and assuming that (i) |δ| and
ε are small, but the quantities

z0 ≡ επ2
0/2 , z ≡ δπ2

x/2 (3.5)

are large in absolute value (assumption KS3) and (ii) reducing to isotropic configurations
(assumption KS2), one finds, at the lowest order in the small parameters |δ| and ε (see
appendix B for a detailed derivation):

∂2
0 σ̃j(x, πφ)− iγ∂0σ̃j(x, πφ)− (λ)E2

j (πφ)σ̃j(x, πφ) + α2∇2σ̃j(x, πφ) = 0 , (3.6)

where j is the isotropic spin label introduced in equation (2.20), where we have dropped the
superscript µ for the argument of the reduced wavefunction σ̃, x ≡ xµ and where ∂2

0 and
∇2 ≡

∑
i ∂

2
i represent derivatives with respect to rod and clocks values respectively. Finally,

we have defined

γ ≡
√

2εz0
εz2

0
, (λ)E2

j ≡
1
εz2

0
− r(λ)

j;2 (πφ)
(
1 + 3λα2

)
, α2 ≡ 1

3
δz2

εz2
0
, r(λ)

s ≡
K̃

(s)
λ

K̃
(0)
λ

.

Notice that by definition α2 is in general a complex parameter, whose real and imaginary
parts are given by

Reα2 = π2
x

6
δ2
r − δ2

i

εz2
0

, Imα2 = π2
x

3
δrδi
εz2

0
.

Rewriting explicitly equation (3.6) in terms of these quantities, we thus find

0 = ∂2
0 σ̃j(x, πφ)− iγ∂0σ̃j(x, πφ)− (λ)η2

j σ̃j(x, πφ)− i(λ)β2
j σ̃j(x, πφ)

+ Reα2∇2σ̃j(x, πφ) + i Imα2∇2σ̃j(x, πφ) , (3.7)

with
(λ)η2

j ≡
1
εz2

0
− r(λ)

j;2 (πφ)
(
1 + 3λReα2

)
(λ)β2

j = 3λ Imα2rj;2 . (3.8)

This is our fundamental equation determining the form of the reduced condensate wavefunction
σ̃. As in [18, 53], however, it is useful to decompose equation (3.7) in its real and imaginary
parts, by defining σ̃j ≡ ρj exp[iθj ], so that, using

σ̃′′j =
[
ρ′′j − (θ′j)2ρj + iθ′′j ρj + 2iρ′jθ′j

]
eiθj ,

∇2σ̃j =
[
∇2ρj − (∇θj)2ρj + i∇2θjρj + 2i∇ρj ·∇θj

]
eiθj ,

we see that, for the real and imaginary parts we have, respectively,

0 = ρ′′j + Reα2∇2ρj −
[(
θ′j

)2
+ (λ)η2

j − γθ′j − Reα2 (∇θj)2 − Imα2∇2θj

]
ρj

− 2∇ρj ·∇θj , (3.9a)

0 = θ′′j ρj + 2θ′jρ′j − γρ′j + Reα2
[
2∇ρj ·∇θj +∇2θjρj

]
− (λ)β2

j ρj

+ Imα2
[
∇2ρj − (∇θj)2 ρj

]
, (3.9b)

where we have suppressed the explicit dependence of functions for simplicity.
At this point, it is important to recall that we are interested in slightly inhomogeneous

relational quantities. Therefore, in the next section we will consider a perturbative framework
(with respect to spatial gradients) in which we will study the equations above.
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3.3 Background and perturbed equations of motion
The perturbative context will be defined by assuming that the functions ρj and θj can be
written as

ρj = ρ̄j + δρj , θj ≡ θ̄j + δθj , (3.10)
with ρ̄ = ρ̄(x0, πφ) and θ̄ = θ̄(x0, πφ) being “background” (zeroth-order) quantities and with
δρj and δθj being small corrections to them. Let us study the zeroth- and the first-order (in
δρ, δθ) form of equations (3.9).

Background. At the zeroth-order equations (3.9) become

ρ̄′′j (x0, πφ)−
[(
θ̄′j(x0, πφ)

)2
+ (λ)η2

j (πφ)− γθ̄′j(x0, πφ)
]
ρ̄j(x0, πφ) = 0 , (3.11)

θ̄′′j (x0, πφ)ρ̄j + 2θ̄′j(x0, πφ)ρ̄′j(x0, πφ)− γρ̄′j(x0, πφ)− (λ)β2
j ρ̄j(x0, πφ) = 0 , (3.12)

where we have specified the dependence of the condensate modulus and phase on x0 and πφ
explicitly. Let us rewrite the second equation by multiplying by ρ̄j 6= 0: we obtain

θ̄′′j (x0, πφ)ρ̄2(x0, πφ)j + (θ̄′j(x0, πφ)− γ/2)(ρ̄2
j )′(x0, πφ)− (λ)β2

j ρ̄
2
j (x0, πφ) = 0 ,

or, equivalently,

θ̄′′j (x0, πφ) + (θ̄′j(x0, πφ)− γ/2)
(ρ̄2
j )′(x0, πφ)
ρ̄2
j (x0, πφ) −

(λ)β2
j = 0 .

Now, assume that, in the regime of interest, (λ)β2
j in the above equation is negligible.11 The

results, in these cases are the same as in [18], so that the equations for background phase and
modulus can equivalently be written in terms of the integration constants Qj and Ej as

θ̄′j(x0, πφ) = γ

2 + Qj(πφ)
ρ̄2
j (x0, πφ) , (3.13a)

(ρ̄′j)2(x0, πφ) = Ej(πφ)−
Q2
j (πφ)

ρ̄2
j (x0, πφ) + µ2

j (πφ)ρ̄2
j (x0, πφ) ' µ2

j (πφ)ρ̄2
j (x0, πφ) , (3.13b)

where µ2
j (πφ) ≡ (λ)η2

j (πφ)− γ2/4 (we have dropped the superscript (λ) for notation simplicity)
and with the last approximate equality being valid for large densities ρ̄j � 1 (assumption DC1).

First order. The first order equations, instead, are
0 = δρ′′j (x, πφ) + Reα2∇2δρj(x, πφ)− (λ)η2

j (πφ)δρj(x, πφ)

−
[
δθ′j(x, πφ)

(
2θ̄′j(x0, πφ)− γ

)
− Imα2∇2δθj(x, πφ)

]
ρ̄j(x0, πφ) , (3.14a)

0 = δθ′′j (x, πφ)ρ̄j(x0, πφ) + θ̄′′j (x0, πφ)δρj(x, πφ) + 2δθ′j(x, πφ)ρ̄′j(x0, πφ)
+ 2θ̄′j(x0, πφ)δρ′j(x, πφ)− γδρ′j(x, πφ) + Reα2[∇2δθj(x, πφ)]ρ̄j(x0, πφ)
− (λ)β2

j δρj(x, πφ) + Imα2∇2δρj(x, πφ) . (3.14b)
11Classically, the volume background dynamics with respect to the scalar field clock is exponential (see

appendix A). As we will see in section 4, the behavior of the background volume is essentially determined by
ρ̄2
j . If we make an exponential ansatz (analogous to (3.13b)) for ρ̄2

j and we plug it into the above equation for
the phase we obtain, for large densities (and thus for large values of the clock, given our exponential ansatz),
θ̄′ = (γµj + (λ)βj)/(2µj) (assumption DC1). By reinserting this into equation (3.11), we see that the ansatz is
not consistent, exactly because of the presence of (λ)βj . This motivates the choice of restricting to small values
of (λ)βj . Moreover, as we will see below, since (λ)β2

j ∝ Imα, the regime of small (λ)βj will be compatible with
the decoupling regime for first order perturbations.
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The two equations form a complicated set of coupled second order differential equations for
the variables δρj and δθj . The decoupling regime can be easily identified by first rewriting
equation (3.14b) as

0 = ρ̄j(x0, πφ)
[
δθ′′j (x, πφ) + 2δθ′j(x, πφ)

ρ̄′j(x0, πφ)
ρ̄j(x0, πφ) + Reα2∇2δθj(x, πφ)

]

+ δρj(x, πφ)
[
θ̄′′j (x0, πφ) + [2θ̄′j(x0, πφ)− γ]

δρ′j(x, πφ)
δρj(x, πφ)

]
+ Imα2∇2δρj(x, πφ) , (3.15)

where, similarly to what we did in the background case, and in light of the above discussion,
we neglected the term proportional to (λ)β2

j . It is then easy to see that the decoupling regime
corresponds to the limit in which12 (assumption DC3)

| Imα2| = 2
3
π2
xδr|δi|
ε2π2

0
� 1 , (3.16)

and when the background density ρ̄ is very large (assumption DC1). Indeed, using the
background equation (3.13a), equation (3.14a) can be written as

L[δρj ] ' 2δθ′jQj/ρ̄j ,

with L an appropriate linear differential operator. So, δρ ∼ δθ/ρ̄, and for large enough ρ̄j ,
the right-hand-side is negligible. Similarly, using that θ̄′′j = −2Qj ρ̄−2

j (ρ̄′j/ρ̄j) ∼ −2Qjµj ρ̄−2
j ,

we deduce that the first term at the second line of equation (3.15) is of order δρj/ρ̄2
j , while

the first term at the first line of equation (3.15) is of order ρ̄jδθj , so for large enough ρ̄j , only
the latter is important. As a result, equations (3.14) become

0 ' δρ′′j (x, πφ) + Reα∇2δρj(x, πφ)− (λ)η2
j (πφ)δρj(x, πφ) , (3.17a)

0 ' δθ′′j (x, πφ) + 2δθ′j(x, πφ)
ρ̄′j(x0, πφ)
ρ̄j(x0, πφ) + Reα∇2δθj(x, πφ) , (3.17b)

which are clearly decoupled. An interesting feature of the above equations is that any Lorentz
property of the second order differential operator in the perturbed equations is in fact only a
result of the features of the peaking functions, i.e. of the (approximate) vacuum state we work
with, and not of the fundamental symmetries imposed on the GFT action SGFT. Indeed, the
parameter λ, determining whether the matter variables enter the fundamental GFT action in
a Lorentz (λ = 1) or Euclidean (λ = −1) invariant fashion, only enters in (λ)ηj , and therefore
does not affect at all the differential structure of the equations. Since, as we will see below, the
form of the perturbation equations will naturally reflect the structure of equations determining
the relational evolution of perturbed physical quantities, this result is particularly intriguing,
because it would suggest that only a certain class of states is able to produce relational
equations with local Lorentz signature. We will comment further on this in section 5.

4 Effective relational dynamics of physical quantities

In this section, we will use the evolution equations for the condensate wavefunction in order
to obtain relational evolution equations for the expectation values of physical quantities, both

12Notice that this condition is consistent with requirement of having negligible (λ)β, see also footnote 11.
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at the background, i.e. homogeneous, and at the perturbed level, i.e. for inhomogeneous
cosmological perturbations.13 In order to keep the notation lighter, for any quantum operator
of interest Ô, we will denote Ō ≡ 〈Ô〉σ̄, where the expectation value is computed with respect
to the state characterized by the background part of the condensate wavefunction (3.3);
similarly, we will denote by δO the first order term in δρ, δθ of the expectation value 〈Ô〉σ
computed on states characterized by the condensate wavefunction (3.3).

The perturbed relational system includes in general geometric and matter operators.
Among the matter operators, those of obvious interest are the φ-scalar field operator and its
momentum, written in the πφ representation (see equations (2.14c) and (2.14d)) as

Φ̂ = 1
i

∫
dgI

∫
d4χ

∫
dπφ ϕ̂†(gI , χµ, πφ)∂πφϕ̂(gI , χµ, πφ) , (4.1a)

Π̂φ =
∫

dgI
∫

d4χ

∫
dπφ πφϕ̂†(gI , χµ, πφ)ϕ̂(gI , χµ, πφ) . (4.1b)

On the geometric side, there are in principle many different operators characterizing the
properties of slightly inhomogeneous geometries. Here, we are interested only in scalar
perturbations, and in particular only isotropic operators will be considered. Even in this case,
however, at the classical level, scalar perturbations are in general captured by several non-trivial
functions of the metric components, see e.g. equation (A.3). Reproducing metric perturbations
at the quantum level, however, means determining (i) the structure of microscopic observables
and (ii) collective states such that the expectation values of the former on the latter can be
associated to emergent metric functions. Most of the work in the literature so far, however,
has been devoted to the study of the volume operator (2.14b) and to models for which
coherent states (2.15a) with wavefunction (2.25) provide an interpretation in terms of metric
functions at specific values of the physical frame. The definition of more general operators
and states is certainly a pressing issue to be tackled in order to define a comprehensive and
complete perturbation theory from the GFT framework. However, we will content ourselves
with considering the evolution of the universe volume defined (as a quantum operator) in
equation (2.14b), which is consistent and microscopically well defined, with respect to the
states (2.15a) with wavefunction (2.25).

Moreover, in this section we will consider only the large densities (late times) regime of
evolution of the relevant quantities, in which case, as shown in the above section, the equations
of motion for δρ and δθ greatly simplify. As explained in section 2.2, one would expect this
regime (characterized by a very large number of GFT quanta) to be also the classical one (i.e.
characterized by small quantum fluctuations of macroscopic operators) [65, 84]. Therefore, it
is of fundamental importance to check whether in this regime the solutions of the equations
of motion coming from the quantum theory actually match those of GR (or possibly of some
alternative theory of gravity). This will be the main purpose of the following sections, where
geometric (section 4.1) and matter observables14 (section 4.2) will be discussed separately.
More precisely, we will look for a matching with GR in harmonic gauge (see appendix A),
which is expected to capture well the physical properties of a relational scalar field frame.

13When computing expectation values of operators, we will use the unified representation label υ introduced
in section 2.2. The same notation will be used to describe the evolution of these quantities, even though we
remark that the evolution equations in section 3 were obtained for an EPRL-like model. Strictly speaking,
therefore, they are valid for υ = j only. However, we prefer to use the more general υ in order to reflect
the expectation that the dynamical equations for the reduced condensate wavefunction maintain the same
functional form in the extended BC model, as supported by the results in [68].

14Here with matter observables we mean the observables associated to the scalar field φ, the only relevant
contribution to the energy budget of the universe under our assumptions.
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Before going to the actual computations, however, let us mention that the first order
perturbed harmonic gauge condition does not produce a complete gauge fixing, meaning that,
as we discuss in detail in appendix A, there are always small coordinate transformations
satisfying (A.5) that can be performed while still remaining in the harmonic gauge. An
important consequence of this residual gauge freedom is that one can fix the gauge in such
a way that volume perturbations are completely absent, by reabsorbing spatial geometric
perturbations in the specific coordinate choice. Given the very particular nature of this specific
coordinate system, however, it is difficult to understand whether it can actually be realized by
a physical reference frame. In particular, since in the quantum theory scalar field operators
have matrix elements which are only dependent on “pre-matter” variables, one would be led to
conclude that using these quantum degrees of freedom as an effective physical reference frame
one could not reproduce any such “partially geometric” coordinate system. Therefore, in the
following, we will look for a matching with classical GR in a completely gauge fixed harmonic
gauge, with the understanding that the residual first order gauge freedom has been fixed in
such a way that spatial geometric perturbations have not be reabsorbed by the gauge choice.

4.1 Volume evolution
Let us start from geometric observables, i.e. the evolution of the volume operator. We will
first discuss the situation at the homogeneous background level, and then we will move to
inhomogeneous perturbations.

Background volume evolution and semi-classical limit. The background volume
dynamics is given, within our working assumptions and similarly to [18], by(

V̄ ′

V̄

)2

'
(

2∑∫ υ ∫ dπφVυρ̄2
υ(x0πφ)sgn(ρ̄′υ(x0, πφ))µυ(πφ)∑∫
υ

∫
dπφVυρ̄2

υ(x0, πφ)

)2

. (4.2)

The classical equations read, instead, in the limit of the field φ dominating the energy-density
budget15 (see equations (A.8) in appendix A)(

V̄ ′

V̄

)2

= 12πG(π̄(c)
φ )2 ,

( V̄ ′
V̄

)2
′ = 0 , (4.3)

where π̄(c)
φ is the constant momentum of the scalar fields φ, π̄(c)

φ = φ̄′.
To see if equation (4.2) and its time derivative reduce to equations (4.3), let us con-

sider the case, which has been in fact already shown to have a good classical gravitational
interpretation [18, 53, 65, 68], in which one of the representation labels, say υo, is dominant
(assumption DC2). In this case, if µυo(πφ) ' cυoπφ (assumption DC4), we have(

V̄ ′

V̄

)2

' 4c2
υo

[∫
dπφπφρ̄2

υo(x0πφ)
]2[∫

dπφρ̄2
υo(x0, πφ)

]2 = 4c2
υo

Π̄2
φ

N̄2 . (4.4)

So, when 4c2
υo = 12πG, equation (4.3) is reproduced by identifying π̄(c)

φ ≡ Π̄2
φ/N̄

2. Notice that
for the condition µυo(πφ) ' cυoπφ to be true, the contribution to µυo due to the geometric
coefficients r(λ)

υo should be dominant, since only they can depend on πφ. In particular, this
implies that µυo ' (λ)ηυo , since they only differ by a πφ-independent coefficient.

15Notice that here we have set the momentum of the clock field to 1, for simplicity, as it has also been done
in appendix A. We will discuss below how the results of this and the next section change when the momentum
is properly reintroduced.
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However, while the above conditions are clearly sufficient to reproduce the first Friedmann
equation, they are not in general enough to guarantee the validity of the second Friedmann
equation, stating that (V̄ ′/V̄ )′ = 0. The reason for this is that the ratio Π̄φ/N̄ is in general
not constant:[

Π̄φ

N̄

]′
= 2

[∫
dπφπφµυo(πφ)ρ̄2

υo(x0, πφ)∫
dπφρ̄2

υo(x0, πφ) −
[∫

dπφπφρ̄2
υo(x0, πφ)

] [∫
dπφµυo(πφ)ρ̄2

υo(x0, πφ)
][∫

dπφρ̄2
υo(x0, πφ)

]2
]
.

If we assume, as before, that µυ ' cυπφ, we see that the right-hand-side of the above equation
has the form Π̄φ,2/N̄ − Π̄2

φ/N̄
2, where Π̄φ,2 is the background expectation value of the second

quantized operator Π̂φ,2 whose matrix elements in momentum space are given by π2
φ. In

general, this quantity is not zero. However, if we further assume, as done in [82] that the
condensate wavefunction has a peaking part peaked on one value of the momentum, say π̃φ of
φ, so that the condensate wavefunction can be written as16 (assumption KC3)

σε,δ,π0,πx;xµ;π̃φ = ηε(χ0 − x0;π0)ηδ(|χ− x|;πx)fεφ(πφ − π̃φ)σ̃(gI , χ0,χ, πφ) , (4.5)

we find that Π̄φ,2/N̄−Π̄2
φ/N̄

2 ' π̃2
φ− π̃2

φ = 0, and both Friedmann equations are thus satisfied,
giving

H2 ≡
(
V̄ ′

3V̄

)2

= 4
9µ

2
υo(π̃φ) = 4πG

3 π̃2
φ , H′ = 0 . (4.6)

This also leads to the interpretation of π̃φ as the background classical momentum of the scalar
field φ, π̄(c)

φ . We will discuss this point in more detail in the next section.
Finally, let us emphasize that the above peaking condition on π̃φ is not related to an

implementation of effective relational localization. However, it does localize the wavefunction in
“momentum space”, since, as we have mentioned, π̃φ can be identified with π̄(c)

φ . In turn, since
π̄

(c)
φ is the quantity appearing at the right-hand-side of the classical Friedmann equations, it may

well be that this localization property is associated to some form of semi-classicality. We leave
further investigations of the physical interpretation of this peaking property to future works.

Perturbed volume evolution. As before, let us assume that we are in the case of single
representation label dominance (assumption DC2). Then, the average perturbed volume reads

δV (x, π̃φ) ' 2Vυo ρ̄υo(x0, π̃φ)δρ̄υo(x, π̃φ) , (4.7)

where we have used the peaking properties in πφ of the condensate wavefunction (4.5). Now,
let us take a time derivative of the above quantity. We have

δV ′(x, π̃φ) = 2Vυo ρ̄′υo(x
0, π̃φ)δρυo(x, π̃φ) + 2Vυo ρ̄υo(x0, π̃φ)δρ′υo(x, π̃φ)

' µυo(π̃φ)δV (x, π̃φ) + 2Vυo ρ̄υo(x0, π̃φ)δρ′υo(x, π̃φ) ,

where in the second line we have used the large ρ̄υo behavior17 ρ̄′υo ' µυo ρ̄υo . Taking one
further derivative and using the above equation together with (3.17a), we find

δV ′′ − 2µυoδV ′ + Reα∇2δV + δV ((λ)η2
υo − µ

2
υo) = 0 . (4.8)

16Notice that changing the form of the condensate wavefunction from equation (3.3) to (4.5) and by assuming
that f is independent on the clock variables (as we are doing here) does not affect the equations of motion of
ρεφ and θ at all because of their linearity.

17For concreteness, we are considering large positive times x0, so that only the positive root of equation (3.13b)
is important.
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Recall also that, by consistency with the background equations, we have that µ2
j ' (λ)η2

j , thus
leading to the simplified form

δV ′′ − 2µυoδV ′ + Reα∇2δV = δV ′′ − 3HδV ′ + Reα∇2δV = 0 . (4.9)

From the above equation we notice, in particular, that in order to have a Lorentz signature
for the equation of physical perturbations we need to require Reα < 0, which in turn implies
δ2
i > δ2

r (see assumption KC1). Moreover, in the extreme case in which δ2
i � δ2

r , and when
π2
xδ

2
i = 3ε2π2

0 (in which case the parameters of the peaking functions are chosen of the same
magnitude), we have

Reα2 = π2
x

6εz2
0

(
δ2
r − δ2

i

)
' − π2

xδ
2
i

3ε2π2
0

= −1 , (4.10)

which in turn implies that the second order differential operator appearing in (4.9) can be
recast in terms of a � operator.

By comparing equations (4.9) and (A.21), however, we conclude that the effective
evolution of the perturbed volume obtained from our quantum gravity model does not match
the classical GR one, in general. An important difference lies in the pre-factor of the Laplacian
term of the equation,18 being (in general) respectively Reα and ∝ V̄ 4/3 in equations (4.9)
and (A.21). We will comment on the possible implications of this mismatch in section 5.

In the super-horizon limit k → 0 (where k represents the modulus of the modes associated
to a spatial Fourier transform of the perturbed volume), thus for long-wavelength perturbations,
equation (4.9) admits two solutions: a constant one, and one of the form δV ∝ V̄ . The latter
becomes dominant as the universe expands, i.e. at large universe volumes. From the results in
appendix A (see equation (A.15) and the discussion below equation (A.21)), we see that this
dominant solution actually coincide with the GR one in the limit k → 0. Thus, we conclude
that the theory matches the predicted dynamics of GR in the super-horizon regime, at late
cosmological times and large universe volume (which is also when the background dynamics
reproduces the Friedmann one).

4.2 Matter evolution

Let us now move to matter variables, i.e. to the background and perturbed expectation values
of the operators Φ̂ and Π̂φ defined in (4.1). Their expectation values read, respectively19

〈Φ̂〉σ ' ρ
2
υo(x, π̃φ)[∂πφθυo ](x, π̃φ) = [∂πφθυo ](x, π̃φ)N(x, π̃φ) , (4.11a)

〈Π̂φ〉σ ' π̃φρ
2
υo(x, π̃φ) = π̃φN(x, π̃φ) . (4.11b)

As we did for the volume operator, let us write explicitly the contributions to these quantities
at the background and perturbed level.

Background. At the background level from equations (4.11), we have

Π̄φ ' π̃φN̄(x0, π̃φ) , Φ̄ ' N̄(x0, π̃φ)[∂πφ θ̄υo ](x0, π̃φ) .

18Notice, however, that the general spatial differential structure of the equations is the same, thus implying
that in the limit of k →∞ (with all the remaining quantities kept constant), the two equations are equivalent.

19Here, for notational simplicity, we have reabsorbed any phase of the peaking function fεφ ≡ |fεφ |e
iθf into

the phase of the reduced condensate wavefunction, redefining the global phase factor θυo .
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The dynamics of the background phase θ̄υo is determined by equation (3.13b):

θ̄′υo = γ

2 + Qυo
ρ̄2
υo

, where (ρ̄2
υo)
′ ' µ2

υo ρ̄
2
υo , (4.12)

with a prime denoting as usual a derivative with respect to the scalar time.20 Integrating the
equation on the left using the equation on the right we obtain

θ̄υo = γ

2x
0 − Qυo

µυo ρ̄
2
υo

+ Cυo , (4.13)

where Cυo is an integration constant and where we have chosen a specific root for the second
equation in (4.12) (see footnote 17). Now, it is important to notice that γ does not depend on
πφ, while µ and Q (and C) in principle do, even if they do not depend on time. As a result,
we have,

Φ̄ '
[
−∂πφ

[
Qυo
µυo

]
+Qυo

∂πφµυo
µυo

x0 + N̄∂πφCυo

]
πφ=π̃φ

. (4.14)

These results should be compared with the classical dynamics, given by φ̄′′ = 0, i.e., φ̄ =
c1 + c2x

0, and of course also implying that the momentum of φ̄, π̄(c)
φ , is a constant. Given the

presence of N̄ in the above expectation values for Π̂ and Φ̂ (which grows exponentially in
relational time), it is clear that we can only define

π̄
(c)
φ ≡ Π̄/N̄ = π̃φ , (4.15)

with π̃φ that would be then associated to the classical momentum of the scalar field, π̃φ = π̄
(c)
φ ,

which is the same identification we have found in the previous section by comparing the
quantum volume evolution equations with the classical one. Notice that as a consequence of
equation (4.16) we would also expect φ̄′ ≡ π̄(c)

φ = π̃φ.
The same reasoning is not adequate, instead, for the massless scalar field operator.

Indeed, for large N̄ , a constant term (independent on the scalar field clock) becomes dominant,
meaning that by defining φ = 〈Φ̂〉σ /N̄ , we cannot match the classical result. On the other
hand, if we take Cυo to be independent on πφ, 〈Φ̂〉σ becomes an intensive quantity that can be
readily compared to φ̄. In this case, consistency with the momentum correspondence requires
that [Qυo∂πφ(logµυo)]πφ=π̃φ = π̃φ. By assuming, as we did to arrive to equation (4.4), that
µυo ' cυoπφ, the above condition fixes Qυo ' π2

φ, and, as a result,

φ̄ ≡ 〈Φ̂〉σ ' −c
−1
υo + π̃φx

0 . (4.16)

Notice that, in (4.4), the quantity cυo fixes the gravitational constant. This means that, for
a finite value of the gravitational constant, one can never have c−1

υo = 0. This implies that
the background matter field can never be identified with the clock field. One could argue
that this condition is in fact necessary in order to trust the effective relational framework we
have defined. It is intriguing, however, that this fact is related to the gravitational constant
attaining a finite value. Seen the other way around, it is interesting that the gravitational
constant is in fact determined by the specific matter content that is present in the underlying
fundamental theory. Both these points certainly deserve further scrutiny.

20In the equation for ρ̄2
υo we have neglected lower order terms in powers of ¯̄ρ2

υo , since in the above equation
for θ̄υo we are already considering contributions suppressed as ρ̄−2

υo . Any correction to the second equation
in (4.12) would thus result in even more negligible contributions to the first equation of (4.12).
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Let us conclude this discussion with two comments.

• First, we emphasize that the matching with the classical equations has been performed
by choosing the specific classical gauge fixing defined by the lapse function N = a3, which
naturally fixes the classical momentum of the scalar field as π(c)

0 = 1. Of course, one
could have fixed π(c)

0 to any other arbitrary constant, in which case, at the classical level,
one would have φ̄′ = π̄

(c)
φ /π

(c)
0 . As a consequence, therefore, the matching would have

required, e.g., Qυo = π2
φ/π

(c)
0 , and c2

j = 3πG/π(c)
0 . However, requiring the quantity π(c)

0
to be in direct correspondence with the expectation value of the clock field momentum
would be difficult to justify from a physical perspective. Indeed, the classical momentum
is always defined as a result of an (arbitrary) choice of time coordinate, which in
the fundamental quantum gravity theory is simply absent. We therefore refrain from
requiring any such correspondence, and we consider, from now on, the case π(c)

0 = 1 in
order make the matching with the classical theory more straightforward.

• It is also important to emphasize that the definition of Φ̄ and Π̄φ in terms of the
fundamental operators is different from the one that is used for the clock variables
in [18]. Indeed, in [18], the value of the scalar field clock was associated to the scalar clock
field operator divided by the particle number, while the momentum was just associated
to the clock momentum operator. The tension between the definitions provided in (4.16)
and (4.15) may be solved by noticing that the definitions are in fact consistent when
one considers how the associated variables are represented. Indeed, for the clock scalar
field, we have chosen the coordinate representation, and thus divided by N̄ the operator
which is multiplicative in this representation. The same has been done for the source
scalar field, but since in this case the representation used is the momentum one, it has
been the momentum operator (diagonal in this representation) that has been divided
by N̄ . On the other hand, operators with derivative kernels in the two representations
needed not to be divided by N̄ . While in principle the two representations are absolutely
equivalent, the kind of states we have chosen, and according to which the definitions of
φ̄ and π̄φ are provided, clearly distinguishes between the different sets of variables.

Perturbed scalar field evolution. Similarly to what we did for the volume operator, we
can study perturbations to the scalar field quantities. Notice, however, that results about
perturbations on the matter sector depend on how extensive variables are matched with
classical ones. For instance, for the second quantized field operator, we have seen that
φ = 〈Φ̂〉σ, so

δφ = δ 〈Φ̂〉σ =
[
δN

N̄
φ̄+ N̄∂πφδθυo

]
πφ=π̃φ

. (4.17)

The dynamical equation satisfied by δφ can be easily determined by noticing that δN/N̄ =
2δρυo/ρ̄υo ≡ 2δρυo , and that δρυo and δθυo satisfy the same differential equation:

δ′′ρυo + 2µυoδ′ρυo + Reα∇2δρυo = 0 = δθ′′υo + 2µυoδθ′υo + Reα∇2δθυo . (4.18)

Here, consistently to what was done in the previous sections, we have used ρ̄′υo ' µυo ρ̄ and
the fact that µυo ' (λ)ηυo .

Already from this equation, in particular from the behavior of the spatial derivative
term (scaling as V̄ 4/3, see equation (A.17)) we can conclude that the evolution equation for
the scalar field perturbations does not match, in general, with the GR one.
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Still, similarly to what happens for the volume perturbations, we can verify that solutions
to our equations and to the GR ones do match in the super-horizon regime (long wavelength
limit). To see this explicitly, notice that in this case the equation satisfied by δθυo becomes

0 = δθ′′υo +
(ρ̄2
υo)′
ρ̄2
υo

δθ′υo = δθ′′υo + µυoδθ
′
υo , (k → 0) , (4.19)

whose general solution is

δθυo = c1,υo(πφ) + c2,υo(πφ)N̄−1 , (k → 0) , (4.20)

with an appropriate redefinition of constants. Thus, in the large N̄ limit, we can write
δθυo ' c1,υo(πφ), and since δN/N̄ is constant, δφ ' N̄c1,υo(πφ), which forces us to consider
c1,υo to be independent on πφ in order to match with GR. Indeed, in this case, we have

δφ = δ 〈Φ̂〉 =
[
δV

V̄
φ̄+ ∂πφc2,υo − c2,υo∂πφµυox

0
]
πφ=π̃φ

, (k → 0) , (4.21)

which is compatible with the classical solution, since in virtue of δV/V̄ being constant,21 it
satisfies δφ′′ = 0.

Let us now consider perturbations in the scalar field momentum. If the classical
momentum π

(c)
φ is identified with 〈Π̂φ〉σ /N ' π̃φ, we have that δπφ = 0. On the other hand,

if we maintain the correspondence suggested above, i.e. πφ = 〈Π̂φ〉σ /N̄ , then

δπφ = π̃φ
δN

N̄
= π̃φ

δV

V̄
, (4.22)

with the equations for δV being already described in the previous subsection. In order to
have a consistent definition of the momentum, however, we should require δφ′ = δπφ, which,
in the long wavelength limit forces us to impose c2,υo = 0, so that we find

δφ = (δV/V̄ )φ̄ , (k → 0) . (4.23)

Therefore we see that in the super-horizon limit perturbations are only present in the modulus
of the condensate wavefunction.

In conclusion, there is no matching with the classical theory for arbitrary wavelengths,
and we obtain instead a modified dynamics for cosmological perturbations, from our quantum
gravity model. On the other hand, we see that the same assumptions needed for the background
solutions to match GR allow also for a classical matching of perturbed quantities in the
super-horizon limit (which is expected already from previous work on this issue in the separate
universe framework). This is a good consistency check of our formalism and procedure. Still,
we have seen that the discussion of inhomogeneous perturbations is complicated by the fact
that one needs to identify also the right way to turn extensive quantities into intensive ones
(i.e., N̄ or N , as we have seen in the case of the perturbed momentum). Consistent and
rather compelling choices can be identified, though. We remark that this additional difficulty
is due to the fact that our fundamental degrees of freedom are not quantized fields and
that spatiotemporal observables emerge, in this QG formalism, only as collective, averaged
quantities. This is reflected in the presence of an additional observable, with no classical
counterpart, given by the number operator. It is the correct way of using this additional,
purely quantum gravity observable, that needs to be determined, in order to match continuum
gravitational physics.

21Recall that the dominant solution of equation (4.9) in the k → 0 limit is δV ∝ V̄ .
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5 Summary and discussion

In this section we provide a summary and a discussion of the main results presented in the
paper (section 5.1). Moreover, we review the approximations and assumptions (and the
arguments motivating them) made in order to obtain such results (section 5.2), in particular
discussing how relaxing some of them may impact the final results and help recover the
appropriate GR limit for arbitrary wavelengths.

5.1 Summary and outlook

In this paper we have studied the extraction of scalar (and isotropic) cosmological perturbations
from full QG, within the GFT formalism. The classical counterpart of the GFT system we have
considered consists of five massless and free scalar fields minimally coupled to geometry, four of
which constitute the material reference system and which by assumption provide a negligible
contribution to the total energy-momentum budget of the universe. The remaining field
(called φ) is assumed to be slightly inhomogeneous with respect to the matter reference frame.

In contrast to past works on the subject [69–71], here we have for the first time defined
perturbations (of matter and geometric quantities) in an effective relational sense, by means
of coherent states sharply peaked on values associated to the four massless scalar fields (whose
interpretation stems from the role their corresponding discrete degrees of freedom play in
the fundamental perturbative quantum dynamics of the GFT models) we used as a matter
frame. These peaking values are then the quantities with respect to which other physical
observables can be relationally localized. Being this relational localization by construction
only effective, controlled both by the above peaking properties of the condensate wavefunction
and by the averaged total number of microscopic GFT quanta (controlling also the magnitude
of quantum fluctuations), it bypasses most of the technical difficulties associated to a material
frame composed by four minimally coupled scalar fields highlighted e.g. in [73].

By imposing an averaged form of the quantum many-body microscopic GFT dynamics,
we have obtained dynamical equations determining the phase and the modulus of the (reduced)
condensate wavefunction. These phase and modulus, representing the basic hydrodynamic
variables of our “quantum spacetime fluid”, are then assumed to split into background
quantities taken to be homogeneous (i.e. independent on the relational rods) and small
inhomogeneous perturbations, which allowed in turn for a perturbative analysis of the
condensate equations. The resulting first order equations for phase and modulus are in general
coupled, but one can show that they actually decouple in the limit of large average number
of GFT quanta, a limit which has been associated to the emergent classical behavior of the
macroscopic spacetime quantities [65, 84].

We have also seen that the equation for the perturbed modulus, eventually determining
the behavior of crucial quantities, like e.g. the perturbed volume operator, shows an effective
Lorentz signature of the derivative kernel only if one assumes that the width of the peaking
condensate function (assumed to be isotropic for simplicity) on the scalar field rods is in
general complex, with a large imaginary part (and a positive real one, guaranteeing in
fact the aforementioned peaking properties). Interestingly enough, this feature seems to be
independent on the symmetry properties of the classical action of the scalar fields, in turn
assumed to be respected by the GFT action SGFT, but to really only depend on the dispersion
around the peaking value of the peaking states. How this emergent Lorentz signature is
related to the local Lorentz structure encoded in the group data associated to the GFT field
is still an open and fundamental question.
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The decoupled dynamics (at large universe volumes) of perturbed phase and modulus of
the condensate wavefunction has then been used in order to study the dynamics of macroscopic
observables associated to geometry (i.e. the volume operator) and to the non-reference matter
scalar field φ, in order to match it with GR (with a first order harmonic gauge fixing). The
background, unperturbed dynamics turns out to be consistent with GR in the limit of one
dominating representation label and with the additional assumption that the condensate
wavefunction also peaks on an arbitrary value π̃φ, of the variable conjugate to the field φ.

The background analysis of the equations shows two more interesting properties.
First, one is naturally led to associate the classical scalar field φ with the extensive

(second quantized) scalar field operator associated to φ, contrarily to what is actually done
for the reference fields. This would suggest that the determination of classical quantities in
terms of intrinsic and extensive expectation values of second quantized ones, actually depends
on the physical role the quantities themselves play.

Second, the shift between the clock scalar field and the background part of φ enters
directly in the emergent definition of the gravitational constant. This is intriguing not only
because it implies that the matter content of the universe actually impacts the very definition
of the emergent gravitational constant, but it also highlights a possible interesting connection
with the very notion of relational evolution. Indeed, a non-zero shift, implying that one
can never identify the clock field with the background matter field, in turn means that the
gravitational constant cannot vanish. It will be interesting to investigate further the interplay
between relationality and emergent constant of nature by considering how to switch between
two similar clocks, an issue which, by itself, is likely to play a crucial role in answering open
questions about the emergence of relational dynamics from QG (including, e.g. the role that
unitarity plays in the fundamental theory).

Finally, we have studied the dynamics of linear perturbations in volume and matter
variables. Obtaining such explicit dynamical equations directly from the full quantum gravity
theory, within several approximations, which are however under control (at least in principle)
within the fundamental formalism, is our main result.

For both types of quantities, the solutions to the equations of motion actually match
GR in the super-horizon limit of very large wavelengths. However, in other regimes, starting
already at intermediate wavelengths, before entering the sub-horizon regime, no such match
was found (though the classical and quantum equations do share the same spatial differential
structure, characterized by a Laplace operator on the rod fields).

There are three ways in which we could interpret this result.
First, we could insist that in this regime the dynamics of cosmological perturbations,

as derived from quantum gravity, should in fact match the GR one. This implies that some
assumptions that were taken in our derivation were not justified, and need to be improved
(see section 5.2). Of course, we know well that such improvements are needed independently
of this issue, but it is worth considering which ones could be responsible for this specific
mismatch. These could involve, for instance, the peaking parameters which were taken to be
actually independent on geometric data (assumption KS3), or the GFT interactions being
entirely neglected in deriving the equation for cosmological perturbations22 (assumption DS3).

Second, the identification of perturbations we used may be incorrect or at least insufficient
to reproduce their correct dynamics. We have indeed assumed condensate perturbations, but
it is easy to envisage situations (which are actually of great physical interest [85] in condensed

22It is worth noticing however that it is the mesoscopic regime of free GFT dynamics at large volumes,
before interactions become relevant, that gives an effective Friedmann dynamics for the background.
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matter physics) where fluid perturbations are determined also by small components of the
fluid out of the condensate, and that of course a better approximation of the true condensate
(vacuum) state, beyond the mean-field or the perfect condensate (or coherent) state should
be considered (see assumption DS2).

Finally, it is possible that none of the two interpretations above is correct, meaning
that the procedure we employed is sufficient to extract the relevant effective continuum
dynamics of cosmological perturbations from QG. In other words, our QG theory, that is our
chosen class of GFT models, simply predicts the above mismatch with GR. Of course, this
would be the most intriguing possibility. Taking this possibility seriously, we have again two
possible implications. First, the underlying GFT (and spin foam) models are “lacking” and
we managed to identify a problematic aspect of them in terms of their physical predictions
(e.g. within assumption DS1). This in itself would be quite an achievement, in our opinion,
given how difficult it is to constrain quantum gravity models in general. Second, the modified
dynamics of cosmological perturbations we have obtained should be taken seriously as a
prediction and it may turn out to be in fact a viable one. For example, it could correspond to
the predicted dynamics of some modified gravity theory, which would then be the effective
continuum and classical description of our fundamental quantum gravity dynamics.23 In
order to explore this possibility, we need to invest serious work on the comparison of these
predictions with observational cosmological data, and it would be exciting work.

In conclusion, in this work we have taken one important step towards the definition of a
complete framework for the extraction of an effective relational cosmological perturbation
theory from full QG. The results of the analysis showed perturbative consistency with GR (in
first order harmonic gauge) in the super-horizon limit, but a modified dynamics of cosmological
perturbations otherwise. Our analysis has allowed us to gain some important new insights
on the emergence of a relational Lorentz-like structure in the macroscopic dynamics, and to
further characterize the emergent physics of GFT models including not only (four) reference
fields, but also additional, non-frame matter. Moreover, this work has highlighted what
steps are likely to be crucial for the ambitious goal of a complete extraction of cosmological
perturbation theory from QG. Among them, we emphasize (i) the need for the construction
of microscopic observables whose expectation value on appropriate states can be associated to
macroscopic geometric quantities (ideally one would aim for the construction of an emergent
metric); (ii) the need for an in-depth investigation on the relation between the Lorentz-
like properties of the emergent dynamics and those encoded in the group theoretic data
assigned to the microscopic GFT field; and (iii) the study of the impact of “out-of-condensate”
perturbations on the macroscopic emergent dynamics and, more generally, improvements of
the various approximations that were needed to get to the results obtained in this work.

5.2 Approximations and assumptions
The assumptions made in this paper can be naturally split in kinematic and dynamic ones;
moreover, we will also categorize them as structural (i.e. assumptions motivated by conceptual
reasons or used to simplify otherwise extremely challenging technical computations) and as
motivated by the requirement of matching with classical gravity.

5.2.1 Kinematic assumptions
Kinematic approximations are related to the properties of the specific states we are considering.

23Let us point out that the effective cosmological dynamics for the background, obtained from these GFT
models, has been already matched with (limiting curvature) mimetic gravity [86].

– 28 –



J
C
A
P
0
7
(
2
0
2
2
)
0
0
4

Structural

KS1 (Condensate states, pages 10, 14). In this paper, following [53, 57–63], we only focus
on condensate states, defined as in equation (2.15a). Condensate states are in fact
the simplest representative of the class of coarse-grained states which we expect can
be associated to emergent continuum geometries [53, 57–63], and thus are of primary
interest for the extraction of continuum physics from QG.

KS2 (Isotropy, pages 11, 16). The condensate wavefunction is required to satisfy the isotropy
condition (2.19). This assumption remarkably simplifies the computational difficulties
related to the derivation of emergent collective dynamics from the microscopic one. It
will likely need to be relaxed when one is interested in anisotropic perturbations (see
e.g. [87]).

KS3 (Peaking, pages 11, 16, 20, 22). The condensate wavefunction, following [18, 65], is
assumed to split into a peaking and into a reduced wavefunction (which is assumed
not to spoil the overall peaking properties of the condensate wavefunction24), with
the former depending only on frame variables, see equation (2.22) and the discussion
in section 2.2. The use of coherent peaked states allows to concretely implement a
notion of relational evolution with respect to the frame scalar field variables, so that
their wavefunction represents a distribution of spatial geometries for each point of the
physical manifold labelled by the reference frame fields.
The peaking function is taken to be a Gaussian (with a non-trivial phase) with small
width. In the case of a single (clock) variable, with the notation used in equation (2.23),
this requirement translates in ε� 1 [18, 65]. In order to avoid large quantum fluctuations,
however, ε cannot tend to zero; it needs to be finite and, in particular, as discussed
in [18, 65], it should satisfy επ2

0 � 1, where π0 determines the non-trivial phase of the
Gaussian. This guarantees that all quantum fluctuations of observables associated to
the clock variable are small in the classical regime [65]. Analogous assumptions are
made for rod variables.

Motivated by classical matching

KC1 (Complex width, pages 14, 22). The width of the Gaussian determining the peaking on
rod fields is in general taken to be a complex parameter δ(j) (for j = 1, 2, 3), with a
positive real part δ(j)

r > 0 and satisfying δ(j)
i

2
> δ

(j)
r

2
, where δ(j)

i is the imaginary part
of δ(j). This last condition is necessary in order to recover an effective Lorentz signature
of second-order derivatives with respect to the frame fields (see e.g. the discussion below
equation (4.9)). It is possible that a more detailed study (guided by the underlying
discrete gravity interpretation of the QG dynamics) of the coupling between matter
frames and geometry will relate the validity of this condition to the imposition of local
Lorentz invariance.

KC2 (Rods rotational invariance of peaking function, pages 14, 16). The peaking function is
assumed to be rotationally symmetric with respect to rods variables, see equation (3.3).
This implies in particular δ(j) ≡ δ, π(j) ≡ πx. This is necessary in order to obtain a
Laplace operator with respect to rods variables.

24The validity of this condition can be checked after the solutions of the mean-field dynamics are determined.
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KC3 (Peaking on matter “momenta”, pages 21, 22). We assume the condensate wavefunction
to also be peaked in the variable canonically conjugate to φ, πφ, see equation (4.5).
This is necessary in order to recover both the Friedmann equations already at the
background level, see section 4.1. As we discuss in section 4.1, this “momentum peaking”
may be related to a semi-classicality condition which could be better understood in
models which actually include a scalar field with a non-trivial potential, so that at
the right-hand-side of the classical Friedmann equation both the scalar field conjugate
variables are present. This is a further direction for future work.

5.2.2 Dynamic assumptions

Dynamic approximations are instead related to the specific form of the microscopic GFT
action, on how the effective equations for background and perturbed quantities are obtained
and, finally, on the specific form of the classical system’s dynamics.

Structural

DS1 (GFT action and symmetries, page 15). The form of the GFT action is in general
obtained by comparison with the discrete gravity path integral of the corresponding
classical system. In particular, this means that symmetries of the classical action are
reflected on the GFT action [53, 69]. As mentioned in the previous section, the mismatch
between GR and effective QG equations for perturbations of intermediate and small
wavelengths may suggest that some further scrutiny into the details of these models
(especially regarding the coupling of geometric and matter degrees of freedom) could be
important.

DS2 (Mean-field dynamics, page 14). The effective dynamics is taken to be well approximated
by a mean-field one, obtained by computing the expectation value of quantum equations
of motion on the above coherent states [53], see equation (3.2). This assumption implies
that microscopic quantum fluctuations are completely neglected, which is certainly not
the most general situation one can envisage. In particular, this assumption may be
critical exactly because we are interested in small, perturbative effects, which may be
heavily affected by quantum corrections to the mean-field dynamics.

The impact of fluctuations on the mean-field theory has already been studied in the
Landau-Ginzburg approach, suggesting the validity of mean-field methods for a class of
toy models and simple background configurations [54, 55]. Still, at the time of writing
there is no conclusive result for realistic geometric models with non-trivial backgrounds
as those considered in this paper.

DS3 (Negligible interactions, page 15). Interaction terms in the effective dynamics are
assumed to be negligible with respect to kinetic terms. At the mean-field level, this
approximation can only be satisfied for condensate densities (or, equivalently, average
particle numbers) which are not arbitrarily large [53].

DS4 (Classical system, page 13). Frame fields are classically assumed to have negligible impact
on the energy-momentum budget of the universe. Besides making these fields behave
as “frame-like” as possible, this condition allows to define unambiguously perturbative
inhomogeneities with respect to the rods fields.
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Motivated by classical matching

DC1 (Mesoscopic regime, pages 17, 18). The averaged number of particles of the system is
taken to be large enough to allow for both a continuum interpretation of the expectation
values of relevant operators and classical behavior, but not too large that interactions
are dominating, see above. In this regime one can see that order two or higher moments
of the relevant operators are suppressed (essentially by powers of the averaged number
of particles) with respect to expectation values, showing that the averaged dynamics
captures sufficiently well the physics of the system [65]. Moreover, from a more technical
point of view, in this regime it is possible to decouple and significantly simplify the
equations for linear perturbations (3.14), see the discussion in section 3.3. The validity
of this approximation depends of course on the form and on the specific values of the
coupling constants of the microscopic interactions.

DC2 (“Single-spin” dominance, pages 20, 22). We assume that only one quantum label
dominates the evolution (represented by υo in our notation). This assumption is justified
by the fact that the background evolution is exponential for each υ, meaning that, if
µυ has a maximum υ0 over the range of υ, the evolution of macroscopic observables
like the volume will be dominated by υ0 (see e.g. equation (4.2)). The validity of this
assumption has also been investigated in [88].

DC3 (Decoupling, page 18). We assume that the imaginary part of α2 is much smaller than
one, see equation (3.16). This requirement mildly constrains the parameters of the states
we are considering, and guarantees that the averaged equations for the background
match GR. Moreover, together with the assumption of working in a mesoscopic regime,
it allows for the first order equations to decouple, see again the discussion in section 3.3.

DC4 (Effective mass dependence on “momentum”, page 20). We assume that µυ(πφ) ∝ πφ,
a condition that turns out to be necessary in order to match GR already at the
background level. If the function µυ(πφ) admits a series expansion in µυ(πφ) this
condition is naturally satisfied when πφ is small (and the zeroth order term of the
expansion identically vanish). This is not expected to hold in general, but notice that
this requirement is imposed only at the point πφ = π̃φ (see section 4.1). Thus, it can be
interpreted as the condition that the momentum of the matter field is not too large (the
connection between π̃φ and the classical momentum of the matter field being established
in (4.15)). This is expected to be physically well motivated, since we are interested in a
semi-classical regime.
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A Perturbation theory in harmonic gauge

Consider four independent minimally coupled scalar fields, let us call them χµ. They satisfy
the massless Klein-Gordon equation ∇a∇aχµ = 0. Now, let us introduce coordinates which
are “adapted” to these scalar fields, let us call them xµ: χµ ≡ κµxµ, with κµ arbitrary
constants (no sum over µ). These coordinates also satisfy ∇a∇axµ = 0, which in turn means
that, in the coordinate system defined by xµ, we have

Γµ ≡ Γµρσgρσ = 0 , (A.1)

which is the so called harmonic gauge condition. The coordinates xµ are similarly called
harmonic coordinates (see [89] for a pioneering work on the relational interpretation of
harmonic coordinates and [18, 53, 70, 71, 82] for applications of harmonic coordinates in the
GFT context).

A.1 Harmonic condition
Let us now explicitly write the form of the line element in the harmonic gauge, for a perturbed
FRW spacetime.

Background. At the background level, we can write the line element as25 (t ≡ x0)

ds2 = −N2(t) dt2 + a2(t)δij dxi dxj .

The harmonic gauge condition (A.1) then imposes

0 = log(N/a3)′ −→ N/a3 ≡ π(c)
0 = const. ,

where a prime denotes a derivative with respect to t, so without loss of generality we can fix
π

(c)
0 = 1 and write the background line element as

ds2 = −a6(t) dt2 + a2(t)δij dxi dxj . (A.2)

Linear order. At the linear order, following [90], we can write the line element in harmonic
gauge as

ds2 = −a6(t) (1 + 2A) dt2 + 2a4B,i dt dxi + a2(t) [(1− 2ψ)δij + 2E,ij ] dxi dxj , (A.3)

where only scalar perturbations have been considered, since they are the only ones of interest
for these paper. The first order harmonic gauge condition δΓµ = 0 can then be shown to be
equivalent to cµ = 0, with [90]

c0 = A′ + 3ψ′ −∇2(E′ − a2B) , ci =
[
(a2B)′ + a4(A− ψ −∇2E)

]
,i
.

Therefore, the coordinates xµ = (t, xi) still satisfy the harmonic gauge condition provided
that

0 = A′ + 3ψ′ + k2(E′ − a2B) , (A.4a)
0 = (a2B)′ + a4(A− ψ + k2E) , (A.4b)

25We have chosen to denote the lapse function as N to maintain consistency with classical literature. This
should not be confused with the expectation value of the number operator employed in the rest of the paper.
In fact, no such confusion should arise, since the number operator and the lapse function are defined only at
the quantum and classical level respectively.
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where we have moved to Fourier space. It is interesting to notice that these conditions
do not completely fix the gauge. Indeed, under an infinitesimal coordinate transformation
xµ → xµ + ξµ, with ξµ ≡ (ξ0, ξ,i), with ξ0 and ξ satisfying

(ξ0)′′ + a4k2ξ0 = 0 = ξ′′ + a4k2ξ , (A.5)

the unperturbed metric is still harmonic [90]. Perturbations transform correspondingly as

A→ A− (ξ0)′ − 3Hξ0 , (A.6a)
B → B + a2ξ0 − a−2ξ′ , (A.6b)
ψ → ψ +Hξ0 , (A.6c)
E → E − ξ , (A.6d)

where H ≡ a′/a [90]. As we will see below, this residual gauge freedom may play an important
role in the determination of the perturbations.

A.2 Dynamics
Let us now determine the evolution of the quantities entering in the metric. From now on we
will neglect the contribution of the reference field to the matter content of the universe. The
system therefore reduces to a perturbed massless scalar field minimally coupled to geometry,
which we call φ(x). At the linear order, therefore, φ(x) = φ̄(t) + δφ(x). From now on, we will
also set 8πG = 1.

Background. The background equations are

3H2 = (φ̄′)2/2 , H′ = 0 , φ̄′′ = 0 , (A.7)

where φ̄ is the background scalar field. It is useful to recast the above equations in terms
of the background volume V̄ = a3. Recalling that H2 = [V̄ ′/(3V̄ )]2, we have that the two
Friedmann equations read

3
[
V̄ ′/(3V̄ )

]2
=
(
π̄

(c)
φ

)2
/2 , [V̄ ′/(3V̄ )]′ = 0 , (A.8)

where we have used the definition of the scalar field momentum as

π̄
(c)
φ = V̄

N
φ̄′ = φ̄′ , (A.9)

with our choice of gauge N = V̄ . Notice, that if we had chosen π(c)
0 6= 1, the above Friedmann

equations would read

6
[
V̄ ′

3V̄

]2

=

 π̄(c)
φ

π
(c)
0

2

,

[
V̄ ′

3V̄ )

]′
= 0 , (A.10)

Linear order. At the linear order, the Einstein equations and the scalar field equations
can be reduced to the following system of equations in Fourier space [90]:

0 = 1
2 φ̄
′δφ′ + 3Hψ′ + k2a4ψ + k2H(E′ − a2B) , (A.11a)

0 = HA+ ψ′ − 1
2 φ̄
′δφ , (A.11b)

0 = E′′ + k2a4E . (A.11c)
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Given the very simple matter content that we are considering here, it is easy to obtain
simpler equations for the metric perturbations from the above equations and the two gauge
conditions (A.4). We first combine the two gauge conditions (A.4) to obtain

A′′ + 3ψ′′ + k2a4(A− ψ) = 0 . (A.12)

Using this gauge condition in equation (A.11a), it can be reduced to

HA′ − 1
2 φ̄
′δφ′ = k2a4ψ .

Now, taking a derivative of equation (A.11b), one finds

HA′ + ψ′′ − 1
2 φ̄
′δφ′ = 0 ,

where we have used that φ̄′′ = 0. Combining these last two equations one then finds

ψ′′ + k2a4ψ = 0 , (A.13)

which is of the same form of (A.11c). The solution to this equation can be expressed in terms
of Bessel functions of the first and second kind. Using that a(t) = a0 exp[Ht], with constant
H, we find

ψ(t, k) = c1J0

(√
a0k

H
e2Ht

)
+ 2c2Y0

(√
a0k

H
e2Ht

)
. (A.14)

Now, in the limit k → 0, the Bessel function Y0 blows up, so in order to get a finite result we
should put c2 = 0. In this case, then, the two relevant super- and sub-horizon limits are

lim
k→0

ψ(t, k) = c1 , lim
k→∞

ψ(t, k) = 0 . (A.15)

From these results one can obtain the evolution equations for all the other relevant
quantities. Using the combined gauge condition (A.12) one can find that A satisfies the
following equation:

A′′ + a4k2A = 4a4k2ψ , (A.16)

so in the super-horizon limit k → 0 A is forced to be a constant (same as ψ) while in the
sub-horizon limit k →∞ A is forced to be equal to 4ψ and so it must be zero.

According to these results, we also see from the fact that HA+ ψ′ − φ̄′δφ/2 = 0 that in
the limit k → 0 δφ is a constant, while in the limit k →∞ δφ→ 0. This can also be checked
explicitly from equation (A.33) of [90], which in our case reads

δφ′′ + a4k2δφ = 0 . (A.17)

The equation for B can instead be determined from (A.11a), whose second derivative
gives, using equations (A.13), (A.11c) and (A.17):

k2H(a2B)′′ = −a4k2H(a2B) + a8k4ψ + k2(a4ψ)′′ ,

which can be more conveniently written as

(a2B)′′ + a4k2(a2B) = 8a2(a2ψ)′ . (A.18)
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Perturbed volume equations. It is useful to recast the above equations for the metric
perturbations in terms of quantities that we have access to from the fundamental quantum
gravity theory. The most important one in this context is the local volume element associated
to a infinitesimally small patch of spacetime. At the classical level, this can be compared to
the local volume element

Vc ≡
√

det 3g =
√

det a2[(1− 2ψ)δij + 2E,ij ] = a3
√

det[δij + 2(E,ij − ψδij)] . (A.19)

The perturbed part, at first order in ψ and E, is therefore given, in Fourer transform, by

δVc = V̄c(k2E − 3ψ) , V̄c ≡ a3 (A.20)

Since both E and ψ satisfy the same equation, we deduce that

(δVc/V̄c)′′ + k2a4(δVc/V̄c) = 0 .

Using that, by definition, H = V̄ ′/(3V̄ ), we find

δV ′′c − 6HδV ′c + 9H2δVc − a4∇2δVc = 0 . (A.21)

In particular, we notice that as a result of (A.15) (which holds also for the variable E, since
E and ψ satisfy the same equation), we find that in the super-horizon limit k → 0, we
δVc = δVc,0V̄c, while in the sub-horizon limit k →∞, δVc = 0.

Residual gauge freedom. At this point it is interesting to recall that the harmonic gauge
condition does not fix entirely the gauge. The residual gauge freedom discussed above allow
us to perform an additional gauge transformation xµ → xµ + ξµ, with the components of ξµ
satisfying (A.5). It is interesting to notice that the functional form of the differential equation
satisfied by the components of ξµ is the same that the perturbations to the purely spatial
part of the metric ψ and E satisfy. In particular, since they transform under this residual
gauge freedom as shown in equations (A.6c) and (A.6d), this implies that any perturbation
in the spatial part of the metric can be reabsorbed by an appropriate gauge choice.

B Derivation of reduced wavefunction dynamics

In this section we provide details about the derivation of equation (3.6) from equation (3.4).
As mentioned in section 3.2, the starting point is the expansion of the kinetic term and the
reduced wavefunction in power series around χ0 = 0, χ = 0,

K(gI ,hI ;χ2
λ,πφ) =

∞∑
s=0

K(2s)(gI ,hI ;πφ)(χ2
λ)s

(2s)!

=
∞∑
s=0

K̃
(2s)
λ (gI ,hI ;πφ)

(2s)!

s∑
`=0

(
s

`

)
(χ0)2(s−`)|χ|2`(−λ)` , (B.1a)

σ̃(hI ,χ0+x0,χ+x) =
∑

m,{nk}

(χ0)m
m!

( 3∏
k=1

(χi)nk
(nk)!

)(
∂m0

3∏
k=1

(∂k)nk
)
σ̃(gI ,x0,x,πφ) , (B.1b)

where K̃(2s)
λ ≡ (−λ)sK(2s). As already mentioned in [18], the expansion of K in powers of

χ2
λ is not very restrictive in the GFT context. In fact, it is actually suggested by studies
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about the inclusion of matter degrees of freedom in GFT models motivated by lattice gravity
considerations [81]. Now we substitute equations (B.1) in (3.4), obtaining

0 =
∫

dhI
∑

s,m,{nk}

K̃
(2s)
λ (gI , hI ;πφ)

(2s)!

s∑
`=0

(
s

`

)
(−λ)`

(
∂m0

3∏
k=1

(∂k)nk
)
σ̃(hI , x0,x, πφ)

×
[∫

dχ0ηε(χ0;π0)(χ0)2(s−`) (χ0)m
m!

] [∫
d3χηδ(|χ|;πx)|χ|2`

( 3∏
k=1

(χi)nk
(nk)!

)]
. (B.2)

The integration over χ0 gives

I2(s−`)+m(π0, ε) = Nε
√

2πε
(
i

√
ε

2

)2(s−`)+m
e−π

2
0ε/2H2(s−`)+m

(√
ε

2π0

)
, (B.3)

where H2(s−`)+m are Hermite polynomials of order 2(s− `) +m, while the integration over χi
is best performed in spherical coordinates. Defining

χ3 = % cos θ , χ2 = % sin θ cosϕ , χ1 = % sin θ sinϕ , (B.4)

and noticing that the above integral is identically zero for odd nk, the integral becomes∫
d3χηδ(|χ|;πx)|χ|2`

( 3∏
k=1

(χi)2nk

(2nk)!

)
= 1

(2n1)!(2n2)!(2n3)!

∫ ∞
0

d%%2(1+b+n1+n2+n3)ηδ(%;πx)

×
∫ 1

−1
d cos θ cos2n3 θ(1− cos2 θ)(n1+n2)

×
∫ 2π

0
dϕ sin2n1 ϕ cos2n2 ϕ . (B.5)

We compute the three integrals separately. The radial integral

R`;n1,n2,n3(πx, δ) ≡
∫ ∞

0
d%%2(1+`+n1+n2+n3)ηδ(%;πx)

= Nδ
∫ ∞

0
d%%2(1+`+n1+n2+n3)e−%

2/(2δ)eiπx% (B.6a)

can be expressed in terms of hypergeometric functions (but the explicit form is not illuminat-
ing), while for the angular integrals we have

Θn1,n2,n3 ≡
∫ 1

−1
d cos θ cos2n3 θ(1− cos2 θ)(n1+n2)

= (n1 + n2)!Γ(n3 + 1/2)/Γ(3/2 + n1 + n2 + n3) , (B.6b)

Φn1,n2 ≡
∫ 2π

0
dϕ sin2n1 ϕ cos2n2 ϕ

= 2Γ(n1 + 1/2)Γ(n2 + 1/2)/Γ(1 + n1 + n2) , (B.6c)

where the integrals are evaluated for ni non-negative integers. Substituting these equations
into the fundamental equation of motion, we have

0 =
∫

dhI
∑

s,m,{nk}

K̃
(2s)
λ (gI , hI ;πφ)

(2s)!

s∑
`=0

(
s

`

)
(−λ)`

(
∂m0

3∏
k=1

(∂k)2nk

)
σ̃(hI , x0,x, πφ)

×
I2(s−`)+m(π0, ε)

m!
R`;n1,n2,n3(πx, δ)

(2n1)!(2n2)!(2n3)!Θn1,n2,n3Φn1,n2 . (B.7)
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Since we are assuming both δ and ε to be small, we can proceed through an evaluation of the
lowest order contributions. We have

R0;0,0,0(πx, δ)
Nδ

= iπxδ
2−ie−π2

xδ/2
√
π

2 δ
3/2(−1+π2

xδ)
(
−i+Erfi

(
πx

√
δ/2

))
,

R1;0,0,0(πx, δ)
Nδ

=−iπxδ3
(
−5+π2

xδ
)

+e−π2
xδ/2

√
π

2 δ
5/2
(
3+π2

xδ(−6+π2
xδ)
)(

1+iErfi
(
πx

√
δ/2

))
,

R0;1,0,0(πx, δ) =R0;0,1,0(πx, δ) =R0;0,0,1(πx, δ) =R1;0,0,0(πx, δ) .

For the angular part, instead, we find,

Θ1,0,0 = Θ0,1,0 = 4
3 , Θ0,0,1 = 2

3 ,

and
Φ1,0 = Φ0,1 = π , Φ0,0 = 2π .

It is interesting to take a look at the above form of the r-integrals in the limit of large26

z ≡
√
π2
xδ/2. In order to do so, we just need the asymptotic expansion of Erfi(z), which is

given by [91]

Erfi(z) ∼ −i+ ez
2

√
πz

(
1 +O(z−2)

)
. (B.8)

Retaining only the leading contributions, we then have

R0;000(πx, δ) ∼ −2Nδ
√

2πδ3/2z2e−z
2
, R1;000(πx, δ) ∼ 4Nδ

√
2πδ5/2z4e−z

2
. (B.9)

We can now proceed as done in [18] in the case of the single clock field in order to determine
an approximate dynamics by simply truncating the above equation essentially at order ε
or δ (we assume ε and |δ| to be of the same order of magnitude.). As a result we need to
consider only s (and thus `), n1, n2, n3 being either 0 or 1, and m = 0, 1, 2. Equation (B.7)
then becomes∫

dhI
{

Θ0,0,0Φ0,0

[
R0;0,0,0

(
I0K̃

(0)
λ (gI , hI , πφ) + I2

K̃
(2)
λ (gI , hI , πφ)

2

)

− λR1;0,0,0I0
K̃

(2)
λ (gI , hI)

2

]
σ̃(hI , xµ, πφ)

+ K̃
(0)
λ (gI , hI , πφ)I1R0;0,0,0Θ0,0,0Φ0,0∂0σ̃(hI , xµ, πφ)

+ K̃
(0)
λ (gI , hI , πφ)I2

2 R0;0,0,0Θ0,0,0Φ0,0∂
2
0 σ̃(hI , xµ, πφ)

+ K̃
(0)
λ (gI , hI , πφ)I0

R1;0,0,0
2

[
Θ1,0,0Φ0,1

(
∂2

1 + ∂2
2

)
+ Θ0,0,1Φ0,0∂

2
3

]
σ̃(hI , xµ, πφ)

}
= 0 .

26The expansion of the Erfi function is taken in the complex plane, so it is still true as long as the quantity

|z| = |
√
π2
xδ/2| =

√
|π2
xδ/2| =

(
π2
x

√
δ2
r + δ2

i /2
)1/2

is very large, which is for instance the case if either δrπ2
x or δrπ2

x is very large.
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Using the explicit formulae given above for Θ, Φ and R, as well as equation (B.3), we have,
factorizing common terms,

0 ' −4πNεNδ
√

2πε
√

2πδ(δz)2e−z
2
0−z

2

×
∫

dhI K̃(0)
λ (gI , hI , πφ)

{[
1− r2(gI , hI , πφ)

(
ε

4H2(z0) + λδz2
)]

σ̃(hI , xµ, πφ)

+ i
√
ε/2H1(z0)∂0σ̃(hI , xµ, πφ)− ε

4H2(z0)∂2
0 σ̃(hI , xµ, πφ)

− δz2

3 ∇
2σ̃(hI , xµ, πφ)

}
,

where we have defined

r(λ)
s ≡ K̃(s)

λ /K̃
(0)
λ , z0 ≡ (επ2

0/2)1/2 . (B.10)

In the limit of large z0 � 1 we can approximate again the above equation as

0 '
∫

dhIK̃(0,0)
λ (gI , hI)

{[
1− r2(gI , hI , πφ)(εz2

0 + λδz2)
]
σ̃(hI , xµ, πφ)

+ i
√

2εz0∂0σ̃(hI , xµ, πφ)− (εz2
0)∂2

0 σ̃(hI , xµ, πφ)− δz2

3 ∇
2σ̃(hI , xµ, πφ)

}
. (B.11)

Now we assume isotropy of the condensate wavefunction, so that, for diagonal kinetic kernels,
the above equation reduces to

∂2
0 σ̃j(x, πφ)− iγ∂0σ̃j(x, πφ)− (λ)E2

j (πφ)σ̃j(x, πφ) + α2∇2σ̃j(x, πφ) = 0 , (B.12)

where we have suppressed the index µ in functions of xµ for notational simplicity and where
we have defined

γ ≡
√

2εz0
εz2

0
, (λ)E2

j ≡
1
εz2

0
− rj;2(πφ)

(
1 + 3λα2

)
, α2 ≡ 1

3
δz2

εz2
0
.
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