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The diffusive epidemic process is a paradigmatic example of an absorbing state phase transition in
which healthy and infected individuals spread with different diffusion constants. Using stochastic
activity spreading simulations in combination with finite-size scaling analyses we reveal two qualitatively
different processes that characterize the critical dynamics: subdiffusive propagation of infection
clusters and diffusive fluctuations in the healthy population. This suggests the presence of a strong-
coupling regime and sheds new light on a long-standing debate about the theoretical classification of the
system.
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Absorbing state phase transitions are an important class
of collective phenomena in nonequilibrium physics, and
their analysis has led to many conceptual advances that are
also important for more detailed and realistic models [1–4].
Here we study the diffusive epidemic process (DEP), a
stochastic many-body system introduced to conceptually
model the propagation of an epidemic in a fluctuating
population [5,6]. It is defined as a reaction-diffusion model
on a lattice with two different particle types A and B which
diffuse independently with diffusion constant DA and DB.
The reactions, Aþ B → 2B and B → A, can be interpreted
as an infection of a “healthy” individual (A) by a “sick” one
(B) with infection rate λ, and recovery of sick individuals
with a typical recovery time τ. Interestingly, it can also
be viewed as a minimal model for cell polarity [7,8].
Compared to the epidemic process described by the
prominent directed percolation [1], there are two important
conceptual differences, namely, that it contains two differ-
ent types of particles instead of only one, and that the
reactions preserve the total number of particles. Both, as we
will show, have important consequences for the critical
dynamics at the phase transition from an active state with a
finite fraction of B particles to an absorbing state in which
B particles are absent.
While we are interested in the full stochastic dynamics of

the DEP, it is instructive to first consider the correspond-
ing mean-field description in terms of (mass-conserving)
reaction-diffusion equations [9]

∂taðx; tÞ ¼ DA∇2a − λabþ b=τ; ð1aÞ

∂tbðx; tÞ ¼ DB∇2bþ λab − b=τ: ð1bÞ

Here aðx; tÞ and bðx; tÞ denote the time-dependent local
densities of individuals of type A and B, respectively. The
total particle density nðx; tÞ ¼ aðx; tÞ þ bðx; tÞ plays a
special role as its spatial average ρ is a conserved quantity
and hence can serve as a control parameter for the system’s
behavior. Upon decreasing the average total density ρ, this
mean-field theory shows a transition (transcritical bifurca-
tion) from an active state with a finite (average) density
of sick individuals to an absorbing state with bðx; tÞ ¼ 0

at ρmf
c ¼ ðλτÞ−1.

The full stochastic model is formulated in terms of a
master equation that can be mapped to a field theory for the
corresponding particle densities; for reviews see, e.g.,
Refs. [4,10,11]. This field theory, which is a genuine
extension of the Reggeon field theory describing directed
percolation [12], serves as a starting point for a renorm-
alization group (RG) analysis of the dynamics in the
vicinity of the absorbing state phase transition [4]. In such
RG studies, four different universality classes have
been identified, depending on the relative size of the
diffusion constants [5,6,13,14]. The special case DB >
DA ¼ 0 was shown to be equivalent to the quenched
Edwards-Wilkinson surface growth [13,14], and the cases
DA ¼ DB and 0 < DA < DB were both amenable to a
perturbative RG calculation close to the upper critical
dimension duc ¼ 4. The (biologically more relevant
[7,8]) case DA > DB, however, proved to be theoretically
challenging and puzzling, since neither perturbative [6]
nor nonperturbative methods [15] have yet found a stable
fixed-point structure. The absence of a RG fixed point
was initially interpreted as evidence for a fluctuation-
induced discontinuous phase transition [16]. However,
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later numerical simulations clearly indicated a continuous
transition, but largely disagreed on the values for the critical
exponents [17–24].
Hence, the nature of the absorbing state phase transition,

the values of the critical exponents, and their relation to the
limiting case of equal diffusion constants remain important
open questions, which we address here by means of large-
scale numerical simulations of the one-dimensional DEP
employing a Gillespie algorithm [25,26]. There are two
complementary ways to simulate the critical dynamics of
absorbing state phase transitions [1]. In simulations study-
ing the dynamic spreading of activity [1,2,27,28] one
initializes seeds of “sick” individuals (B particles) and
then statistically analyses the dynamics of the ensuing B
clusters. This approach has previously been employed to
obtain highly accurate values for a variety of systems
including directed percolation [29–34], pair contact proc-
esses [35], branching and annihilating random walks [36],
and the triplet annihilation model [37]. The most important
observables are the mean number of B particles hNBðρ; tÞi
in the cluster, the survival probability Psurvðρ; tÞ of these
clusters and their mean-square radius hR2ðρ; tÞi, condi-
tional on survival, as a function of total particle density ρ
and time t. At a continuous absorbing state phase transition
the following scaling relations hold [2,28]:

hNBðρ; tÞi ¼ tθN̂B(ðρ − ρcÞνkt); ð2aÞ

Psurvðρ; tÞ ¼ t−δP̂surv(ðρ − ρcÞνkt); ð2bÞ

hR2ðρ; tÞi ¼ t2=zR̂2(ðρ − ρcÞνkt); ð2cÞ

where ρc is the critical total density, and θ, νk, δ ¼ β0=νk,
and z ¼ νk=ν⊥ are independent critical exponents.
Alternatively, one may simulate the dynamics starting from
a system homogeneously filled with B particles. In this case
one expects a similar scaling relation for the survival
probability as above, whereas the average density of sick
individuals, hρBðρ; tÞi, then obeys the scaling form [1,2]

hρBðρ; tÞi ¼ t−β=νk ρ̂B(ðρ − ρcÞνkt); ð3Þ

with an exponent β that in general is different from β0. We
will measure time in units of the recovery time, setting
τ ¼ 1, and length in units of the lattice spacing. For
specificity, we fix the infection rate to λ ¼ 0.2; see the
Supplemental Material [38] for details of the numerical
implementation.
We start our analysis with the case of equal diffusion

constants,D ¼ DA;B. Then, the dynamics greatly simplifies
as the total density nðx; tÞ ¼ aðx; tÞ þ bðx; tÞ strictly obeys
a diffusion equation, ∂tn ¼ D∇2n, and there are other
general implications for the critical dynamics: The absence
of propagator renormalizations in perturbative RG analyses
[5,6] suggests that the dynamic exponent equals z ¼ 2,

i.e., the dynamics is diffusive, and rapidity reversal sym-
metry implies β ¼ β0 [2].
Figure 1(a) shows our simulation results for the total

density hρBi of B particles, starting from a spatially uniform
state. A scaling analysis of the raw data for hρBi using
Eq. (3) yields the critical density ρc ¼ 6.995ð10Þ, and the
critical exponents β=νk ¼ 0.087ð6Þ and νk ¼ 4.05ð40Þ,
with the error margins estimated from the breakdown of
a reasonable data collapse; see Supplemental Material [38].
At the critical density ρc, the mean-square radius hR2i of a
cluster of B particles seeded at the origin exhibits power-
law behavior hR2i ∼ t2=z with z ¼ 2.00ð4Þ, which saturates
at a characteristic timescale tbðLÞ that depends on the
system size L [Fig. 1(b)]. Finite size scaling is consistent
with hR2iðt; LÞ ¼ t2=zFðt=LzÞ, i.e., the saturation of cluster
growth at tbðLÞ ∼ Lz shows the same scaling behavior as
cluster growth itself. This is precisely what one would
expect if the critical dynamics of the DEP is characterized
by a single timescale, which conclusively shows that the
epidemic process for equal diffusion constants is diffusive,
consistent with earlier simulation results [20,22] and RG
analyses [5,6,43]. Within the error margins, the above
results are also consistent with the correlation length
exponent ν⊥ ¼ 2=d, which was argued to be exact due
to symmetries of the underlying field theory [6,43], but has
originally [44] and recently been questioned by a non-
perturbative functional RG study [15].
Finally, we performed a scaling analysis of hNBi and

Psurv and find θ ¼ 0.32ð2Þ and β0 ¼ β, respectively; see
Supplemental Material [38]. These results affirm the
rapidity reversal symmetry and the ensuing hyperscaling
relation θνk ¼ dνk=z − β − β0; see Refs. [1].
Next, we studied the case where the sick individuals

diffuse more slowly than the healthy ones, DB < DA. For
the time being, we set the diffusion constants to DA ¼ 1
and DB ¼ 0.5, which corresponds to a situation where,
during a typical recovery period, the mean-square distance
traveled by both types of particles is of the order of the
lattice spacing.

(a) (b)

FIG. 1. Scaling analysis for equal diffusion constants. (a) Scaling
plot for the density of B particles hρBi using Eq. (3). (b) Mean-
square cluster radius hR2i at the critical density ρc and the
corresponding scaling plot with z ¼ 2 (inset); a typical simulation
run is shown in movie1 [38]. The diffusion constant is
set to D ¼ 1.
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All of our data (Fig. 2) are consistent with the scaling
forms given by Eqs. (2) and (3), clearly showing that the
corresponding absorbing state phase transition is continu-
ous. In the activity spreading simulations, we get the best
statistics for the mean number hNBi of B particles in the
cluster and the cluster survival probability Psurv, since these
quantities are obtained by averaging over all 50 000
realizations [Figs. 2(b) and 2(c)]. From a scaling analysis
of these simulation data we determine accurate estimates of
the critical density ρc ¼ 6.765ð5Þ and the critical exponents
δ ¼ β0=νk ¼ 0.66ð3Þ, θ ¼ −0.38ð4Þ, and νk ¼ 3.8ð5Þ. The
scaling analysis of the mean density of B particles hρBi,
obtained from simulations starting from a homogeneous
initial condition, confirms the estimate for the critical
density and yields the estimates β=νk ¼ 0.47ð3Þ and νk ¼
3.8ð5Þ [Fig. 2(d)]. The value for the exponent β=νk is in
accordance with earlier computational studies analysing the
steady states [20], while the exponents δ and θ have not
been measured previously. In particular, our data for the
survival probability in the dynamic spreading simulations
clearly show that for DA ≠ DB the rapidity reversal

symmetry is broken (β ≠ β0) as expected from field
theory [6].
Surprisingly, our activity spreading simulations show

that the mean-square cluster radius at the critical density ρc
grows subdiffusively, hR2i ∼ t2=zs , with a dynamic exponent
zs ¼ 3.0ð1Þ. This appears to be in conflict with previous
simulations that obtained z ≈ 2 by measuring the average
extinction time of homogeneously initialized lattices
[20,22]. Perturbative RG studies also find z ¼ 2 [6,43]:
it is argued that in a perturbative calculation, independent of
DA and DB, there are no terms that would renormalize the
diffusion terms. This indicates that our numerical results
point to a strong coupling behaviour that is inaccessible to
perturbation theory. To investigate this further, we now
resort to a finite-size scaling analysis for the mean-square
cluster radius at the critical density (Fig. 3). We make
two key observations: (i) At early times, clusters spread
diffusively with zs ¼ 2, followed by a crossover to an
asymptotic critical behavior with zs ≈ 3. (ii) Depending on
the system size L, the mean-square radius hR2i saturates at
some characteristic timescale tbðLÞ. This raises two central
questions. What is the dynamic process that leads to this
saturation and is it different from the process that drives the
spreading of the cluster? If the processes are different and
both are associated with the critical dynamics of the DEP,
then the data should obey the following generalized finite
size scaling law,

hR2iðt; LÞ ¼ t2=zsFðt=LzbÞ; ð4Þ
with different dynamic exponents for cluster growth (zs) and
the dynamics responsible for the saturation of cluster growth
(zb). This is indeed what we find [Fig. 3(b)]: the scaling
collapse works best for zb ¼ 2.0ð1Þ and zs ¼ 3.0ð1Þ.
We also performed a finite size scaling analysis of the

simulation data obtained for systems initialized with a
homogeneous distribution of B particles. Figure 4(a) shows

(a) (b)

(c) (d)

FIG. 2. Scaling analysis for unequal diffusion constants,
DA > DB, using simulation data for a set of total densities ρ
as indicated in the graph (different colors): (a)–(c) The mean-
square radius hR2i, mean number hNBi of B particles, and
survival probability Psurv of a cluster evolving from an initial
seed of B particles placed in the center of the lattice, respectively.
The straight dashed line in (a) indicates a power-law growth
hR2i ∼ t2=z with the dynamical exponent z ¼ 3.0. The insets
show scaling collapses using Eq. (2). (d) The mean B-particle
density in a system starting from a homogeneously filled lattice
with the inset showing the scaling collapse using Eq. (3). The
system size is L ¼ 4096 and the ensemble size is 50 000 and
4000 for simulations starting from a seed (a)–(c) or a spatially
uniform system (d), respectively. For typical simulation runs
starting from a seed or homogeneous state please see movie2 and
movie3 in Ref. [38].

(a) (b)

FIG. 3. Dynamic spreading simulation data for hR2iðtÞ at the
critical density ρc ¼ 6.765 for varying system sizes L as
indicated in the graph in the regime DA > DB. (a) The raw data
for the mean-square radius shows a crossover from diffusive
growth (zs ¼ 2) to asymptotic subdiffusive spreading (zs ≈ 3)
before it saturates at hR2i ∼ Lα with α ¼ 2zb=zs ≈ 4=3. (b) Finite
size scaling analysis using the scaling law given in Eq. (4). The
scaling collapse is best for zb ¼ 2.0ð1Þ and zs ¼ 3.0ð1Þ. The
parameters of the simulations were as specified in the main text
with an ensemble size of 50 000.
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the time evolution of hρBiðtÞ and PsurvðtÞ at the critical
density ρc ¼ 6.765 for different system sizes. The mean
density exhibits a power law decay hρBi ∼ t−β=νk with the
exponent β=νk ¼ 0.46ð3Þ until finite size effects set in,
which lead to an exponential decay into the absorbing state.
The survival probability Psurv exhibits two qualitatively

different regimes. For small times, Psurv ≈ 1, indicating
mean-field behavior; note that the actual critical density ρc
is above the respective mean-field value ρmf

c ¼ 5, so that
there is a stable fixed point in this mean-field regime
corresponding to a finite density of B particles. The
subsequent power law regime corresponds to critical
behavior with the same exponent as observed in the initial
seed simulations, namely β0=νk ¼ 0.67ð2Þ. This is consis-
tent with the intuition gained from individual simulation
runs showing that an initially homogeneous spatial dis-
tribution of B particles always evolves into a set of well-
separated B clusters, and is further corroborated by meas-
uring the autocorrelation function of B particles which also
spreads according to the power law t1=3 (see Supplemental
Material [38] and movie5). Together, this suggests that the
dynamics of systems with homogeneous initial conditions
is governed by that of individual B-clusters; compare
movie2 and movie3 [38].
The onset of finite size effects coincides for the survival

probability and the B-particle density. Similar as for the
mean-square radius, we make the finite size scaling ansatz

ρBðL; tÞ ¼ t−β=νk ρ̃Bðt=LzbÞ; ð5Þ

and find zb ¼ 2.0ð1Þ; see Fig. 4(b). This suggests that the
characteristic processes that determine density fluctuations
in systems initialized from a spatially homogeneous state
are diffusive; we had already anticipated this by denoting
this exponent as zb. Taken together with the dynamic
spreading data, this shows that there are—in a sense yet to
be specified—two qualitatively distinct dynamic processes,

one responsible for the spreading of clusters and the other
for density fluctuations.
Consider a dynamic spreading simulation starting with a

small B cluster in a background of A particles. Since
DB < DA, B particles spread slower than A particles.
Moreover, as sick individuals (B) infect healthy individuals
(A) the “background” field aðx; tÞ is reduced in the vicinity
of theB cluster; for an illustration see Fig. 5(a) andmovie2 in
Ref. [38].Now, in stark contrast to the case of equal diffusion
constants, the total density nðx; tÞ shows a non-Gaussian
profile: While in the center of the spreading cluster the
density is above the critical density ρc, it then drops
significantly below ρc and approaches ρc from below at
large distances. These “depletion zones” with nðx; tÞ < ρc
suppress the spreading of the B cluster since they corres-
pond to spatial regimes which are in the absorbing phase
(movie4 [38]). In this regime, the density of B particles is
driven exponentially fast to zero, creating a kind of “self-
trapping” effect. We hypothesize that this is the origin of the
observed subdiffusive spreading with hR2i ∼ t0.66ð3Þ.
This leaves the question of why the saturation time for

cluster growth scales as tb ∼ L2. Since the A particles
spread faster than the B particles (DA > DB) and the B
particles show self-trapping, this must be linked with the
dynamics of the A particles. Cluster growth depends on the
influx of A particles supplied by a diffusion process from
the reservoir outside the cluster. For an infinite system, this
reservoir will not deplete and remain at the critical density
ρc. However, for a finite system, the reservoir will be
depleted due to the continued influx of A particles into the
cluster on a time scale ∼L2=DA, so that the total density at
the boundary of the system eventually falls below the
critical density. Once below the critical density the system
will be driven exponentially fast towards the absorbing
state as we observe in our simulations (Fig. 3). In summary,
the diffusive dynamics of the A particles outside of the
cluster drives saturation of cluster growth.
Finally, the question remains how the dynamics reduces to

one with a single timescale in the limit DB → DA. Our
simulations for hR2i show that for all DB ≠ DA there is the
same crossover from diffusive (zs ¼ 2) to subdiffusive

(a) (b)

FIG. 4. Finite size scaling analysis for homogeneous initial
state at criticality, DA > DB. (a) Simulation data for the density
hρBi (open circles) and the survival probability Psurv (dashed
lines) as a function of time t at ρc ¼ 6.765 and a set of system
sizes L as indicated in the graph. (b) A finite size scaling analysis
for the density of B particles using Eq. (5) produces a data
collapse for zb ¼ 2.0ð1Þ and β=νk ¼ 0.46ð3Þ. The ensemble size
is 10 000.

(a) (b)

FIG. 5. Dynamic spreading simulation data in the regime DA >
DB for systems (of size L ¼ 512) initialized with a small cluster
of B particles at the origin, averaged over an ensemble of size of
100 000: Average densities of (a) A and B particles and of (b) the
total density nðx; tÞ for a set of times t indicated in the graph.
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(zs ¼ 3) spreading as found in Fig. 3(a), with the crossover
time t× increasing as DB approaches DA (see Supplemental
Material [38]). This suggests that t× → ∞ asDB ↗ DA and
that for unequal diffusion constants there is a crossover from
a “diffusive” fixed point to a “strong-coupling” fixed point
that has so far escaped renormalization group analysis.
In summary, our stochastic simulations show that in the

DEP spreading of clusters containing sick individuals is
subdiffusive with zs ≈ 3 while the density fluctuations of
the background of healthy individuals remain diffusive. It is
the extinction dynamics of these clusters—independent of
the initial conditions—that dominates the survival of the
active states and that determines the corresponding critical
exponents. These results strongly suggest that when dif-
fusion constants are unequal with sick individuals spread-
ing slower than healthy individuals, the dynamics are
governed by a strong coupling fixed point. This puts
the DEP process in the same class as other strongly
coupled phenomena in nonequilibrium physics, such as
surface growth [45]. We hope that our work will stimulate
mathematical, possibly nonperturbative approaches that
would help to decipher the observed anomalous dynamics.
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