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Abstract
The second quantum revolution is all about exploiting the quantum nature of atoms and
molecules to execute quantum information processing tasks. To boost this growing endeavor and
by anticipating the key role of quantum chemistry therein, our work establishes a framework for
systematically exploring, quantifying and dissecting correlation effects in molecules. By utilizing
the geometric picture of quantum states we compare—on a unified basis and in an operationally
meaningful way—total, quantum and classical correlation and entanglement in molecular ground
states. To unlock and maximize the quantum informational resourcefulness of molecules an orbital
optimization scheme is developed, leading to a paradigm-shifting insight: a single covalent bond
equates to the entanglement 2 ln(2). This novel and more versatile perspective on electronic
structure suggests a generalization of valence bond theory, overcoming deficiencies of modern
chemical bonding theories.

1. Introduction

In light of the fast-approaching second quantum revolution [1–3], soon we will be able to comprehensively
exploit the quantum nature of chemical systems to our advantage. This historic opportunity has boosted
many studies on fermionic correlation and entanglement in the quantum information (QI) community
[4–17], with an emphasis on the conceptual formalism and resource utilization aspects. Independently,
fermionic correlation has been used in the quantum chemistry (QC) community to describe the electronic
structure of chemical systems [18–29] and to improve as well as optimize the initial ansatz of numerical
methods [30–32]. Yet, only rudimentary QI tools have thus far been widely adopted for such type of studies.
It is therefore the ultimate motivation of our work to propel the on-going second quantum revolution by
combining the expertise of both the QI and QC community and to harness synergies. To achieve this, three
important facets need to be furnished. Firstly, the dissection of classical and quantum correlation effects still
needs to be distinctly and visibly advocated, evidenced by the fact that only the von Neumann entropy has
been so far systematically applied. Secondly, this simple quantity is even erroneously calculated, by ignoring
important fermionic superselection rules [33, 34] (SSR). Violation of these rules, in the context of the second
quantum revolution, leads to a gross overestimation of the accessible quantum resource. Thirdly, the subject
of correlation analysis has been primarily limited to the canonical, delocalized orbitals. Accordingly, these
three points urge us to provide in the present work tailored tools for operationally meaningful quantification
and categorization of the correlation in chemical system.

To this end, we turn to the plethora of correlation quantities offered by the QI community, although their
application to chemical systems is not without hurdles. Relevant chemical concepts and interesting
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phenomena are often concerned with a particular subregion of molecular systems. For instance, the concept
of a chemical bond often refers to just two neighboring atoms. Yet, their quantum state is not pure anymore
due to their interaction with the other atoms in the molecule. Accordingly, the easy-to-calculate von
Neumann entropy is not a valid measure of correlation or entanglement anymore. Moreover, various
definitions of quantum correlation, classical correlation [35–37] and entanglement [38–40] for mixed states
from QI have often different conceptual origins. The unpleasant consequence is that one cannot compare the
respective values against each other, just as it does not make sense in chemistry to compare molecular energy
values referring to different systems of physical units. Hence, it is one of our main goals to offer an appealing
geometric picture of quantum states in which all these correlation quantities can be defined on the same
footing.

With a suitable QI framework at hand we can then address the following fundamental question: What is
the QI resource content of a molecule in general and of a chemical bond in particular? Based on an orbital
optimization scheme, we identify fully localized orbitals as the adequate reference basis for realizing and
extracting this total entanglement. Due to the connection between electronic structure and entanglement,
this key observation of our work will also bridge the two pillars of chemical bonding theories: molecular
orbital [41, 42] (MO) theory and valence bond [43, 44] (VB) theory. In MO theory, a bond of order one is
represented by a fully occupied bonding MO (and its empty antibonding partner). By contrast, VB theory
describes a bond with a pair of coupled atomic orbitals, thus offering an attractive local perspective of
bonding. Adversely, VB theory by itself does not reach modern chemical accuracy, and a quantitative
measure for the correlation between the atomic orbitals is lacking. Our work fuses these two distinctively
different pictures, and makes use of the correlation between atomic-like MOs to unveil the unique orbital
pairing structures in chemical bonds: A single covalent bond is equivalent to the orbital entanglement
content 2 ln(2). This value exceeds by an order of magnitude the numbers reported in previous studies
[19–28]. This in turn emphasizes that QI tools applied to delocalized orbitals describe primarily the validity
of the independent electron-pair picture rather than the bonding structure of molecular systems.

The paper is structured as follows. We start with a brief overview of fermionic correlation in section 2 for
the less experienced audience, and for later use. Then in section 3 we illustrate these concepts with two
analytic examples, and explore the relation between orbital entanglement and bonding. Finally in sections 4
and 5 we demonstrate in realistic molecular systems the effect of orbital localization on maximizing their
quantum resource, as well as revealing their bonding structures.

2. Concepts

In this section we will give a brief overview of fermionic correlation and entanglement. Specifically, we will
explain (a) how are various correlation quantities such as entanglement and quantum correlation quantified
in QI, and (b) how can one transfer these QI concepts, which are formulated for distinguishable systems, to
indistinguishable fermions. Both aspects are not only crucial for understanding the main results of this work,
but also potentially beneficial for specialists from QI or QC communities who would like to also work on this
interdisciplinary topic. Experts on fermionic entanglement shall feel free to skip this section and return in
case any unfamiliar concepts may appear in the proceeding sections.

2.1. Geometry of quantum states
In order to set the stage for what follows, it will be essential to first recall and discuss basic geometric aspects
of the space of quantum states. It is exactly this geometric picture which will namely allow us to quantify and
compare on a unified basis total, quantum and classical correlation and entanglement in molecular quantum
systems.

Let us start by considering a complex finite-dimensional Hilbert spaceH of dimension d and denote the
algebra of linear operators acting onH by B(H). The corresponding setD of density operators is given by all
Hermitian operators ρ onH which are positive-semidefinite ρ⩾ 0 (i.e. ρ has non-negative eigenvalues), and
trace-normalized to unity,

D = {ρ ∈ B(H) |ρ† = ρ, ρ⩾ 0, Tr[ρ] = 1} . (1)

As it is illustrated in figure 1, the setD is convex since the convex combination pρ+(1− p)ρ̃ of any two
density operators ρ, ρ̃ ∈ D and any 0⩽ p⩽ 1 is again a density operator. In order to develop a better
intuition forD, we observe that a density operator ρ lies on the boundary ofD if it is not strictly positive,
that is, at least one of its eigenvalues vanishes. A particularly important subset of boundary points is given by
the extremal points ofD. These are per definition those ‘points’ ρ ∈ D which cannot be written as convex
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Figure 1. Schematic illustration of the state spaceD. The subsets of uncorrelated (D0), classically correlated (Dcl) and separable
states (Dsep) are shown in black, red and blue, respectively. The corresponding measures of total correlation I, quantum
correlation Q and entanglement E are given by the quantum relative entropy (4) of ρminimized with respect to those sets, with
corresponding minimizers πρ, χρ and σρ.

combinations of other points inD. One easily verifies that a density operator ρ is extremal if and only if it is a
pure state

ρ≡ |Ψ〉〈Ψ| with |Ψ〉 ∈ H , (2)

or, equivalently, if ρ has eigenvalues {1,0, . . . ,0}.
Since the spaceD of density operators is a subset of the Euclidean vector space of linear operators onH

(or equivalently just Cd×d) we can introduce a notion of distances and angles in a straightforward manner.
To this end, we introduce the Hilbert–Schmidt inner product on B(H),

〈Â, B̂〉 ≡ Tr[Â†B̂] (3)

where Â, B̂ ∈ B(H) are linear operators. By employing either the induced norm, any other metric or a
generalized distance function we can then quantify the similarity of quantum states. The huge advantage of
this approach lies in the universality of its predictions: Whenever two density operators are close to each
other, the same follows as a mathematical consequence for their expectation values for any choice of
observable. A prominent generalized distance function [45] is given by the quantum relative entropy [38, 46]

S(ρ||σ)≡ Tr[ρ(lnρ− lnσ)] . (4)

Its relevance for quantum sciences in general and our work in particular originates from its distinctive
information-theoretical meaning. It describes by concise means ‘how difficult it is to distinguish the state ρ
from the state σ’ [47] (see also [48]).

2.2. Overview of various correlation types
The QI theoretical concepts of correlation and entanglement refer to a notion of subsystems [40, 49, 50]. In
order to discuss them in the context of bipartite systems, we assume that our total system comprises two
distinguishable subsystems A and B. The corresponding Hilbert space then takes the form

H=HA⊗HB (5)

and likewise for the algebra of observables,

B(H) = B(HA)⊗B(HB) . (6)

To motivate the concept of total correlation let us consider two local measurements, with corresponding
observables Â ∈ B(HA) of subsystem A and B̂ ∈ B(HB) of subsystem B. The correlation between these two
measurements is described by the correlation function

C(Â, B̂)≡ 〈Â⊗ B̂〉ρ−〈Â⊗ 1̂B〉ρ〈1̂A⊗ B̂〉ρ
≡ 〈Â⊗ B̂〉ρ−〈Â〉ρA〈B̂〉ρB , (7)

where ρA/B ≡ TrB/A[ρAB] denotes the reduced density operator of ρ for subsystem A/B and 1̂A/B the identity

operator onHA/B. The crucial observation is now that a vanishing correlation function, C(Â, B̂) = 0, does
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not necessarily imply the same for any other pair of local observables Â ′, B̂ ′. This in turn strongly suggests
the notion of uncorrelated states: A density operator ρ is called uncorrelated if and only if its correlation
function (7) vanishes for all pairs of local observables Â, B̂. As long as the algebraAA/B of physical
observables of system A/B includes all linear operators onHA/B, this is equivalent to the factorization of ρ
into its reduced states, ρ= ρA⊗ ρB. The corresponding set

D0 ≡ {ρ= ρA⊗ ρB} (8)

of all uncorrelated states is schematically illustrated in figure 1. By referring to this geometric picture, a
straightforward definition of the total correlation I(ρ) contained in a quantum state ρ follows. It is given as
the minimal ‘distance’ of ρ to the setD0,

I(ρ)≡ min
π∈D0

S(ρ||π)

= S(ρA)+ S(ρB)− S(ρ) , (9)

measured in terms of the quantum relative entropy S(·||·), where S(ρ)≡−Tr[ρ lnρ] denotes the von
Neumann entropy. Remarkably, the minimization in (9) can be executed analytically, leading to the mutual
information (second line) where the closest uncorrelated state follows as πρ = ρA⊗ ρB [51]. Coming back to
our motivation, we present an important relation between the total correlation and correlation functions
which follows directly from results presented in [52, 53] (see [54] for a detailed derivation),

|C(Â, B̂)|
‖Â‖op ‖B̂‖op

⩽
√
2
√
I(ρ) . (10)

Here, ‖Â‖op denotes the operator norm of Â, i.e. the largest absolute value of its eigenvalues. Relation (10)
confirms in quantitative terms that whenever a quantum state is close to the setD0 of uncorrelated states
then its correlation function is small for any choice of local observables Â, B̂. This highlights again the
strength of QI theoretical concepts which is based on the universal character of their predictions.

Due to the information theoretical meaning of the quantum relative entropy (4), the total correlation (9)
quantifies the additional information content in the state ρ beyond the information content in ρA⊗ ρB (local
information). The term ‘total’ emphasizes here that I(ρ) includes both classical and quantum correlations. In
order to explore and conclusively understand the significance of either correlation part in chemical bonding
and QC in general, concise definitions of quantum correlation and classical correlations are needed as well.
We first start, however, with the most prominent type of quantum correlation, the entanglement.

Separable or unentangled states are precisely those states that can be prepared by distant laboratories
using local operations and classical communication only [49]. With local operations, two distant parties can
prepare any uncorrelated state ρA⊗ ρB. In combination with classical communication arbitrary mixtures of
uncorrelated states can be realized. Hence, the convex set of separable states is given by

Dsep ≡

{
σ =

∑
i

piσ
(i)
A ⊗σ

(i)
B ,pi>0,

∑
i

pi = 1

}
. (11)

As it is illustrated in figure 1, this set is indeed nothing else than the convex hull ofD0. Any state ρ that is not
separable is called entangled. In complete analogy to the quantification of total correlation, the entanglement
in ρ is quantified through the geometric picture [55]

E(ρ)≡ min
σ∈Dsep

S(ρ||σ) = S(ρ||σρ) . (12)

For general mixed states, no closed expression exists for this relative entropy of entanglement, except for
highly symmetric states [56]. This unpleasant fact is due to the involved structure of the set (11) of separable
states and the resulting complexity of its boundary. For pure states ρ≡ |Ψ〉〈Ψ|, however, (12) simplifies to a
closed expression [38]

E(|Ψ〉〈Ψ|) = S(ρA) = S(ρB). (13)

As a consistency check, we recall that the spectra of the reduced states ρA and ρB are indeed identical, as it is
guaranteed by the Schmidt decomposition [57] of |Ψ〉.
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Entanglement is certainly a key concept of quantum physics [58–60] and its broad significance as a
resource for realizing QI processing tasks is undeniable [61–64]. Yet, there also exist quantum correlations
beyond entanglement. In order to explain this crucial aspect of our work, and in analogy to the definition of
total correlation and entanglement, we first characterize the family of states with zero quantum correlation
[51, 65, 66] (illustrated as pink region in figure 1):

Dcl ≡

χ=
∑
i,j

pij|i〉〈i|⊗|j〉〈j|

 . (14)

On the right-hand side, {|i〉} and {|j〉} could be any sets of orthonormal states in the Hilbert spaces of
subsystems A and B, respectively and pij > 0,

∑
ij pij = 1. The states in (14) are indeed classical in the

following sense. There exists joint local measurement {P(i)
A ⊗ P( j)

B } which leave the state ρ unchanged,
namely those with {P(i)

A/B} projecting onto the local eigenstates {|i〉} and {|j〉} of ρ. Therefore the correlation
encoded in the resulting joint probability distribution {pij} has to be purely classical [66]. Any state not in
Dcl then contains quantum correlation.

By referring again to the geometric picture of quantum states, the quantum correlation in ρ is quantified
as its minimized quantum relative entropy with respect to the set of classically correlated states [51] (with the
minimizer denoted by χρ).

Q(ρ)≡ min
χ∈Dcl

S(ρ||χ)≡ S(ρ||χρ). (15)

Note thatD0 ⊆Dcl since every uncorrelated state ρA⊗ ρB ≡
(∑

i p
(i)
A |i〉〈i|

)
⊗
(∑

j p
( j)
B |j〉〈j|

)
can be

written as in (14), namely with pij = p(i)
A p( j)

B . On the other hand, the setDsep in (11) is strictly larger than
Dcl. This is due to the fact that in the former {σiA/B} are typically not simultaneously diagonalizable for all i.
Comparing (9), (12) and (15) we then get the following instructive inclusion relations

D0 ⊆Dcl ⊆Dsep. (16)

Thanks to the underlying geometric picture—which provides a unified basis for quantifying the different
correlation types—this can directly be translated into relations between the respective measures

I(ρ)⩾ Q(ρ)⩾ E(ρ). (17)

Finally, we present the classical counterpart of (15), the classical correlation. To motivate its measure we
first rewrite (15) as [66]

Q(ρ) = min
{P (i)

A },{P ( j)
B }

S

ρ‖∑
ij

P(i)
A ⊗ P( j)

B ρP(i)
A ⊗ P( j)

B

 (18)

where {P(i)
A } and {P

( j)
B } are two projective measurements, satisfying

(
P(i)
A/B

)2
= P(i)

A/B and
∑

iP
(i)
A/B = 1A/B.

The closest classical state χρ is then the state resulting from ρ after the optimal projective measurements has
been performed. Accordingly, the total correlation in χρ is then nothing else than the classical correlation in
ρ [51]

C(ρ)≡ I(χρ). (19)

Since quantum states cannot be dissected into classical and quantum parts in a strict mathematical sense, it is
not surprising that our measures do typically not obey the relation I= Q+C. However, this exact additive
relation is valid whenever the closest classical state χρ and the closest uncorrelated state πρ have the same
eigenstates. For a simple proof of this statement see appendix A.

2.3. Application to systems of electrons
In this section, we will discuss how the previously defined QI concepts are adopted to electronic structure
theory. For this, we need to establish in a first step a notion of subsystems in fermionic quantum systems and
also learn how to deal with related conceptual peculiarities. All these aspects are absolutely vital for
establishing a QI framework for quantifying in an operationally meaningful way total, quantum and classical
correlation and entanglement in molecular ground states.
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We start by assigning a reference basis to the one-particle Hilbert spaceH (1) =H (1)
l ⊗H

(1)
s , by referring

to a set of orthonormal spin-orbitals {|χi〉⊗ |σ〉}Di=1, with |χi〉 ∈ H (1)
l being the orbital state and σ ∈ {↑,↓}

describing the spin degree of freedom. The corresponding Fock space F [H (1)] is then spanned by the
configuration states

|n1↑,n1↓, . . . ,nD↓〉 ≡
(
f†χ1↑

)n1↑ . . .( f†χD↓
)nD↓ |Ω〉 . (20)

Here, f(†)χiσ denotes the annihilation (creation) operator associated to the spin-orbital |χi〉⊗ |σ〉. They satisfy
the fermionic anti-commutation relations {f(†)χiσ, f

(†)
χjσ ′}= 0 and {f†χiσ, fχjσ ′}= δi,jδσ,σ ′1, with

{A,B} ≡ AB+BA, and |Ω〉 is the vacuum state. With respect to the ordered basis {|χi〉⊗ |σ〉}Di=1, we now
establish the notion of subsystems. For the purpose of this paper, we focus primarily on the partitioning of
orbitals {|χi〉} into two subsets A and B. This means effectively to divide the orbital one-particle Hilbert

space into two complementary subspaces of dimensions DA/B,H
(1)
l =H (1)

l,A ⊕H
(1)
l,B and thus

H (1) =H (1)
A ⊕H

(1)
B whereH (1)

A/B ≡H
(1)
l,A/B⊗H

(1)
s . This splitting in turn induces a tensor-product

decomposition on the Fock state,

F [H (1)
A ⊕H

(1)
B ]∼= F [H (1)

A ]⊗F [H (1)
B ], (21)

through the map

|n1↑,n1↓, . . . ,nDA↓,nDA+1↑, . . . ,nD↓〉 7→
|n1↑,n1↓, . . . ,nDA↓〉⊗|nDA+1↑, , . . . ,nD↓〉. (22)

It is important to note, however, that such a tensor-product decomposition does not hold on the level of
fermionic operators that are defined within the respective subsystems. This is clear from the observation that
the creation and annihilation operators associated with spin-orbitals in subsystem A and B do not commute
with each other, and, as a result, cannot be considered local observable operators. The immediate
consequences is the violation of special relativity, exemplified by the possibility of superluminal signaling
[67, 68]. We resolve this by invoking the fermionic parity superselection rule [33, 69] (P-SSR). The P-SSR
excludes observables that do not commute with the local particle number parity operator

P̂ (A/B) = P̂(A/B)
even − P̂(A/B)

odd , where P̂A/Bτ is the projection onto the τ ∈ {even,odd} parity subspace acting on
subsystem A/B. As a result, the accessible correlation and entanglement in a bipartite state ρAB is reduced to
those in the superselected state [68, 70]

ρPAB =
∑

τ,τ ′=even, odd

P̂(A)
τ ⊗ P̂(B)

τ ′ ρABP̂
(A)
τ ⊗ P̂(B)

τ ′ , (23)

since, from an operational point of view, ρAB and ρPAB are equivalent. To summarize, the correlation
quantities X= I,C,Q,E defined in section 2.2 under P-SSR can be calculated as

XP(ρAB) = X(ρPAB). (24)

When the creation or annihilation of pairs of particles is also not possible, this results in an even more
restrictive particle number superselection rules [33, 71] (N-SSR). In this case we simply replace ρPAB in (24)
with the N-SSR superselected state

ρNAB =

2DA∑
m=0

2DB∑
n=0

P(A)
m ⊗ P(B)

n ρABP
(A)
m ⊗ P(B)

n , (25)

where P(A/B)
m is the projection onto them-particle subspace acting on subsystem A/B.

We remark that if one is only interested in the numerical structure of the quantum state, it is possible to
quantify correlation and entanglement without SSR, simply by mapping the fermionic state to that of a spin
system via the respective Jordan–Wigner transformation. By contrast, if the orbital entanglement in the
molecules is to be accessed or utilized, e.g. through an entanglement swapping protocol from molecule to
quantum registers, the inclusion of SSR is operationally crucial. Accessing orbital entanglement requires
measurement or more generally operations to be performed on the orbitals, which are limited precisely by
the SSR. Although at the moment, perfect control over every element within a molecule or arbitrary
operations on orbitals is not yet possible, this status may greatly improve soon with the on-going second

6
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quantum revolution [72]. If SSR are ignored, one would grossly overestimate the accessible correlation and
entanglement.

Finally, we introduce the primary objects of interests, namely the one- and two-orbital reduced density
matrices (RDMs). Formally, the one- and two-orbital RDMs of a pure state |Ψ〉 are defined via the following
requirements

ρi : Tr[ρiÔ] = 〈Ψ|Ô|Ψ〉, ∀Ô ∈ Ai (26a)

ρi,j : Tr[ρijÔ] = 〈Ψ|Ô|Ψ〉, ∀Ô ∈ Aij. (26b)

In practice, they are computed from partial two- and four-particle RDMs [73], respectively. Exploiting
the symmetry of the overall quantum state reduces further the computational cost [24]. For example, it is
common to restrict the calculation of the molecular ground state to a predefined, fixed particle number N
and spin magnetizationmS (for a given spin state 2S+ 1). Consequently, the one- and two-orbital RDM can
only be mixtures of fixed electron-number and magnetization states. In other words, the one-orbital RDM is
diagonal in the fixed particle number and magnetization basis

ρi =


〈fi↑f

†
i↑fi↓f

†
i↓〉 0 0 0

0 〈f†i↑fi↑fi↓f
†
i↓〉 0 0

0 0 〈fi↑f
†
i↑f

†
i↓fi↓〉 0

0 0 0 〈f†i↑fi↑f
†
i↓fi↓〉

 (27)

and the two-orbital RDM is block diagonal, the form of which we refer to [24].

3. Analytical examples

In this section we demonstrate with two analytic examples (a) the strong influence of SSR on the accessible
correlation and entanglement and (b) the subtle connection between entanglement and chemical bonding.

3.1. Single electron state
We consider a single polarized electron within the manifold of two orbitals A and B. The state of the electron
is then simply a superposition of the form

|Ψ(θ,φ)〉= cos(θ)|1A,0B〉+ eiφ sin(θ)|0A,1B〉, (28)

where |nA,nB〉 ≡ ( f†A)
nA( f†B)

nB |Ω〉 are local occupation number eigenstates, and θ ∈ [0,π), φ ∈ [0,2π). Such a
state belongs to the one-particle Hilbert spaceH (1) isomorphic to that of a single qubit, which is a subspace
of the four-dimensional total Fock space F [H (1)]. Referring to the tensor product between the two local

Fock spaces F [H (1)] = F [H (1)
A ]⊗F [H (1)

B ], the density operator ρ(θ,φ) is given in the basis
|0A,0B〉, |1A,0B〉, |0A,1B〉, |1A,1B〉 by,

ρ(θ,φ) = |Ψ(θ,φ)〉〈Ψ(θ,φ)|=


0 0 0 0

0 cos2(θ) eiφ

2 sin(2θ) 0

0 e−iφ

2 sin(2θ) sin2(θ) 0
0 0 0 0

 . (29)

Since ρ(θ,φ) is pure (cf equation (2)), the associated entanglement E and quantum correlation Q are the
same, and so are the closest separable χρ and classical states σρ, respectively. The closest product state πρ as
well as the classical and separable states (in this case they coincide) χρ to ρ(θ,φ) is diagonal in this basis with

diag(πρ) =

(
cos4(θ),

1

4
sin4(2θ),

1

4
sin4(2θ), sin4(θ)

)
,

diag(χρ) =
(
0,cos2(θ), sin2(θ),0

)
.

(30)

Moreover, the total correlation I, quantum correlation Q, classical correlation C, and entanglement E of
ρ(θ,φ) are given by

1

2
I(ρ) = Q(ρ) = C(ρ) = E(ρ)

=−[cos2(θ) ln(cos2(θ))+sin2(θ) ln(sin2(θ))]

≡ P(θ).

(31)
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Table 1. Total correlation I, classical correlation C, quantum correlation Q, and entanglement E between the two orbitals A and B in the
single electron state (28), for the case without SSR and with P/N-SSR.

I C Q E

No SSR 2P(θ) P(θ) P(θ) P(θ)
P/N-SSR P(θ) P(θ) 0 0

In the presence of a SSR, the superselected state loses all coherence between different local particle number
sectors

ρP, N(θ,φ) = cos2(θ)|1A,0B〉〈1A,0B|+ sin2(θ)|0A,1B〉〈0A,1B|. (32)

As can be easily seen from its form in equation (32), the superselected state ρP, N(θ,φ) is separable, since it
can be written as a simple mixture of product states. Furthermore, it is also classical since it is diagonal in a
product basis. From this it follows, that all correlation in (32) between the two orbitals are classical. We
summarize all correlation quantities with and without SSRs in table 1.

3.2. Single covalent bond
In this example, we apply the same QI concepts as in the previous section now to a pair of bonding electrons
in a hydrogen-like diatomic molecule, described by the state

|Ψ〉= f†ϕ↑f
†
ϕ↓|Ω〉 . (33)

Here, ϕ is the bonding orbital, formed by superimposing two 1 s-like orbitals on the two nuclear centers L
(left) and R (right)

ϕ=N (φL+φR) (34)

whereN is a normalizing constant.
Before we are able to proceed with a calculation of the correlation in |Ψ〉, being it quantum or classical,

we first have to decide on a choice of orbital splitting. An obvious choice would be to consider the correlation
between the bonding orbital ϕ and the corresponding anti-bonding orbital ϕ=N (φL−φR). Together ϕ and
ϕ̄ form a minimal active space, within which we will perform all our entanglement analysis. Referring to the
splitting between ϕ and ϕ, |Ψ〉 is clearly a product state. As a result, it has zero correlation and entanglement.
While this finding seems odd at first sight, as one would expect a considerable amount of entanglement to be
‘stored’ in a chemical bond, let us next consider a different, seemingly less intuitive alternate choice of the
splitting.

In the top panel of figure 2, we illustrate the formation of the bonding orbital ϕ from the two local
1 s-type orbitals φL and φR, respectively. We then make a cut at the center of the molecule dividing the space
into left and right half, and project the bonding orbital onto the two half-spaces (central panel), denoted as
ϕL and ϕR. After normalization, the resulting two-electron wave function (33) can be written as

|Ψ〉= 1

2
( f†ϕL↑ + f†ϕR↑)( f

†
ϕL↓ + f†ϕR↓)|Ω〉

=
1

2
( f†ϕL↑f

†
ϕL↓+f†ϕR↑f

†
ϕR↓+f†ϕL↑f

†
ϕR↓−f

†
ϕL↓f

†
ϕR↑)|Ω〉.

(35)

Hence, with respect to a splitting between the left and right projected orbitals ϕL and ϕR, simple calculations
lead to a set of entirely different values of correlation quantities of ρ= |Ψ〉〈Ψ|

1

2
I(ρ) = Q(ρ) = C(ρ) = E(ρ) = 2 ln2. (36)

When SSR are considered, P-SSR and N-SSR eliminate coherent terms between different local parity and
particle number sectors, respectively, leading to superselected states of the form

ρP =
1

2
|Ψeven〉〈Ψeven|+

1

2
|Ψodd〉〈Ψodd|

ρN =
1

4
|Ψ2,0〉〈Ψ2,0|+

1

4
|Ψ0,2〉〈Ψ0,2|

+
1

2
|Ψ1,1〉〈Ψ1,1|,

(37)
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Figure 2. (a) Formation of the (up to normalization) bonding orbital ϕ with two local atomic 1 s-type orbitals φL and φR with
nuclear centers at xL,R. (b) Projection of the bonding orbital onto the left and right half space. (c) Rotated bonding and
anti-bonding orbitals ψL and ψR.

where

|Ψodd〉= |Ψ1,1〉=
1√
2

(
f†ϕL↑f

†
ϕR↓− f†ϕL↓f

†
ϕR↑

)
|Ω〉,

|Ψeven〉=
1√
2

(
f†ϕL↑f

†
ϕL↓ + f†ϕR↑f

†
ϕR↓

)
|Ω〉

|Ψ2,0〉= f†ϕL↑f
†
ϕL↓|Ω〉,

|Ψ0,2〉= f†ϕR↑f
†
ϕR↓|Ω〉.

(38)

In this case both P- and N-SSR reduce quantum correlation as well as entanglement by 50% and 75%,
respectively, while at the same time having no effect on the classical correlation. Consequently, the total
correlation is lowered by the same amount of decrease in the quantum correlation, as the relation I= C+Q
holds in this case. We summarize the correlation quantities with and without SSRs in table 2.

This example already illustrates that, by referring to a suitable orbital splitting that allows to capture a
certain degree of spatial locality, one can recover strong correlation as one would expect in a chemical bond.
Although the above choice of splitting seems from a QI perspective to be reasonable in terms of recovering
correlation effects, it requires an artificial cut of the bonding orbital into two halves. Moreover, from the
resulting orbitals ϕL and ϕR, one cannot recover the anti-bonding orbital ϕ∝ φL−φR. As a matter of fact,
{ϕL,ϕR} do not span the same Hilbert space as the two local atomic orbitals {φL,φR}. Therefore the optimal
approach must include in addition the anti-bonding orbital into the total Hilbert space ϕ= N(φL−φR). To
explore all possible choices of orbital bases, we unitarily (assuming for simplicity but without loss of
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Table 2. Total correlation, classical correlation, quantum correlation, and entanglement between the bonding and anti-bonding orbitals
in single bond state |Ψ⟩ in (33) (top panel), and between the two projected orbitals in the same state |Ψ⟩ re-expressed in (35) (bottom
panel), for the case without SSR, with P- and N-SSR.

ϕ,ϕ I C Q E

No SSR 0 0 0 0
P, N-SSR 0 0 0 0
ϕL,ϕR I C Q E
No SSR 4ln2 2 ln2 2 ln2 2 ln2
P-SSR 3ln2 2 ln2 ln2 ln2
N-SSR 5

2 ln2 2 ln2 1
2 ln2

1
2 ln2

generality real coefficients) transform the orbitals ϕ, ϕ

ψL = cos(θ)ϕ+ sin(θ)ϕ,

ψR =− sin(θ)ϕ+ cos(θ)ϕ.
(39)

After this unitary basis rotation, we can rewrite the state |Ψ〉 in equation (33) as

|Ψ〉=
[
cos2(θ)f†ψL↑f

†
ψL↓ + sin2(θ)f†ψR↑f

†
ψR↓

+cos(θ) sin(θ)
(
f†ψL↑f

†
ψR↓− f†ψL↓f

†
ψR↑

)]
|Ω〉.

(40)

The entanglement of ρ= |Ψ〉〈Ψ| is simply

E(ρ) =−2
[
cos2(θ) ln(cos2(θ))+sin2(θ) ln(sin2(θ))

]
= 2P(θ).

(41)

From equation (41) it follows that maximal entanglement is realized by a rotation with angle θ = π
4 . As can

be seen from table 2, in the latter basis the resulting E(ρ) reaches also 2 ln2, in perfect agreement with the
case of the artificial half-splitting discussed previously. Moreover, assuming a rotation of θ = π

4 , the
transformed orbitals ψL and ψR, illustrated in the bottom panel (c) of figure 2, are simply equal
superpositions of the initial bonding ϕ and anti-bonding ϕ orbitals, with plus and minus signs respectively.
As a matter of fact, the final expression for the state in equation (40), expressed in the basis {ψL,ψR}, takes
the same form as its counterpart in equation (35), with the replacement ψL,R→ ϕL,R. Therefore, in the
particular choice of θ = π

4 , we find that all correlation quantities (with or without SSRs) of the state given by
equation (40) coincide with those of the state in equation (35). Thus, we can interpret the rotation angle
θ = π

4 as the point where maximal orbital localization effect is achieved, while still keeping the orbitals
orthogonal and without dissecting them.

To explore more comprehensively the connection between orbital entanglement and chemical bonding,
let us consider the cases of maximal and minimal entanglement in some prototypical states of definite bond
order. In MO theory, the bond order of a state is defined as the difference in the occupation number between
the bonding orbital ϕ and its anti-bonding orbital partner ϕ divided by 2 [74]

bond order=
1

2
(Nbond−Nantibond). (42)

To illustrate the concept of a bond order we consider the following four states

|Ψ1〉= f†ϕ↑|Ω〉,

|Ψ2〉= f†ϕ↑f
†
ϕ↓|Ω〉,

|Ψ3〉= f†ϕ↑f
†
ϕ↑f

†
ϕ↑|Ω〉,

|Ψ4〉= f†ϕ↑f
†
ϕ↓f

†
ϕ↑ f

†
ϕ↓|Ω〉,

(43)

which have a bond order of 1
2 , 1,

1
2 , and 0, respectively, according to (42). We can easily find the minimal

entanglement of all four states to be zero, with respect to the orbital partition between ϕ and ϕ, that is, the
bonding and anti-bonding orbitals. Under an arbitrary orbital rotation of angle θ

f†ψLσ
= cos(θ)f†ϕσ + sin(θ)f†

ϕσ
,

f†ψRσ
= sin(θ)f†ϕσ − cos(θ)f†

ϕσ
,

(44)

10



Quantum Sci. Technol. 8 (2023) 015015 L Ding et al

Table 3. Bond order, maximal and minimal entanglement of the four states given in equation (43).

ϕ — —
ϕ

|Ψ1〉 |Ψ2〉 |Ψ3〉 |Ψ4〉

Bond order 1
2 1 1

2 0
Emax ln2 2 ln2 ln2 0
Emin 0 0 0 0

the four states transform to

|Ψ1〉= cos(θ)f†ψL↑|Ω〉+ sin(θ)f†ψR↑|Ω〉,

|Ψ2〉= cos2(θ)f†ψL↑f
†
ψL↓|Ω〉+ sin2(θ)f†ψR↓f

†
ψR↓|Ω〉

× cos(θ) sin(θ)
(
f†ψL↑f

†
ψR↓− f†ψL↓f

†
ψR↑

)
|Ω〉,

|Ψ3〉= f†ψL↑

(
cos(θ)f†ψL↓f

†
ψR↑−sin(θ)f

†
ψR↑f

†
ψR↓

)
|Ω〉,

|Ψ4〉= f†ψL↑f
†
ψL↓f

†
ψR↑f

†
ψR↓|Ω〉.

The latter shows that the resulting entanglement E with respect to the partition between ψL and ψR of |Ψ1,2,3〉
is maximized for θ = π

4 , whereas the entanglement of |Ψ4〉 remains invariant under orbital transformation.
To summarize these findings we compile in table 3 the maximal and minimal entanglement of these four
states as a function of the bond order. Remarkably, we find that the maximal entanglement, realized between
the maximally localized orbitals, is indeed proportional to the bond order (42) of each state. A single bond of
bond order 1 thus corresponds to the entanglement value E= 2 ln2 between the fully-localized atomic-like
orbitals. Intriguingly, this value exceeds by an order of magnitude the numbers reported in previous studies
[19–28]. In turn, this clearly demonstrates that QI tools applied to delocalized orbitals describe primarily the
validity of the independent electron-pair picture rather than the bonding structure of molecular systems.

Lastly, we remark that the insights we gained from the single covalent bond states extends beyond bonds
of order 1. Namely, for a prototypical K-fold bond state |ΨK〉=

∏K
k=1 f

†
ϕk↑f

†
ϕk↓|0〉, rotating pairs of bonding

and antibonding orbitals ϕk and ϕ̄k by π/4 leads to K pairs of maximally entangled rotated orbitals,
amounting to K(2 ln2) of total orbital–orbital entanglement.

4. Computational details

In section 5, we will analyze and decompose electron-correlation effects into its classical and quantum
correlation as well as entanglement contributions at the example of a few chain-like and cyclic π-conjugated
organic molecules in their electronic ground state, namely, ethylene (C2H4), decapentaene (C10H12),
eicosadecaene (C20H22), and benzene (C6H6). In this preceding section, we will present the computational
details of our ground state calculation, as well as an algorithm for numerically obtaining the quantum
correlation.

4.1. General considerations
For each molecular compound, the geometrical parameters were taken from literature and are listed as xyz
coordinates in the appendix (see tables B1–B4). Since our primary focus will be on rationalizing the chemical
bonding as well as electron correlation effects that originate from the π-subspace of the above mentioned
conjugated systems, we carried out complete-active-space (CAS) calculations correlating ne electrons in no
π-orbitals. In this particular case it follows that ne = no which in turn equals the number of carbon atoms in
the molecule. Hence, by choice, our analysis neglects in the present work any electron correlation
contributions arising from σ-type MOs as well as set(s) of higher-lying (correlating) secondary π∗-orbitals.
To corroborate this approximation, we performed additional test calculations on decapentaene considering
CAS spaces of CAS(34,34) and CAS(10,20), respectively. Those large-scale test calculations revealed that
correlation contributions to the valence π-π∗-space arising either from the C–C and C–H σ-space
(CAS(34,34)) or from additional correlating π∗-orbitals (CAS(10,20)) are (a) differential (within the
additional sets of {σ,σ∗}MOs) or (b) safely negligible with natural orbital occupation numbers of the
valence π-π∗-space changing by less than±0.003.

All quantum-chemical calculations, except for the density matrix renormalization group (DMRG)
calculations [75–77] (for a recent review of DMRG in QC, see for example [78]) further described below,
were performed with the 2019 version of the MOLPRO software package [79–81]. By making use of the
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FCIDUMP file format [82] in MOLPRO, we exported the (effective) one- and two-electron Hamiltonian
integrals in a given MO basis for the ensuing matrix product state (MPS) wave function optimization within
the DMRG software QCMAQUIS [83–85]. All calculations were carried out in C1 point group symmetry as
well as with correlation-consistent Dunning-type basis sets [86] of double-ζ quality (cc-pVDZ). The latter
one-particle basis set should be sufficiently large to provide a qualitatively correct description of the valence
correlation effects, in particular of the π-bonds. In order to critically assess the correlation contributions
introduced in section 2.2 within the π-space manifold of our molecular systems, we considered three distinct
set of MOs that are related to each other by suitable orbital rotations. To this end, we first performed
self-consistent field Hartree–Fock (HF) calculations for the spin-singlet (S= 0) ground state of each
molecule, yielding a set of canonical HFMOs for the respective molecular systems. In an ensuing step, we
then applied a Pipek–Mezey (PM) [87] localization procedure which yields a second set of localizedMOs
(dubbed as ‘PM-localized’ in the following) while retaining the σ- and π-character of the initial canonical
MOs, respectively. It should be emphasized that, although it is possible to perform the PM-localization on
the entire set of canonical MOs [25], in this work the PM-localization is implemented separately within the
bonding (occupied) and antibonding (virtual) orbital sub-manifolds, as it is common practice in the QC
community. The final set of atomic-like of orbitals was obtained by means of a (sequence of) 2× 2
Jacobi-rotation(s) by an angle θ within the π-space manifold and setting out either from the PM-localized
MO basis (ethylene and polyenes) or the canonical MO basis (benzene). In the former, a single rotation by
θ = π

4 within a pair of bonding π and its antibonding partner π∗ suffices to yield the desired atomic-like
molecular basis. It is worthwhile to mention that the latter scheme was recently also explored in an attempt
to reduce the 1-norm of the Hamiltonian in the context of quantum computing applications [88]. In
contrast to the remaining molecules studied in this work, obtaining an atomic-like orbital basis for benzene
requires in general six-orbital unitary transformations, which can be decomposed into three consecutive sets
of pairwise rotations (see appendix C).

In order to (approximately) solve the full CI problem for a given CAS orbital space, we employed a
spin-adapted DMRG algorithm [84] as implemented in QCMAQUIS [83–85]. Having thus obtained an
optimized MPS wave function for the singlet electronic ground state, the latter was then used to compute the
one- and two-orbital RDMs which are the primary input quantities for the correlation measures defined in
section 2.2. In all DMRG calculations we employed a two-site optimization algorithm starting from a HF
guess (init_guess = hf in QCMAQUIS) for the initial MPS while varying the maximum number of
renormalized block statesm fromm= 500 up tom= 2000 until the total energy was converged to at least less
than sub-µHartree accuracy. Furthermore, all DMRG calculations were carried out with an orbital ordering
of pairwise correlating π-π∗-orbitals.

For the orbital visualizations we made use of JMOL [89]. To aid the reader’s visual guide, we applied for
each molecular system individual isosurface thresholds as indicated in the figures.

4.2. Numerical calculation of quantum correlation
The set of classically correlated states (14) has a complicated and highly non-convex structure, which makes
an optimization over it a formidable task. Fortunately, [51] provides a suitable theorem that connects the
spectrum of the closest classical state χρ to the diagonal entries of ρ in the eigenbasis of χρ. More precisely, if
χρ =

∑
ijλij|i〉〈i|⊗|j〉〈j| is the closest classical state to ρ, then its spectrum is given by

λij = 〈i|⊗〈j|ρ |i〉⊗|j〉. (45)

In other words, the closest classical state to ρ is of the form

χρ =
∑
ij

|i〉〈i|⊗|j〉〈j|ρ|i〉〈i|⊗|j〉〈j|. (46)

This finding represents the starting point for our quest to search for the optimal local bases {|i〉} and {|j〉} of
two subsystems A and B, respectively, recovering the minimizer of (15). Given that any two bases can be
connected by a unique unitary operator U|i〉 7→ |i ′〉, provided that we fix the local computational bases, this
search is then equivalent to finding the optimal unitary operators UA and UB for the respective subsystems.
In the following we present a random walk algorithm assisted by probabilistic rejection, in search for the
optimal local unitary operators UA and UB within the manifolds of local unitaries UA and UB, respectively.
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Algorithm 1. Calculating quantum correlation.

INPUT: bipartite quantum state ρ
OUTPUT: Q(ρ) and the closest classical state χρ to ρ
COMPUTATION:
SET initial local bases {|i(0)〉A} and {|j(0)〉B};
SETn= 0 and U(0)

A = U(0)
B =1;

COMPUTE χ(0)
ρ =

∑
ij |i

(0)〉〈i(0)|⊗|j(0)〉〈j(0)|ρ|i(0)〉〈i(0)|⊗|j(0)〉〈j(0)|;
COMPUTE Q(ρ)(0) = S(ρ||χ(0)

ρ );
WHILE n< Nstep DO:

SAMPLE random unitary matrices VA,B;

COMPUTE VA,B← V
1
M
A,B;

UPDATE U(n+1)
A,B ← VA,BU

(n)
A,B;

COMPUTE new local bases

U(n+1)
A |i(n)〉 7→ |i(n+1)〉, U(n+1)

B |j(n)〉 7→ |j(n+1)〉
COMPUTE new classical state

χ
(n+1)
ρ =

∑
ij |i〉〈i|⊗|j〉〈j|ρ|i〉〈i|⊗|j〉〈j|;

COMPUTE Q(n+1) = S(ρ||χ(n+1));
SAMPLE uniformly p ∈ (0,1];
IF Q(n+1) < Q(n):

UPDATE Q(ρ)← Q(n)(ρ);

UPDATE χρ← χ
(n)
ρ ;

UPDATE n← n+ 1;
END

The computational scheme outlined in Algorithm 1 consists of the following steps: One first initializes a
pair of local bases sets {|i(0)〉} and {|j(0)〉} for the two subsystems as well as the two local unitary operators

as U(0)
A,B = 1. The initial bases determine a candidate for the closest classical state χ(0)

ρ according to (46) and

the distance Q(0) = S(ρ||χ(0)
ρ ). The unitary operators live on the connected manifolds UA,B 3 UA,B which

allows us to make use of a random walk algorithm to find the optimal set of unitary operators. We start by

performing a small step in UA,B by multiplying U(0)
A,B with a ‘small’ unitary operator VA,B close to the identity,

arriving at U(1)
A,B, which, in turn, determines a pair of local bases U(1)

A |i(0)〉 ≡ |i(1)〉, U
(1)
B |j(0)〉 ≡ |j(1)〉. If these

new bases define a closer classical state according to (46), then this step is accepted, and otherwise rejected.
The latter enables us to avoid being trapped by a local minimum. This procedure is repeated until (a) a
desired accuracy or (b) a predefined number of steps is reached. To compensate for the stochastic nature of
Algorithm 1, ten initial local bases sets are chosen and the closest resulting classical state is taken as the
optimal one. The step size parameterM is chosen to be 103, and the number of steps Nstep = 104.

5. Numerical results

In this section, we present the main results of this paper, namely the correlation and entanglement pattern in
the π-bonds of the molecular electronic ground states of π-conjugated organic molecules.

5.1. Ethylene
We first study one of the simplest molecules containing a prototypical π-bond, namely ethylene (C2H4).
Since the π-bond comprises only two carbon centers, the resulting CAS contains only ne = no = 2 or for
short CAS(2,2), that is the bonding and anti-bonding orbitals π and π∗, which are constructive and
destructive superposition of two pz-orbitals (assuming bonding along the z-axis) on the two carbon atoms,
respectively. For non-interacting electrons, both electrons would occupy the energetically more favorable
π-orbital, forming a product state with respect to partitioning of the bonding and antibonding orbitals, as
in (33), whereas electron interaction lifts the occupancy of the π∗-orbital to around 0.03 electron pair, thus
introducing a small deviation from the aforementioned product state. From this simple observation, we
should expect a low correlation and entanglement between the π- and π∗-orbital, and this is indeed what we
conclude from our analysis in figure 3 for the common, canonical case. However, more correlation and
entanglement will be recovered as we fully localize these two orbitals.

In figure 3 we listed the total correlation I, classical correlation C, quantum correlation Q, and
entanglement E between the two orbitals based on canonical, PM-localized, and atomic-like orbitals. In
addition, for each correlation quantity, the effect of P-SSR and N-SSR are taken into account in our analysis.
Since the active space comprises in all three cases only two orbitals, it follows that single orbital correlation
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Figure 3. Total correlation I, classical correlation C, quantum correlation Q, and entanglement E between two canonical,
PM-localized, and atomic-like orbitals used for constructing the ground state of C2H4, for the case without SSR, with P-SSR, and
with N-SSR. For each choice of orbital pair, contour plots (with an isosurface value of 0.05) of the orbitals are shown on the right
most column.

and entanglement (those between one orbital and the rest of the system) will coincide with the
orbital–orbital ones.

Starting with the canonical case (upper panel of figure 3), all correlation quantities are low, as anticipated
above. In the case without SSRs and recalling that in this particular example the two-orbital reduced state is
pure, the total correlation I is simply twice the amount of the classical C and quantum parts Q such that
there is no distinction between quantum correlation Q and entanglement E. Interestingly, P-SSR does not
show any diminishing effect in any of the correlation quantities. We can explain this somewhat surprising
fact with the observation that the electronic ground state does not contain contributions from singly-excited
configurations, and thus can solely be written as a superposition of doubly-occupied and empty
configurations, respectively. Moreover, this is also the reason why no quantum correlation or entanglement
survive in the presence of N-SSR: the ground state contains only a superposition of configurations with
different local particle numbers.

Hence, in order to recover strong correlation and entanglement in the π-bond, we applied two different
localization schemes to the canonical orbitals as detailed in section 4.1. In this particular case, the
PM-localization scheme yields localized π-MOs matching the original canonical π-orbitals, since the system
comprises only σ- and π-type orbitals and the PM-localization scheme preserves the σ- and π-character of
the MOs. As a result, we see no difference in their respective correlation quantities with respect to the
canonical case and the data for the PM case coincide in all three rows (see second panel in figure 3) with their
respective counterpart in the upper panel of the canonical case. In passing we note that these findings will
not hold when the canonical MOs span over several bonding regions, as we shall see in the following
sections. Our second localization scheme sets out from the PM-localized MOs (in this case equivalently the
canonical MOs) where we apply in an ensuing step a 2× 2 Jacobi rotation between the two PM-localized
orbitals by an angle θ = π

4 . This unitary rotation leads to two atomic-like orbitals

ψL =
1√
2
πPM +

1√
2
π∗
PM, (47a)

ψR =
1√
2
πPM−

1√
2
π∗
PM, (47b)

where π (∗)
PM are the PM-localized π (∗)-orbitals. As illustrated in the third panel of figure 3 (atomic-like), the

resulting ψ1,2 are indeed fully localized around one carbon center in stark contrast to the localized MOs
obtained from the PM localization scheme. Moreover, these atomic-like orthogonal orbitals act identically as
the original atomic orbitals, in a sense that the same linear combination of the former as the latter give rise to
the bonding and antibonding orbitals (up to overall normalization)
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πPM =
1√
2
ψL+

1√
2
ψR,

π∗
PM =

1√
2
ψL−

1√
2
ψR,

(48)

thus preserving the information of the bond construction. And most importantly, we now recover strong
correlation and entanglement in the π-bond. Without SSRs, the entanglement E between ψ1 and ψ2 reaches
95% of its maximum value of 2 ln2, in excellent agreement with the degree of entanglement that we observed
for a prototypical bond in the analytic example discussed in section 3.2. Moreover, the effect of SSRs is
qualitatively different in case of the atomic-like orbitals. P-SSR cancels around half of the entanglement,
whereas around a third of the entanglement is still accessible under the restriction of N-SSR. The latter is
rooted in the complexity of the ground state wave function which, in contrast to the much simpler form
within the canonical and PM-localized orbitals bases, is now composed of several configurations of
comparable weights, including those with single local occupations.

It is worth noting that the fully localized orbitals are only 95%maximally entangled. This deviation from
the perfect single bond in section 3.2 is not an artefact of an imperfect choice of orbitals, but rather an
inevitable consequence of electron interaction. The latter namely introduces a multireference character to the
ground state, and excites finite occupation in the antibonding orbital. In other words, the maximal
entanglement 2 ln2 in a perfect single bond state f†ϕ↑f

†
ϕ↓|0〉 can never be realized in an interacting molecule.

To summarize the main conclusions from this seemingly simple example, enforcing atomic-like locality in
the MO basis for the π-orbital space leads to two distinct features of the π-bond in comparison to the
commonly considered canonical case: (a) the ground state electronic wave function markedly changes
character from single- to strongly multi-configurational and, more importantly, (b) the actual entanglement
E between the valence π (∗)-orbitals without SSR increases drastically from 5% to 95% of its maximum value
of 2 ln2 which was established by means of an analytical model for a chemical bond in section 3.2.

5.2. Polyene
Having analyzed in the previous section the conceptually most simple ‘mono’-ene, we will focus in the
following on all-trans polyenes CH2–(CH)n–CH2, a family of extended, prototypical, π-conjugated
molecular systems. More specifically, we consider two exemplary systems with n= 8 (decapentaene, C10H12)
and n= 18 (eicosadecaene, C20H22). To unambiguously study the individual correlation contributions
within the valence π (∗)-space requires for those molecular systems active orbital spaces of CAS(10,10) and
CAS(20,20), respectively. Given the size of these CAS spaces, single-orbital and orbital–orbital correlations
will no longer coincide, and need to be addressed separately. With no > 2, the single orbital correlation
quantifies the correlation between one orbital and all other orbitals, including multipartite correlations,
much beyond any orbital–orbital correlations. As in the case of ethylene in the previous section, we will
consider for our analysis three distinct choices of MO basis, namely canonical, PM-localized, and atomic-like
orbitals.

5.2.1. Single orbital correlation
As we are dealing with a pure ground state, single orbital correlation can be related to the single orbital
entanglement via simple linear relations [68], and the latter is equivalent with the single-orbital quantum
correlation. To this end, it suffices to focus in this paragraph solely on single-orbital entanglement data.

In figures 4 and 5, respectively, we present the canonical, PM-localized, and atomic-like orbitals for
C10H12 and C20H22 (upper panels) along with the single orbital entanglement of each orbital (lower panels of
figures 4 and 5), namely the entanglement between one orbital and the remaining orbitals comprised in the
active space. Before embarking on an in-depth discussion of the entanglement data, we first emphasize two
obvious key differences between the MOs of the polyenes shown in the upper panels of figures 4 and 5,
respectively, and those of ethylene: (a) the canonical MOs for both extended systems are highly delocalized
across the entire carbon–carbon chain; (b) the PM-localized MOs no longer coincide with the canonical
ones, and are localized only around two carbon centers involved in a π (∗)-bond. Hence, the PM-localization
scheme succeeds in partially localizing the canonical MOs. Finally, as was the case for ethylene, to obtain
atomic-like orbitals requires a further rotation of each corresponding pair of PM-localized π (∗)-MOs by
θ = π

4 .
Considering next the single orbital entanglement shown in the lower panels of the respective figures 4

and 5, the three choices of MO basis reveal drastically different behaviors. For both molecules, the canonical
MOs display a large variation in their single orbital entanglement. The most entangled orbital #6 (#11 in
C20H22) corresponds to the LUMO in either case and contains almost three times the amount of the least
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Figure 4. Single orbital entanglement in the CAS(10,10)-optimized electronic ground state of C10H12. The orbital numbering on
the x-axis in the lower panel follows the one given for the canonical, PM-localized, and atomic-like orbitals in the upper panel
(plotted with an isosurface value of 0.05). The color code for the single orbital entanglement data is as follows: no SSR (all color),
P-SSR (black and dark grey), and N-SSR (dark grey).

Figure 5. Single orbital entanglement in the CAS(20,20)-optimized electronic ground state of C20H22. The orbital numbering on
the x-axis in the lower panel follows the one given for the canonical, PM-localized, and atomic-like orbitals in the upper panel
(plotted with an isosurface value of 0.05). The color code for the single orbital entanglement data is as follows: no SSR (all color),
P-SSR (black and dark grey), and N-SSR (dark grey).

entangled ones. The difference between the two SSRs manifests itself as follows: while the superselected
entanglement (allowed by either P- or N-SSR) of the first half of the canonical π-MOs is mostly forbidden by
N-SSR, that of the second half of the orbitals—corresponding to the π∗-manifold—is mostly N-SSR
compatible. The fact that we still find single orbital entanglement for the π-orbitals is therefore a clear
indication of their departure from a double occupancy (as would be expected in an uncorrelated mean-field
model) in the CAS-optimized ground-state wave function due to the presence of electron–electron
correlation which is most dominant for the HOMO and HOMO-1. Likewise, a similar explanation holds for
P- and N-SSR single orbital entanglement data within the π∗-manifold where the discernible deviations
between the two SSR schemes are a result of the departure from zero occupancy of the π∗-MOs,
predominantly of the LUMO and LUMO+ 1.

Naively, one would expect that the single orbital entanglement of the PM-localized and atomic-like
orbitals should qualitatively show the same kind of deviation from that of the canonical MOs, with the latter
being stronger for the atomic-like orbitals. However this is clearly not the case here. The single orbital
entanglement of the PM-localized MOs is much more uniformly distributed than that of the canonical ones,
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and overall visibly lower. On the one hand, the uniformity of the entanglement originates from the near
translation invariance of the PM-localized MOs. Moreover, the entanglement differs only slightly from
uniformity when the MO is located at the edge of the carbon–carbon chain, where a boundary effect comes
into play. On the other hand, the lower value of entanglement of the PM-localized MOs is rooted in their
geometrical shape. Each MO is centered around two carbon atoms involved in a chemical π-bond, effectively
masking the entanglement of the bond within each MO itself. Interestingly, from the orbital plots shown in
the upper panels of figures 4 and 5, we conclude that the PM-localized MOs can still be identified as either
bonding π- or anti-bonding π∗-MOs. This classification remains also apparent in the superselected
entanglement values. The bonding π-orbitals (with odd indices) contain mostly N-SSR forbidden
entanglement whereas in the anti-bonding π∗ ones (even indices) most superselected entanglement is N-SSR
compatible, similar to the situation encountered within the canonical MO basis.

By contrast, the single orbital entanglement of the atomic-like orbitals is almost equally distributed. This
finding is perhaps not surprising as the atomic-like orbitals are almost identical up to translation and a
possible phase change. Furthermore, the closeness of agreement between the effects of applying either the P-
or N-SSR for the single orbital entanglement is a clear indication that there are no favored orbitals among the
manifold of π (∗)-MOs in terms of occupation numbers. In stark contrast to the PM-localized orbitals, the
degree of entanglement becomes substantially higher than that of the canonical MOs, reaching 96% of the
theoretical maximum of 2 ln2. To explain this finding, we recall that the atomic-like orbitals are, by
construction, a superposition of bonding and anti-bonding PM-localized orbitals. Such a rotation between
matching π–π∗-MOs entails a release of the entanglement tucked away within the PM-localized orbitals, and
becomes manifest in an entanglement between the atomic-like orbitals . As we shall see in section 5.2.2, each
atomic-like orbitals centered on one carbon atom has a pairwise entanglement with exactly only one other
atomic-like orbital, localized around the second carbon center that is contributing to the same chemical
bond.

5.2.2. Orbital–orbital correlations
In this section, we analyze the orbital–orbital correlations (classical, quantum, entanglement) in the ground
states of C10H12 and C20H22, as a continuation of the previous section which focused on the single orbital
entanglement. We consider the two-orbital reduced density states as the ‘overall’ state, which are typically
mixed, and serve as our point of departure to study the correlation between any two orbitals (within our
correlation model CAS space). In this scenario, the total correlation I is no longer linearly related to the
entanglement E, and the latter is therefore always smaller or equal to the quantum correlation Q.

In order to enable an unambiguous comparison of correlation strengths throughout our various choices
of MO bases, we define the following quantities as the pairwise total correlation sum Isum, pairwise classical
correlation sum Csum, pairwise quantum correlation sum Qsum, and pairwise entanglement sum Esum,

X(P, N)
sum ({ϕl}, |Ψ〉) =

∑
i<j

X
(
ρ
(P, N)
ij

)
X= I,C,Q,E

(49)

where ρ(P, N)
ij is the (P, N-SSR compatible) reduced state of |Ψ〉 on the orbital ϕi and ϕj of the specified basis

set {ϕl}.
In figures 6 and 7 we highlight the orbital–orbital total correlation I, classical correlation C, quantum

correlation Q, and entanglement E between the canonical, PM-localized, and atomic-like orbitals in the
ground states of C10H12 and C20H22, respectively. Moreover, the corresponding pairwise correlation sum is
shown below each plot. We discuss in the following three major conclusions that can be drawn from the
orbital–orbital correlation data.

We first observe a primarily low total correlation I between either canonical or PM-localized MOs,
whereas the degree of correlation between the atomic-like orbitals is strikingly higher, exhibiting a six-fold
increase in going from the PM-localized to the atomic-like orbitals basis. Simultaneously, the pairwise
entanglement E reaches up to 91% of 2 ln2 for both C10H12 and C20H22. Moreover, in the atomic-like
orbitals basis, we find that the pairwise quantum correlation Q can be as large as 94% of 2 ln2. We already
saw in the case of C2H4 that 100% of maximal entanglement can never occur in an interacting molecule.
Here however, the entanglement is further lowered due to the presence of orbital coupling. To see this we first
notice that the two-orbital reduced states are now mixed, as a result of interaction between the two orbitals
and the rest of the system. This degree of mixedness indicates that the two orbital system is also entangled
with other orbitals, and hence naturally reduces the maximally achievable entanglement between them.
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Figure 6. Pairwise orbital total correlation I, classical correlation C, quantum correlation Q, and entanglement E in the
CAS(10,10)-optimized electronic ground state of C10H12 in case of no SSR, P-SSR, and N-SSR. The orbital numbering follows the
one given for the canonical, PM-localized, and atomic-like orbitals in the upper panel of figure 4. The corresponding pairwise
correlation sum (see equation (49)) is given below each plot.

Figure 7. Pairwise orbital total correlation I, classical correlation C, quantum correlation Q, and entanglement E in the
CAS(20,20)-optimized electronic ground state of C20H22 in case of no SSR, P-SSR, and N-SSR. The orbital numbering follows the
one given for the canonical, PM-localized, and atomic-like orbitals in the upper panel of figure 5. The corresponding pairwise
correlation sum (see equation (49)) is given below each plot.

In addition to a comparison of absolute correlation data, it is instructive to consider the relative
contributions of quantum and classical correlation to the total correlation, focusing first on the case without
SSRs. In the canonical MO basis, a larger portion of the total correlation is classical rather than quantum in
nature. For example, the pairwise quantum correlation sum Qsum in the ground state of C10H12 is only 29%
of the pairwise total correlation sum Isum, and, similarly, 33% for C20H22. As we move to the PM-localized
MO basis, though the overall total correlation does not increase, the relative contribution of quantum
correlation Q rises to 40% and 41% for C10H12 and C20H22 respectively. This effect becomes even more
apparent in the atomic-like orbitals basis, where the fraction of quantum correlation (>52%) surpasses that
of the classical correlation for both molecules. Furthermore, in passing from a canonical as well as
PM-localized to an atomic-like orbitals basis, we not only observe an increase of the percentage of quantum
correlation comprised in the total correlation, but also encounter a significant increase of the share of
entanglement E in the quantum correlation. The latter increases from 37% and 85% to up to 93% for
C20H22, as the orbitals are becoming more and more localized. Secondly, besides the effects on the
importance of quantum correlation and entanglement, (almost fully) localizing the MOs introduces a
distinct pairing structure. Among the canonical MOs, we do not find any obvious pairing structure except
for those MOs located around the Fermi level (HOMO–LUMO, HOMO-1–LUMO-1) which also exhibit the
largest pairwise correlations. Moving to the PM-localized MOs, a clear pairing structure emerges with pairs
of MOs grouped together by relatively strong (total) pair-wise correlation and entanglement. Nonetheless,
such a pair-wise correlation is still too weak to fully describe a chemical bond, compared to the maximal
entanglement we found in section 3.2. The pattern observed in this case stems from the fact that the two
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pairing MOs are the respective bonding π- and anti-bonding π∗-orbitals located primarily on the same two
carbon atoms, an effect similar to the correlation between the canonical and PM-localized MOs in C2H4 in
section 5.1. In a mean-field picture, all the local bonding orbitals are doubly occupied while the anti-bonding
ones remain empty. By contrast, in a correlated picture electron–electron interaction introduces a finite
occupation in the latter while simultaneously reducing the double-occupancy occupation of the former, thus
creating a weak pair-wise correlation between the local bonding and anti-bonding orbitals. Considering next
the atomic-like orbitals basis, the overall picture changes strikingly. The pronounced pairing structure of the
correlation and entanglement data between MOs located on neighboring carbon atoms is an order of
magnitude stronger than that of the PM-localized MOs. The pairwise entanglement E becomes even so
strong that a so-called monogamy effect results, namely each atomic-like orbitals is only entangled to one
other MO with which a bond is formed, in sharp contrast to the weak correlation background (yellow
connecting lines) in the quantum correlation plots where MOs from different pairs are still correlated. This
clear distinction indicates that (pair-wise) entanglement may be a more appropriate quantity to describe
chemical bonds than quantum correlation would be.

Finally, we would like to highlight the effect of SSRs and their implication on the resulting complexity of
the ground state wave function. For the canonical and PM-localized MO basis, P-SSR hardly changes the
pairwise entanglement, whereas N-SSR suppresses almost all of it. This suggests that the dominating
configurations in the total wave function are those with double or zero occupancy on the respective orbitals.
In particular, the leading configurations are those where the bonding π-orbitals are doubly occupied rather
than the anti-bonding π∗ ones, giving rise to a weak pairing structure that could not survive in the presence
of N-SSR. In other words, within the two-electron Hilbert space of two pairing orbitals (one bonding πi and
anti-bonding π∗

j ), the leading configuration is simply |↑↓〉πi ⊗ |0〉π∗
j
. Turning instead to atomic-like orbitals

ϕi and ϕj that form a chemical bond, a far more complicated structure of the ground state emerges in this
basis. For a given pair i, j of strongly entangled orbitals, none of the four configurations with fixed local
occupation numbers

|↑↓〉ϕi ⊗ |0〉ϕj , |0〉ϕi ⊗ |↑↓〉ϕj ,

|↑〉ϕi ⊗ |↓〉ϕj , |↓〉ϕi ⊗ |↑〉ϕj ,
(50)

in the two-electron Hilbert space is particularly dominating, as the entanglement is nearly at its maximum (if
we only consider the two-electron subspace). This is also the reason why we encounter a strong P-SSR and
N-SSR entanglement between the atomic-like orbitals . The drastically increased number of configurations
with appreciable non-zero weight in the total wave function leads to a strongly, and statically correlated
ground state description. Hence, even though an atomic-like orbitals basis is most suitable for a genuine
description of a chemical bonding, in particular in terms of the pair-wise entanglement E, this basis,
compared to the canonical and PM-localized counterparts, introduces a strong correlation structure in the
electronic molecular ground state wave function. More importantly, though, the high degree of
entanglement and quantum correlation even under P-SSR and N-SSR makes it a prime candidate in
quantum computing applications.

To briefly summarize, we have successfully applied our orbital localization scheme first time to systems of
realistic sizes, harnessing inspirations from both analytic example in section 3.2 and smaller concrete system,
namely the ethylene molecule in section 5.1. Astonishingly, we were able to both locate and measure the
intensity of the π-bonds using the monogamous entanglement between the fully-localized atomic-like
orbitals, essentially breaking down the chain systems into units of ethylenes. The near maximal entanglement
level we found in all the carbon chain systems established again that a single bond correspond to the
entanglement value of E= 2 ln2 between the two contributing atomic-like orbitals, though marginally
lessened by electronic interaction. On one hand, our comprehensive QI framework offer surgical analysis of
correlation and entanglement; on the other hand, the fully-localized atomic-like orbitals are the chemically
meaningful subject of study. Together, they reveal a deep connection between bond order and the
entanglement between the involved nuclear centers represented by the respective atomic-like orbitals, and
offer a quantitative perspective to the valence bonding theory.

5.3. Benzene
Having discussed the linear, π-conjugated systems, we will in this section focus on the correlation pattern of
the ground state of the prototypical, cyclic, π-conjugated aromatic molecule, namely benzene (C6H6).

To ease comparison, we perform the same correlation analysis as in section 5.2, by making use of the
same three distinct sets of MO bases: canonical, PM-localized, and atomic-like orbitals , whose isosurfaces
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Figure 8. Single orbital entanglement in the CAS(6,6)-optimized electronic ground state of benzene. The orbital numbering on
the x-axis in the lower panel follows the one given for the canonical, PM-localized, and atomic-like orbitals in the upper panel
(plotted with an isosurface value of 0.05 for the canonical and PM-localized MOs, and 0.1 for the atomic-like orbitals ). The color
code for the single orbital entanglement data is as follows: no SSR (all color), P-SSR (black and dark grey), and N-SSR (dark grey).

are shown in figure 8. Before embarking on the correlation analysis, a comment is in order on how the
atomic-like orbitals basis can be obtained for benzene. Compared to the other π-conjugated molecular
systems, an atomic-like orbitals basis for benzene requires a generalized localization scheme. To explain this
fact, we first point out that, for the polyenes, the PM-localized orbitals already indicated how atomic-like
orbitals can be obtained. As we can see in figures 4 and 5, the PM-localized orbitals of C10H12 and C20H22 are
of bonding and anti-bonding π-type, respectively, stretching primarily across two carbon centers. Making
then use of the insight from our analytic example in section 3.2, it is straightforward to see that the respective
atomic-like orbitals result from a unitary rotation with angle θ of the bonding and anti-bonding orbital pairs
located on the same carbon centers by θ = π

4 . By contrast, such a pairing structure no longer emerges for the
PM-localized basis in case of benzene. First, the PM-localized orbitals span over more than two carbon
centers, due to the absence of a fixed local bonding region. Second, there is no obvious way of rotating any
two orbitals which could give rise to atomic-like ones, solely based on geometrical considerations. Hence, we
propose in the following a systematic way that leads to an atomic-like orbitals basis starting from the
canonical rather than the PM-localized MO basis.

The canonical π-MOs of benzene (denoted as ϕi’s) are linear combinations of atomic orbitals (LCAO)

ϕ̃i =
∑
j

Uijαj. (51)

where αi’s are the atomic orbitals and U a unitary matrix. Because the atomic orbitals have finite overlap
with each other, the LCAO’s need to be further normalized

ϕi = Λijϕ̃j = (ΛU)ijαj =
ϕ̃i

‖ϕ̃i‖
. (52)

This last normalization transformation Λmakes the mapping ΛU from the atomic orbitals to the canonical
orbitals non-unitary. Hence, we may ask ourselves what would happen if we transform the canonical orbitals
by U−1? The resulting orbitals are still orthogonal of course, since U−1 is unitary. To assess the locality of
these orbitals, we first consider an extreme example. Suppose that we have a molecule with internuclear
distances such that all of its atomic orbitals (at different atomic centers) have vanishingly small overlap with
each other. This entails that the LCAO’s in equation (51) are already normalized (Λ = 1). Then the inverse
transform

α̃i =
∑
j

(U−1)ijϕj =
∑
j

(U−1ΛU)ijαj (53)
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Figure 9. Pairwise orbital total correlation I, classical correlation C, quantum correlation Q, and entanglement E in the
CAS(6,6)-optimized electronic ground state of benzene in case of no SSR, P-SSR, and N-SSR. The orbital numbering follows the
one given for the canonical, PM-localized, and atomic-like orbitals in the upper panel of figure 8. The corresponding pairwise
correlation sum (see equation (49)) is given below each plot.

would only give back the original atomic orbitals α̃i =
∑

j(U
−1U)ijαj = αi. When the atomic overlap is

finite, Λ then deviates from the identity map, and so does U−1ΛU. However, as long as the atomic overlap is
not exceedingly large [90], Λ is close to an identity map, and each orbital αi will have a dominating
contribution from the atomic orbital αi and, simultaneously only small weights from the remaining ones,
thus making the newmolecular orbitals α̃i atomic-like. Remarkably, our simple scheme does not refer to any
cost function or require numerical optimization on a particular software platform. Furthermore, the
atomic-like orbitals play the same role as the atomic orbitals in MO theory, in the sense that the same linear
combinations of the atomic-like orbitals as those of the atomic ones reproduce the canonical MOs, up to a
normalization factor.

Consequently, we applied for benzene the above localization scheme starting out from the canonical MO
basis. As can be seen from figure 8, each atomic-like orbitals has a large contribution from a pz-shaped
atomic orbital on one carbon center, and only small weights from the remaining pz-shaped orbitals on the
other carbon centers. Moreover, all atomic-like orbitals are identical up to translations by an integer multiple
of the lattice constant along the benzene ring. The localization scheme therefore successfully preserves the
original shape of the atomic orbitals, while maintaining the orthogonality of the canonical ones.

In figures 8 and 9, respectively, we present the single-orbital and orbital–orbital correlation results for all
three sets of MO bases. The correlation patterns within the canonical and PM-localized MO basis mainly
resemble those of the linear polyenes discussed in the previous Subsection. In more detail, we first observe an
overall low single orbital and orbital–orbital entanglement. Secondly, in the case without SSR most of the
orbital–orbital correlation is again classical in nature with a share of 76% and 71%, respectively, of the
orbital–orbital total correlation for the two MO bases. Thirdly, the distribution pattern of the superselected
single orbital entanglement is also in alignment with previous findings. The bonding π-orbitals (odd indices
in figure 8) have an occupancy close to the mean-field value of 2.0 and, consequently, only exhibit a small
amount of N-SSR entanglement, whereas the occupancy in the anti-bonding π∗-MOs (even indices in
figure 8) departs from its mean-field value of zero such that their superselected single orbital entanglement
becomes N-SSR compatible.

Similar to the situation encountered for polyene systems, the correlation structure in the atomic-like
orbitals basis becomes much richer. Considering first the single-orbital entanglement without SSR, we find
that every atomic-like orbitals is maximally entangled (with value 2 ln2) with the rest of the system, as can be
seen from figure 8. This strong entanglement is missing at the orbital–orbital level, though. A closer
inspection of figure 9 reveals that the maximal pairwise entanglement E is considerably weaker than the one
between the atomic-like orbitals in the polyenes. Compared to 92% of 2 ln2 for the latter, the maximum
value of E in benzene amounts to merely 33% of 2 ln2. The origin of this discrepancy can be explained as
follows. In sharp contrast to the pairing structure of the entanglement between the atomic-like orbitals in the
polyenes, each atomic-like orbital on the benzene ring is equally entangled to both of its neighbors. This
‘left-right pairing’ is rooted in the underlying symmetry of the molecular Hamiltonian and closely resembles
the simplified ‘left-right overlap’ model of the Hückel Hamiltonian for benzene [91]. Hence, the unique
electronic ground state within our minimal π–π∗ CAS(6,6) active orbital space enjoys the same symmetry as
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the molecule itself, and is invariant under six-fold rotation and reflection about the mirror planes. A
simplified, polyene-like pairing structure which would gives rise to a π-type bond involving only two
neighboring carbon centers is therefore suppressed by the molecular symmetry. Although, even if we are to
sum up the orbital–orbital entanglement between one orbital and both of its neighbors, 33% of the single
orbital entanglement would not be accounted for from this partially summed bipartite orbital–orbital
entanglement sum. As a result, we ascribe the missing part of the entanglement in this π-conjugated,
aromatic molecule to genuinemultipartite entanglement. Interestingly, for the cyclopropyl cation, the
smallest 2-π-electron cyclic aromatic molecule (results not shown here), we do not encounter signs of
entanglement beyond the orbital–orbital picture between the three carbon centers in the odd-numbered ring
skeleton. Thus, whether multipartite entanglement is a distinct feature of π-conjugated, aromatic molecular
systems with an even number of atomic centers contributing to the π-conjugation clearly deserves further
investigation. While it goes beyond the scope of our current work, it will be subject of a future study.

6. Summary and conclusion

In this work we established a comprehensive QI framework for electronic structure analysis with the aim to
foster synergies of the QI and QC communities within the second quantum revolution. This framework
enabled us to dissect and compare quantum and classical effects in molecular systems, which closes an
apparent gap in the current literature. This was made possible thanks to our unifying geometric picture of
quantum states, which facilitated a unique definition of these correlation quantities on the same footing.

Under this framework, opened then up the possibility to quantify quantum correlation within molecules
as a resource for information processing tasks. Still, since the amount of quantum correlation depends on the
chosen orbital basis, we strove to maximize the resourcefulness of MOs through an orbital optimization
scheme. The key idea of our scheme was to localize each MO to one atomic center only. This constituted a
significant step beyond ‘traditional’ localization schemes (e.g. Pipek–Mezey (PM)) which typically yield final
orbitals spanning over more than one nucleus. Combining both new essential ingredients—the
comprehensive QI framework and our fully-localized orbitals—we arrived at two key results: (a) maximal
resourcefulness of molecular systems is realized by fully-localized orbitals. (b) A single covalent bond is
quantitatively best rationalized by the maximal orbital–orbital entanglement, that is 2 ln2.

To showcase these two crucial insights, we systematically compared various correlation quantities with
respect to three important bases (canonical, PM-localized and fully-localized), in the ground states of
π-conjugated chain systems (C2H4, C10H12 and C20H22). We observed almost maximal entanglement
between the fully-localized orbitals, which is 9 and 37 times of the entanglement found in the PM-localized
and canonical basis, respectively (comparing Esum in C20H22). This drastic difference unequivocally shows
that a fully-localized orbital basis is not only by far a superior reference but also reveals the abundant
quantum resource inside these systems. Concomitantly, our analysis enabled us to associate quantitatively the
existence of a chemical bond with the entanglement between fully-localized orbitals: each fully-localized
orbital is only, andmaximally, entangled with one other, together with which a bond is formed. Our
entanglement analysis thus constitutes an important milestone in turning VB theory into a fully quantitative
machinery.

To thoroughly further quantify the relation between chemical bonding and orbital entanglement, we also
studied the prototypical aromatic molecule benzene. Unlike the polyene systems, the benzene ground state
does not exhibit a conjugated π-bond structure. This is exactly reflected in our entanglement analysis: the
entanglement in benzene is uniformly distributed, without an alternating pattern of strong and weak
orbital–orbital entanglement. Yet, each fully-localized orbital was found to be maximally entangled with the
complementary subsystem. The fact that this entanglement is not fully reflected in the orbital–orbital
entanglement, confirms the commonly accepted picture that the π-bonds in benzene are shared within the
entire ring rather than locally.

Finally, we would like to envisage a few promising directions sparked by the new framework we put
forward in this work. Firstly, our quantitative rationalization of chemical bonding through entanglement
analysis can be extended beyond π-bonds, such as to also encompass σ-type hybridized orbitals. The latter
will therefore allow us to consider the vast majority of local bonds that dominate the chemical bonding of
main group compounds. Secondly, we would like to strengthen the quantitative connection between orbital
entanglement and highly delocalized, multicenter bonds, by exploring multipartite entanglement as a type of
bonding descriptor, that is, for example, as an indicator for aromaticity. In conclusion, after showcasing
versatile pathways to genuinely identify a potentially ample supply of quantum resource in chemical bonds,
we look forward to spark an intense collaboration between the QI and QC communities in order to both
harvest and further exploit these resources. This new prospect has the potential to bring about a
paradigm-shifting change to modern chemistry: molecules are not only mere reactants in chemical processes
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but also potent sources of entanglement and quantum correlations, the required resources for information
processing tasks in the age of quantum technologies.
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Appendix A. Correlation sum rule

In this section we will show that the quantum and classical correlation of ρ sum up to the total correlation of
ρ if its closest product state πρ and its closest classical state χρ are simultaneously diagonalized.

We first observe that

I(ρ)−Q(ρ)−C(ρ) = S(ρA)+ S(ρB)− S(χA)− S(χB), (A1)

where χA,B are the reduced states of χρ, respectively. We can then show that the spectrum of ρA and that of
χA coincide. Let us denote the eigenstate of χρ as {|i〉⊗|j〉}. From this it follows that the eigenvalues of ρA are
precisely its diagonal entries in this basis

λi = (ρA)ii = 〈i|ρA|i〉=
∑
j

〈i|⊗〈j|ρ|i〉⊗|j〉. (A2)

Moreover, the eigenvalues of χA are given by

µi = 〈i|TrB[χρ]|i〉

= 〈i|TrB

∑
kj

|k〉〈k|⊗|j〉〈j|ρ|k〉〈k|⊗|j〉〈j|

 |i〉
=
∑
j

〈i|⊗〈j|ρ|i〉⊗|j〉= λi.

(A3)

Using similar considerations, the spectrum of ρB and χB also coincide. As a result, the right-hand side of
equation (A1) must vanish, leading to the sum rule

I(ρ) = Q(ρ)+C(ρ). (A4)

This allows us to dissect the total correlation exactly into quantum and classical correlation contributions.
When ρA,B is not simultaneously diagonalized as χA,B, its diagonal entries still coincide with those of χA,B,

namely the elements of µ⃗. From this, it follows that the spectrum of ρA,B given by λ⃗, majorizes µ⃗, leading to
the inequality S(ρA,B)> S(χA,B). Hence, a general relation between the total, quantum, and classical
correlation reads as

I(ρ)⩾ Q(ρ)+C(ρ). (A5)
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Appendix B. Reference structures

Table B1. XYZ coordinates (in Å) of the benzene structure as taken from [92].

C 0.000 000 0000 1.396 792 0000 0.000 000 0000
C 0.000 000 0000 −1.396 792 0000 0.000 000 0000
C 1.209 657 0000 0.698 396 0000 0.000 000 0000
C −1.209 657 0000 −0.698 396 0000 0.000 000 0000
C −1.209 657 0000 0.698 396 0000 0.000 000 0000
C 1.209 657 0000 −0.698 396 0000 0.000 000 0000
H 0.000 000 0000 2.484 212 0000 0.000 000 0000
H 2.151 390 0000 1.242 106 0000 0.000 000 0000
H −2.151 390 0000 −1.242 106 0000 0.000 000 0000
H −2.151 390 0000 1.242 106 0000 0.000 000 0000
H 2.151 390 0000 −1.242 106 0000 0.000 000 0000
H 0.000 000 0000 −2.484 212 0000 0.000 000 0000

Table B2. XYZ coordinates (in Å) of the ethylene structure as taken from [93].

C 0.669 500 0000 0.000 000 0000 0.000 000 0000
C −0.669 500 0000 0.000 000 0000 0.000 000 0000
H 1.232 100 0000 0.928 900 0000 0.000 000 0000
H 1.232 100 0000 −0.928 900 0000 0.000 000 0000
H −1.232 100 0000 0.928 900 0000 0.000 000 0000
H −1.232 100 0000 −0.928 900 0000 0.000 000 0000

Table B3. XYZ coordinates (in Å) of the decapentaene structure as taken from [94].

C −5.570 819 0000 −0.217 743 0000 0.000 000 0000
H −5.646 184 0000 −1.298 410 0000 0.000 000 0000
H −6.495 732 0000 0.342 247 0000 0.000 000 0000
C −4.373 490 0000 0.405 989 0000 0.000 000 0000
H −4.347 960 0000 1.490 582 0000 0.000 000 0000
C −3.085 856 0000 −0.277 393 0000 0.000 000 0000
H −3.106 017 0000 −1.362 443 0000 0.000 000 0000
C −1.885 150 0000 0.357 505 0000 0.000 000 0000
H −1.868 794 0000 1.442 672 0000 0.000 000 0000
C −0.600 421 0000 −0.318 770 0000 0.000 000 0000
H −0.615 607 0000 −1.403 834 0000 0.000 000 0000
C 0.600 423 0000 0.318 772 0000 0.000 000 0000
H 0.615 610 0000 1.403 837 0000 0.000 000 0000
C 1.885 151 0000 −0.357 504 0000 0.000 000 0000
H 1.868 791 0000 −1.442 671 0000 0.000 000 0000
C 3.085 859 0000 0.277 388 0000 0.000 000 0000
H 3.106 026 0000 1.362 438 0000 0.000 000 0000
C 4.373 489 0000 −0.406 002 0000 0.000 000 0000
H 4.347 952 0000 −1.490 594 0000 0.000 000 0000
C 5.570 825 0000 0.217 717 0000 0.000 000 0000
H 5.646 212 0000 1.298 382 0000 0.000 000 0000
H 6.495 727 0000 −0.342 292 0000 0.000 000 0000
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Table B4. XYZ coordinates (in Å) of the eicosadecaene structure as taken from [94].

C −11.777 002 0000 −0.264 956 0000 0.000 000 0000
H −11.838 826 0000 −1.346 690 0000 0.000 000 0000
H −12.709 135 0000 0.283 328 0000 0.000 000 0000
C −10.588 570 0000 0.373 284 0000 0.000 000 0000
H −10.576 358 0000 1.458 319 0000 0.000 000 0000
C −9.292 100 0000 −0.294 395 0000 0.000 000 0000
H −9.299 259 0000 −1.379 813 0000 0.000 000 0000
C −8.100 331 0000 0.354 687 0000 0.000 000 0000
H −8.097 152 0000 1.440 196 0000 0.000 000 0000
C −6.807 386 0000 −0.305 880 0000 0.000 000 0000
H −6.809 239 0000 −1.391 233 0000 0.000 000 0000
C −5.614 864 0000 0.346 177 0000 0.000 000 0000
H −5.613 866 0000 1.431 609 0000 0.000 000 0000
C −4.323 252 0000 −0.312 597 0000 0.000 000 0000
H −4.324 092 0000 −1.397 991 0000 0.000 000 0000
C −3.129 932 0000 0.339 737 0000 0.000 000 0000
H −3.129 239 0000 1.425 156 0000 0.000 000 0000
C −1.839 152 0000 −0.318 927 0000 0.000 000 0000
H −1.840 033 0000 −1.404 337 0000 0.000 000 0000
C −0.645 214 0000 0.333 028 0000 0.000 000 0000
H −0.644 170 0000 1.418 440 0000 0.000 000 0000
C 0.645 057 0000 −0.326 167 0000 0.000 000 0000
H 0.643 670 0000 −1.411 588 0000 0.000 000 0000
C 1.839 395 0000 0.325 102 0000 0.000 000 0000
H 1.841 129 0000 1.410 508 0000 0.000 000 0000
C 3.129 491 0000 −0.334 960 0000 0.000 000 0000
H 3.127 312 0000 −1.420 391 0000 0.000 000 0000
C 4.323 931 0000 0.315 421 0000 0.000 000 0000
H 4.326 693 0000 1.400 812 0000 0.000 000 0000
C 5.614 248 0000 −0.345 956 0000 0.000 000 0000
H 5.610 823 0000 −1.431 395 0000 0.000 000 0000
C 6.808 433 0000 0.303 145 0000 0.000 000 0000
H 6.813 047 0000 1.388 490 0000 0.000 000 0000
C 8.099 575 0000 −0.360 992 0000 0.000 000 0000
H 8.093 201 0000 −1.446 493 0000 0.000 000 0000
C 9.293 393 0000 0.284 374 0000 0.000 000 0000
H 9.303 945 0000 1.369 761 0000 0.000 000 0000
C 10.587 573 0000 −0.387 745 0000 0.000 000 0000
H 10.571 407 0000 −1.472 733 0000 0.000 000 0000
C 11.778 381 0000 0.246 012 0000 0.000 000 0000
H 11.844 528 0000 1.327 487 0000 0.000 000 0000
H 12.708 325 0000 −0.305 984 0000 0.000 000 0000

Appendix C. Atomic-like orbitals in benzene

The pre-normalized canonical Hartree–Fock orbitals ϕ̃i’s of the benzene ring are related to the pz orbitals αi’s
by

ϕ̃i = Uijαj, (C1)

where

U=


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. (C2)
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The atomic-like orbitals α̃i proposed by us is then obtained by applying the inverse U−1 to the
normalized canonical Hartree–Fock orbitals ϕi = ϕ̃i/‖ϕ̃i‖

α̃i = U
−1
ij ϕj. (C3)

The above transformation can be achieved by a sequence of two-orbital rotations.

• Step 1

ϕ1←−
1√
2
ϕ1 +

1√
2
ϕ6, ϕ1←

1√
2
ϕ1 +

1√
2
ϕ6

ϕ2←−
1√
2
ϕ2 +

1√
2
ϕ5, ϕ5←

1√
2
ϕ2 +

1√
2
ϕ5

ϕ3←−
1√
2
ϕ3 +

1√
2
ϕ4, ϕ4←

1√
2
ϕ3 +

1√
2
ϕ4

• Step 2

α̃1←−
1√
3
ϕ1 +

√
2

3
ϕ2, ϕ2←

√
2

3
ϕ1 +

1√
3
ϕ2

ϕ5←−
1√
3
ϕ5 +

√
2

3
ϕ6, α̃6←

√
2

3
ϕ5 +

1√
3
ϕ6

• Step 3

α̃2←−
1√
2
ϕ2−

1√
2
ϕ4, α̃4←−

1√
2
ϕ2 +

1√
2
ϕ4

α̃3←−
1√
2
ϕ3 +

1√
2
ϕ5, α̃5←

1√
2
ϕ3 +

1√
2
ϕ5

We then arrive at the atomic-like orbitals α̃i’s.
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