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Abstract. The scale-dependent bias effect on the galaxy power spectrum is a very promising
probe of the local primordial non-Gaussianity (PNG) parameter fNL, but the amplitude of
the effect is proportional to fNLbφ, where bφ is the linear PNG galaxy bias parameter. Our
knowledge of bφ is currently very limited, yet nearly all existing fNL constraints and forecasts
assume precise knowledge for it. Here, we use the BOSS DR12 galaxy power spectrum to
illustrate how our uncertain knowledge of bφ currently prevents us from constraining fNL with
a given statistical precision σfNL . Assuming different fixed choices for the relation between bφ
and the linear density bias b1, we find that σfNL can vary by as much as an order of magnitude.
Our strongest bound is fNL = 16± 16 (1σ), while the loosest is fNL = 230± 226 (1σ) for the
same BOSS data. The impact of bφ can be especially pronounced because it can be close to
zero. We also show how marginalizing over bφ with wide priors is not conservative, and leads
in fact to biased constraints through parameter space projection effects. Independently of
galaxy bias assumptions, the scale-dependent bias effect can only be used to detect fNL 6= 0
by constraining the product fNLbφ, but the error bar σfNL remains undetermined and the
results cannot be compared with the CMB; we find fNLbφ 6= 0 with 1.6σ significance. We
also comment on why these issues are important for analyses with the galaxy bispectrum.
Our results strongly motivate simulation-based research programs aimed at robust theoretical
priors for the bφ parameter, without which we may never be able to competitively constrain
fNL using galaxy data.
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1 Introduction

Observational searches for local-type primordial non-Gaussianity (PNG) offer one of the most
interesting ways to shed light on the physics behind the primordial density fluctuations gen-
erated during inflation. The level of local PNG is popularly parametrized by the parameter
fNL in the equation [1]

φ(x) = φG(x) + fNL
[
φG(x)2 −

〈
φG(x)2

〉]
, (1.1)

where φ(x) denotes the primordial gravitational potential and φG is a Gaussian distributed
random field. The simplest single-field models of inflation predict vanishing fNL, and so a
detection of fNL 6= 0 would have very profound consequences in that it would imply multiple
fields were present during inflation and the early Universe was not as simple as it could
have been [2–8]. The current tightest bounds on fNL come from the analysis of three-point
statistics of the cosmic microwave background (CMB) by the Planck satellite, which constrain
fNL = −0.9±5.1 (1σ) [9]. The next improvements over this bound are expected to come from
analyses of the late-time spatial distribution of galaxies [10–23], and it has been claimed that
future galaxy surveys have in principle the potential to probe fNL with order unity precision,
σfNL ∼ 1. Reaching for the σfNL = 1 mark has since become a major science goal in galaxy
survey analyses, as even if this happens without a detection of fNL (i.e. |fNL| < 1), this will
still allow to disfavour several inflation models that typically predict fNL ∼ O(1) [12, 24].

The most renowned observational imprint of fNL on the galaxy distribution comes in
the form of a series of new bias parameter terms that are proportional to fNL, and which
have a distinctive scale-dependence that allows them to be distinguished from other physical
contributions [25–29] (see also section 7 of ref. [30] for a review of galaxy bias and PNG). This
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signature was first discovered in the power spectrum of dark matter halos in N -body simula-
tions in the seminal work of ref. [31], where this effect was coined scale-dependent bias. The
tightest constraints on fNL using this effect reported to date were obtained using the power
spectrum of quasar samples in the eBOSS survey, fNL = −12±21 (1σ) [32] (see also ref. [33]).
More recently, refs. [34, 35] have utilized the galaxy bispectrum of BOSS DR12 galaxies to
constrain fNL = −30±29 (1σ) and fNL = −33±28 (1σ), respectively. The precision of these
constraints is still a factor of ≈ 5 worse than that of the CMB (see refs. [25, 36–41] for past
constraints on fNL using galaxy data), but as next-generation surveys probe larger volumes
of the Universe, the statistical power of similar analyses may approach σfNL ∼ 1.

The physical origin of the scale-dependent bias effect is important to understand,
and is as follows. In the presence of local PNG, the galaxy density contrast δg(x, z) =
ng(x, z)/n̄g(z)− 1 can be expanded linearly in Fourier space as [25–29]

δg(k, z) = b1(z)δm(k, z) + bφ(z)fNLφ(k) + ε(k, z), (1.2)

where ε is a stochastic/noise variable, δm is the matter density contrast, and b1 = dlnng/dδm
and bφ = dlnng/d(fNLφ) are two galaxy bias parameters defined, respectively, as the response
of the number density of galaxies to mass density δm and primordial potential perturbations
φ. These two perturbation types are related as δm(k, z) = M(k, z)φ(k), where M(k, z) =
(2/3)k2Tm(k)Dmd(z)/(Ωm0H

2
0 ), with Tm(k) the matter transfer function and Dmd(z) the

linear growth function normalized to the scale factor a = (1+z)−1 during matter domination.
On large scales, the matter transfer function goes to unity, Tm(k)→ 1, and eq. (1.2) can be
written as

δg(k, z) =
[
b1(z) + 3Ωm0H

2
0

2k2Dmd(z)bφ(z)fNL

]
︸ ︷︷ ︸

k-dependent coefficient

δm(k, z) + ε(k, z), (1.3)

i.e., the coefficient that multiplies δm(k, z) is now a function of scale k, and this is what the
authors of ref. [31] called a scale-dependent bias. Strictly, this is a misnomer1 since what
is scale-dependent is not any of the bias parameters b1 or bφ, but the relation between the
perturbations δm and φ associated with them. The power spectrum of eq. (1.3) thus results
(in addition to the power spectrum of the noise term) in three terms

b2
1Pmm ; ∝ bφfNL

Pmm
k2 ; ∝ (bφfNL)2Pmm

k4 , (1.4)

where Pmm is the matter power spectrum. The last two terms are the scale-dependent
signatures that local PNG leaves on the observed large-scale galaxy power spectrum and
that can in principle be used to constrain fNL.

The problem we discuss in this paper is related to the fact that the amplitude of these
scale-dependent terms is proportional not only to the parameter fNL that we wish to con-
strain, but also the galaxy bias parameter bφ. That is, in order to constrain fNL using the
scale-dependent bias effect, we need to make assumptions about the galaxy bias parameter
bφ, and therefore, assumptions about galaxy formation and evolution. As noted above, the

1This terminology is so widespread now that we continue to incurr on the misnomer here. Note also
that in the literature this effect is often described as a simple promotion of b1 to be a function of scale
b1 → b1 + ∆b(k), but this replacement is only valid at the power spectrum level [42]. For higher-order
statistics, like the bispectrum, additional PNG bias parameters beyond bφ need to be taken into account.
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parameter bφ is defined as the response of galaxy formation to primordial potential pertur-
bations in local PNG cosmologies, i.e., it describes the excess number of galaxies that form
inside primordial φ perturbations, compared to cosmic mean. The parameter bφ is in general
a function of redshift, galaxy formation physics and properties of the observed galaxies like
their total mass, stellar mass, star formation rate, color, etc. It is therefore currently very
uncertain, which poses a problem to local PNG searches since its effect in the k-dependent
coefficient in eq. (1.3) is indistinguishable from that of fNL.

In attempting to circumvent this problem, most of the works in the literature (inspired
by the original approach of ref. [31]) assume that there is a fixed, tight relation between the
parameters bφ and b1. The idea is that the parameter b1 can be fitted for using the smaller-
scale part of the power spectrum (higher-k, where fNL constributes negligibly), which fixes
bφ through the assumed bφ(b1) relation. This breaks the degeneracy between bφ and fNL,
allowing the latter to be constrained. The most popular realization of this strategy utilizes the
bias parameter relation obtained assuming universality of the halo mass function, bφ(b1) =
2δc(b1 − p), with p = 1 and where δc ≈ 1.686 is the critical density for spherical collapse.
This relation is not a perfect description even for halos in gravity-only simulations [43–52],
and it is also not expected to hold for real-life tracers (despite its widespread adoption).
The observational constraints using quasars quote also bounds on fNL assuming the same
functional form, but with a different value of p = 1.6 [25, 32, 33]. This follows from assuming
that all of the observed quasars live in halos that have just recently merged [25], which is
also an idealized assumption. Further, ref. [35] utilized p = 0.55 for BOSS DR12 galaxies,
inspired by the results from refs. [52, 53] using galaxy formation simulations. These were
obtained for galaxies in stellar mass bins in the IllustrisTNG galaxy formation model, but
the extent to which this actually describes BOSS DR12 galaxies has never been verified.
The point to note is that there is currently a large theory error on the bφ(b1) relation of
observed galaxies, which poses a serious problem to fNL inference analyses since, because of
the perfect degeneracy with bφ, wrong assumptions about it translate directly into wrong
constraints on fNL.

In ref. [54], we presented a focused discussion on the impact that bφ uncertainties have
on the resulting fNL constraints (see also section 4 of ref. [53]). This was done in the context
of an idealized simulated likelihood analysis for a fictitious (but realistic) survey with a mock
multitracer data vector generated directly from a specified theory model. In this paper, we
continue this discussion by extending it to the case of real galaxy observations using the power
spectrum of BOSS DR12 galaxies. The main takeaway messages from our results are that
(i) different, but currently equally plausible assumptions about the bφ(b1) relation translate
directly into different inferred precisions on fNL; and (ii) contrary to what one might have
naively expected, marginalizing over uncertainties on bφ(b1) with large uninformative priors
is not conservative and can bias the constraints on fNL through projection effects in the
parameter space.

In the absence of a robust knowledge of galaxy formation and the bias parameter bφ, this
implies that existing constraints and forecasts on σfNL are currently subject to a large theory
systematic error and should be interpreted carefully as a result. Independently of galaxy bias
uncertainties, the scale-dependent bias effect can only be used to quote the significance of
detection (SoD) of fNL 6= 0 through constraints on the parameter combination fNLbφ, but in
this case the value of σfNL remains unknown and the constraints cannot be compared with
the CMB bound. Our analysis in this paper can be regarded as an expanded discussion on
the issue of bφ uncertainties of the analyses of refs. [34, 35], who recently used the same
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galaxy samples to constrain fNL using the galaxy power spectrum and bispectrum. We note
further that the conclusions of this paper, despite focused on BOSS DR12 data, are important
and hold generically to any attempt to constrain fNL using the scale-dependent bias effect,
irrespective of the exact tracer sample considered (quasars, emission line galaxies, neutral
Hydrogen, etc.).

It should be noted that the uncertain value of bφ is an issue that has been mentioned
in a number of past fNL works (e.g. refs. [25, 33, 46] for discussions about the bφ parameter
for recent mergers and quasars), but which we find is not yet sufficiently appreciated in
the general fNL-related literature given the prominence of results still focused on the actual
fNL bounds (which depend on bφ), as opposed to the SoD of fNL 6= 0. One of the goals
of this paper is also to raise awareness for the need to improve on our knowledge of the
bφ parameter, and in particular, to motivate the development of data- or simulation-based
approaches to determine accurate and precise priors of bφ for real-life galaxy samples. Our
ability to constrain the actual numerical value of fNL using the scale-dependent bias effect
critically depends on our ability to determine these theory priors on bφ.

The rest of this paper is organized as follows. In section 2, we specify the details of
our constraint analysis, including the redshift space galaxy power spectrum data vector, its
covariance matrix and our theory model. We also validate our analysis choices on simu-
lated mock galaxy samples. Our main fNL constraint results using the BOSS DR12 power
spectrum are presented in section 3, where we focus in particular on the strong impact that
bφ uncertainties have on the final results. In section 4 we comment on analyses with the
galaxy bispectrum, and discuss how even in this case there is a strong impact of PNG bias
uncertainties. We summarize in section 5. In appendix A we display a number of additional
plots with one- and two-dimensional marginalized constraints on the free parameters of our
theory model.

2 Analysis specifications

In this section, we describe the data and the theory model that we use to constrain the local
PNG signal. We also validate our analysis choices using mock galaxy data.

2.1 Galaxy power spectrum data

As the data vector, we consider the multipoles of the redshift-space galaxy power spectrum
measured by ref. [55] (see also refs. [56, 57]) for the galaxies in data release 12 (DR12) of the
BOSS galaxy survey [58]. A welcoming feature of these specific measurements compared to
conventional approaches is that they can be readily compared against perturbation theory
predictions without the need to first convolve with the survey window function (see ref. [55]
for the details). We consider the power spectrum measured for 4 galaxy samples: 2 high
redshift samples with z3 = 0.61 in the north and south galactic caps (dubbed NGCz3 and
SGCz3), and 2 lower redshift samples with z1 = 0.38 in the north and south galactic caps
(dubbed NGCz1 and SGCz1). The north samples were observed on a wider area on the sky
and contain therefore a larger number of galaxies. The volume and number of galaxies for
the samples {NGCz3, SGCz3, NGCz1, SGCz1} are V = {2.80, 1.03, 1.46, 0.53}Gpc3/h3 (for
our fiducial value of h) and Ng = {435741, 158262, 429182, 174819}, respectively.

We consider the measurements of the redshift space monopole and quadrupole (cf.
figure 6 below). For the covariance matrix, we consider the estimate from 2048 MultiDark-
Patchy mock galaxy samples (Patchy from hereon), which were constructed to resemble the
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clustering properties of BOSS DR12 galaxies [59, 60]. The power spectrum multipoles of the
mocks were measured using the same method of ref. [55] to measure the BOSS DR12 data
vector.2 Measurements of the hexadecapole also exist, but we do not consider them in our
analysis as they do not depend on fNL to leading order.

In our constraint analyses below we will remain ultra conservative and consider only
the data measured up to wavenumbers kmax = 0.05h/Mpc to guarantee that linear theory
models remain valid. The minimum wavenumber considered is kmin = 0.01h/Mpc, yielding
a total of 8 k values for each multipole. For the 2 multipoles and 4 galaxy samples considered
this yields a total data vector size of Nd = 8× 2× 4 = 64. Importantly, we do not attempt
to model or mitigate the impact of observational systematic effects in the data that may
contaminate the signal on large scales in a way that can affect fNL constraints [61–65]. In
this sense, our analysis here is idealized in that it does not marginalize over any systematic
uncertainties (this is as in the local PNG analyses of refs. [34, 35]).

2.2 Theory model

Our analysis choices in this paper are motivated by aiming for the simplest possible setup
that is able to retrieve meaningful constraints on the local PNG signal. We thus restrict
ourselves to working with linear theory for the galaxy power spectrum, which is only valid
on sufficiently large scales, but which as we will see is sufficient to constraint local PNG
since the scale-dependent effect peaks precisely on the largest observable scales. Our analysis
is in this sense similar to the local PNG constraints derived using quasars in the eBOSS
survey [32, 33], which were obtained assuming also linear theory.

Concretely, we use the following expression for the anisotropic galaxy power spectrum
in redshift space (see e.g. refs. [34, 35, 66] for the expressions of the next-to-leading-order
1-loop power spectrum)

Pgg(k, µ) =
[ (
b1 + fµ2

)2
+ 2

(
b1 + fµ2) bφfNL
M(k) + (bφfNL)2

M(k)2

]
Pmm(k) + αP

n̄g
, (2.1)

where f = dlnD/dlna is the usual linear growth factor, µ is the cosine of the angle be-
tween the line-of-sight direction and the wavevector k, and αP is a parameter that quantifies
departures of the (assumed constant) shot-noise from the Poisson expectation (αP = 0 cor-
responds to Poisson shot noise since this has been subtracted from the measurements); to
ease the notation, we dropped the redshift dependence from this expression, which we leave
implicit. The µ dependence of the galaxy power spectrum can be organized by expanding in
multipoles as

Pgg(k, µ) =
∑
`

P `gg(k)L`(µ), (2.2)

where L` are Legendre polynomials and the multipoles P `gg(k) are given by

P `gg(k) = 2`+ 1
2

∫ 1

−1
dµPgg(k, µ)L`(µ). (2.3)

As noted above already, in this paper we will consider the monopole (` = 0) and quadrupole
(` = 2). Except for the parameter fNL, we keep all other cosmological parameters fixed in this

2Concretely, we use the power spectrum data that is available at https://github.com/oliverphilcox/Spectra-
Without-Windows. We are extremely thankful to Oliver Philcox for making these data publicly available!
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paper. In particular, we take the best-fitting cosmological parameters from ref. [57], obtained
from an inference analysis using a 1-loop power spectrum model for the same galaxy samples
we consider in this paper (cf. left-hand side of their table VII; ref. [57] runs also constraints
using the galaxy bispectrum, but we consider their power-spectrum-only results for better
consistency with our analysis here): Ωbh

2 = 0.02268, Ωch
2 = 0.1218, h = 0.6778, σ8 = 0.75,

ns = 0.9649. We evaluate the matter power spectrum and transfer functions using the CAMB
code [67]. We also skip considering so-called relativistic effects that contribute to the galaxy
power spectrum with the same scale-dependence as fNLbφ, and could therefore in principle
result in biased constraints on local PNG if unaccounted for [13, 15, 68–74]. These terms
are however expected to be relatively unimportant at the level of the BOSS survey volume
(though they can become important in future surveys).

In part of our analysis, we will also run constraints with Gaussian priors on the pa-
rameters b1, taken also from the analysis of ref. [57] using the same galaxy data. We will
do so in order to rescue back some of the constraining power that is lost by our choice of
a very conservative kmax = 0.05h/Mpc, which does not allow the parameter b1 to be as
precisely constrained. Concretely, our results with Gaussian priors on b1 utilize the following
constraints from table VII of ref. [57]:

bNGCz3
1 = 2.288± 0.15 ,
bSGCz3

1 = 2.449± 0.145 ,
bNGCz1

1 = 2.172± 0.13 ,
bSGCz1

1 = 2.209± 0.14 . (2.4)

We stress that our adoption of priors on b1 should not be confused as an addition of prior
information on galaxy formation and bias to the analysis, but it should rather be regarded
as a simple strategy to utilize information from k > 0.05h/Mpc that would improve the
constraints on the b1 parameter. Note that this is self-consistent since we keep the cosmology
fixed to that of ref. [57], from where we take the priors on b1 for the exact same galaxy
samples. Should we have chosen a different value of σ8, for example, then the adoption of
these priors on b1 would be manifestly inconsistent.

2.3 The bφ(b1) parametrization

In our model, each galaxy sample contributes with three additional free parameters, {b1, bφ
and αP }, yielding in general a total of 4× 3 + 1 = 13 free parameters, including fNL. In our
analysis we will, however, follow the standard approach in the literature to assume a relation
between bφ and b1. We find it useful to recap here the origin behind different bφ(b1) relations
encountered in the literature:

• Universality. Assuming universality of the halo mass function, it is possible to derive
bφ(b1) = 2δc(b1 − 1). This is by far the most widely adopted relation in the literature,
although there is no compelling reason to expect this to hold for real tracers of the
large-scale structure.

• Dark matter halos. It is well known, for example, that even the simpler case of halos in
gravity-only simulations does not exactly satisfy the universality relation [43–52]. The
halo bφ(b1) relation is instead better described by bφ(b1) = q× 2δc(b1− 1) with q ≈ 0.8.

• Recent mergers. It was argued in ref. [25] (see also ref. [46]) that bφ = 2δc(b1− 1.6) is a
better description of recently-formed halos that could be the typical hosts of quasars.
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This expression has been used in fNL constraints using quasars [25, 32, 33], and these
works do note that it yields different constraints relative to the universality relation.
The validity of this relation for quasars has however never been checked with dedi-
cated simulation work, and as a result, the bφ(b1) relation of quasars and their actual
constraining power on fNL remains currently unclear.

• IllustrisTNG galaxies. Reference [52] found that stellar-mass selected galaxies in the
IllustrisTNG galaxy formation model approximately satisfy bφ = 2δc(b1 − 0.55). This
relation was recently assumed in ref. [35] to constrain fNL using BOSS DR12 galaxy
data. Note however that the dependence of bφ(b1) on the assumed galaxy feedback
model is still unknown, as well as the exact links between the simulated and observed
galaxy samples. Reference [53] subsequently showed that other selection criteria (in-
cluding galaxy color and black hole mass accretion rate) may not even admit a simple
analytical redshift-independent description for the bφ(b1) relation.

• Neutral hydrogen (21 cm) with IllustrisTNG. Reference [75] has shown using also the
IllustrisTNG model that the bφ(b1) relation of the neutral Hydrogen distribution is
below the universality relation, with bφ(b1) = 2δc(b1 − p), p ∈ [1.1, 1.4] being a more
accurate description. Again, the dependence of this result on the galaxy feedback model
is still unknown. This relation has never been adopted in 21 cm data forecasts on fNL.

To simplify our analysis, we will assume that the relation bφ(b1) = 2δc(b1 − p) is satisfied by
all four BOSS DR12 samples, and will treat p as a free parameter. We stress that by making
this assumption our results are already optimistic about the impact of bφ uncertainties on the
fNL constraints, compared to the more general approach of treating bφ as a free parameter
(or assuming different values of p) for each galaxy sample. While it is reasonable to assume
that the galaxy selection in the north and south galactic caps is not too dissimilar and
thus satisfies similar bφ(b1) relations, it is less clear whether a bφ(b1) relation that holds at
z1 = 0.38 would also hold at z3 = 0.61. This reduces the number of free parameters to a
total of 10. In another part of our analysis where we the discuss the significance of detection
by constraining fNLbφ, we will have instead a total of 12 parameters: {b1, αP , [fNLbφ]} for
each of the 4 samples.

Figure 1 shows the monopole of the NGCz3 sample (black dots) together with the
predictions of our linear theory model for different values of p ∈ [−1, 3], as labeled. The
result shown is for fNL = 50, b1 = 2.15 and αP = 0. The figure makes apparent how different
values of p modify the amplitude of the signal on large scales, as thus how we can expect
different constraints on fNL depending on our priors choices on p. The bφ(b1) relation of
the BOSS DR12 galaxies (or of any other tracer of the large-scale structure) is currently
not known, which is precisely the issue that we discuss in this paper. Note also that this is
a problem that cannot be resolved with the multitracer technique [76, 77], since each new
galaxy sample that enters the multitracer analysis has its own associated bφ parameter, and
the degeneracy with fNL remains unbroken [53, 54].

2.4 Validation of the constraint analysis on the Patchy mocks

In order to validate our analysis choices, we run our constraint analysis taking as data vector
the mean galaxy power spectrum multipoles of the 2048 Patchy mocks. Concretely, we
constrain the parameter space using the following multivariate Gaussian likelihood function

− 2lnL(θ) = (D −M(θ))t Ĉ−1 (D −M(θ)) , (2.5)

– 7 –
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Figure 1. Impact of different bφ(b1) relations on the galaxy power spectrum. The result is shown
for our linear theory model for fNL = 50, b1 = 2.15, αP = 0, and several values of the parameter
p ∈ [−1, 3] in the parametrization bφ(b1) = 2δc(b1−p), as labeled. The black dots show the monopole
of the galaxy power spectrum of the NGCz3 sample. The shape and amplitude of the bφ(b1) relation is
currently very uncertain, which translates directly into an uncertain impact of fNL on the large-scale
galaxy power spectrum.

where D is data vector, M is the theory model prediction for a given set of model pa-
rameters θ, and Ĉ−1 = (Nr − Nd − 2)C−1/(Nr − 1) is an unbiased estimate of the inverse
covariance matrix [78] (C−1 is the inverse of the covariance matrix C obtained using a stan-
dard covariance estimator applied on the ensemble of Nr = 2048 realizations of the Patchy
mocks). We sample the parameter space using the EMCEE Python implementation [79] of
the affine-invariant Markov Chain Monte Carlo (MCMC) sampler in ref. [80]. We use 32
walkers and consider our chains to have converged when (i) the size of the chain is at least
100 times the autocorrelation time and (ii) the latter has varied by less than 1% since the
last calculation point, which is every few thousand samples. We have also visually monitored
the marginalized constraints during the course of the MCMC runs and found them to have
become satisfactorily constant even before our nominal convergence criterion was reached.

In this validation analysis, we run constraints for different fixed values of p in the
bφ(b1) = 2δc(b1− p) parametrization, and sample the remainder of the 9-dimensional param-
eter space assuming wide, uninformative linear priors for all of the parameters. Further, in
this validation part alone, we keep the cosmology fixed to that of the Patchy mocks (which
is different from that we assume when we analyse the BOSS DR12 data): Ωbh

2 = 0.02214,
Ωch

2 = 0.1189, h = 0.6777, σ8 = 0.83, ns = 0.9611. The constraints on fNL from the Patchy
mocks are displayed in figure 2. The upper left panel shows the one-dimensional 1σ marginal-
ized constraints on fNL as a function of the fixed value of p. For most of the explored values
of p, the fiducial value of fNL = 0 of the mocks is recovered to within 1σ. The noteworthy
exception is the case with p = 2 (magenta), whose constraint on fNL is ≈ 2.5σ below the
true value. This is not a consequence of a breakdown of our analysis setup, but is rather due
to projection effects that arise after marginalizing over poorly constrained directions in the
parameter space. The galaxy samples in the Patchy mocks have values of b1 ≈ 1.8–2, and
so when p ≈ 2, the values of bφ ∝ (b1 − p) can become very small and thus the signal very
insensitive to fNL, which becomes poorly constrained. As an illustration, the right panel of
figure 2 shows the two-dimensional 2σ marginalized constraints on the bNGCz3

1 − fNL plane,
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Figure 2. Constraints on fNL from the Patchy mocks for different fixed bφ(b1) relations. The upper
left panel shows the marginalized one-dimensional 1σ constraints as a function of different fixed values
of the p parameter in the bφ = 2δc(b1 − p) parametrization. The lower left panel plots σfNL vs. p to
visualize better how different assumptions about the bφ(b1) galaxy bias relation translate into different
inferred precisions on fNL. The right panel shows the two-dimensional 2σ marginalized constraints
on the bNGCz3

1 − fNL plane. The constraints are compatible with the fiducial value of fNL = 0 of the
mocks, which validates our analysis choices. The cases p = 1.6 and p = 2 are affected by projection
effects, which is why the marginalized mean (circles) and maximum of the likelihood (stars) are offset
(see the text for details).

where we note that the p = 2 case comfortably brackets the true value of fNL = 0. Another
indication that the p = 2 constraints on fNL are prone to projection effects is the fact that
the marginalized mean (circle) is far off from the maximum (unmarginalized) likelihood value
(star). Note also that despite displaying unbiased 1σ constraints, the p = 1.6 case (cyan) is
also likely affected by projection effects.

The lower left panel of figure 2 shows just the dependence of the inferred precision σfNL

on the assumed value of the parameter p. For the values of b1 ≈ 1.8–2 that characterize the
Patchy galaxy samples, p = −1 results in the largest values of bφ, and thus in the tightest
constraints on fNL. The constraints become looser as p increases to values comparable to
the values of b1, but they become tighter beyond that as p increases to yield more negative
values of bφ (a point beyond which the mean constraints on fNL switch sign). Indeed, as
we have anticipated in our considerations above, the different values of p result in different
amplitudes for the galaxy bias parameter bφ, which in turn result in different error bars on
fNL. We continue this discussion next using the BOSS DR12 data.

3 Results from BOSS DR12

In this section we present and discuss our main results on the impact of the bφ parameter
on local PNG constraints using the BOSS DR12 galaxy power spectrum. We discuss first in
section 3.1 the impact of different fixed choices of the parameter p in the parametrization
bφ(b1) = 2δc(b1−p), and then in section 3.2 the impact of marginalizing over p. In section 3.3
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Figure 3. Constraints on fNL using the BOSS DR12 galaxy power spectrum for different fixed bφ(b1)
relations. The result is shown for different values of p in the parametrization bφ(b1) = 2δc(b1 − p).
The upper left panel shows the one-dimensional 1σ marginalized constraints, the lower left panel
plots σfNL vs. p, and the right panel shows the actual probability distribution for a few of the p
values. Marked also in the panels are the constraints obtained by refs. [34, 35] using the same galaxies
(we show only their power-spectrum-only results for comparison, but note they also utilize 3-point
function information in their analysis). The takeaway message is that different assumptions on the
uncertain value of p result in different inferred precisions on fNL.

p value −1 0.1 0.55 1 1.6 2 3
No b1 priors 47+27

−38 73+42
−63 94+52

−85 131+63
−133 216+84

−274 −338+580
−627 −137+44

−77

With b1 priors 17+16
−17 26+25

−26 33+32
−34 46+43

−46 93+79
−97 230+175

−278 −58+57
−70

Table 1. Constraints on fNL using the BOSS DR12 galaxy power spectrum for different fixed bφ(b1)
relations. The result is for different values of p in the parametrization bφ(b1) = 2δc(b1 − p). The
first line lists the constraints obtained without any priors on the bias parameters b1, and the second
line shows the result assuming the Gaussian priors of eq. (2.4) from the results of ref. [57]. The two
approaches give compatible results, and both display the same dependence on the assumed value of p.

we show the constraints on the parameter combination fNLbφ, which is what can strictly be
constrained by the data independently of prior assumptions on galaxy bias.

3.1 Results from fixed bφ(b1) relations

Figure 3 shows the one-dimensional 1σ marginalized constraints on fNL obtained with the
DR12 galaxy power spectrum, assuming different fixed values of the parameter p in the
parametrization bφ(b1) = 2δc(b1 − p). Figure 7 in appendix A shows a corner plot with the
one- and two-dimensional marginalized constraints for the full parameter space. The result
shown is for the analysis with Gaussian priors on the parameter b1; table 1 lists also the fNL
constraints without these priors, which are consistent. We note that our conclusions on the
impact of bφ uncertainties on fNL constraints do not depend on whether the priors on b1 are
assumed or not. In appendix A, figure 8 shows the same as figure 3, but without assumed
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priors on b1: the numerical values of σfNL become larger, but importantly, the conclusion on
the impact of bφ uncertainties remains the same.

As we have anticipated from our validation analysis using the Patchy mocks in the
previous section, figure 3 shows explicitly again that different choices for p translate directly
into different values of σfNL . That is, the inferred precision on fNL is prior dominated and
cannot be determined solely from the data. Concretely, the case with p = −1 is that which
results in the largest numerical value of the PNG bias parameter (bφ ≈ 10 for b1 ≈ 2), and
thus in the tightest constraints on fNL, σfNL = 16. As p increases towards p → b1 ≈ 2,
bφ decreases towards bφ → 0, yielding looser and looser bounds on fNL. Given our current
limited knowledge of the bφ(b1) relation, p = 0.55, p = 1, p = 1.6 and p = 2 are all equally
plausible options, but figure 3 and table 1 show that σfNL can vary by a factor of ≈ 7 within
this range of p values (and a factor of ≈ 14 if we include the most extreme p = −1 case). Note
that the impact of slightly different assumptions on bφ(b1) can translate into substantially
different constraints on fNL because the bφ(b1) relation may cross zero. Finally, after p crosses
the typical values of b1 of the BOSS DR12 galaxies, bφ increases again in absolute value (it
becomes more negative; bφ ≈ −3 for p = 3), and the constraints on fNL begin to tighten
up again.

The dotted and dashed horizontal lines in the lower left panel of figure 3 show the σfNL

values from the power-spectrum-only part of the analyses of ref. [34] (σfNL = 52) and ref. [35]
(σfNL = 34), respectively. These constraints are marked by the shaded vertical bands on the
right panel. The bound from ref. [35] is a factor of ≈ 0.65 smaller than that of ref. [34],
but this can be simply explained by the different values of p assumed in the two analyses.
Concretely, these results from refs. [34] and [35] are for p = 1 and p = 0.55, respectively,
which for b1 ≈ 2 means that ref. [34] has values of bφ that are ≈ 0.69 smaller than those of
ref. [35], hence their correspondingly larger error bar. This is as one would expect from the
perfect degeneracy between bφ and fNL in the galaxy power spectrum, and is again telling of
how different assumptions on bφ(b1) can have a sizeable impact on the inferred precision on
fNL.3 For comparison, these works report that the addition of the bispectrum information
can lead to a reduction of σfNL of 20% − 40%, which is comparable to the difference in
constraining power from two different, but currently plausible choices for p: p = 0.55 and
p = 1. Note also that for matching values of p, our σfNL values agree very well with those
from refs. [34, 35].

An interesting result from figure 3 is also that, although different choices of p result
in different inferred precisions σfNL , the significance of detection (SoD) of fNL 6= 0 remains
effectively unaffected. Concretely, the figure shows that the SoD is ≈ 1σ (consistent with no
detection) for all values of p shown. This is as expected from the perfect degeneracy between
bφ and fNL at the power spectrum level. We note however that the robustness of the SoD to
the exact value of p should not be used as an argument to justify constraining local fNL in this
way. For the sake of argument, consider the two observational bounds fA

NL = 0.1± 0.025 and
fB

NL = 16±4, which have the same SoD of 4σ, and can both be obtained with the same galaxy
data by making different assumptions about bφ. These two bounds are however manifestly
incompatible, i.e., erroneous assumptions about bφ introduce a theory systematic error that
directly impacts the interpretation of the results. In this particular case, bound A is perfectly

3Reference [35] also quotes constraints assuming p = 1, in which case they find σfNL ≈ 56, as one would
expect from the perfect degeneracy between bφ and fNL. Likewise, in their constraints using eBOSS quasars,
refs. [32, 33] quote constraints for p = 1 and p = 1.6, with the impact on σfNL being again as expected from
the same degeneracy.
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∆p value 0.2 0.5 1 2 5 9 99
pcenter = 0.55
(no b1 priors) 97+50

−91 86+70
−85 −29+247

−268 −123+254
−163 −114+201

−132 −106+180
−110 −50+96

−40

pcenter = 0.55
(w/ b1 priors) 34+32

−35 42+29
−51 64+107

−94 46+131
−187 26+107

−156 21+94
−123 15+29

−67

pcenter = 1
(w/ b1 priors) 49+43

−51 75+53
−89 60+158

−152 36+154
−176 23+107

−150 24+81
−119 11+32

−61

Table 2. Constraints on fNL using the BOSS DR12 galaxy power spectrum marginalizing over
different assumed uncertainties on the bφ(b1) relation. The result is for different values of the width
∆p of Gaussian priors on the parameter p in the parametrization bφ(b1) = 2δc(b1 − p). These results
are for a Gaussian prior centered at pcenter = 0.55 (with and without b1 priors) and pcenter = 1 (with
b1 priors).

compatible with the Planck CMB constraint (fCMB
NL = −0.9 ± 5.1), but bound B displays

a & 3σ tension. The implications to models of inflation in order to generate predictions
compatible with bound A or B would be also appreciably different. Concerning the SoD of
fNL 6= 0, the most transparent thing to do is to constrain the parameter combination fNLbφ
(cf. section 3.3 below).

Furthermore, should the real value for our Universe be fNL = 0, then the precision σfNL

is what is important to inform decisions about when to stop searching for local PNG and
begin counting the failed search as evidence in favour of single-field inflation; for example,
|fNL| < 0.025 and |fNL| < 16 are two constraints that can be possible with different choices
of the bφ parameter, but which would be subject to very different interpretation. Note also
that since the bφ(b1) relation can cross zero, it is in fact not unrealistic that slightly different
assumptions about bφ(b1) can result in such different constraints on fNL, as indeed shown by
our results for p = 1.6 and p = 2, for example.

3.2 Results from marginalizing over the bφ(b1) relation

In cosmological inference analyses using galaxy data, our uncertain knowledge about galaxy
formation is normally taken into account by marginalizing over the galaxy bias parameters.
We will see next how this approach is ill-defined for the case of the fNL constraints because
of projection effects associated with the degenerate nature of fNL and bφ. In order to do so,
we treat p as a free parameter in our MCMC chains, and run constraints assuming different
Gaussian priors on it

P(p) ∝ exp
[
−1

2
(p− pcenter)2

∆p2

]
. (3.1)

Figure 4 shows the constraints on fNL as a function of the prior width ∆p; the main result
is shown for priors centered at pcenter = 0.55, but the lower left panel displays also the result
for pcenter = 1, as labeled. Table 2 displays the numerical values of the constraints. In the
limit of ∆p→ 0, we recover the same fixed-p scenario discussed in the last section. The main
result from figure 4 is that, while increasing the prior width up to ∆p ≈ 2 initially works to
increase the error bar on fNL, as the prior width increases beyond that, the error bar σfNL

begins to shrink and the center value of the marginalized constraints becomes progressively
centered around fNL = 0. Concretely, for the pcenter = 0.55 case, from ∆p = 0.2 to ∆p = 2
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Figure 4. Constraints on fNL using the BOSS DR12 galaxy power spectrum obtained by marginaliz-
ing over different assumed uncertainties on the bφ(b1) relation. The result is shown for different values
of the width ∆p of Gaussian priors on the parameter p in the parametrization bφ(b1) = 2δc(b1 − p);
the Gaussian is assumed centered at pcenter = 0.55. The upper left panel shows the one-dimensional
1σ marginalized constraints as a function of ∆p, and the lower left panel plots σfNL vs. ∆p; the lower
left panel shows also the result for a prior centered at pcenter = 1 (dashed). The right panel shows
two-dimensional 2σ marginalized constraints on the p − fNL plane for a number of ∆p values. The
main takeaway is that there is no good choice for the bφ(b1) prior that does not significantly inform
the fNL constraints: (i) for lower ∆p, the constraints are impacted by the chosen values of ∆p and
pcenter; and (ii) for larger ∆p, the constraints cannot be trusted because they are severely impacted
by projection effects that return artificially tight constraints around fNL = 0.

the value of σfNL increases by a factor of ≈ 5, but from ∆p = 2 to ∆p = 5, 9 and 99, σfNL

decreases by a factor of ≈ 1.2, 1.5 and 3, respectively.
This behavior has to do with marginalization projection effects, as illustrated in the

right panel of figure 4 (see also refs. [53, 54] for a more detailed explanation in the context
of an idealized analysis for a fictitious survey). Concretely, along the fNL = 0 direction,
the parameter p cannot be constrained since it only enters through terms that multiply fNL.
Thus, the wider the prior on p, the larger the fraction of the total parameter space volume
that gets concentrated near fNL = 0, which progressively biases the constraints after p is
marginalized over. This shows that, contrary to what one might have naively expected, wide
priors on p in particular, and in the bφ parameter in general, are not necessarily conservative
and will still contribute to biased constraints on fNL. In other words, given the perfect
degeneracy between bφ and fNL, there is no good choice for the size of the prior ∆p that does
not significantly inform the constraints: small values of ∆p make the analysis sensitive to the
center value of the prior pcenter, but large values of ∆p leave the analysis untrustworthy due
to projection effects.

In part of their analysis with the BOSS DR12 galaxies, the authors of ref. [34] have also
explored the impact of marginalizing over the local PNG bias parameters. They considered
a prior centered around the universality relation with a width given by 60% of the value of
the relation. This was done not only for the case of bφ, but also the higher-order galaxy bias
parameter bφδ that enters their bispectrum analysis. There, this is reported to have resulted
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in an increase of 30% of the error bar on fNL. For the case of bφ, and for the typical values of
b1 ≈ 2 for the BOSS DR12 galaxies, the range of bφ values spanned by their 60% uncertainty is
equivalent to a case with pcenter = 1 and ∆p ≈ 0.6, in the bφ(b1) = 2δc(b1−p) parametrization.
Our closest scenario to this one in figure 4 is that with pcenter = 1 and ∆p = 0.5, which causes
the errorbar on σfNL to increase by ≈ 60% relative to the p = 1 (∆p = 0) case in our fixed-p
analysis (cf. figure 3). We find this consistent with their degradation of ≈ 30%, noting that
an exact match is not to be expected anyway given the differences between the two analyses
(e.g. ref. [34] utilizes also the bispectrum). In light of our discussion above, however, we
expect that adopting wider priors in the analysis of ref. [34] will eventually begin returning
biased constraints on fNL because of the projection effects.

In ref. [66] the issue of marginalizing over bφ in fNL constraints has also been discussed
in the context of simulated dark matter halo catalogues in real space. In the power-spectrum-
only part of their analysis (but note ref. [66] discusses also the halo bispectrum), the authors
report constraints while fitting simultaneously for fNL and bφ. In light of the perfect degen-
eracy between bφ and fNL, this is only possible if priors on at least one of these parameters is
assumed, but in which case the constraints become naturally dominated by the prior.4 For
the specific case of an analysis of simulated data with a fiducial value of fNL = 10, ref. [66]
reports that, compared to the case of assuming perfect knowledge of the bφ value of the halos
(which can be known from separate universe simulations), marginalizing over a uniform prior
with bφ ∈ [0, 6] increases the marginalized 2σ uncertainty on fNL from ≈ 10 to ≈ 83 (cf.
their figure 10). Note, however, that the latter bound is close to their assumed prior on fNL,
fNL ∈ [−100, 100], which is indicative that the result is prior dominated as one would expect.
Again, in light of the projection effects discussed above, further increasing the width of the
prior on bφ in ref. [66] (including letting it explore negative values) would eventually bias the
constraints towards fNL → 0 with a progressively smaller error bar.

3.3 Significance of detection analysis: constraints on fNLbφ

Independently of prior assumptions on bφ and using the scale-dependent bias effect, the
galaxy power spectrum can only be used to constrain the parameter combination fNLbφ.
Doing so does not let us constrain the numerical value of fNL and its uncertainty σfNL , and
it prevents also direct comparisons with the CMB data bounds. Note, however, that there is
still value in placing constraints on fNLbφ since they can still let us detect local PNG through
detections of fNLbφ 6= 0 (under the only assumption that bφ 6= ∞). These types of analyses
are not yet routine in constraint/forecast works in the fNL-related literature (see refs. [53, 54]
for the first discussions), but it is strongly recommended that this begins to be the case as
this is what the scale-dependent bias effect can truly constrain.

Figure 5 and table 3 show our constraints on fNLbφ from the analysis in which we treat
this parameter combination as free for each of the four galaxy samples. The resulting best-
fitting galaxy power spectrum is shown in figure 6, and figure 9 in appendix A shows a corner
plot with the one- and two-dimensional marginalized constraints for the full parameter space.
In our analysis with (without) Gaussian priors on b1, we recover inferred precisions on fNLbφ
of order σfNLbφ ≈ 300–500 (σfNLbφ ≈ 450–900). This is in line with the result from ref. [35]
(grey points with error bars on the left of figure 5) who finds σfNLbφ ≈ 250–420, using also

4For completeness, we note that at the 1-loop level, there are contributions from fNL to the galaxy power
spectrum that are not perfectly degenerate with bφ. However, these are small and contribute with negligible
constraining power.
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Figure 5. Constraints on the parameter combination fNLbφ using the BOSS DR12 galaxy power
spectrum. The left panel shows the one-dimensional 1σ marginalized constraints without (blue) and
with (green) Gaussian priors on b1. Shown also for comparison are the constraints obtained by ref. [35],
using also the bispectrum of the galaxies. The right panels show the two-dimensional marginalized
1σ and 2σ constraints on the subset of the parameter space made up of the fNLbφ parameters of the
four galaxy samples.

Parameter bφf
NGCz3
NL bφf

SGCz3
NL bφf

NGCz1
NL bφf

SGCz1
NL

No b1 priors 210+467
−499 507+709

−784 898+521
−542 388+806

−903

With b1 priors −163+316
−289 447+428

−382 391+305
−295 64+518

−436

Table 3. Constraints on the parameter combination fNLbφ using the BOSS DR12 galaxy power
spectrum, with and without Gaussian priors on the parameter b1.

information from the bispectrum. This shows that the power spectrum is what dominates
the constraints on these SoD parameters, as first pointed out in ref. [54].

Assuming that the four fNLbφ parameters are Gaussian distributed and independent
(which is reasonable given the lack of any noticeable strong correlation on the right panels
of figure 5), the overall SoD of fNLbφ 6= 0 (and thus fNL 6= 0) is ≈ 1.6σ for both the case
with and without b1 priors (consistent with no overall detection of local PNG). Note that
the SoD of ≈ 1σ in our fixed-p analysis in section 3.1 (cf. figure 3) needs not to be the same
as the SoD from the fNLbφ analysis. This is because in the fNLbφ case, the four galaxy
samples contribute independently to the SoD (since we treat fNLbφ as a free parameter for
each sample), whereas in the fixed-p analysis the different galaxy samples contribute with
correlated information as we have assumed the same value of p for all of them.

4 Can the galaxy bispectrum help?

Relative to the power spectrum, the leading-order galaxy bispectrum receives two new types
of contributions from local PNG that are interesting to discuss. The first comes from the
primordial squeezed bispectrum signal that local PNG induces in the initial density pertur-
bations. This signal is present also in the late-time matter bispectrum, and contributes to
the galaxy bispectrum with an amplitude ∝ b3

1fNL, independently of any local PNG bias
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Figure 6. The best-fitting model predictions obtained from the part of our analysis that fits for
the parameter combination fNLbφ. The orange and cyan shaded bands mark the uncertainty on the
monopole and quadrupole from the 1σ uncertainty on fNLbφ. Each of the four panels is for each of
the galaxy samples considered; the black and grey dots with error bars show the measured monopole
and quadrupole from ref. [55]. The grey shaded bands mark the values of k > kmax = 0.05h/Mpc
that were not used to guarantee the validity of linear theory in our analysis.

parameter. The second is the contribution from a new local PNG galaxy bias parameter
bφδ that contributes to the galaxy bias expansion as δg(x) ⊃ bφδfNLδm(x)φ(q(x)) (q is the
Lagrangian coordinate of x). Schematically, the main fNL contributions in analyses with the
tree-level galaxy bispectrum are (see e.g. refs. [27–29, 34, 35, 66, 81])

∝ b3
1fNL ; ∝ fNLbφδ ; ∝ fNLbφ (4.1)

(we are dropping ∼ f2
NL contributions for simplicity). The first point to note is that the

new local PNG bias parameter bφδ is currently also very uncertain, and so its contribution
cannot be used to constrain fNL because of the same reasons discussed above for bφfNL.
Any constraint derived from this term must come from robust theoretical priors on bφδ,
for example in the form of some bφδ(b1) relation, which are still lacking. This relation has
only been recently measured for halos and IllustrisTNG galaxies in ref. [53], and for neutral
Hydrogen in IllustrisTNG in ref. [75], but more work is needed to establish the robustness
and connection of these early results to the real Universe.

An interesting question, however, concerns the ability of the galaxy bispectrum to con-
strain fNL through the primordial contribution ∝ b3

1fNL, after marginalizing over the fNLbφ
and fNLbφδ parameters. This was first discussed in refs. [53, 54] in the context of an idealized
analysis for a data vector generated from a theory model. Unfortunately, there we found
that the terms ∝ b3

1fNL and ∝ fNLbφδ have a very similar scale dependence, and thus that
marginalizing over the parameter combination bφδfNL severely washes out the contribution

– 16 –



J
C
A
P
1
1
(
2
0
2
2
)
0
1
3

from the b3
1fNL term, effectively resulting in very uncompetitive fNL bounds. This result was

recovered by the more recent BOSS DR12 bispectrum analysis of ref. [35], who also found a
very strong degeneracy between fNL and fNLbφδ that keeps fNL from being constrained as
competitively: compared to their nominal result of fNL = −33 ± 28 assuming fixed bφ(b1)
and bφδ(b1) relations, when fNLbφ and fNLbφδ are marginalized over (including ∼ f2

NL terms),
the constraints degrade significantly to fNL = −676+150

−250.
At least to leading-order, this indicates that the galaxy bispectrum is unable to com-

petitively constrain fNL independently of assumptions on the local PNG bias parameters.
This is seemingly at odds with the results from ref. [66] in their analysis of the bispectrum
of dark matter halos in simulations with fNL 6= 0. However, we note that although the
authors of ref. [66] quote factors of improvement from adding the bispectrum to analyses
with the power spectrum when bφ and bφδ are varied, the constraints on fNL in both cases
are dominated by the assumed priors on bφ and bφδ (as noted there). We note however that
in this case one cannot refer to these priors as loose as they effectively control the resulting
inferred precision on fNL (cf. discussion in section 3.2). Again, in light of the strong impact
of PNG bias uncertainties, a more transparent way to quote bounds on the local PNG signal
is through limits on SoD parameter combinations like fNLbφ and fNLbφδ.

In the future, it would be interesting to check the extent to which the situation changes
in analyses with the 1-loop galaxy bispectrum [34], or by probing higher-order statistics with
the aid of field-level galaxy forward models [82, 83] (though in ref. [83] the authors still assume
perfect knowledge of the bφ(b1) relation). We note however that if competitive constraints on
fNL end up being possible with these higher-order analyses, these will come from our ability
to probe the primordial signal, and not through the scale-dependent bias effect.

We note finally in passing that these considerations about the strong impact that PNG
galaxy bias parameters have on fNL constraints apply primarily to the case of PNG of the
local-type, and less so to the case of other shapes of PNG such as the equilateral and orthogonal
shapes. Although for the equilateral and orthogonal cases there are also contributions that
arise through new galaxy bias parameter terms, for order unity values of these bias parame-
ters, these contributions are subdominant compared to the primordial signal imprinted in the
matter bispectrum, which may be used to constrain f equi.

NL and fortho.
NL relatively independently

of PNG bias uncertainties [34, 84].

5 Summary

The determination of the numerical value of the local PNG parameter fNL would carry very
profound consequences to our understanding of the early Universe and the primordial density
fluctuations generated during the epoch of inflation. In particular, detecting fNL 6= 0 could
be used to rule out the simplest single-field models of inflation in favor of more elaborate
models involving multiple physical degrees of freedom. The current tightest bound comes
from the Planck satellite CMB data analysis, which constrains fNL = −0.9±5.1 (1σ). This is
compatible with single-field inflation, but leaves still significant room to accommodate several
multi-field scenarios that predict order unity values. Reaching for the σfNL . 1 mark has
since become a major milestone in observational cosmology, as even if this happens without a
clear detection of fNL 6= 0, that can still be used to rule out many popular models of inflation.

Currently, the best chances to reach for the σfNL . 1 milestone are expected to come
from constraints on the amplitude of the scale-dependent bias signatures that local PNG
leaves on the statistics of the galaxy distribution. However, a problem that exists in these
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types of analyses is that the amplitude of these signatures is determined not only by the
parameter fNL, but also by a series of galaxy bias parameters that describe the response
of galaxy formation to long-wavelength primordial gravitational potential perturbations. In
the case of the galaxy power spectrum, the relevant bias parameter is called bφ and the con-
straints are dominated by contributions ∝ fNLbφ/k

2, (fNLbφ)2/k4 (cf. eq. (2.1)). Effectively
all existing constraints on fNL reported to date using the scale-dependent bias effect rely
on tight assumptions about bφ, or more specifically its relation to the linear density bias
parameter b1. This is an issue to fNL constraints since the bφ(b1) relation is currently still
very uncertain, but its observational effects on the galaxy power spectrum are degenerate
with fNL.

In this paper we discussed the strong impact that the bφ(b1) relation has on fNL con-
straints obtained using the scale-dependent bias effect. In particular, we considered the
measurements of ref. [55] of the redshift-space galaxy power spectrum of BOSS DR12 galax-
ies, and showed how our current uncertain knowledge of the bφ(b1) relation prevents us from
being able to determine fNL and its statistical uncertainty σfNL . We adopted a simple and
very conservative analysis setup assuming linear theory and considering only wavenumbers
up to kmax = 0.05h/Mpc. We worked with the parametrization bφ(b1) = 2δc(b1 − p) that is
often encountered in the literature, and constrained fNL assuming different fixed values of the
parameter p, as well as marginalizing over its uncertain value. This specific parametrization
of the bφ(b1) relation served simply as a convenient way to parametrize our ignorance about
the bφ parameter, and our overall conclusions are not peculiar to it. Our main takeaway
points can be summarized as follows:

• The inferred precision σfNL depends very sensitively on the value of p (cf. figure 3 and
table 1). Within the range p ∈ [−1, 3] we explored, the constraints on σfNL displayed
variations of over a factor of ≈ 14. This strong sensitivity is as expected from the
degenerate contributions of bφ and fNL to the galaxy power spectrum, and the fact
that bφ(b1) can be very close to zero for values of p close to the linear density bias b1
of the BOSS DR12 galaxies.

Although in analyses with fixed values of p the significance of detection (SoD) of
fNL 6= 0 is not strongly affected by the choice of p (cf. figure 3), the strong dependence
of σfNL on p still makes these analyses inadequate ways to quote constraints on local
PNG (cf. discussion in section 3.1).

• Marginalizing over the uncertain value of p with wide uninformative priors is not con-
servative and biases the constraints through projection effects (cf. figure 4 and table 2).
For Gaussian priors centered at pcenter = 0.55 and pcenter = 1, increasing the prior width
from ∆p = 0 to ∆p = 2 results first in a gradual increase of the error bar on fNL up
to factors of ≈ 5, and then a subsequent decrease towards σfNL → 0 as larger values
of ∆p progressively (and artificially) narrow down the constraints around fNL = 0 (cf.
discussion in section 3.2).

• Independently of bφ uncertainties the scale-dependent bias signature on the galaxy
power spectrum can only be used to constrain the parameter combination fNLbφ, which
can still be used to assess the SoD of fNL 6= 0 (cf. figure 5). For the BOSS DR12 galaxies
we found an overall SoD of 1.6σ, consistent with no detection.

Overall, our results show that, until we develop a robust knowledge of the galaxy bias
parameter bφ and its relation to b1, any observational constraints and forecasts on fNL using
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the scale-dependent bias effect are subject to a large theory systematic error and must there-
fore be interpreted carefully. This strongly motivates revisiting the way we currently quote
constraints on local PNG using galaxy data, in particular, that the constraining power of
different galaxy surveys and analysis choices should be compared at the level of the SoD and
the fNLbφ parameters, and not fNL and σfNL .

Our results encourage in particular the development of research programs dedicated
to design accurate priors for the bφ(b1) relation. This relation for dark matter halos in
simulations is relatively well understood, although note it possesses a strong halo assembly
bias signal [46, 85]. The situation for simulated galaxies is far less well understood. In
refs. [52, 53], the authors took the first steps to study the bφ(b1) relation with separate universe
simulations of the IllustrisTNG model, and found significant differences to the halo-based
relations. The sensitivity of these results to the assumed galaxy formation physics, as well
as the connection between the simulated and the observed galaxy samples remains however
currently unknown. Another interesting route could be to estimate the bφ(b1) relation with
the aid of semi-analytical models of galaxy formation tuned to match certain properties of
galaxies in real surveys [86].

Should future research directions like these succeed in providing trustworthy priors on
the PNG bias relations, this will also offer us a chance to optimize galaxy clustering analyses
to fNL constraints by targeting galaxy samples with the largest expected values for bφ. For
example, ref. [85] finds that galaxies that preferentially inhabit higher-concentration halos
tend to have larger values of bφ. Further, the results in ref. [53] suggest that objects with
lower black hole mass accretion rate (or by proxy, lower black hole luminosity) could also
be used to select objects with larger values for bφ. The work of ref. [87] showed also that
splitting galaxies in SDSS by measures of their environment can have a strong impact on the
resulting values of the b1 parameter; using simulations, it would be interesting to investigate
the impact of these splits on the bφ parameter as well. Note that if the goal is just to detect the
parameter combination fNLbφ, then the accuracy requirements on these priors are actually
not as stringent: in this case, even a rough understanding of which galaxy types are expected
to have the largest values of bφ would be helpful to construct galaxy samples that provide
higher chances to detect fNL 6= 0. A rough understanding of at least the redshift evolution of
the bφ parameter is useful also for analyses that employ optimal redshift weighting schemes
to constrain local PNG [33, 88]. However, the strongest motivation for these types of works is
perhaps that, without very accurate and precise priors on the bφ(b1) relation, it may remain
impossible to constrain the actual numerical value of local fNL using the scale-dependent
bias effect.

Acknowledgments

We would like to thank Emanuele Castorina, Eiichiro Komatsu and Fabian Schmidt for very
useful comments and conversations. We are also very thankful to Oliver Philcox for making
publicly available the BOSS DR12 power spectrum measurements utilized in this paper. The
author acknowledges support from the Excellence Cluster ORIGINS which is funded by the
Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s
Excellence Strategy — EXC-2094-390783311. The numerical analysis presented in this work
was done on the Cobra supercomputer at the Max Planck Computing and Data Facility
(MPCDF) in Garching near Munich.

– 19 –



J
C
A
P
1
1
(
2
0
2
2
)
0
1
3

Figure 7. Corner plot with one- and two-dimensional (1σ and 2σ) marginalized constraints from the
analysis with different assumed fixed values of p in the parametrization bφ(b1) = 2δc(b1 − p). This
result is for Gaussian priors assumed on the parameter b1, and corresponds to figure 3 in the main
body of the paper.

A Additional constraint plots

In this appendix, we display a few additional plots with one- and two-dimensional parameter
constraints from parts of the analysis in the main body of the paper. Concretely,

• Figure 7 shows the corner constraints plot for all of the parameters varied in the fixed-p
analysis discussed in section 3.1, for the case with Gaussian priors assumed on b1.

• Figure 8 shows the same as figure 3, but for the constraints without assumed priors
on b1.

• Figure 9 shows the corner constraints plot for all of the parameters varied in the analysis
of the SoD parameters fNLbφ in section 3.3.
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Figure 8. Same as figure 3 in the main body of the paper, but without assumed Gaussian priors on
the parameter b1. The absolute value of the statistical error σfNL increases when b1 is varied freely, but
importantly, the main conclusions about the impact of different choices of p and the bφ(b1) relation
remain unaffected.

– 21 –



J
C
A
P
1
1
(
2
0
2
2
)
0
1
3

Figure 9. Corner plot with one- and two-dimensional (1σ and 2σ) marginalized constraints from the
analysis that fits for the parameter combinations fNLbφ. This corresponds to figure 5 in the main
body of the paper.

– 22 –



J
C
A
P
1
1
(
2
0
2
2
)
0
1
3

References

[1] E. Komatsu and D.N. Spergel, Acoustic signatures in the primary microwave background
bispectrum, Phys. Rev. D 63 (2001) 063002 [astro-ph/0005036] [INSPIRE].

[2] J.M. Maldacena, Non-Gaussian features of primordial fluctuations in single field inflationary
models, JHEP 05 (2003) 013 [astro-ph/0210603] [INSPIRE].

[3] P. Creminelli and M. Zaldarriaga, Single field consistency relation for the 3-point function,
JCAP 10 (2004) 006 [astro-ph/0407059] [INSPIRE].

[4] P. Creminelli, G. D’Amico, M. Musso and J. Noreña, The (not so) squeezed limit of the
primordial 3-point function, JCAP 11 (2011) 038 [arXiv:1106.1462] [INSPIRE].

[5] T. Tanaka and Y. Urakawa, Dominance of gauge artifact in the consistency relation for the
primordial bispectrum, JCAP 05 (2011) 014 [arXiv:1103.1251] [INSPIRE].

[6] E. Pajer, F. Schmidt and M. Zaldarriaga, The Observed Squeezed Limit of Cosmological
Three-Point Functions, Phys. Rev. D 88 (2013) 083502 [arXiv:1305.0824] [INSPIRE].

[7] L. Dai, E. Pajer and F. Schmidt, On Separate Universes, JCAP 10 (2015) 059
[arXiv:1504.00351] [INSPIRE].

[8] R. de Putter, O. Doré and D. Green, Is There Scale-Dependent Bias in Single-Field Inflation?,
JCAP 10 (2015) 024 [arXiv:1504.05935] [INSPIRE].

[9] Planck collaboration, Planck 2018 results. Part IX. Constraints on primordial
non-Gaussianity, Astron. Astrophys. 641 (2020) A9 [arXiv:1905.05697] [INSPIRE].

[10] T. Giannantonio, C. Porciani, J. Carron, A. Amara and A. Pillepich, Constraining primordial
non-Gaussianity with future galaxy surveys, Mon. Not. Roy. Astron. Soc. 422 (2012) 2854
[arXiv:1109.0958] [INSPIRE].

[11] O. Doré et al., Cosmology with the SPHEREX All-Sky Spectral Survey, arXiv:1412.4872
[INSPIRE].

[12] M. Alvarez et al., Testing Inflation with Large Scale Structure: Connecting Hopes with Reality,
arXiv:1412.4671 [INSPIRE].

[13] D. Alonso, P. Bull, P.G. Ferreira, R. Maartens and M.G. Santos, Ultra large-scale cosmology in
next-generation experiments with single tracers, Astrophys. J. 814 (2015) 145
[arXiv:1505.07596] [INSPIRE].

[14] D. Alonso and P.G. Ferreira, Constraining ultralarge-scale cosmology with multiple tracers in
optical and radio surveys, Phys. Rev. D 92 (2015) 063525 [arXiv:1507.03550] [INSPIRE].

[15] A. Raccanelli, F. Montanari, D. Bertacca, O. Doré and R. Durrer, Cosmological Measurements
with General Relativistic Galaxy Correlations, JCAP 05 (2016) 009 [arXiv:1505.06179]
[INSPIRE].

[16] R. de Putter and O. Doré, Designing an Inflation Galaxy Survey: how to measure σ(fNL) ∼ 1
using scale-dependent galaxy bias, Phys. Rev. D 95 (2017) 123513 [arXiv:1412.3854]
[INSPIRE].

[17] D. Karagiannis, A. Lazanu, M. Liguori, A. Raccanelli, N. Bartolo and L. Verde, Constraining
primordial non-Gaussianity with bispectrum and power spectrum from upcoming optical and
radio surveys, Mon. Not. Roy. Astron. Soc. 478 (2018) 1341 [arXiv:1801.09280] [INSPIRE].

[18] M. Biagetti, The Hunt for Primordial Interactions in the Large Scale Structures of the
Universe, Galaxies 7 (2019) 71 [arXiv:1906.12244] [INSPIRE].

[19] A. Moradinezhad Dizgah and G.K. Keating, Line intensity mapping with [C II] and CO(1-0)
as probes of primordial non-Gaussianity, Astrophys. J. 872 (2019) 126 [arXiv:1810.02850]
[INSPIRE].

– 23 –

https://doi.org/10.1103/PhysRevD.63.063002
https://arxiv.org/abs/astro-ph/0005036
https://inspirehep.net/search?p=find+EPRINT%2Bastro-ph%2F0005036
https://doi.org/10.1088/1126-6708/2003/05/013
https://arxiv.org/abs/astro-ph/0210603
https://inspirehep.net/search?p=find+EPRINT%2Bastro-ph%2F0210603
https://doi.org/10.1088/1475-7516/2004/10/006
https://arxiv.org/abs/astro-ph/0407059
https://inspirehep.net/search?p=find+EPRINT%2Bastro-ph%2F0407059
https://doi.org/10.1088/1475-7516/2011/11/038
https://arxiv.org/abs/1106.1462
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1106.1462
https://doi.org/10.1088/1475-7516/2011/05/014
https://arxiv.org/abs/1103.1251
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1103.1251
https://doi.org/10.1103/PhysRevD.88.083502
https://arxiv.org/abs/1305.0824
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1305.0824
https://doi.org/10.1088/1475-7516/2015/10/059
https://arxiv.org/abs/1504.00351
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1504.00351
https://doi.org/10.1088/1475-7516/2015/10/024
https://arxiv.org/abs/1504.05935
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1504.05935
https://doi.org/10.1051/0004-6361/201935891
https://arxiv.org/abs/1905.05697
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1905.05697
https://doi.org/10.1111/j.1365-2966.2012.20604.x
https://arxiv.org/abs/1109.0958
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1109.0958
https://arxiv.org/abs/1412.4872
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1412.4872
https://arxiv.org/abs/1412.4671
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1412.4671
https://doi.org/10.1088/0004-637X/814/2/145
https://arxiv.org/abs/1505.07596
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1505.07596
https://doi.org/10.1103/PhysRevD.92.063525
https://arxiv.org/abs/1507.03550
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1507.03550
https://doi.org/10.1088/1475-7516/2016/05/009
https://arxiv.org/abs/1505.06179
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1505.06179
https://doi.org/10.1103/PhysRevD.95.123513
https://arxiv.org/abs/1412.3854
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1412.3854
https://doi.org/10.1093/mnras/sty1029
https://arxiv.org/abs/1801.09280
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1801.09280
https://doi.org/10.3390/galaxies7030071
https://arxiv.org/abs/1906.12244
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1906.12244
https://doi.org/10.3847/1538-4357/aafd36
https://arxiv.org/abs/1810.02850
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1810.02850


J
C
A
P
1
1
(
2
0
2
2
)
0
1
3

[20] M. Ballardini, W.L. Matthewson and R. Maartens, Constraining primordial non-Gaussianity
using two galaxy surveys and CMB lensing, Mon. Not. Roy. Astron. Soc. 489 (2019) 1950
[arXiv:1906.04730] [INSPIRE].

[21] R. Maartens, S. Jolicoeur, O. Umeh, E.M. De Weerd and C. Clarkson, Local primordial
non-Gaussianity in the relativistic galaxy bispectrum, JCAP 04 (2021) 013
[arXiv:2011.13660] [INSPIRE].

[22] N. Sailer, E. Castorina, S. Ferraro and M. White, Cosmology at high redshift — a probe of
fundamental physics, JCAP 12 (2021) 049 [arXiv:2106.09713] [INSPIRE].

[23] S. Ferraro, N. Sailer, A. Slosar and M. White, Snowmass2021 Cosmic Frontier White Paper:
Cosmology and Fundamental Physics from the three-dimensional Large Scale Structure,
arXiv:2203.07506 [INSPIRE].

[24] A. Achúcarro et al., Inflation: Theory and Observations, arXiv:2203.08128 [INSPIRE].

[25] A. Slosar, C. Hirata, U. Seljak, S. Ho and N. Padmanabhan, Constraints on local primordial
non-Gaussianity from large scale structure, JCAP 08 (2008) 031 [arXiv:0805.3580] [INSPIRE].

[26] P. McDonald, Primordial non-Gaussianity: large-scale structure signature in the perturbative
bias model, Phys. Rev. D 78 (2008) 123519 [arXiv:0806.1061] [INSPIRE].

[27] T. Giannantonio and C. Porciani, Structure formation from non-Gaussian initial conditions:
multivariate biasing, statistics, and comparison with N-body simulations, Phys. Rev. D 81
(2010) 063530 [arXiv:0911.0017] [INSPIRE].

[28] T. Baldauf, U. Seljak and L. Senatore, Primordial non-Gaussianity in the Bispectrum of the
Halo Density Field, JCAP 04 (2011) 006 [arXiv:1011.1513] [INSPIRE].

[29] V. Assassi, D. Baumann and F. Schmidt, Galaxy Bias and Primordial Non-Gaussianity, JCAP
12 (2015) 043 [arXiv:1510.03723] [INSPIRE].

[30] V. Desjacques, D. Jeong and F. Schmidt, Large-Scale Galaxy Bias, Phys. Rept. 733 (2018) 1
[arXiv:1611.09787] [INSPIRE].

[31] N. Dalal, O. Doré, D. Huterer and A. Shirokov, The imprints of primordial non-Gaussianities
on large-scale structure: scale dependent bias and abundance of virialized objects, Phys. Rev. D
77 (2008) 123514 [arXiv:0710.4560] [INSPIRE].

[32] E.-M. Mueller et al., The clustering of galaxies in the completed SDSS-IV extended Baryon
Oscillation Spectroscopic Survey: Primordial non-Gaussianity in Fourier Space,
arXiv:2106.13725 [INSPIRE].

[33] E. Castorina et al., Redshift-weighted constraints on primordial non-Gaussianity from the
clustering of the eBOSS DR14 quasars in Fourier space, JCAP 09 (2019) 010
[arXiv:1904.08859] [INSPIRE].

[34] G. D’Amico, M. Lewandowski, L. Senatore and P. Zhang, Limits on primordial
non-Gaussianities from BOSS galaxy-clustering data, arXiv:2201.11518 [INSPIRE].

[35] G. Cabass, M.M. Ivanov, O.H.E. Philcox, M. Simonović and M. Zaldarriaga, Constraints on
multifield inflation from the BOSS galaxy survey, Phys. Rev. D 106 (2022) 043506
[arXiv:2204.01781] [INSPIRE].

[36] J.-Q. Xia, C. Baccigalupi, S. Matarrese, L. Verde and M. Viel, Constraints on Primordial
Non-Gaussianity from Large Scale Structure Probes, JCAP 08 (2011) 033 [arXiv:1104.5015]
[INSPIRE].

[37] A.J. Ross et al., The Clustering of Galaxies in SDSS-III DR9 Baryon Oscillation Spectroscopic
Survey: Constraints on Primordial Non-Gaussianity, Mon. Not. Roy. Astron. Soc. 428 (2013)
1116 [arXiv:1208.1491] [INSPIRE].

– 24 –

https://doi.org/10.1093/mnras/stz2258
https://arxiv.org/abs/1906.04730
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1906.04730
https://doi.org/10.1088/1475-7516/2021/04/013
https://arxiv.org/abs/2011.13660
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2011.13660
https://doi.org/10.1088/1475-7516/2021/12/049
https://arxiv.org/abs/2106.09713
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2106.09713
https://arxiv.org/abs/2203.07506
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2203.07506
https://arxiv.org/abs/2203.08128
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2203.08128
https://doi.org/10.1088/1475-7516/2008/08/031
https://arxiv.org/abs/0805.3580
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0805.3580
https://doi.org/10.1103/PhysRevD.78.123519
https://arxiv.org/abs/0806.1061
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0806.1061
https://doi.org/10.1103/PhysRevD.81.063530
https://doi.org/10.1103/PhysRevD.81.063530
https://arxiv.org/abs/0911.0017
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0911.0017
https://doi.org/10.1088/1475-7516/2011/04/006
https://arxiv.org/abs/1011.1513
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1011.1513
https://doi.org/10.1088/1475-7516/2015/12/043
https://doi.org/10.1088/1475-7516/2015/12/043
https://arxiv.org/abs/1510.03723
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1510.03723
https://doi.org/10.1016/j.physrep.2017.12.002
https://arxiv.org/abs/1611.09787
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1611.09787
https://doi.org/10.1103/PhysRevD.77.123514
https://doi.org/10.1103/PhysRevD.77.123514
https://arxiv.org/abs/0710.4560
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0710.4560
https://arxiv.org/abs/2106.13725
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2106.13725
https://doi.org/10.1088/1475-7516/2019/09/010
https://arxiv.org/abs/1904.08859
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1904.08859
https://arxiv.org/abs/2201.11518
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2201.11518
https://doi.org/10.1103/PhysRevD.106.043506
https://arxiv.org/abs/2204.01781
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2204.01781
https://doi.org/10.1088/1475-7516/2011/08/033
https://arxiv.org/abs/1104.5015
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1104.5015
https://doi.org/10.1093/mnras/sts094
https://doi.org/10.1093/mnras/sts094
https://arxiv.org/abs/1208.1491
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1208.1491


J
C
A
P
1
1
(
2
0
2
2
)
0
1
3

[38] T. Giannantonio et al., Improved Primordial Non-Gaussianity Constraints from Measurements
of Galaxy Clustering and the Integrated Sachs-Wolfe Effect, Phys. Rev. D 89 (2014) 023511
[arXiv:1303.1349] [INSPIRE].

[39] B. Leistedt, H.V. Peiris and N. Roth, Constraints on Primordial Non-Gaussianity from 800
000 Photometric Quasars, Phys. Rev. Lett. 113 (2014) 221301 [arXiv:1405.4315] [INSPIRE].

[40] T. Giannantonio and W.J. Percival, Using correlations between CMB lensing and large-scale
structure to measure primordial non-Gaussianity, Mon. Not. Roy. Astron. Soc. 441 (2014) L16
[arXiv:1312.5154] [INSPIRE].

[41] S. Ho et al., Sloan Digital Sky Survey III photometric quasar clustering: probing the initial
conditions of the Universe, JCAP 05 (2015) 040 [arXiv:1311.2597] [INSPIRE].

[42] D. Jeong and E. Komatsu, Primordial non-Gaussianity, scale-dependent bias, and the
bispectrum of galaxies, Astrophys. J. 703 (2009) 1230 [arXiv:0904.0497] [INSPIRE].

[43] M. Grossi et al., Large-scale non-Gaussian mass function and halo bias: tests on N-body
simulations, Mon. Not. Roy. Astron. Soc. 398 (2009) 321 [arXiv:0902.2013] [INSPIRE].

[44] V. Desjacques, U. Seljak and I.T. Iliev, Scale-dependent bias induced by local non-Gaussianity:
A comparison to N-body simulations, Mon. Not. Roy. Astron. Soc. 396 (2009) 85
[arXiv:0811.2748] [INSPIRE].

[45] A. Pillepich, C. Porciani and O. Hahn, Universal halo mass function and scale-dependent bias
from N-body simulations with non-Gaussian initial conditions, Mon. Not. Roy. Astron. Soc.
402 (2010) 191 [arXiv:0811.4176] [INSPIRE].

[46] B.A. Reid, L. Verde, K. Dolag, S. Matarrese and L. Moscardini, Non-Gaussian halo assembly
bias, JCAP 07 (2010) 013 [arXiv:1004.1637] [INSPIRE].

[47] N. Hamaus, U. Seljak and V. Desjacques, Optimal Constraints on Local Primordial
Non-Gaussianity from the Two-Point Statistics of Large-Scale Structure, Phys. Rev. D 84
(2011) 083509 [arXiv:1104.2321] [INSPIRE].

[48] R. Scoccimarro, L. Hui, M. Manera and K.C. Chan, Large-scale Bias and Efficient Generation
of Initial Conditions for Non-Local Primordial Non-Gaussianity, Phys. Rev. D 85 (2012)
083002 [arXiv:1108.5512] [INSPIRE].

[49] C. Wagner and L. Verde, N-body simulations with generic non-Gaussian initial conditions.
Part II. Halo bias, JCAP 03 (2012) 002 [arXiv:1102.3229] [INSPIRE].

[50] T. Baldauf, U. Seljak, L. Senatore and M. Zaldarriaga, Linear response to long wavelength
fluctuations using curvature simulations, JCAP 09 (2016) 007 [arXiv:1511.01465] [INSPIRE].

[51] M. Biagetti, T. Lazeyras, T. Baldauf, V. Desjacques and F. Schmidt, Verifying the consistency
relation for the scale-dependent bias from local primordial non-Gaussianity, Mon. Not. Roy.
Astron. Soc. 468 (2017) 3277 [arXiv:1611.04901] [INSPIRE].

[52] A. Barreira, G. Cabass, F. Schmidt, A. Pillepich and D. Nelson, Galaxy bias and primordial
non-Gaussianity: insights from galaxy formation simulations with IllustrisTNG, JCAP 12
(2020) 013 [arXiv:2006.09368] [INSPIRE].

[53] A. Barreira, Predictions for local PNG bias in the galaxy power spectrum and bispectrum and
the consequences for fNL constraints, JCAP 01 (2022) 033 [arXiv:2107.06887] [INSPIRE].

[54] A. Barreira, On the impact of galaxy bias uncertainties on primordial non-Gaussianity
constraints, JCAP 12 (2020) 031 [arXiv:2009.06622] [INSPIRE].

[55] O.H.E. Philcox, Cosmology without window functions: Quadratic estimators for the galaxy
power spectrum, Phys. Rev. D 103 (2021) 103504 [arXiv:2012.09389] [INSPIRE].

[56] O.H.E. Philcox, Cosmology without window functions. Part II. Cubic estimators for the galaxy
bispectrum, Phys. Rev. D 104 (2021) 123529 [arXiv:2107.06287] [INSPIRE].

– 25 –

https://doi.org/10.1103/PhysRevD.89.023511
https://arxiv.org/abs/1303.1349
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1303.1349
https://doi.org/10.1103/PhysRevLett.113.221301
https://arxiv.org/abs/1405.4315
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1405.4315
https://doi.org/10.1093/mnrasl/slu036
https://arxiv.org/abs/1312.5154
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1312.5154
https://doi.org/10.1088/1475-7516/2015/05/040
https://arxiv.org/abs/1311.2597
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1311.2597
https://doi.org/10.1088/0004-637X/703/2/1230
https://arxiv.org/abs/0904.0497
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0904.0497
https://doi.org/10.1111/j.1365-2966.2009.15150.x
https://arxiv.org/abs/0902.2013
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0902.2013
https://doi.org/10.1111/j.1365-2966.2009.14721.x
https://arxiv.org/abs/0811.2748
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0811.2748
https://doi.org/10.1111/j.1365-2966.2009.15914.x
https://doi.org/10.1111/j.1365-2966.2009.15914.x
https://arxiv.org/abs/0811.4176
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0811.4176
https://doi.org/10.1088/1475-7516/2010/07/013
https://arxiv.org/abs/1004.1637
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1004.1637
https://doi.org/10.1103/PhysRevD.84.083509
https://doi.org/10.1103/PhysRevD.84.083509
https://arxiv.org/abs/1104.2321
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1104.2321
https://doi.org/10.1103/PhysRevD.85.083002
https://doi.org/10.1103/PhysRevD.85.083002
https://arxiv.org/abs/1108.5512
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1108.5512
https://doi.org/10.1088/1475-7516/2012/03/002
https://arxiv.org/abs/1102.3229
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1102.3229
https://doi.org/10.1088/1475-7516/2016/09/007
https://arxiv.org/abs/1511.01465
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1511.01465
https://doi.org/10.1093/mnras/stx714
https://doi.org/10.1093/mnras/stx714
https://arxiv.org/abs/1611.04901
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1611.04901
https://doi.org/10.1088/1475-7516/2020/12/013
https://doi.org/10.1088/1475-7516/2020/12/013
https://arxiv.org/abs/2006.09368
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2006.09368
https://doi.org/10.1088/1475-7516/2022/01/033
https://arxiv.org/abs/2107.06887
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2107.06887
https://doi.org/10.1088/1475-7516/2020/12/031
https://arxiv.org/abs/2009.06622
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2009.06622
https://doi.org/10.1103/PhysRevD.103.103504
https://arxiv.org/abs/2012.09389
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2012.09389
https://doi.org/10.1103/PhysRevD.104.123529
https://arxiv.org/abs/2107.06287
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2107.06287


J
C
A
P
1
1
(
2
0
2
2
)
0
1
3

[57] O.H.E. Philcox and M.M. Ivanov, BOSS DR12 full-shape cosmology: ΛCDM constraints from
the large-scale galaxy power spectrum and bispectrum monopole, Phys. Rev. D 105 (2022)
043517 [arXiv:2112.04515] [INSPIRE].

[58] S. Alam et al., The clustering of galaxies in the completed SDSS-III Baryon Oscillation
Spectroscopic Survey: cosmological analysis of the DR12 galaxy sample, Mon. Not. Roy.
Astron. Soc. 470 (2017) 2617 [arXiv:1607.03155] [INSPIRE].

[59] F.-S. Kitaura et al., The clustering of galaxies in the SDSS-III Baryon Oscillation
Spectroscopic Survey: mock galaxy catalogues for the BOSS Final Data Release, Mon. Not.
Roy. Astron. Soc. 456 (2016) 4156 [arXiv:1509.06400] [INSPIRE].

[60] S.A. Rodríguez-Torres et al., The clustering of galaxies in the SDSS-III Baryon Oscillation
Spectroscopic Survey: modelling the clustering and halo occupation distribution of BOSS
CMASS galaxies in the Final Data Release, Mon. Not. Roy. Astron. Soc. 460 (2016) 1173
[arXiv:1509.06404] [INSPIRE].

[61] A.J. Ross et al., The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic
Survey: Analysis of potential systematics, Mon. Not. Roy. Astron. Soc. 424 (2012) 564
[arXiv:1203.6499] [INSPIRE].

[62] A.R. Pullen and C.M. Hirata, Systematic effects in large-scale angular power spectra of
photometric quasars and implications for constraining primordial non-Gaussianity, Publ.
Astron. Soc. Pac. 125 (2013) 705 [arXiv:1212.4500] [INSPIRE].

[63] B. Leistedt, H.V. Peiris, D.J. Mortlock, A. Benoit-Lévy and A. Pontzen, Estimating the
large-scale angular power spectrum in the presence of systematics: a case study of Sloan Digital
Sky Survey quasars, Mon. Not. Roy. Astron. Soc. 435 (2013) 1857 [arXiv:1306.0005]
[INSPIRE].

[64] B. Kalus et al., A map-based method for eliminating systematic modes from galaxy clustering
power spectra with application to BOSS, Mon. Not. Roy. Astron. Soc. 482 (2019) 453
[arXiv:1806.02789] [INSPIRE].

[65] M. Rezaie et al., Primordial non-Gaussianity from the completed SDSS-IV extended Baryon
Oscillation Spectroscopic Survey. Part I. Catalogue preparation and systematic mitigation,
Mon. Not. Roy. Astron. Soc. 506 (2021) 3439 [arXiv:2106.13724] [INSPIRE].

[66] A. Moradinezhad Dizgah, M. Biagetti, E. Sefusatti, V. Desjacques and J. Noreña, Primordial
Non-Gaussianity from Biased Tracers: Likelihood Analysis of Real-Space Power Spectrum and
Bispectrum, JCAP 05 (2021) 015 [arXiv:2010.14523] [INSPIRE].

[67] A. Lewis, A. Challinor and A. Lasenby, Efficient computation of CMB anisotropies in closed
FRW models, Astrophys. J. 538 (2000) 473 [astro-ph/9911177] [INSPIRE].

[68] T. Baldauf, U. Seljak, L. Senatore and M. Zaldarriaga, Galaxy Bias and non-Linear Structure
Formation in General Relativity, JCAP 10 (2011) 031 [arXiv:1106.5507] [INSPIRE].

[69] J. Yoo, General Relativistic Description of the Observed Galaxy Power Spectrum: Do We
Understand What We Measure?, Phys. Rev. D 82 (2010) 083508 [arXiv:1009.3021] [INSPIRE].

[70] A. Challinor and A. Lewis, The linear power spectrum of observed source number counts, Phys.
Rev. D 84 (2011) 043516 [arXiv:1105.5292] [INSPIRE].

[71] D. Jeong, F. Schmidt and C.M. Hirata, Large-scale clustering of galaxies in general relativity,
Phys. Rev. D 85 (2012) 023504 [arXiv:1107.5427] [INSPIRE].

[72] M.S. Wang, F. Beutler and D. Bacon, Impact of Relativistic Effects on the Primordial
Non-Gaussianity Signature in the Large-Scale Clustering of Quasars, Mon. Not. Roy. Astron.
Soc. 499 (2020) 2598 [arXiv:2007.01802] [INSPIRE].

[73] J.-A. Viljoen, J. Fonseca and R. Maartens, Multi-wavelength spectroscopic probes: prospects for
primordial non-Gaussianity and relativistic effects, JCAP 11 (2021) 010 [arXiv:2107.14057]
[INSPIRE].

– 26 –

https://doi.org/10.1103/PhysRevD.105.043517
https://doi.org/10.1103/PhysRevD.105.043517
https://arxiv.org/abs/2112.04515
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2112.04515
https://doi.org/10.1093/mnras/stx721
https://doi.org/10.1093/mnras/stx721
https://arxiv.org/abs/1607.03155
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1607.03155
https://doi.org/10.1093/mnras/stv2826
https://doi.org/10.1093/mnras/stv2826
https://arxiv.org/abs/1509.06400
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1509.06400
https://doi.org/10.1093/mnras/stw1014
https://arxiv.org/abs/1509.06404
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1509.06404
https://doi.org/10.1111/j.1365-2966.2012.21235.x
https://arxiv.org/abs/1203.6499
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1203.6499
https://doi.org/10.1086/671189
https://doi.org/10.1086/671189
https://arxiv.org/abs/1212.4500
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1212.4500
https://doi.org/10.1093/mnras/stt1359
https://arxiv.org/abs/1306.0005
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1306.0005
https://doi.org/10.1093/mnras/sty2655
https://arxiv.org/abs/1806.02789
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1806.02789
https://doi.org/10.1093/mnras/stab1730
https://arxiv.org/abs/2106.13724
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2106.13724
https://doi.org/10.1088/1475-7516/2021/05/015
https://arxiv.org/abs/2010.14523
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2010.14523
https://doi.org/10.1086/309179
https://arxiv.org/abs/astro-ph/9911177
https://inspirehep.net/search?p=find+EPRINT%2Bastro-ph%2F9911177
https://doi.org/10.1088/1475-7516/2011/10/031
https://arxiv.org/abs/1106.5507
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1106.5507
https://doi.org/10.1103/PhysRevD.82.083508
https://arxiv.org/abs/1009.3021
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1009.3021
https://doi.org/10.1103/PhysRevD.84.043516
https://doi.org/10.1103/PhysRevD.84.043516
https://arxiv.org/abs/1105.5292
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1105.5292
https://doi.org/10.1103/PhysRevD.85.023504
https://arxiv.org/abs/1107.5427
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1107.5427
https://doi.org/10.1093/mnras/staa2998
https://doi.org/10.1093/mnras/staa2998
https://arxiv.org/abs/2007.01802
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2007.01802
https://doi.org/10.1088/1475-7516/2021/11/010
https://arxiv.org/abs/2107.14057
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2107.14057


J
C
A
P
1
1
(
2
0
2
2
)
0
1
3

[74] E. Castorina and E. di Dio, The observed galaxy power spectrum in General Relativity, JCAP
01 (2022) 061 [arXiv:2106.08857] [INSPIRE].

[75] A. Barreira, The local PNG bias of neutral Hydrogen, HI , JCAP 04 (2022) 057
[arXiv:2112.03253] [INSPIRE].

[76] P. McDonald and U. Seljak, How to measure redshift-space distortions without sample variance,
JCAP 10 (2009) 007 [arXiv:0810.0323] [INSPIRE].

[77] U. Seljak, Extracting primordial non-Gaussianity without cosmic variance, Phys. Rev. Lett.
102 (2009) 021302 [arXiv:0807.1770] [INSPIRE].

[78] J. Hartlap, P. Simon and P. Schneider, Why your model parameter confidences might be too
optimistic: Unbiased estimation of the inverse covariance matrix, Astron. Astrophys. 464
(2007) 399 [astro-ph/0608064] [INSPIRE].

[79] D. Foreman-Mackey, D.W. Hogg, D. Lang and J. Goodman, emcee: The MCMC Hammer,
Publ. Astron. Soc. Pac. 125 (2013) 306 [arXiv:1202.3665] [INSPIRE].

[80] J. Goodman and J. Weare, Ensemble samplers with affine invariance, Comm. Appl. Math.
Comput. Sci. 5 (2010) 65.

[81] E. Sefusatti, M. Crocce and V. Desjacques, The Halo Bispectrum in N-body Simulations with
non-Gaussian Initial Conditions, Mon. Not. Roy. Astron. Soc. 425 (2012) 2903
[arXiv:1111.6966] [INSPIRE].

[82] D. Baumann and D. Green, The power of locality: primordial non-Gaussianity at the map level,
JCAP 08 (2022) 061 [arXiv:2112.14645] [INSPIRE].

[83] A. Andrews, J. Jasche, G. Lavaux and F. Schmidt, Bayesian field-level inference of primordial
non-Gaussianity using next-generation galaxy surveys, arXiv:2203.08838 [INSPIRE].

[84] G. Cabass, M.M. Ivanov, O.H.E. Philcox, M. Simonović and M. Zaldarriaga, Constraints on
Single-Field Inflation from the BOSS Galaxy Survey, Phys. Rev. Lett. 129 (2022) 021301
[arXiv:2201.07238] [INSPIRE].

[85] T. Lazeyras, A. Barreira, F. Schmidt and V. Desjacques, Assembly bias in the local PNG halo
bias and its implication for fNL constraints, arXiv:2209.07251 [INSPIRE].

[86] S. Avila and A.G. Adame, Validating galaxy clustering models with Fixed & Paired and
Matched-ICs simulations: application to Primordial Non-Gaussianities, arXiv:2204.11103
[INSPIRE].

[87] S. Alam, Y. Zu, J.A. Peacock and R. Mandelbaum, Cosmic web dependence of galaxy
clustering and quenching in SDSS, Mon. Not. Roy. Astron. Soc. 483 (2019) 4501
[arXiv:1801.04878] [INSPIRE].

[88] E.-M. Mueller, W.J. Percival and R. Ruggeri, Optimizing primordial non-Gaussianity
measurements from galaxy surveys, Mon. Not. Roy. Astron. Soc. 485 (2019) 4160
[arXiv:1702.05088] [INSPIRE].

– 27 –

https://doi.org/10.1088/1475-7516/2022/01/061
https://doi.org/10.1088/1475-7516/2022/01/061
https://arxiv.org/abs/2106.08857
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2106.08857
https://doi.org/10.1088/1475-7516/2022/04/057
https://arxiv.org/abs/2112.03253
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2112.03253
https://doi.org/10.1088/1475-7516/2009/10/007
https://arxiv.org/abs/0810.0323
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0810.0323
https://doi.org/10.1103/PhysRevLett.102.021302
https://doi.org/10.1103/PhysRevLett.102.021302
https://arxiv.org/abs/0807.1770
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0807.1770
https://doi.org/10.1051/0004-6361:20066170
https://doi.org/10.1051/0004-6361:20066170
https://arxiv.org/abs/astro-ph/0608064
https://inspirehep.net/search?p=find+EPRINT%2Bastro-ph%2F0608064
https://doi.org/10.1086/670067
https://arxiv.org/abs/1202.3665
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1202.3665
https://doi.org/10.2140/camcos.2010.5.65
https://doi.org/10.2140/camcos.2010.5.65
https://doi.org/10.1111/j.1365-2966.2012.21271.x
https://arxiv.org/abs/1111.6966
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1111.6966
https://doi.org/10.1088/1475-7516/2022/08/061
https://arxiv.org/abs/2112.14645
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2112.14645
https://arxiv.org/abs/2203.08838
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2203.08838
https://doi.org/10.1103/PhysRevLett.129.021301
https://arxiv.org/abs/2201.07238
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2201.07238
https://arxiv.org/abs/2209.07251
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2209.07251
https://arxiv.org/abs/2204.11103
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2204.11103
https://doi.org/10.1093/mnras/sty3477
https://arxiv.org/abs/1801.04878
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1801.04878
https://doi.org/10.1093/mnras/sty3150
https://arxiv.org/abs/1702.05088
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1702.05088

	Introduction
	Analysis specifications
	Galaxy power spectrum data
	Theory model
	The b(phi)(b(1)) parametrization
	Validation of the constraint analysis on the Patchy mocks

	Results from BOSS DR12
	Results from fixed b(phi)(b(1)) relations
	Results from marginalizing over the b(phi)(b(1)) relation
	Significance of detection analysis: constraints on f(NL)b(phi)

	Can the galaxy bispectrum help?
	Summary
	Additional constraint plots

