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Black holes are considered to be exceptional due to their time evolution and information processing.
However, it was proposed recently that these properties are generic for objects, the so-called saturons, that
attain the maximal entropy permitted by unitarity. In the present paper, we verify this connection within a
renormalizable SUðNÞ invariant theory. We show that the spectrum of the theory contains a tower of
bubbles representing bound states of SUðNÞ Goldstones. Despite the absence of gravity, a saturated bound
state exhibits a striking correspondence with a black hole: Its entropy is given by the Bekenstein-Hawking
formula; semiclassically, the bubble evaporates at a thermal rate with a temperature equal to its inverse
radius; the information retrieval time is equal to Page’s time. The correspondence goes through a trans-
theoretic entity of the Poincaré Goldstone. The black hole–saturon correspondence has important
implications for black hole physics, both fundamental and observational.
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I. INTRODUCTION

Black holes are considered to be exceptional objects.
This exceptionality usually refers to their time evolution,
information storage, and retrieval. However, it has been
proposed recently [1] (see [2] for a summary) that these
properties are not specific to black holes. Rather, they are
the universal features of objects saturating a certain bound
on the microstate entropy, which will be discussed below.
This bound is imposed by unitarity.
This proposal heavily relied on the evidence gathered in

two earlier papers [3,4]. There, objects such as solitons,
instantons, and various bounds states with high degeneracy
of microstates were constructed. This gave the possibility
of increasing the microstate entropy in a controllable way
while simultaneously monitoring its correlation with uni-
tarity. In all cases, this correlation pointed to a universal
bound on entropy.
The bound can be presented in two equivalent forms [1].

The first form states that for an arbitrary self-sustained
object of size R in d space-time dimensions, the unitarity
imposes the following bound on entropy,

S ≤
Area
GGold

; ð1Þ

where Area ∼ Rd−2 is the area of the sphere within which
the object is contained, and GGold is the coupling of the
Goldstone field of a spontaneously broken symmetry. Such
spontaneously broken symmetries are always present
whenever we are dealing with a macroscopic object of
high entropy. In particular, any “device” capable of storing
quantum information breaks the Poincaré symmetry spon-
taneously. Therefore, no ambiguity exists in definingGGold.
Note that the bound is valid in arbitrary dimensions,
including d ¼ 2, since the quantity “Area” is well defined.
The second form of the entropy bound (1) is written in

terms of an effective coupling α of the theory. In terms of
this coupling, the bound imposed by unitarity can be
written in the following form,

S ≤
1

α
; ð2Þ

where α has to be understood as a running coupling
evaluated at the scale 1=R. The above bound is equivalent
to (1). This can already be noticed from the fact that the
quantity

αGold ≡ GGold

Area
ð3Þ

represents an effective dimensionless coupling of the
Goldstone boson, evaluated at the scale 1=R. Both bounds
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are saturated simultaneously [4]. Correspondingly the
maximal entropy compatible with unitarity can be written
in the combined form

Smax ¼
1

α
¼ Area

GGold
: ð4Þ

The coupling GGold can be expressed in terms of the
canonically normalized Goldstone decay constant f as

GGold ≡ f−2: ð5Þ

In this normalization, in d ¼ 4, in which we work in the
present paper, f has the dimensionality of mass. For any
self-sustained bound states of N quanta of wavelengths R,
the coupling and the decay constant of a Poincaré
Goldstone are given by

GGold ¼ f−2 ¼ R2

N
: ð6Þ

The objects saturating the entropy bounds (1) and (2) are
referred to as “saturons.” The point of [1] is that saturons
share the following universal properties:

(i) Of course, as already said, their entropy satisfies the
area law, given by (4).

(ii) If unstable, they decay with the rate which, up to 1=S
corrections, gives the thermal rate of temperature

T ∼ 1=R: ð7Þ

(iii) In the semiclassical treatment, they exhibit an
information horizon.

(iv) The minimal timescale required for the start of the
information retrieval is bounded from below by

tmin ¼
Volume
GGold

¼ R
α
¼ SmaxR; ð8Þ

where Volume ∼ Rd−1.
It is obvious that the above properties are in full

correspondence with the properties of black holes, under
the mapping

GGold → GN; ð9Þ

where GN is Newton’s gravitational constant. The funda-
mental meaning of this mapping is that in the case of a
black hole, the Goldstone boson of spontaneously broken
Poincaré symmetry comes from the graviton, which has the
coupling GN.
It is clear that under the transformation (9), the entropy

(4) becomes the Bekenstein-Hawking entropy [5,6] of a
black hole of radius R,

SBH ∼
Area
GN

: ð10Þ

We also notice that the same entropy can be written as [1,7]

SBH ∼
1

αgr
; ð11Þ

where αgr ¼ GN=Area is the quantum gravitational cou-
pling in d space-time dimensions, evaluated at the scale of
the momentum transfer 1=R.
Next, the connection between (7) and Hawking radiation

is very transparent. Finally, we notice that under the
mapping (9), the timescale (8) gives a so-called Page’s
time for a black hole [8]. For a black hole, this time is
suggested to be the minimal timescale of the start of
information recovery.
The proposal of [1] says that none of the above proper-

ties is specific to either black holes or gravity. Rather, they
are generic features of saturons in arbitrary theories.
Various aspects of this connection have been demonstrated
for solutions in spaces with both Lorentzian and Euclidean
signatures, such as solitons, instantons, and other bound
states [1,3,4], including [9] bound states in the Gross-
Neveu model [10] on which we comment below. Recently,
it has also been argued [11] that a so-called “color glass
condensate” state of ordinary QCD [12] exhibits the same
correspondence.
The correspondence between black holes and other

saturons should not be understood as the correspondence
between different theories. Rather, the correspondence is
between the states in different theories. The starting point
which these states share is that they all saturate the entropy
bounds (1) and (2), imposed by unitarity of corresponding
theories. The rest of the features follow. In other words,
saturation is a trans-theoretic notion.
The correspondence between black holes and generic

saturons offers an obvious benefit of “demystifying” black
hole physics. Indeed, on the one hand, saturons exist in
theories that are renormalizable and calculable. On the
other hand, they exhibit all of the key properties of a black
hole. Hence, by studying saturons, we may explain the
origin of known black hole properties and, at the same time,
predict new phenomena that can take place in black holes.
One such effect is the phenomenon of “memory burden”
[13,14]. The essence of this is that quantum information
can stabilize the system that carries this information.
In the present paper, we provide further evidence of the

black hole–saturon correspondence. We analyze a simple
four-dimensional theory of saturons, constructed in [1]. The
model exhibits a global SUðNÞ symmetry and has several
degenerate vacuum states with various patterns of sponta-
neous symmetry breaking. The theory is renormalizable
and can be studied at arbitrarily weak coupling and large N.
The spectrum of the theory can be reliably analyzed.
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It contains solitonic vacuum bubbles separating the vacua
with different patterns of broken symmetry.
In particular, there exists an infinite set of bubbles

stabilized by the memory burden effect. Each bubble
represents a bound state of a large number of Goldstone
bosons. The occupation number of the Goldstone quanta in
the bound state will be denoted byNG. These quanta cannot
propagate in the asymptotic vacuum outside a bubble
since the symmetry is unbroken there. Due to this, the
Goldstones can only exist within a bubble. Therefore, if a
bubble decays, the conserved SUðNÞ quantum numbers
carried by the Goldstone modes must be released in the
form of massive quanta. This creates an energy barrier that
stabilizes the bubble in the semiclassical theory.
The levels of the spectrum can be labeled by NG. Each

level is exponentially degenerate. Correspondingly, the
bound states carry a high microstate entropy. We see that
the bubbles with occupation number NG ∼ N are saturons.
In particular, the entropy of such a bubble saturates the
bounds (1) and (2). Correspondingly, they have maximal
entropy (4) compatible with unitarity. We show that such a
bound state assumes all the properties of a black hole listed
above. We thus confirm the black hole–saturon correspon-
dence proposed in [1].
The fact that a saturated bound state of N Goldstone

bosons exhibits a correspondence with a black hole
represents supporting evidence for the idea of the black
hole N portrait [7]. In this theory, the black hole is
described as a saturated bound state of N gravitons. The
features predicted by this theory of gravitons are explicitly
reproduced in a calculable renormalizable theory of the
Goldstone bound states presented in the present paper. In
particular, we observe how the information is carried away
by 1=S (1=N) corrections to Hawking radiation. The same
corrections violate the self-similarity of the evaporation
process.
Finally, we note that in a parallel paper [9], the black hole

saturon correspondence was demonstrated within the
Gross-Neveu model [10,15] (for a review, see [16,17]).
This theory contains a set of fermion-bound states with
growing mass and degeneracy. It was shown [9] that the
Gross-Neveu bound state of the maximal degeneracy is a
saturon and exhibits all the properties of a black hole
discussed above. This is remarkable. Despite the fact that
the Gross-Neveu model is two dimensional, its saturon
captures all properties of saturons (and, correspondingly, of
black holes) of higher-dimensional theories. This includes
the saturons in the four-dimensional SUðNÞ symmetric
model discussed in the present paper. This fact illustrates
the universality of large-N physics at the point of satu-
ration. This is the reason why saturated fermion bound
states in the Gross-Neveu model and saturated Goldstone
bound states in the present model share strong similarities
with each other and with black holes. This fact provides
nontrivial supporting evidence for the idea that black hole

properties are not specific to gravity but instead are defined
by the generic physics of saturation [1].

II. SATURON MODEL

A. The model

Following [1], we consider a theory of a scalar field ϕ
in the adjoint representation of SUðNÞ, with N ≥ 3.
That is, ϕβ

α is an N × N traceless Hermitian matrix with
α; β ¼ 1;…; N. The Lagrangian density is

L ¼ 1

2
tr½ð∂μϕÞð∂μϕÞ� − V½ϕ�;

where V½ϕ� ¼ α

2
tr
��

fϕ − ϕ2 þ I
N
tr½ϕ2�

�
2
�
: ð12Þ

Here, I is the unit N × N matrix, α is a dimensionless
coupling, and f is the scale of symmetry breaking.
Notice that the theory is renormalizable. We restrict

ourselves to the regime in which the fundamental quantum
coupling α is weak. However, even for arbitrarily weak α,
the unitarity imposes the following upper bound on the
strength of the coupling,

α ≲ 1

N
: ð13Þ

This bound is fully nonperturbative. The physical reason is
that the parameter that controls unitarity, both perturba-
tively as well as nonperturbatively, is the collective cou-
pling αN. In the context of gauge theories, such a coupling
is often referred to as the ’t Hooft coupling [18].
Regardless of the smallness of α, the unitarity is

saturated when the collective coupling αN becomes order
one. This is signaled both by the breakdown of loop
expansion and by the saturation of unitarity by the
scattering amplitudes. For a detailed discussion, we refer
the reader to [1]. As shown in this work, the constraint (13)
plays a fundamental role in enforcing the upper bound on
entropy (4). We present an explicit example of saturation of
this bound in the SUðNÞ theory (12).
Wework in the regime of weak α and largeN. Interesting

things happen when the collective coupling αN approaches
the unitarity bound (13) from below. As we shall see, in this
limit, certain solitons saturate the entropy bounds (1) and
(2) and start behaving like black holes.
In order to identify such solitons, let us notice that the

vacuum equations

fϕβ
α − ðϕ2Þβα þ δβα

N
tr½ϕ2� ¼ 0 ð14Þ

admit several solutions corresponding to vacua with differ-
ent unbroken symmetries. These include the vacuum with
unbroken SUðNÞ symmetry, ϕ ¼ 0, and the vacua with

HOW SPECIAL ARE BLACK HOLES? CORRESPONDENCE WITH … PHYS. REV. D 105, 056013 (2022)

056013-3



spontaneous symmetry breaking (SSB) patterns SUðNÞ →
SUðN − KÞ × SUðKÞ ×Uð1Þ, with 0 < K < N. By con-
struction, all of these vacua are degenerate in energy. For
definiteness, we focus on the vacuum ϕ ¼ 0 and the one
with K ¼ 1. In the second vacuum, only the following
component,

ϕβ
α ¼ ϕðxÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

NðN − 1Þp diagððN − 1Þ;−1;…;−1Þ; ð15Þ

has a nonzero expectation value,

hϕi ¼ f

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NðN − 1Þp
ðN − 2Þ ≃ f ð16Þ

(since we are working at large N, when appropriate, we
approximate parameters by their leading order values). In
this vacuum, the symmetry group is SUðN − 1Þ ×Uð1ÞY ,
where the generator of Uð1ÞY is

Ŷ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2NðN − 1Þp diagððN − 1Þ;−1;…;−1Þ: ð17Þ

In the vacuum with unbroken SUðNÞ symmetry, there
exist no massless excitations, as the theory in this vacuum
exhibits a mass gap,

m ¼ ffiffiffi
α

p
f: ð18Þ

In contrast, in the broken symmetry vacuum, there exist

NGold ¼ 2ðN − 1Þ ð19Þ

different species (“flavors”) of massless Goldstone bosons,
which we denote by θaðxμÞ with a ¼ 1; 2;…; NGold. They
correspond to broken generators Ta. It is convenient to
represent these broken generators as off-diagonal Pauli
matrices. We can take

ðTaÞβα ¼ 1

2
ðδ1αδβkþ1 þ δkþ1

α δβ1Þ for a ¼ 2k − 1; ð20Þ

and

ðTaÞβα ¼ −i
2
ðδ1αδβkþ1 − δkþ1

α δβ1Þ for a ¼ 2k; ð21Þ

where k ¼ 1;…; N − 1.
The combinations T�

k ¼ T2k−1 � iT2k form (N − 1)-
dimensional fundamental and antifundamental representa-
tions under the unbroken SUðN − 1Þ symmetry group.
Their charges Y� ¼ � Nffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2NðN−1Þ
p under the Uð1ÞY sym-

metry are fixed by

½Ŷ; T�
k � ¼ Y�T�

k : ð22Þ

Correspondingly, the combinations of Goldstones,
θ�k ≡ θ2k−1 � iθ2k, transform under the same representa-
tions as the generators T�

k . Obviously,
P

a θaT
a ¼

1
2

P
k θ

∓
k T

�
k .

The effective low energy theory of the Goldstone modes
can be obtained in the standard way by parametrizing the
field as

ϕβ
α ¼ ðU†hϕiUÞβα ð23Þ

with

U ¼ exp ½−iθaTa�; ð24Þ

and substituting into the original action. Taking into
account the commutation relations and keeping terms up
to second order in θa, we obtain the following effective
Goldstone Lagrangian:

Leff ¼
N2

4ðN − 2Þ2 f
2
X
a

ð∂μθ
aÞð∂μθaÞ

≃
1

4
f2
X
k

ð∂μθ
þ
k Þð∂μθ−k Þ: ð25Þ

Now, due to gapless Goldstone excitations, an “island”
of a broken symmetry vacuum, embedded into a symmetric
one, can carry a very high microstate entropy. Such islands
are realized in the form of the vacuum bubbles, which we
now consider.

B. Vacuum bubble

Since the vacua SUðNÞ and SUðN − 1Þ ×Uð1ÞY are
degenerate, there exist domain walls that separate the two.
A planar infinite wall is static. For such a wall, the
component (15) of the adjoint field has the following form,

ϕðxÞ ¼ f
2

�
1� tanh

�
mx
2

��
; ð26Þ

where x is a coordinate that is perpendicular to the wall.
The thickness of the wall is

δw ∼m−1: ð27Þ

Likewise, we can consider a closed bubble of radius
R ≫ δw, inside of which the SUðNÞ symmetry is broken
down to SUðN − 1Þ ×Uð1ÞY . Outside of the bubble, the
SUðNÞ symmetry is unbroken. The exact analytic solution
for a finite radius bubble is not known. Moreover, such a
bubble experiences the force of tension directed inwards. If
not counteracted by an equal force, the finite-size bubble
will collapse.
For a slow-moving bubble wall, in the regime R ≫ δw,

the profile of the ϕ field can be approximated by
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ϕðrÞ ¼ f
2

�
1þ tanh

�
mðR − rÞ

2

��
: ð28Þ

Adopting the standard terminology, we refer to this
approximation as the “thin-wall” approximation.
Due to SSB of the SUðNÞ symmetry to SUðN − 1Þ×

Uð1Þ, the vacuum in the interior of the bubble con-
tains NGold ¼ 2ðN − 1Þ gapless Goldstone bosons. These
Goldstone modes are “trapped” inside the bubble and
cannot propagate outside. This is because in an asymptotic
vacuum outside of the bubble, r ≫ R, the symmetry is
unbroken. There, the theory has a mass gap (18), and no
Goldstone excitations can penetrate this region. The exist-
ence of gapless species in the bubble interior endows the
bubble with a high capacity of information storage [1].
The information can be stored in the excitations of the
Goldstone modes. This results in a memory burden effect
that counteracts the collapse.

III. BUBBLE STABILIZATION BY
MEMORY BURDEN

We now study how the effect of memory burden
influences the evolution of the bubble. The quantum
information can be encoded in excitations of Goldstone
modes at relatively low energy cost. This quantum infor-
mation can be parametrized in the form of sequences of
excitation levels (occupation numbers na) of the Goldstone
bosons with distinct SUðNÞ flavor quantum numbers. We
refer to distinct arrangements as the “memory patterns.”
When the bubble collapses and decays, this information

must be carried away by the outgoing quanta. However, the
information pattern, released in the SUðNÞ-symmetric
vacuum, is much more costly in energy than when it is
stored in an SðN − 1Þ × Uð1Þ-symmetric vacuum inside
the bubble. This is because no gapless excitations exist in
the SUðNÞ-symmetric vacuum. In fact, as we shall see, the
energy cost of the pattern outside the bubble can be larger
than the entire energy of the system. This creates a conflict.
Correspondingly, the information encoded in Goldstone

modes must backreact and create a resistance against the
decay. That is, the occupied Goldstone modes should
prevent the bubble from collapsing and decaying. The
memory burden effect is measured by the overall excitation
of the Goldstone modes. We may choose to excite a large
diversity of modes to low levels, or highly excite a single
mode. In the latter case, we can approximate a correspond-
ing Goldstone mode with a classical field. Below, we
encounter both regimes.
Let us again consider the model (12) with the field

given by

ϕβ
α ¼ ðU†ΦUÞβα; ð29Þ

where

Φβ
α ¼ φðx⃗; tÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

NðN − 1Þp diagððN − 1Þ;−1;…;−1Þ; ð30Þ

and

U ¼ exp ½−iθaðx⃗; tÞTa�: ð31Þ

Substituting the above ansatz into (12), we obtain

L ¼ 1

2
ð∂μφÞð∂μφÞ þ N

4ðN − 1Þφ
2ð∂μθ

aÞð∂μθaÞ

−
α

2
φ2ðφ − fÞ2; ð32Þ

where we have absorbed the 1=N corrections into the
redefinitions of parameters f and α.
We assume that the field φ takes the initial configuration

of a finite-size bubble of the broken symmetry vacuum
embedded in the symmetric one. For definiteness, we
assume spherical symmetry. That is, at some initial time,
the field is described by a configuration φð0; rÞ which
interpolates from a nonzero value at r ¼ 0 to zero at r ¼ ∞.
As already said, such a bubble can carry a large amount of
information stored in excitations of the Goldstone fields θa.
These form a memory pattern. If none of the Goldstone
modes are excited, the information pattern is empty and
cannot affect the dynamics of the bubble. In such a
situation, the bubble collapses and, after some oscillations,
decays into the asymptotic quanta of the SUðNÞ-symmetric
vacuum.
We now study how a nonempty information pattern

changes the story. Depending on the occupation numbers of
the individual Goldstone flavors, we can distinguish the
following two regimes.
When the individual occupation numbers are large, we

can use the Bogoliubov approximation and replace the
corresponding field operators by c-numbers. This regime
can be studied classically, by treating the highly excited
Goldstone modes θa as classical fields. In the opposite case,
when the individual occupation numbers are small, such a
replacement is not possible, and we need to study the
Goldstone modes in a quantum regime.
Notice that the quantum regime by no means implies that

the memory burden is weak. Although the individual
occupation numbers are small, the diversity of excited
Goldstone flavors can be very high for large N. As a result,
even a classical bubble can be stabilized by the memory
burden that is fully quantum. As we shall see, this can
happen if the bubble saturates the entropy bounds (1) and
(2). We discuss the classical regime first.

A. Classical regime

We look for a localized stationary solution in which we
give the Goldstone modes a time dependence. To start with,
we use the ansatz
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φ ¼ φðrÞ; θa ¼ δa1ωt; ð33Þ

where ω is the frequency of rotation in the internal
space. Only one of the Goldstone modes is involved in
this rotation. In other words, as previously mentioned, we
macroscopically occupy a single Goldstone flavor.
Since the Goldstones with labels a ≠ 1 are all set to zero,

the effective Lagrangian (32) describes a full nonlinear
classical theory for the ansatz (33). Notice that this is
legitimate because all other components enter bilinearly (or
in higher powers) in the Lagrangian. It is therefore
consistent to set them to zero without affecting the validity
of the ansatz (33).1

Correspondingly, the only nontrivial equation is

d2rφþ 2

r
drφþ φðω2 − αðφ − fÞð2φ − fÞÞ ¼ 0: ð34Þ

Here we have again absorbed the N-dependent prefactors
into the redefinitions of f, α, and

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N

2ðN − 1Þ

s
ω → ω: ð35Þ

A stationary bubble is described by a solution with the
following boundary conditions,

φð0Þ ≠ 0; φð∞Þ ¼ 0: ð36Þ
Notice that the Goldstone fields of primary symmetry
breaking, SUðNÞ → SUðN − 1Þ × Uð1ÞY , transform non-
trivially under SUðN − 1Þ ×Uð1ÞY. Due to this, the ansatz
(33) induces a secondary symmetry breaking down to
SUðN − 2Þ × Uð1ÞX, where the generator of Uð1ÞX is
given by

X̂ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NðN − 2Þp diagððN − 2Þ=2; ðN − 2Þ=2;−1;…;−1Þ:

ð37Þ
Due to this secondary symmetry breaking, an additional
set of Goldstone modes emerges. Their number is 2N − 3.

Note, however, that there is a mixing between some
internal Goldstones with the Goldstone boson of
broken time-translation symmetry. This is an important
phenomenon, but it does not influence the entropy count
for large N.
Let us focus on the stationary classical configuration. If

we think of r as a time coordinate, the above equation is
equivalent to the one satisfied by a “coordinate” φ of a
particle moving in the external potential

VðφÞ ¼ 1

2
φ2ðω2 − αðφ − fÞ2Þ: ð38Þ

For

ω2

αf2
< 1; or equivalently; ω2 < m2; ð39Þ

the above potential has two maxima, φ0 ¼ 0,

φmax ¼ f
4

�
3þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8ω2

αf2

q �
, separated by a minimum at

φmin ¼ f
4

�
3 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8ω2

αf2

q �
. In addition to φ0 ¼ 0, the

potential also becomes zero at the points φ� ¼ f � ωffiffi
α

p .

In this regime, the existence of a stationary bubble
solution is rather transparent. The “particle” starts at the
“time” r ¼ 0 with some initial position φð0Þ. Notice,
in order to tame the friction term, which becomes sin-
gular at r ¼ 0, the initial velocity is fixed to be zero,
drφðrÞjr¼0 ¼ 0. This leaves the initial position φð0Þ as
the only adjustable initial condition. In order for the
particle to reach φ0 ¼ 0 in the asymptotic future r ¼ ∞,
the initial coordinate must satisfy φ− < φð0Þ ≤ φmax. The
initial acceleration is then determined from

d2rφjr¼0 ¼ φð0Þð−ω2 þ αðφð0Þ − fÞð2φð0Þ − fÞÞ: ð40Þ

It is clear that the solution with φð∞Þ ¼ 0 can be
obtained by continuously varying φð0Þ. Indeed, taking
φð0Þ ¼ φ−, the particle always undershoots since it
inevitably loses energy due to a nonzero friction. On
the contrary, by taking φð0Þ sufficiently close to φmax, we
can make the initial acceleration arbitrarily small, which
will give the particle enough time not to move until the
friction becomes negligible. In such a case, the particle
would reach φ0 ¼ 0 with nonzero kinetic energy within a
finite time. Obviously, between the two extremes, there
exists an initial φð0Þ which makes the friction just right
for reaching φ0 ¼ 0 for r ¼ ∞.
The study of the bubble solution simplifies in the thin-

wall approximation, which is given by

ω2

αf2
≪ 1; or equivalently; ω2 ≪ m2: ð41Þ

1For example, the effective Lagrangian obtained by the ansatz

(29) in which the matrix U ¼
�
cosðθ1

2
Þe−iα

sinðθ1
2
Þe−iβ

− sinðθ1
2
Þeiβ

cosðθ1
2
Þeiα

�
represents

a generic SUð2Þ transformation of the subgroup SUð2Þ ×
SUðN − 2Þ ×Uð1Þ ⊂ SUðNÞwould give an effective Lagrangian
(with the same rescaling of f and α as before),

L ¼ 1

2
ð∂μφÞð∂μφÞ þ N

4ðN − 1Þφ
2ð∂μθ

1Þð∂μθ1Þ

þ Nsin2ðθ1Þ
4ðN − 1Þ φ

2ð∂μðαþ βÞÞð∂μðαþ βÞÞ − α

2
φ2ðφ − fÞ2;

for which αþ β ¼ 0 is a solution.
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The above implies that the Goldstone frequency ω is much
smaller than the mass gapm in the symmetric vacuum. The
quantum meaning of this regime shall become more
transparent later.
In the above regime, the energy splitting between the

maxima φmax ≃ fð1þ ω2

αf2Þ and φ0 ¼ 0 is approximately

given by

Vmax ≃
1

2
ω2f2

�
1þ ω2

αf2

�
: ð42Þ

In the thin-wall approximation, for a givenω the radius R of
the bubble can be found by extremizing the action

S ¼ 4π

Z
∞

0

r2dr
1

2
ðdrφðrÞÞ2 − VðφðrÞÞ; ð43Þ

evaluated on the bubble solution φðrÞ. In the thin-wall
regime, the particle spends the time interval 0 < r < R near
the initial value close to the maximum φmax. During this
time, φðrÞ is essentially constant, and the main contribution
to the action comes from the potential energy at the
maximum. This portion of the action is therefore given
by Sint ≃ − 4π

3
VðφmaxÞR3 ≃ − 2π

3
ω2 m2

α R3. The bulk of the
transition from φmax to φ0 ¼ 0 is completed during the time
interval Δr ¼ m−1, which sets the thickness of the bubble
wall. Correspondingly, this part of the action is given by
Swall ≃ 2π

3
m3

α R2. Thus, the total action on the thin-wall
bubble solution is

Sbubble ¼
2π

3

m3

α

�
R2 −

ω2

m
R3

�
: ð44Þ

Extremizing this expression with respect to R gives the
following value of the radius of a stationary bubble,

R ¼ 2

3

m
ω2

: ð45Þ

Notice that for ω ≪ m, we have

R ≫
1

m
: ð46Þ

Of course, this matches the fact that in the thin-wall
approximation, the bubble radius is much larger than the
thickness of the wall, which is given by m−1.
The solution φðrÞ obtained in this way describes a

stationary, spherically symmetric bubble in Minkowski
space. The energy of such a bubble consists of the energy
of the wall tension and the energy of the interior (both
positive),

Ebubble ¼ Eint þ Ewall ¼
ω

α

m5

ω5

�
40π

81

�
; ð47Þ

where

Eint ¼
2

3
Ewall: ð48Þ

B. Quantum picture of classical stability

The wall of the bubble is predominantly made of the
radial excitations of the φ field of mass m, whereas the
interior is predominantly made of Goldstone excitations of
frequency ω. It is therefore convenient to write the two
energies in terms of the occupation numbers of the
corresponding quanta,

Eint ¼ ωNG; where NG ≡ 1

α

m5

ω5

�
16π

81

�
; ð49Þ

and

Ewall ¼ mNφ; where Nφ ≡ 1

α

m4

ω4

�
8π

27

�
: ð50Þ

We see that

NG

Nφ
¼ 2

3

m
ω

≫ 1: ð51Þ

That is, the thin-wall bubble contains a much higher
occupation number of the Goldstones than of the massive
φ quanta.
Thus, we arrive at the conclusion that a stationary bubble

is obtained thanks to the excitations of the Goldstone
modes. Let us try to understand this effect in the quantum
language. In the thin-wall regime (41), the Goldstone
frequency ω in the bubble interior is much less than the
mass of the quanta m in the asymptotic vacuum outside of
the bubble. Now, the interior energy (49), which amounts
to 2=3 of the wall energy, is given by the Goldstone
excitations.
The bubble is stable because of two factors: (1) the fact

that the Goldstone SUðNÞ charge is conserved and (2) the
fact that the same amount of charge in the exterior vacuum
would cost much higher energy.
If the bubble decays, the SUðNÞ charge, stored in the

Goldstone modes in the interior of the bubble, must be
released into the asymptotic SUðNÞ-symmetric vacuum.
But, this vacuum contains no gapless excitations, and the
lowest energy cost per particle is m. Carrying the entire
charge in the form of massive particles would cost more
energy than the energy of the bubble. This is the source of
stability.
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IV. CLOSER LOOK AT GOLDSTONES

A. Goldstones of internal symmetry

The spontaneous breaking of global SUðNÞ symmetry
by the solution (33) results in the appearance of Goldstone
species localized in the bubble interior. As already dis-
cussed, at large N, their number scales as NGold ≃ 4N.
These Goldstone species possess the tower of eigenmodes
θaϵ of various eigenfrequencies ϵ. In the limit of an infinitely
large bubble, these eigenmodes reproduce the momentum
modes of free Goldstone plane waves.
The exact form of mode functions can be obtained by the

standard mode analysis of linearized fluctuations in the
background of the classical solution. This will not be
presented here. Instead, we focus on the resulting eigenm-
odes of two specific frequencies.
The modes θa0 corresponding to ϵ ¼ 0 have zero frequen-

cies. These modes account for the degeneracy of the bubble
“vacuum” with respect to broken SUðNÞ transformations.
In other words, by acting on a bubble with a global SUðNÞ
transformation, we excite a set of corresponding gapless
Goldstone modes. Of course, since these modes are
gapless, their excitations cost no energy. This accounts
for the strict degeneracy of bubbles that are related by
global SUðNÞ transformations. Such bubbles form irreduc-
ible representations of SUðNÞ symmetry.
The second set of harmonics θaω correspond to eigen-

frequencies ϵ ¼ ω. These harmonics represent the actual
constituents of the bubble. On the bubble solution, at least
some of them have nonzero occupation numbers. When we
act on a bubble by an SUðNÞ transformation, we change the
occupation numbers of θaω modes without affecting the
energy of the state.
To summarize, various Goldstone modes contribute to

the portrait of the stationary bubble as follows. The energy
of the interior of the bubble (49) represents the energy of a
state of Goldstone bosons θaω of frequencies ω and a total
mean occupation number NG. In the original ansatz (33),
this entire occupation number is attributed to a single mode
a ¼ 1. However, it can be arbitrarily redistributed among
the Goldstones of different flavors due to SUðNÞ symmetry
of the theory. All the solutions obtained by the SUðNÞ
transformation are degenerate in energy. This degeneracy
is accounted for by the presence of gapless Goldstone
modes θa0 .
The occupation numbers can be redistributed arbitrarily

among the excited primary Goldstones of frequency ω
subject to the constraint (we use the large-N approximation)

X2N
a

na ¼ NG: ð52Þ

Each sequence of such numbers na represents a memory
pattern,

jPatterni ¼ jn1ω; n2ω;…i: ð53Þ

All of them amount to the classical solutions that are
degenerate in energy. All such information patterns cost
the energy given by (49). That is, Eint is the energy of the
information pattern encoded in the SUðNÞ charge via the
excitations of Goldstones of frequency ω.
Now, it is important to understand the following dis-

tinction. Let us consider the two patterns, jn1ω; n2ω;…i and
jn01ω ; n02ω ;…i for which the differences Δnaω ¼ jnaω − n0aω j
among some occupation numbers are large. To be more
precise, let us say that for some a’s, the ratio Δnaω

NG
is nonzero

for NG → ∞. Then, such patterns are distinguishable in
classical theory.
In addition to these, the set of all possible degenerate

patterns contains subsets which have small differences.
Such patterns are not distinguishable classically. Of course,
they nevertheless contribute to the count of quantum
microstates. Correspondingly, the memory burden effect
has a part that is classically observable and a part that can
only be resolved in a quantum theory.
Notice, as is clear from (49) in the thin-wall approxi-

mation (41), we have

NG ∼
1

α

m5

ω5
≫

1

α
∼ NGold: ð54Þ

Now, remembering that the number of Goldstone flavors
scales as NGold ∼ N, and that unitarity puts the upper bound
N ∼ 1=α, we get that for a thin-wall bubble,

NG ≫ NGold: ð55Þ

That is, in the thin-wall regime, the occupation number of
the Goldstone modes is much larger than the number of
their species. Due to this, the main stabilizing force is
the classical part of the memory burden. For smaller
bubbles, the situation changes dramatically, and the quan-
tum part of the memory burden becomes as important as the
classical one.
If the bubble decays, the information stored in the

memory pattern (53) must be released in the form of
asymptotic quanta of massm. Since the SUðNÞ charges are
conserved, the minimal energy cost of such an asymptotic
state is

Epattern ¼ mNG; ð56Þ

where NG is given by (49). This can be rewritten as

Epattern ¼ mNG ¼ m
1

α

m5

ω5

�
16π

81

�
¼ 2m

5ω
Ebubble: ð57Þ

Thus, the energy cost of the information pattern released in
case of a bubble decay would exceed the energy of the
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bubble by a factor 2m=ð5ωÞ. This is of course impossible. It
is therefore energetically more favorable to store this
amount of charge in the form of the bubble, rather than
to release it in the form of the asymptotic quanta.
One may wonder whether instead of free quanta the

Goldstone charge can be released in the form of the
smaller bound states with more effective mass-to-charge
ratio. However, this does not appear plausible. Due to the
weak coupling α, it takes at least ∼ 1

α particles to make up
a bound state of size R ∼ 1=m. This is the smallest
possible size for a bound state due to the energy scale in
the problem. Such a bound state will have energy ∼m=α
and a charge capacity ∼1=α. In fact, it would represent a
smallest-size vacuum bubble. It is clear that the charge of
the large bubble cannot be released in the form of such
objects. Basically, a bubble cannot decay into smaller
bubbles. The stationary bubble is energetically the opti-
mal configuration for the given charge, at least among the
spherically symmetric ones. This is also confirmed by our
numerical analysis.
Although we did not provide a proof, it is rather natural

that for a bubble with zero angular momentum, the
departure from the spherical symmetry cannot lower the
energy since there is no parameter in the theory that would
set the measure of asymmetry for the lowest energy
configuration, which must exist due to the impossibility
of decay into the free quanta.
The important thing is that the bubble is an existence

proof of the bound state that stores the SUðNÞ charge in a
more energy-efficient way than the collection of the
asymptotic quanta. Thus, there exist bound states stabilized
by the memory burden effect.
In this sense, the stabilized bubbles can be considered as

a sort of nontopological solitons, or Q-balls [19,20]. There
exists a large amount of literature on the subject. In
particular, Q-balls with arbitrarily small classical charges
were analyzed in [21]. The physical effects, such as
catalysis of proton decay, due to symmetry breaking inside
the Q-ball interior were also studied [22]. In this sense, it
can be said that the present paper also sheds a very different
light on the mechanism ofQ-ball stability, by interpreting it
as a sort of memory burden effect.
At the same time, the vacuum bubbles considered here

are qualitatively different from the previously studied
cases of Q-balls. First of all, bubbles carry a large
microstate entropy which can saturate the unitarity
bound. Due to this, the information encoded in the
Goldstone modes that stabilizes the bubble can be
intrinsically quantum.
This form of stabilization takes place in thick-wall

bubbles, for which ω ∼m ∼ 1=R, where the quantum
contribution into the memory burden becomes as important
as the classical one. This is linked with the fact that such
bubbles saturate the entropy bounds (1) and (2). As
saturons, they satisfy NG ∼ NGold ∼ N ∼ 1=α.

B. Goldstones of broken Poincaré symmetry

Let us now focus on the Goldstone bosons of broken
Poincaré symmetry. They consist of broken space and time
translations. Of course, correspondingly, the Lorentz boosts
are also broken. Let us consider a thin-wall bubble first.
The different constituents of the bubble share the break-

ing of space-time symmetries as follows. The spontaneous
breaking of space translations comes predominantly from
the bubble walls. The main weight of breaking is carried by
the φ quanta of occupation numberNφ, each contributingm
in the order parameter. Therefore, up to order-one numeri-
cal factors, the couplings of the space-translation Goldstone
bosons are

GðsÞ
Gold ¼

R
mNφ

: ð58Þ

In contrast with space translations, the dominant contribu-
tion into the breaking of time-translation symmetry comes
from the interior of the bubble. This is due to nonzero
frequency ω of Goldstone modes of broken SUðNÞ
symmetry. Their total occupation number is NG. Each
occupied quantum contributes ω into the breaking of time
translations. The coupling of the time-translation Goldstone
mode is therefore

GðtÞ
Gold ¼

R
ωNG

: ð59Þ

From the relation (51) between the occupation numbers, we
have

ωNG ∼mNφ: ð60Þ

It is therefore clear that the couplings of Goldstones of
broken space and time translations are of the same order,

GðsÞ
Gold ∼GðtÞ

Gold ∼
R

ωNG
: ð61Þ

This is not surprising since the bubble walls that break
space translations are stabilized due to breaking of time
translation by its interior.
The relation (60), and correspondingly (61), holds for an

arbitrary, classically stable bubble. This includes the thick-
wall regime. Therefore, the coupling of a generic Goldstone
of broken Poincaré symmetry can be expressed in terms of
the occupation number of SUðNÞ Goldstones as

GðPÞ
Gold ∼

R
ω

1

NG
∼

ffiffiffiffiffiffi
R3

m

r
1

NG
; ð62Þ

where we took into account the relation (45) between ω, m,
and R.
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Now, the dimensionless effective coupling of the

Poincaré Goldstone, αðPÞGold, evaluated at the energy scale
1=R (corresponding to the size of bubble) is

αðPÞGold ≡ GðPÞ
Gold

1

R2
¼ GðPÞ

Gold

Area
¼ 1ffiffiffiffiffiffiffi

mR
p 1

NG
¼ ω

m
1

NG
; ð63Þ

where, as before, Area ∼ R2 is the area of the bubble.
Using (62) and (63), we can present the entropy bounds

(1) and (2) for a bubble in terms of the occupation number
of the SUðNÞ Goldstone modes,

Smax ∼
1

αðPÞGold

∼
Area

GðPÞ
Gold

∼ NG

ffiffiffiffiffiffiffi
mR

p
∼ NG

m
ω
: ð64Þ

The above represents the maximal entropy that can be
attained by a bubble in a unitary theory. As we shall see,
only the thick-wall bubbles are able to saturate this bound.

V. SPECTRUM OF BUBBLES

Our previous analysis shows that bubbles represent the
bound states of Goldstone bosons, with occupation number
NG. The energy spectrum of bubbles can be expressed as a
function of NG. For thin-wall bubbles, we have

ENG
¼ 5

2
ωNG ¼ 5ffiffiffi

6
p

ffiffiffiffi
m
R

r
NG: ð65Þ

Up to an order-one coefficient, the same relation holds for the
thick-wall bubbles for whichm ∼ 1=R. As we shall see later,
only thick-wall bubbles can saturate the unitarity bound on
entropy. This happens in the regime NG ∼ N ∼ 1=α. The
energy of a saturon bubble is thus given by

EN ∼
N
R
∼
1

α

1

R
∼
m
α
: ð66Þ

Therefore, a saturon represents a bound state of NG ∼ N
Goldstone bosons and of the same order Nφ ∼ N
radial modes.

VI. ENTROPY OF A BUBBLE

Let us estimate the entropy of a bubble. The number of
degenerate microstates is given by all possible sequences
(53) satisfying the constraint (52). Using Stirling approxi-
mation, and working at leading order in large NG and N,
this number can be written as

nst ∼
�
1þ 2N

NG

�
NG
�
1þ NG

2N

�
2N
: ð67Þ

As explained in [1,3,4], the above expression for the
number of degenerate microstates is common for solitons

that spontaneously break global symmetry. It can be
understood in the following two complementary languages.
Internal view.—From the point of view of the world-

volume theory of the soliton, the degeneracy (67) accounts
for the degeneracy of the Goldstone vacuum. An observer
located in the interior of the soliton (in the present case, a
bubble) sees a spontaneous breaking of global SUðNÞ
symmetry with the resulting gapless Goldstone modes. Just
as any other Goldstone vacuum, this vacuum is degenerate.
However, since the bubble has a finite size, the number of
independent orthogonal vacuum states is finite rather than
infinite. This degeneracy becomes infinite in the limit
of a bubble of an infinite extent. In this limit, the bubble
vacuum becomes an ordinary Goldstone vacuum of four-
dimensional theory.
To summarize, according to the internal view, the

different microstates counted in (67) are Goldstone vacua
that are obtained from one another by the action of SUðNÞ
transformations.
External view.—From the point of view of an external

observer, the same degeneracy is explained differently. This
observer lives in the asymptotic vacuum for which SUðNÞ
is a good symmetry. Correspondingly, all the states can be
classified according to representations of the SUðNÞ group.
Thus, the external observer sees the bubble as an object

transforming under one such representation. This repre-
sentation is exponentially large. This is because the bubble
represents a bound state of a large number of quanta each
transforming under the adjoint representation of SUðNÞ.
Let the total occupation number of quanta be NT . Then, the
bubble transforms as a tensor product of NT adjoints. The
wave function of the bubble can be written as a tensor,

B
β1;β2;…;βNT
α1;α2;…;αNT

; ð68Þ

which is totally symmetric under lower and upper indices
and has a zero trace with respect to each conjugated pair. To
leading order, the dimensionality of such a tensor is given
by the square of the binomial coefficient. Using the Stirling
approximation, it can be written as

nst ∼
�
1þ 2N

NT

�
NT
�
1þ NT

2N

�
2N
: ð69Þ

Now, our previous analysis shows that NT is well approxi-
mated by NG. Indeed, as it is clear from (51), for the thin-
wall bubble (41), the occupation number of Goldstones NG
dominates over the number of other constituents. So, in this
regime, we have NT ≃ NG. For the thick-wall regime, the
occupation number of the non-Goldstone quanta, Nφ,
becomes comparable to NG. Thus, without loss of general-
ity, we can write NT ∼ NG. It is then clear that the
expression (69) gives the same number of microstates
as (67).
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The corresponding microstate entropy is given by

S ¼ lnðnstÞ ≃ 2N ln

�
ð1þ λÞ1λ

�
1þ 1

λ

��
; ð70Þ

where we have introduced a notation λ≡ 2N=NT ∼
2N=NG. This quantity represents the ratio of the number
of primary Goldstone species to their occupation number in
the bubble state. This ratio decides how far the entropy of
the system is from saturating the bounds imposed by
unitarity. We study this question next.

VII. SATURATION

We now wish to investigate in which regime a bubble
saturates the bounds on entropy (1) and (2). Naively, it may
appear that the entropy (70) can be made arbitrarily large at
the expense of increasing N. However, this is not the case
since N and α are “locked” in the unitarity constraint (13).
Due to this, N reaches its maximum when the ’t Hooft
coupling of the theory is taken at its unitarity upper bound,

Nα ∼ 1: ð71Þ

As explained in [1], any further growth of the ’t Hooft
coupling beyond this point must lead to the change of the
regime. This is signaled both by the breakdown of the loop
expansion and by saturation of unitarity by various scatter-
ing amplitudes.
Now, since the number of Goldstone species NGold is of

order N, the condition (71) implies

NGold ∼ N ∼
1

α
: ð72Þ

The entropy of the bubble must be evaluated subject to this
constraint. In what follows, we perform this evaluation in
two different regimes.

A. Entropy of thin-wall bubbles

Let us start by considering the thin-wall regime. From
(49) it is clear that for a thin-wall bubble, we have

NG ≫
1

α
: ð73Þ

Taking into account the expressions (71) and (72), it
becomes obvious that in a thin-wall bubble, we have
λ ≪ 1. That is, the thin-wall bubble satisfies

NG ≫ NGold ∼ N ∼
1

α
: ð74Þ

Therefore, in this regime, the expression (70) becomes

S ≃ 2N ln

�
e
λ

�
∼
1

α
ln

�
m10

ω10

�
: ð75Þ

In the last term we took into account (71), expressed NG as
a function of α, ω, m via (49), and ignored order-one
numerical factors (8eπ=81 ∼ 1) in the logarithm.
The actual entropy of the bubble (75) is much smaller than

the upper bound (1) applied to the same bubble. Indeed,
expressing NG via (49), the maximal entropy (64) of a thin-
wall bubble, permitted by the Poincaré Goldstone, is

Smax ∼
1

α

m6

ω6
: ð76Þ

Obviously, for a thin-wall bubble (m=ω ≫ 1) this is much
larger than the actual entropy (75), which scales only
logarithmically with m=ω. Thus, a thin-wall bubble repre-
sents an undersaturated state in terms of its entropy capacity.
The same conclusion can be reached by examining the

entropy bounds posed by SUðNÞ Goldstones. One can see
this by repeating the logic of [1]. Let us consider an
effective dimensionless coupling of SUðNÞ Goldstones,
evaluated at the scale 1=R. It is equal to

αðSUðNÞÞ
Gold ¼ 1

ðfRÞ2 ∼ α
ω4

m4
: ð77Þ

This coupling controls the scattering processes of
Goldstones with momentum transfer ∼1=R. Let us now
put ourselves in the position of an observer living in the
effective low energy theory of Goldstones with the cut-
off Λcutoff ∼ 1=R.
For the consistency of this limited sector, the observer

only needs to make sure that the effective theory is unitary
up to the scale ∼1=R. With this minimal requirement, the
observer has the “luxury” of introducing as many as

NGold ∼ 1=αðSUðNÞÞ
Gold species of Goldstones. Such a large

diversity of Goldstone flavors would endow the bubble
with the microstate entropy,

Smax ∼
1

α

m4

ω4
: ð78Þ

Therefore, a low energy observer would conclude that a
bubble of size R can attain the above entropy. However, this
would certainly run the full theory into a problem which is
beyond the knowledge of the low energy observer.
Indeed, since the number of Goldstone species inhab-

iting the bubble is set by N, attaining (78) would require an
increase of N up to N ∼ 1

α
m4

ω4 . However, this would violate
the unitarity constraint (13) of the full theory. This, of
course, is not possible.
The unitarity constraint (13) precludes the introduction

of Goldstone species with the number above (72). This
limits the actual entropy capacity of the bubble by (75).
This limiting entropy is much smaller than (78), which is
mistakenly presumed by the effective low energy theory
with the cutoff Λcutoff ∼ 1=R.
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We thus arrive at the following conclusion. In the thin-
wall regime, the entropy of the bubble (75) is far from
saturating the bounds (1) and (2).

B. Entropy of thick-wall bubbles

The situation changes drastically for thick-wall bubbles,
for which R ∼ 1=m. As already explained, as long as
condition (39) is satisfied (or, equivalently, if ω < m),
the existence of a classical solution of a stationary bubble,
described by (33) and (36), is guaranteed. For definiteness,
we assume that the condition (39) is satisfied, and we focus
on the case ω ∼m.
Obviously, for such a bubble, all three scales are of the

same order,

ω ∼m ∼
1

R
: ð79Þ

Correspondingly, we have

NG ∼
1

α
: ð80Þ

Taking into account (71), from (70) it follows that the
entropy is

S ∼
1

α
: ð81Þ

Thus, the entropy saturates the unitarity bound (2).
The area-law bound (1) is also saturated. Indeed, since

the size of the bubble satisfies (79), the coupling of the
Poincaré Goldstone (62) becomes

GðPÞ
Gold ∼

1

N
Area ∼ αArea: ð82Þ

It is clear that the entropy of the bubble (81) saturates the
bound (1).
It is also obvious that for a saturated bubble, the

couplings of the Poincaré and internal Goldstones are
equal, and so are their decay constants. We therefore drop
the subscripts and denote these quantities universally by
GGold and f, respectively. Also, from now on, we denote the
dimensionless coupling of Goldstones by αG.
For both Poincaré and internal Goldstones, the expres-

sions for the couplings and the decay constants are given by
(6), which we rewrite as

GGold ¼ f−2 ¼ 1

N
Area ∼ αArea: ð83Þ

Similarly, the dimensionless couplings αG of both types of
Goldstones, evaluated at the scale 1=R, are equal to the
fundamental coupling α. That is, in the thick-wall regime,
we have

αG ¼ GGold

Area
¼ 1

ðfRÞ2 ¼ α: ð84Þ

Correspondingly, the bounds (1) and (2) are universally
saturated in terms of all couplings and all the decay
constants of the theory.
Interestingly, as already noticed in [1], the entropy of the

saturon bubble obeys

S ∼ EbubbleR: ð85Þ

This is easy to see from (66), (81), and (79). The above
expression agrees with the bound on entropy suggested by
Bekenstein [23], despite the fact that a priori the latter
bound has no information about the coupling of the system.
However, for generic bubbles, the bounds (1) and (2)
appear more stringent, as they exclude excessive entropy of
a bubble even if the Bekenstein bound is formally satisfied.
In summary, we observe that the thick-wall bubbles

saturate the entropy bounds (1) and (2), when the theory
saturates unitarity. That is, a thick-wall bubble becomes a
saturon when the ’t Hooft coupling is critical (13). At the
same time, the thin-wall bubbles are undersaturated. That
is, their entropy is much less than what would be permitted
by the effective low-energy theory of Goldstones, with the
cutoff ∼1=R. The thin-wall bubble cannot achieve such
entropy, without invalidating the full theory. The results are
summarized in Table I.2

The above reveals a deep connection between the
saturation of the system and the nature of the stabilizing
memory burden effect. For undersaturated bubbles, the
occupation number of Goldstones NG is much higher than
the number of the Goldstone species NGold ∼ N. Due to
this, the memory burden that stabilizes the undersaturated
bubble is classical. In contrast, a saturated bubble can be
stabilized by the memory burden that is fully quantum in its
nature. The physical meaning of this statement shall be
explained below.

TABLE I. Entropy bounds and the actual entropies for thin-wall
and thick-wall bubbles. It is clear that thin-wall bubbles are
undersaturated. The saturons originate from thick-wall bubbles.

Entropy

Bubble Bound on S Actual S

Thin-wall, m
ω ≫ 1 S ≃ 1

α
m6

ω6 S ≃ 1
α lnðm

10

ω10Þ
Thick-wall, m

ω ∼ 1 S ∼ 1
α S ∼ 1

α

2Interestingly, the same conclusion was reached in [1] for thin-
and thick-wall bubbles that were not stabilized by the memory
burden of the Goldstone charge but instead were assumed to
freely oscillate (and eventually decay).
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VIII. STABILIZATION BY QUANTUM
MEMORY BURDEN

We have seen that when the collective coupling of the
theory hits the unitarity bound (71), the thin-wall bubble
becomes a saturon. In this regime, we are dealing with an
interesting phenomenon. Despite the fact that the stationary
bubble solution is well described classically, the memory
burden stabilizing it can be fully quantum.
In order to see this, let us start with the ansatz (33). As we

already discussed, in the quantum language, this classical
solution corresponds to the state in which a single Goldstone
mode, say θ1, is macroscopically occupied. The occupation
number is given by (80). Since our analysis only becomes
better at weak coupling α, the occupation number NG ∼ N
can be made arbitrarily large by taking α small. Such a state
can be treated classically up to corrections ∼1=N.
Now, we should remember that in the current regime, the

number of Goldstone species NGold is of the same order as
the total occupation number NG. Both of these numbers are
of order N. In the classical bubble, corresponding to the
ansatz (33), the entire occupation number is “credited” to a
single Goldstone flavor, θ1. The corresponding memory
pattern (53) has the form naω ¼ δa1NG.
However, as we already discussed, due to SUðNÞ

symmetry, there exist bubbles in which the number NG
is distributed among various Goldstone flavors, subject to
the constraint (52). Such states are related to each other by
SUðNÞ symmetry transformations. Due to this, they are all
strictly degenerate in energy.
Among the patterns (53), we pay special attention to the

ones in which the number is distributed approximately
equally among all of the Goldstone flavors. Since for the
saturated bubble NG ∼ NGold ∼ N, in such states all occu-
pation numbers are small. The corresponding memory
patterns (53) have naω ∼ 1 for all a. Since the individual
occupation numbers are small, we can say that the
Goldstone modes are in intrinsically quantum states.
By the power of symmetry, it is obvious that the

corresponding memory burden has the same stabilizing
effect as naω ¼ δa1NG, which is described by the classical
solution (33). Thus, although the states (53) with naω ∼ 1 are
quantum, they possess the same stabilizing power as the
“classical” state naω ¼ δa1NG to which they are related by
the SUðNÞ symmetry. In other words, in such states, the
stabilization happens due to a quantum memory burden.
We thus observe that for saturon bubbles, the stabiliza-

tion by the memory pattern can be fully quantum. Such a
bubble is similar to a black hole.

IX. INFORMATION HORIZON

As already pointed out in [1], a universal property of the
saturons is that in the semiclassical limit, they possess a
strict information horizon. That is, the information stored
in the interior of the saturon cannot be extracted in any

form. The general physical reason is that in this limit, the
memory modes that carry quantum information decouple.
Correspondingly, the information stored in these modes
becomes permanently hidden.
In the present construction, we can demonstrate this

feature explicitly. The memory modes are represented by
the Goldstone modes of spontaneously broken SUðNÞ
symmetry. Their interaction strength is suppressed by their
decay constant f. The effective coupling of a Goldstone
mode of frequency ϵ is

αG ¼ ϵ2

f2
: ð86Þ

In the semiclassical limit, this coupling goes to zero for any
finite ϵ.
In order to see this, we must specify the correct semi-

classical limit. This is the limit in which the classical bubble
solution with finite radius R and frequency ω experiences
no backreaction from quantum fluctuations. Such a limit is
uniquely given by

α → 0; R ¼ finite; ω ¼ finite; αN ¼ finite: ð87Þ

Notice that this implies that the mass m stays finite,
whereas the Goldstone decay constant f becomes infinite.
Therefore, at the same time, in the above limit, we have

f → ∞; αG → 0; ð88Þ

for any finite ϵ. Thus, the coupling of a Goldstone mode of
arbitrarily high frequency vanishes. This applies to the
Goldstones of frequencies higher than the mass m of the
quanta outside of the bubble. Correspondingly, in the zero
backreaction limit, there is no way of transmitting any
information from the interior of the bubble to the exterior.
Even if the energy of a Goldstone perturbation is much

higher than the mass gap in the asymptotic vacuum r ≫ R,
it is impossible for such a mode to communicate with the
ones propagating in the outside vacuum. The bubble
literally possesses an information horizon, analogous to
that of a black hole.
Another side of the story is the existence of the Goldstone

horizon which manifests itself already at finite f. Goldstone
waves of frequencies ϵ ≪ m cannot propagate outside the
bubble, even though at finitef the coupling among themodes
is finite. Here we can distinguish two cases.
The first case is when the energy of an internal

perturbation is less than m. In such a case, propagation
is simply impossible due to the finite energy gap.
In the second case, although the frequency ϵ of the

Goldstone perturbation is smaller than m, its energy can
exceed the mass gap at the expense of the occupation
number of Goldstone quanta in the perturbation. In the
classical language, the amplitude of the Goldstone wave
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may be sufficiently high to reach the energy m, even if the
frequency is very low.
Even in such a case, the propagation is highly sup-

pressed. The way to understand this is to think of a process
as the transition from the initial state of high occupation
number nϵ of soft quanta of frequency ϵ ≪ m, into a state of
few quanta of frequencies m or higher. For example, at the
threshold, the number nϵ ¼ m=ϵ of Goldstones of frequen-
cies ϵ can transit into a single exterior particle of mass m.
Such a process is exponentially suppressed by a factor
e−nϵ [1]. This is a general feature of the transition processes
between high and low occupation numbers.

X. HAWKING EVAPORATION

Despite their classical stability, the saturated vacuum
bubbles can decay through quantum processes. As is the
case for generic saturons [1], this decay is strikingly similar
to Hawking evaporation of a black hole. Just like the case of
a black hole, the emission has a thermal-like spectrum with
a characteristic temperature T given by the inverse radius of
the bubble,

T ∼
1

R
: ð89Þ

In the semiclassical limit (87), the quantum information
carried by the radiated quanta is not resolvable. In full
quantum theory, the resolution time is given by (8), which
is very similar to Page’s time for a black hole.
In the case of a black hole, the asymptotic theory is

gapless, as it contains a massless field in the form of the
graviton. Therefore, in order to make the connection
between the saturated bubbles and black holes maximally
transparent, we introduce some additional massless fields
that can propagate in the asymptotic vacuum.
For definiteness, let us introduce a scalar ξα transforming

in the fundamental representation of the SUðNÞ group. We
assume that the Lagrangian is completed to the most
general SUðNÞ-invariant renormalizable theory of ϕβ

α

and ξα. The only restriction we put is that in the
SUðNÞ-invariant vacuum, ξα is massless.
For making our point, it suffices to consider the follow-

ing terms,

Lξ ¼ ð∂μξ
†αÞð∂μξαÞ − αξξ

†αðϕ2Þβαξβ; ð90Þ

where αξ > 0 is a coupling constant, which is subject to the
unitarity constraint

Nαξ ≲ 1; ð91Þ

similar to the bound (13) obeyed by the coupling α. We
choose αξ to be near the saturation point of the above
bound, αξ ∼ 1=N.

Now, as already mentioned, in the vacuum with unbro-
ken SUðNÞ symmetry, the field ξ is massless. In the
SUðN − 1Þ × Uð1Þ-symmetric vacuum, its components
get positive mass terms of order m2

ξ ∼ αξf2 ∼m2. Let us
now consider the ξ field in the background of a stationary
vacuum bubble of radius R.
In the asymptotic vacuum outside the bubble, r ≫ R, the

ξ field propagates as massless. At the same time, in the
interior of the bubble, it gets a positive mass term. Thus,
effectively, ξ sees the bubble as a potential barrier.
For a thin-wall bubble (41), due to the positive

mass2 inside the bubble, the wavefunctions of the ξ
modes of momenta q ≪ m are exponentially suppressed
(“screened”) in the bubble center. The screening factor
is ∼e−mR.
For the saturated bubble, the above suppression is not

significant. Such bubbles are in the thick-wall regime and
satisfy (79). Due to this, the radius of the bubble R is of the
same order as the screening depth, which is given by 1=m.
In addition,ω ∼m. Therefore, the ξmodes, in general, have
order-one overlap with the interior region of the saturated
bubble.
The presence of a massless field ξ in the theory does not

affect the classical stability of the bubble. However, it opens
up a new quantum decay channel. In the semiclassical
approximation, the decay rate can be derived by quantiza-
tion of ξ in the background of the classical bubble solution
(33). However, since the saturation takes place in a thick-
wall regime, where the solution is not known analytically,
such an analysis will be purely qualitative and shall not be
displayed here.
Instead, we take a shortcut directly into a full quantum

theory and try to exploit the power of the Goldstone
universality. Namely, we use the fact that the couplings
of Goldstones are governed by the symmetry breaking
order parameter. Also, as already explained, most of the
quantum information of the bubble is carried by the
Goldstone modes. Thus, the decays of the bubble through
the Goldstone processes are the most interesting from the
perspective of the retrieval of quantum information by an
outside observer.
The couplings between the Goldstone modes and the

modes of ξ quanta are uniquely defined by the Goldstone
theorem and are controlled by a single scale. In the broken-
symmetry vacuum, in the language of a full (3þ 1)-
dimensional theory, this coupling is local and has the form

i∂μθ
að∂μξ†Taξ − ξ†Ta∂μξÞ þ � � � ; ð92Þ

where the dimensionless phases are related with the canoni-
cally normalized Goldstone fields (aa) through θa ≡ aa

f .
In the SUðN − 1Þ ×Uð1Þ-symmetric vacuum of infinite

extent, the Goldstones are well defined everywhere. The
mode expansions for both Goldstones and ξ particles are
given by plane waves. Of course, the finite size of the
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bubble affects the mode expansion and the profiles
of various momentum eigenstates. In particular, the
Goldstones exist only in the bubble interior and become
ill-defined outside. The effective coupling that controls the
scattering between the Goldstone modes of frequency ω
and the ξ quanta is given by αGðωÞ ¼ ω

fω
. The entire

information about the mode profiles and other factors is
encoded in the effective scale fω. For the saturated bubble,
fω is of the same order as the fundamental scale f. This is
because, for the saturated bubble, all the scales are of the
same order (79). We thus have αGðωÞ ¼ ω

f. This coupling
controls all the Goldstone processes of our interest.
Since ξ quanta are massless, the conservation of energy

and of the SUðNÞ charge is not an obstacle for the bubble
decay. However, each elementary vertex involving ξ is
suppressed by the Goldstone coupling αG. Thus, an
explosive decay of the bubble into a large number of ξ
quanta is highly improbable. Such an “explosion” does not
represent a significant channel of the bubble decay. This is
similar to the suppression of the explosive decay of a black
hole into a large number of soft gravitons.
The leading order processes contributing to the bubble

evaporation are of the following two types. The first category
includes the decays of Goldstones of frequency ω into pairs
of the asymptotic ξ quanta. The second category includes the
rescatterings of the pairs of Goldstones into ξ’s. The rates of
these processes are given by

Γ1→2 ∼ ωαGNG ∼ 1=R ð93Þ

and

Γ2→2 ∼ ωα2GN
2
G ∼ 1=R; ð94Þ

respectively. Here we took into account that the saturated
bubbles satisfy the relation (79), as well as NG ∼ NGold ∼
1=αG. The rescattering processes involving a higher number
of Goldstones are more suppressed. Thus, the decay rate of
the saturated bubble is given by

Γdecay ∼ 1=R: ð95Þ

This is nothing but the familiar Hawking rate of a black hole
decay. Just like a black hole, on average, the saturon bubble
emits a quantum of energy ΔE ∼ 1=R per time Δt ∼ R.
Correspondingly, the power of the emitted radiation,

P ∼
1

R2
∼ T2; ð96Þ

is similar to the power of radiation from a black hole of
temperature (89).
It is clear that the emission of ξ quanta of energies E ≫

1=R requires a rescattering of a larger number n of
Goldstones into a small number of ξ’s. Such processes

are highly suppressed. For example, production of ξ quanta
of energy E ¼ n=R with n ≫ 1 requires rescattering of ∼n
Goldstones. This brings an extra suppression factor e−n,
which is characteristic for the processes n → 2 at large
n [1].
Thus, the rate of emission of quanta of energy E ≫ 1=R

is suppressed by an exponential factor of the type

ΓE≫T ∼ e−ER: ð97Þ

For an observer unfamiliar with the microscopic origin of
the suppression, the factor (97) is naturally interpreted, and
the Boltzmann factor

ΓE≫T ∼ e−
E
T ; ð98Þ

which is characteristic of thermal radiation with the
effective temperature T ∼ 1=R, as given by (89). Such
an observer would naturally conclude that the saturon state
is thermal, despite the fact that the microscopic theory
clearly tells us otherwise. The secret is in 1=N (1=S)
corrections, which carry information about the purity of the
state. Only after clearly resolving these corrections can an
observer identify in which pure state the saturon is.
However, such a resolution takes a rather long time, given
by (8). This aspect of radiation shall be quantified below.

XI. INFORMATION IN HAWKING RADIATION

Let us now discuss how the information is extracted from
the bubble by the Hawking radiation. We start by noticing
that in the semiclassical limit (87), the quantum information
carried by the radiated quanta is strictly unresolvable. This
is obvious from the fact that in this limit, all the quantum
couplings vanish, αG, αξ, α → 0. It is therefore impossible
for an external observer to recognize the SUðNÞ quantum
numbers of the outgoing radiation. At the same time, in the
limit (87), the evaporation rate remains finite and so does
the power of the emitted radiation (96). This is at the
expense of infinite NG.
Thus, an observer sees a persistent radiation, with an

effective temperature (89), but is unable to resolve its
information content within any finite time. Hence, in the
semiclassical limit (87), the information processing by a
saturon bubble is not any different from that of a black hole.
Let us discuss this crucial point more carefully. For this,

we compare the evaporation of two saturated bubbles that
carry distinct information patterns, jn1ω; n2ω;…i and
jn01ω ; n02ω ;…i, which are related by SUðNÞ transformation.
The patterns satisfy the constraint (52).
Notice that despite the fact that SUðNÞ commutes with

the Hamiltonian, the two bubbles carry distinct quantum
information messages. Since the information patterns are
SUðNÞ transformed relative to one another, they will
interact differently with a fixed reference probe.
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Let us recall that for a saturated bubble, the parameters
satisfy the following important relations,

α ∼ αG ∼ αξ ∼
1

NGold
∼

1

NG
∼

1

N
: ð99Þ

That is, for a saturated bubble, the total occupation number
of Goldstone modes NG is of order the number of the
Goldstone species NGold, and both numbers are of order N.
At the same time, all of the collective couplings are critical.
If the bubble is saturated, the above relations hold

regardless of whether we work in the semiclassical
approximation or in the full quantum theory. The difference
is that in quantum theory, although the numbers are large
(and all α couplings are weak), they are finite. In the exact
semiclassical limit, all three couplings become infinitely
weak, while numbers become infinitely large.
The two regimes (semiclassical versus quantum) of the

saturated bubble can be summarized as

α ∼ αG ∼ αξ ∼
1

NGold
∼

1

NG
∼

1

N

¼
	≠ 0 ≪ 1 in full quantum theory;

¼ 0 in semiclassical theory:
ð100Þ

Now, let us compare the radiation coming from the above
two bubbles. Since the two patterns are related by SUðNÞ
transformation, all the SUðNÞ-invariant characteristics of
the decay process are identical for the two bubbles. For
example, the two bubbles have the same decay rates, given
by (95).
In order to distinguish between the two bubbles, the

observer must perform a measurement that can be sensitive
to differences Δnaω between the individual occupation
numbers of the two patterns. In the semiclassical limit,
this is only possible if some of the ratios Δnaω=NG remain
finite. In other words, the observer can only differentiate
among the patterns that are classically distinct. The relative
fraction of such patterns vanishes in the limit of infiniteNG.
The bulk of the quantum information is carried by the
patterns in which the differences are small. Within a
semiclassical treatment, such patterns cannot be distin-
guished. This explains why in the semiclassical theory, the
radiation from the bubble carries no quantum information.
Or to be more precise, the information is there but is
unresolvable within any finite time.
Now, in a full quantum treatment, the radiation coming

out of the two bubbles with distinct information patterns
can be distinguished. Even if the differences Δnaω are of
order one, they are detectable. The distinction is encoded in
the corrections of order 1=NG or, equivalently, of order 1=S.
The process of information emission is very transparent

in the effective description of the bubble as a composite
state transforming as the SUðNÞ tensor representation (68).
The effective coupling between the bubble and the ξ field
has the following form,

B
β1;β2;…;βNT−1;βNT
α1;α2;…;αNT−1;αNT

ξ†αNT ξβNT
B̃
α1;α2;…;αNT−1
β1;β2;…;βNT−1

; ð101Þ

where B̃
α1;α2;…;αNT−1
β1;β2;…;βNT−1

is the operator describing a bubble that

transforms under a smaller representation of SUðNÞ. The
emission process is given by

B
β1;β2;…;βNT−1;βNT
α1;α2;…;αNT−1;αNT

→ ξαNT
þ ξ†βNT þ B̃

β1;β2;…;βNT−1
α1;α2;…;αNT−1

: ð102Þ

We can describe the process as a planar diagram in
’t Hooft’s notation in which the oppositely directed arrows
describe the flow of global SUðNÞ “color” and “anticolor”
(see Fig. 1). This diagrammatic language makes the process
of the outflow of information from the decaying bubble
very clear. In particular, it is obvious that a single emission
carries away a negligible fraction of the information stored
in the bubble.
The diagrammatic language makes the origin of the

exponential suppression factor (98) very transparent. A
typical process contributing in the emission of highly
energetic ξ’s is given by Fig. 2.
It is also clear that the backreaction experienced by

the bubble during the emission is of order 1=N.
Obviously, in the semiclassical limit (87), the initial
(B) and final (B̃) bubble states are indistinguishable. At
finite N, the difference is nonzero. However, the

FIG. 1. Decay B → B̃ þ ξþ ξ† as a planar diagram in ’t Hooft’s
notation. The opposite arrows indicate the flow of SUðNÞ color
and anticolor. The red and blue lines indicate the quantum
numbers taken away by the emitted ξ particles.

FIG. 2. Diagram describing many → 2 scattering, resulting in
the emission of highly energetic ξ’s.
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resolution takes time that scales with N. This determines
the required timescale for the information readout,
which we shall discuss next.

XII. TIMESCALE OF INFORMATION
RETRIEVAL

The discussion of the information carried by Hawking
radiation naturally brings us to the question of the timescale
of information retrieval. In [1], it was argued that an
arbitrary saturated system is subjected to a universal lower
bound on the timescale of information retrieval given by
(8). By applying the general argument of [1] to the present
system, it is easy to see that the saturated bubble reproduces
this expression. Indeed, let us consider such a bubble. As
already discussed, the saturation is reached for the thick-
wall bubbles, (79), and they satisfy (99).
As we already know, the quantum information is stored

in the form of the memory pattern (53) formed by the
Goldstone modes. Therefore, if we wish to retrieve any
quantum information from such a bubble, the interaction
with the Goldstone modes is mandatory. The precise nature
of the measurement is not important. The necessary
condition for the extraction of the information is that the
Goldstone modes must interact with some “agents” that can
carry the SUðNÞ quantum numbers outside the bubble. We
can distinguish the two ways of information retrieval,
which we refer to as passive and proactive. We discuss
them separately.

A. Passive retrieval

For the passive retrieval of information, an external
observer has to analyze the properties of the Hawking
radiation coming from the bubble. As we already dis-
cussed, to the zeroth order in 1=S (or 1=N), the radiation
carries no information. In order to retrieve the information,
the observer has to resolve 1=S corrections. For this, the
observer must detect the SUðNÞ content of the emitted
quanta. This is a time-consuming process because of the
following two reasons.
First, the quanta emitted at the initial stage carry a tiny

fraction of the total information. For example, let us
consider a decay of a particular Goldstone mode into a
pair of ξ’s. In the language of the information pattern, the
process can be described as a “spontaneous emission,”
during which one of the entries in the pattern (say n1ω)
decreases by one,

jn1ω; n2ω;…i → jn1ω − 1; n2ω;…i þ ξ† þ ξ: ð103Þ

Of course, the SUðNÞ charge of the decaying Goldstone is
carried away by ξ’s. The typical wavelength of the emitted
ξ is ∼R.
Now, in order to decipher the charge carried by ξ, the

observer must take it through a detector with some sample

particles. A maximally packed detector has the occupation
number of probe quanta Nξ ∼ 1=αξ per de Broglie volume
∼R3. The maximal interaction rate for an outgoing ξ
quantum with such a detector is Γξ ∼ α2ξNξ=R ∼ αξ=R.
Correspondingly, the minimal time required for recogniz-
ing the quantum numbers of ξ is given by

tξ ∼
R
αξ

∼ SR ∼ R3f2: ð104Þ

However, the analysis of a single particle does not provide
any significant knowledge about the information pattern
carried by the bubble. In order to start gathering any
reasonable amount of information about the SUðNÞ charge
content of the bubble, the observer needs to analyze at least
of order NG emitted quanta.
However, the collection of such an amount of quanta

takes time,

tmin ∼ NGR; ð105Þ

which is of the same order as (104).
Thus, the picture is the following. In order to start getting

any idea about the information content of the bubble, the
observer needs to collect of order NG emitted quanta and
also detect their SUðNÞ quantum numbers. Both processes
take the time (104), which is of the same order as (8).

B. Proactive retrieval

An observer has an alternative option for retrieving the
quantum information stored inside the bubble. Instead of
passively waiting for the bubble to evaporate, an observer
can proactively scatter some probe quanta at the bubble and
analyze the scattering products. As we shall see, also in this
case, the minimal timescale for the start of the information
retrieval is given by (8).
The universal reason behind this is that tmin cannot be

shorter than the interaction time between the external probe
and the Goldstone modes that carry the information pattern.
Regardless of the setup, by the Goldstone theorem, this
interaction time is controlled by the Goldstone decay
constant f.
The interaction rate is suppressed by the square of the

Goldstone coupling αG, evaluated at the scale ω ∼ 1=R. At
the same time, the rate is enhanced by the total occupation
number of Goldstones, NG. Therefore, the rate is given by

ΓGold ∼ α2GmNG ∼
1

R3f2
: ð106Þ

The corresponding timescale is given by

tmin ¼
1

ΓGold
∼ R3f2: ð107Þ
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This sets the minimal time of the start of information
recovery by the proactive method. Due to the saturation
relations, the time tmin can be rewritten as

tmin ∼ SR ∼
R
α
: ð108Þ

We thus discover that with both methods (passive and
proactive), the minimal time for the start of the information
retrieval is given by (8).
This result confirms the general point of [1] that

saturated systems obey the universal lower bound (8) on
the minimal time of information recovery. The black holes
are by no means unique in this respect. For a nongravita-
tional saturon of size R, the time tmin is equal to the Page
time of a same-size black hole.
Notice that the expression (107) of information-recovery

time nicely matches the existence of the information
horizon in the semiclassical limit of the theory. From the
expressions (87) and (88), it is clear that, in the same limit,
the information recovery time tmin becomes infinitely long.
Thus, the expressions (107) and (108) explain why any
saturated system must possess an information horizon in
the semiclassical treatment of the theory.
Finally, we note that the above-discussed origin of

Hawking radiation and of information-retrieval time-
scales is very similar to the picture provided by the black
hole N portrait [7]. This is no accident since the N portrait
describes a black hole as the saturated state of soft
gravitons. By the power of universality, the behavior of
the two systems must be very similar. We comment more on
the connection with black holes later.

XIII. NUMERICAL RESULTS

For the numerical analysis, we consider the case of
occupying one θa macroscopically. For this, we take
θa ¼ δa1θðxÞ. Let us first write the Lagrangian (12) in
its full form in terms of the fields φ and θ,

L ¼ 1

2
ð∂μφÞð∂μφÞ þ N

4ðN − 1Þφ
2ð∂μθ

aÞð∂μθaÞ

−
α̃

2
φ2ðφ − f̃Þ2; ð109Þ

where

α̃≡ α
ðN − 2Þ2
NðN − 1Þ ; f̃ ≡ f

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NðN − 1Þp
ðN − 2Þ : ð110Þ

Now, let us define

Ψ≡ 1ffiffiffi
2

p ρeiχ=f̃ ð111Þ

with

ρ ¼ φ; χ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

N
2ðN − 1Þ

s
f̃θ: ð112Þ

We can now rewrite the Lagrangian as

L ¼ ð∂μΨ�Þð∂μΨÞ − α̃jΨj2ð
ffiffiffi
2

p
jΨj − f̃Þ2: ð113Þ

The corresponding equations of motion for Ψ are

□Ψþ α̃Ψð
ffiffiffi
2

p
jΨj − f̃Þð2

ffiffiffi
2

p
jΨj − f̃Þ ¼ 0: ð114Þ

Solving these for Ψ, we can obtain the original fields φ
and θ as

φ ¼
ffiffiffi
2

p
jΨj and θ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðN − 1Þ

N

r
ArgðΨÞ; ð115Þ

respectively.
As initial conditions for the simulations, we could

consider

Ψðt; rÞjt¼0 ¼
f̃

2
ffiffiffi
2

p
�
1þ tanh

�
mðR0 − rÞ

2

��
ð116Þ

and

∂tΨðt; rÞjt¼0 ¼ iω̃
f̃

2
ffiffiffi
2

p
�
1þ tanh

�
mðR0 − rÞ

2

��
; ð117Þ

where r is the radial coordinate, R0 is the initial bubble
radius, ω̃ is the initial rotation frequency of the field χ, and
m ¼ ffiffiffĩ

α
p

f̃ ¼ ffiffiffi
α

p
f. These can be equivalently expressed as

φðt; rÞjt¼0 ¼
f̃
2

�
1þ tanh

�
mðR0 − rÞ

2

��
ð118Þ

and

_θ≡ ∂tθðt; rÞjt¼0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðN − 1Þ

N

r
ω̃; ð119Þ

respectively.
However, the above is valid only in the thin-wall

approximation. Moreover, we are able to obtain better
initial conditions for the simulation by first solving (34)
numerically. We then set this solution as the initial con-
dition for the simulations. This allows us, first, to improve
our numerical analysis and, second, to extend our analysis
to that of thick-wall bubbles.
We numerically solve the equations of motion forΨðt; rÞ

in (3þ 1) space-time dimensions. In the simulations below,
we set α̃ ¼ 1 and f̃ ¼ 1 throughout. From here on, just as
we did before, we absorb the N-dependent prefactors into
the definitions of f̃, α̃, and ω̃ to obtain f, α, and ω,
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respectively. In our numerical simulations, we find that for
a certain critical frequency ωc, the bubble stabilizes, as
expected (see Fig. 3). Thus, a certain critical macroscopic
occupation number of the Goldstone modes, parametrized
by ωc, stabilizes the vacuum bubble and impedes both its
collapse and expansion. As expected, this is the same
frequency as found in (45). Below, we shall rederive this
expression from the condition of conserved charge and,
additionally, extend the calculation to obtain an estimate for
the frequency of the bubble-wall oscillations about a static
bubble.

A. Critical frequency estimate

In what follows, we will assume spherical symmetry.
Using the thin-wall approximation, the total energy of a
vacuum bubble of radius R ≫ m−1 can be expressed as

E ¼ 2π

3α
m3R2ð1 − _R2Þ−1=2 þ 2π

3α
m2ω2R3; ð120Þ

where we assumed ω ¼ ωðRÞ to be homogeneous in space.
In order to obtain an explicit expression for ωðRÞ, we use
the fact that the charge

Q ¼ −i
Z

r2drðΨ�∂tΨ −Ψ∂tΨ�Þ ð121Þ

is conserved in time; _Q ¼ 0. In the thin-wall approximation,

Q ¼ 2π

3
f2ωR3 ¼ 2π

3α
m2ωR3: ð122Þ

Substituting this into (120), we can rewrite the total energy of
the bubble as

E ¼ 2π

3α
m3R2ð1 − _R2Þ−1=2 þ 2π

3α
m2

�
3αQ

2πm2R3

�
2

R3: ð123Þ

Weare interested in the static bubble configuration. Thus,we
take _R ¼ 0. The total energy therefore simplifies to

E ¼ 2π

3α
m3R2 þ 3αQ2

2πm2R3
; ð124Þ

and solving dE
dR ¼ 0 for R, we find

R0 ≡
�
3

2

�
3αQ
2π

�
2
�
1=5

m−1: ð125Þ

From here, using (122), we obtain the following estimate for
the critical frequency:

ωc ¼
ffiffiffiffiffiffiffiffi
2m
3R0

s
: ð126Þ

This is the same frequency as that in (45).
We set R0 as the initial bubble radius in the initial

conditions in the numerical simulations below. The total
energy and the total charge for this static bubble are

E0 ≡ 40πm5

81αω4
c

and Q0 ≡ 16π

81α

�
m
ωc

�
5

; ð127Þ

respectively. In what follows, we test the above estimate
and investigate the response of the system in various
frequency regimes.
We make a further note on the radius oscillations in the

near-critical frequency regime. Namely, we can estimate

FIG. 3. The frequency for both simulations is ω ¼ ωc. (a) R0 ¼ 12=f−1 and (b) R0 ¼ 1.01611=f−1.
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their frequency ω0 in the following way. Let us take
R ¼ R0 þ δR. Then the energy in (120) becomes

E ¼ 10πm3R2
0

9α
þ
�
πm3R2

0

3α

�
δ _R2 þ

�
10πm3

3α

�
δR2

þOðδR3; δR2δ _R; δRδ _R2; δ _R3Þ: ð128Þ

We can now extract the frequency of the radius oscillations
from the above as

ω0 ≡
ffiffiffiffiffi
10

p
R−1
0 ¼

ffiffiffiffiffi
10

p 3ω2
c

2m
: ð129Þ

B. Critical frequency regime

A certain critical macroscopic occupation number
of the Goldstone modes, parametrized by ωc, stabilizes
the vacuum bubble and impedes both its collapse and
expansion (see Fig. 3). As we illustrate in the next section,
bubbles in the low frequency regime, specifically with
ω ¼ 0.1ωc, collapse at tcol ∼ R0. Notice that here, in the
critical frequency regime, at 4tcol ≃ 60=f−1, the bubbles
have not collapsed.
For a frequency slightly distinct from ωc, the bubble

performs oscillations around its mean value Rm. We find at
least two frequencies that contribute to the oscillations.
Figure 4 illustrates this.
We list the fit parameters of the fit function RðtÞ ¼

Rm þ A0 cosðω0tÞ þ A1 cosðω1tÞ in Fig. 4. For the large
bubble these are Rm ¼ 13.730� 0.002, A0 ¼ −0.464�
0.003, ω0 ¼ 0.1537� 0.0002, A1 ¼ −0.042� 0.002, and
ω1 ¼ 0.370� 0.002. The coefficient of determination
R̄2 and the unbiased root-mean-square error (RMSE),
both adjusted for the number of fit-model parameters,
are 0.999995 and 0.0301, respectively. For the small
bubble these are Rm ¼ 2.5297� 0.0004, A0 ¼ −0.0519�
0.0005, ω0 ¼ 1.4287� 0.0003, A1 ¼−0.0237� 0.0005,

and ω1 ¼ 0.2023� 0.0006, with R̄2 ¼ 0.999994 and
RMSE ¼ 0.00599. Four outlier data points were excluded
from the fit for the small bubble. Both fit results of ω0 are
close to our analytical estimate of ω0 ¼

ffiffiffiffiffi
10

p
R−1
0 from

before: 0.264 and 3.11 for the large and the small bubbles,
respectively.

C. Low frequency regime

For sufficiently low frequencies ω, the bubble collapses.
This is not surprising, as in this case the pressure due to the
χ field’s rotation is insufficient to counteract the tension
of the bubble wall. Thus, the vacuum bubble decays.
For ω ¼ 0, we numerically obtain the result that the bubble
collapses. This regime has already been extensively studied
in the literature. Here we consider the case ω ¼ 0.1ωc
and observe that the bubble also collapses in this case.
From Fig. 5, we are able to read off the collapse time of the
large bubble as tcol ≃ 1.25R0 ¼ 15=f−1. We estimate the
collapse time of the small bubble also as tcol ∼ R0.

D. High frequency regime

In the high frequency regime, the bubble initially
expands (see Fig. 6). This is clear as the corresponding
ω is above the critical value. Again, this should be intuitive,
as in this case, the pressure from the internal rotation is
higher than the bubble-wall tension. Once the bubble has
expanded to a radius where the internal pressure is
counterbalanced by the wall tension, it starts shrinking
again. After this, the process repeats itself. However, we
additionally observe that a part of the energy is lost to the
surroundings. This is by no means unexpected. In fact, this
is a consistency check, which our numerical analysis
fulfills. In the semiclassical limit, the energy of the bubble
is infinite. Therefore, any finite mass gap should result in
waves propagating away from the oscillating bubble. This
is exactly what we observe.

FIG. 4. The frequency for both simulations is ω ¼ 1.1ωc. The bubble radius, determined by the r coordinate of the maximum of the
energy density for each time step, is shown in red. The corresponding numerical fit RðtÞ ¼ Rm þ A0 cosðω0tÞ þ A1 cosðω1tÞ is shown in
black. (a) R0 ¼ 12=f−1 and (b) R0 ¼ 1.01611=f−1.
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E. Information horizon

To illustrate the notion of the information horizon of the
vacuum bubble, for the initial r profile of θ, we consider a
perturbation,

pðrÞ ¼ exp
�
iπ
2

fðrÞ
fð0Þ

�
; ð130Þ

with the probability density function fðrÞ of a normal
distribution,

fðrÞ ¼ 1

σ
ffiffiffiffiffiffi
2π

p e−
1
2
ðr=σÞ2 ; ð131Þ

where we set the size of the perturbation as σ≡
5=m ≫ 1=m.
Thus, the initial conditions are mapped from the old to

the new ones in the following way: Ψjt¼0 → Ψjt¼0pðrÞ and∂tΨjt¼0 → ∂tΨjt¼0pðrÞ. Figure 7 shows the corresponding
simulation results. We observe that the total energy and
the total charge are both conserved throughout the time

FIG. 5. Time evolution of the bubbles with different initial radii R0. The frequency for both simulations is ω ¼ 0.1ωc. The color bar
corresponds to

ffiffiffi
2

p jΨðt; rÞj=f ¼ φðt; rÞ=f. The arrows represent the vector ffiffiffi
2

p
Ψðt; rÞ on the complex plane and thus indicate the value

of θðt; rÞ. (a) R0 ¼ 12=f−1 and (b) R0 ¼ 1.01611=f−1.

FIG. 6. Time evolution of the bubbles with different initial radii R0. The frequency for both simulations is ω ¼ 4ωc. The color bar
corresponds to

ffiffiffi
2

p jΨðt; rÞj=f ¼ φðt; rÞ=f. The arrows represent the vector ffiffiffi
2

p
Ψðt; rÞ on the complex plane. Note the increased domain

for the large bubble in panel (a). (a) R0 ¼ 12=f−1 and (b) R0 ¼ 1.01611=f−1.
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evolution. Additionally, no waves are propagating out,
in contrast to the high frequency regime. Moreover,
the perturbation of θ is contained within the bubble.
Additionally, note that θ is not homogeneous inside the
bubble (cf. stabilized bubble in Fig. 3). The spatially
dependent directions of the vector arrows clearly indicate
the various values of θ within the bubble.

XIV. CORRESPONDENCE TO BLACK HOLES

We have seen that the saturated bubble exhibits a
remarkable correspondence with a black hole, as suggested
in [1]. The direct correspondence is established via the

coupling GðPÞ
Gold of the Goldstone boson of spontaneously

broken Poincaré symmetry. When expressed through this
parameter, the saturon of SUðNÞ theory and a black hole in
gravity share the same characteristics. Since the sponta-
neous breaking of Poincaré symmetry by any self-sustained

object is a universal phenomenon, the coupling GðPÞ
Gold is

unambiguously defined in both cases. For a black hole, this
quantity is equal to Newton’s constant, whereas the decay
constant f is equal to Planck massMP. Once we understand
this, it becomes clear that all the characteristics of a black
hole are the same as those of a generic saturon. This
correspondence is summarized in Table II.
Using the above correspondence as the guiding princi-

ple, we can learn some useful lessons about black holes.
First, we observe that 1=S (1=N) corrections to thermal
radiation play a crucial role in purification of the state and
in information recovery from it. Due to the same effects, the
black hole evaporation is expected not to be self-similar, as
opposed to the standard view. The picture also makes it
clear that during its decay, the black hole state must be

subjected to an inner entanglement, as is suggested by the
microscopic picture [7]. We also observe the phenomenon
of the memory burden [13,14] at work. We see that the
saturated bubble is stable due to the quantum information
that it carries.
All of the above indicates that a black hole is likely a

saturated bound state of gravitons, as was suggested by the
quantum N portrait [7]. The fact that we can formulate
properties for both black holes and other saturons in terms
of universal language of the Poincaré Goldstone provides
additional support for this idea. The Goldstone boson of
Poincaré symmetry shares one fundamental similarity with
the graviton: It is universally coupled to everything that
carries energy-momentum. In the case of a black hole, the
two objects are the same. That is, the Poincaré Goldstone
comes from the collective excitations of the graviton
“condensate.”
Let us elaborate more on the role of the horizon in the

correspondence. As already discussed, in the language
of a fully quantum description, the semiclassical limit
corresponds to a double-scaling limit (87). In this limit,
the saturated bubble exhibits what we referred to as an
“information horizon.” Let us confront this notion with the

FIG. 7. Time evolution of the bubbles with different initial radii R0, with a perturbation of θ. The frequency for both simulations is
ω ¼ ωc. The color bar corresponds to

ffiffiffi
2

p jΨðt; rÞj=f ¼ φðt; rÞ=f. The arrows represent the vector
ffiffiffi
2

p
Ψðt; rÞ on the complex plane.

(a) R0 ¼ 12=f−1 and (b) R0 ¼ 1.01611=f−1.

TABLE II. Correspondence between properties of saturons and
their specific realizations—black holes.

Object

Quantity Saturons Black holes

S ðfRÞ2 ¼ α−1 ðRMPÞ2
T R−1 R−1

tmin R3f2 ¼ SR R3M2
P ¼ SR

DVALI, KAIKOV, and VALBUENA BERMÚDEZ PHYS. REV. D 105, 056013 (2022)

056013-22



notion of an ordinary black hole horizon and display both
similarities and differences.
The saturon’s information horizon implies that the

transmission of information stored in the SUðNÞ flavor
quantum numbers of the interior Goldstone modes towards
an asymptotic observer becomes impossible. As explained,
the reason for this is that the scattering is fully dominated
by the collective coupling ðαNÞ, whereas the processes of
exchange of particular flavor numbers are suppressed by
the additional powers of 1=N and have a vanishing rate.
One may notice that this situation is somewhat different

from the case of a black hole in which the information
horizon also acts as a universal no-escape region for an
arbitrary sort of particle. Of course, this difference is due to
the universality of gravitational interaction.
In contrast, the influence of the horizon in nongravita-

tional saturons is more restrictive. The reason is that the
Goldstone theorem restricts the universality of the
Goldstone coupling to the particles that carry SUðNÞ
quantum numbers. Correspondingly, only such quantum
numbers are subjected to the information horizon.
However, the above difference at the same time

points towards an important unifying picture. The corre-
spondence between the two systems becomes much sharper
when the concept of the horizon is formulated in terms of the
quantum numbers of the modes that store quantum infor-
mation within a given saturated object. In the case
of a black hole, the information is likely stored in the various
energy-momentum excitations of the graviton modes. These
are the quantum numbers that are sourcing gravity.
Correspondingly, an arbitrary agent that carries energy-
momentum represents a potential carrier of the information.
The black hole horizon makes such an escape impossible.
In full analogy, the SUðNÞ saturon develops a horizon

for any potential carrier of the information. These carriers
are represented by nontrivial representations of SUðNÞ.
We thus see that when formulated in the language of
information-carrying quantum numbers, the horizons of
black holes and of SUðNÞ saturons are strikingly similar.
Also notice that in the fully classical limit (i.e., Planck’s

constant ℏ zero), the saturon bubble becomes stable. This is
obvious from the fact that the decay rate (95) is propor-
tional to Planck’s constant ℏ, which in our quantum
calculation, as is customary, was set equal to one. In
classical theory, for a finite-mass saturon, this constant
must be set equal to zero, and correspondingly, the decay
rate vanishes. This situation is fully analogous to the case of
a black hole that becomes stable in the exact same limit.
Another intriguing question is whether there exists any

counterpart of the black hole singularity in the case of other
saturons. Since the considered saturons represent solitonic-
type objects, in the semiclassical limit (87), they are
represented by smooth solutions. However, since in this
limit the radius R is fixed whereas the expectation value at
the origin f becomes infinite, the radial gradient of the field
becomes infinite, too. One can view this effect as a sort of

singularity, even though locally the solution remains
smooth for any finite value of f. The connection of this
“singularity” with the one exhibited by a semiclassical
black hole remains to be understood.
We can comment that, usually, the singularity in black

holes is considered to be an artifact of a semiclassical
treatment and is expected to be resolved at the full quantum
level. In this sense, formally, the situation in the present
case can be viewed as an example of such a resolution.
Here, too, the singularity also appears in the semiclassical
limit (87) and is absent in a full quantum theory at finite N.
However, whether this similarity is only a crude analogy or
has any deeper physical meaning remains to be understood.
Let us touch upon possible observational predictions for

black holes. As already discussed, the connection between
black holes and saturons can allow us to predict new
properties in black holes. One very general connection is
in the 1=S corrections to the thermal spectrum. In the
semiclassical limit, since S ¼ ∞, these corrections vanish,
but for finite S, they can play an important role over
sufficiently long timescales comparable to the half-decay
time which is proportional to S. Correspondingly, the
departures from semiclassical behavior can become observ-
able for the black holes that are relatively old and close to
their half-decay time. Unfortunately, large astrophysical
black holes are too far from this timescale. However, the
light primordial black holes, provided they exist, can be
within a potentially interesting window [14]. We would also
like to comment that, very recently, some other possible
observational consequences for rotating black holes were
discussed in [24].
Finally, it would be interesting to study the saturated

systems, as potential prototypes of black holes, within the
laboratory environment. One possible direction could be
the realization of the nonrelativistic saturated many-body
models using the constructions of the type [25,26] in the
system with attractive cold bosons.
Another natural direction would be to study the effect of

saturation in various existing laboratory analogs of black
holes. Several attempts of realizing such systems have
been made, for instance, based on sound propagation in
fluids [27–29], black hole analogs for photons (see, e.g.,
[30–32]), as well as in ordinary dielectrics [33]. The
detection of Hawking-like radiation from such analogue
systems has also been argued [34] (see also [35]).
The realization of the phenomenon of saturation in

many-body systems, such as cold atoms or photons, can
bring a new angle in the study of laboratory analogs of
black holes.

XV. CONCLUSIONS AND OUTLOOK

In the present paper, we have verified the following
points, proposed in [1]. First, the unitarity upper bound on
the entropy of a self-sustained object is given by (1) or,
equivalently, by (2). Second, the objects saturating this
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bound, called saturons, share the key properties with a
black hole. The correspondence is briefly summarized in
Table II. The various aspects of this correspondence were
already observed in a number of examples [3,4,9].
The present work represents a continuation of this pro-

gram. At the same time, we have incorporated the study of
another universal phenomenon exhibited by generic systems
of enhanced capacity of information storage. This is the so-
called memory burden effect [13,14]. The essence of this
effect is that the quantum information carried by an object
tends to stabilize the “host.” It has been suggested that due to
its universal nature, the same effect must take place in black
holes. In the present paper, we have detected this phenome-
non in a saturon of SUðNÞ theory.
In order to address the above points, in the present work,

we have studied (both analytically and numerically) the
correspondence between black holes and the saturons of a
specific model, originally discussed in [1]. This is a
renormalizable theory with SUðNÞ global symmetry and
coupling α, which we took to be arbitrarily small. The
theory has a set of degenerate vacua in which the SUðNÞ
symmetry is spontaneously broken down to various maxi-
mal subgroups. As an asymptotic vacuum, we chose the
SUðNÞ-invariant one. In this theory, we considered bubbles
of the SUðN − 1Þ ×Uð1Þ symmetric vacuum. Due to
spontaneous symmetry breaking, the bubble interior houses
NGold ∼ N Goldstone species.
We showed that the spectrum of the theory contains a

tower of stationary bubbles. In the quantum description, a
bubble represents a bound state of Goldstone modes with
occupation number NG. Bubbles that minimize the energy
cost of the Goldstone charge are stable in classical theory.
The stability can be understood as a particular case of the
memory burden effect. The bubble is stable due to the
quantum information encoded in the SUðNÞ flavor quan-
tum numbers of the Goldstone modes that are “locked up”
in the bubble interior.
The stabilized bubbles can be viewed as generalized

versions of nontopological solitons, or Q-balls [19,20].
However, the special property of the presented bound state
is a very high entropy carried by the Goldstone modes.3 This
entropy reaches the limit (1), equivalently (2), when the
theory saturates the bound on unitarity. A saturated bubble
acquires the properties of a black hole. These include the area
form of entropy, the information horizon, the thermal decay
with an effective temperature T ∼ 1=R, and the timescale of
information retrieval similar to Page time. All these charac-
teristics, expressed in theory-invariant quantitiesGGold orαG,
have similar forms for the saturated bubble and a black hole.
Not surprisingly, close to saturation, the bubbles of

d ¼ 4 dimensional SUðNÞ theory considered in the present
work exhibit close similarities with the recently found [9]

saturon bound states in d ¼ 2 dimensional Gross-Neveu
theory [10]. These close similarities are the manifestation
of the universality of the phenomenon of saturation.
We have observed a certain deep connection between the

level of quantumness of the memory burden effect and the
phenomenon of saturation. For the stability of the bubble,
only the total occupation number of Goldstone modes NG
matters. The memory burden effect depends only on NG
and is insensitive to the specific occupation number distri-
bution among the various Goldstone species. For example,
a single Goldstone mode can be occupied macroscopically,
as opposed to occupying multiple Goldstone modes
microscopically.
When the number NG exceeds the number of Goldstone

species NGold, the memory burden effect has a valid
classical description. This is because for NG ≫ NGold,
necessarily, some of the modes are occupied macroscop-
ically. We have observed that such bubbles always have less
entropy than given by (1) and (2). That is, the bubbles
stabilized by a classical memory burden are undersaturated.
Conversely, the bubbles with NG ∼ NGold can attain the

maximal entropy (1). For such bubbles, we get a curious
situation. They form an SUðNÞ multiplet in which the
bubbles with classical memory burden are fully degenerate
with the quantum ones.
The construction of the present paper can be straight-

forwardly generalized to models with other field content
and symmetry groups. For instance, SOðNÞ with a sym-
metric representation has an almost identical structure.
Also, it can be easily supersymmetrized.
In all known examples, the saturons represent the bound

states in which the occupation number of quanta, their
inverse couplings, and entropy are of the same order. Thus,
the correspondence between the black holes and saturons
naturally hints towards the composite picture of a black
hole [7]. The bound state of N gravitons describing a black
hole in this picture is very similar to the saturated bound
state of N Goldstones of SUðNÞ theory. Many properties
predicted for black holes by the N portrait [7] are explicitly
seen in the presented theory of saturons. In particular, we
saw how the information is carried away by 1=S effects and
how, from these effects, the timescale (108) of information
retrieval emerges.
The discussed correspondence also reinforces some

previous suggestions for black holes—in particular, the
reality of the memory burden effect. It is also evident that
the standard assumption about self-similar evaporation of a
black hole deserves to be reconsidered.
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