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The bulk-boundary correspondence relates quantized edge states to bulk topological invariants in
topological phases of matter. In one-dimensional symmetry-protected topological systems, quantized
topological Thouless pumps directly reveal this principle and provide a sound mathematical foundation.
Symmetry-protected higher-order topological phases of matter (HOSPTs) also feature a bulk-boundary
correspondence, but its connection to quantized charge transport remains elusive. Here, we show that
quantized Thouless pumps connecting C4-symmetric HOSPTs can be described by a tuple of four Chern
numbers that measure quantized bulk charge transport in a direction-dependent fashion. Moreover, this
tuple of Chern numbers allows to predict the sign and value of fractional corner charges in the HOSPTs. We
show that the topologically nontrivial phase can be characterized by both quadrupole and dipole
configurations, shedding new light on current debates about the multipole nature of the HOSPT bulk.
By employing corner-periodic boundary conditions, we generalize Restas’s theory to HOSPTs. Our
approach provides a simple framework for understanding topological invariants of general HOSPTs
and paves the way for an in-depth description of future dynamical experiments.
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Introduction.—Protected edge states are a signature
phenomenon in (many-body) quantum systems with non-
trivial topology. In one dimension (1D), such accumulation
of charge at the boundary can be understood as the
consequence of polarization in the bulk. As discovered
by King-Smith and Vanderbilt [1], the polarization is a
manifestation of the Zak (Berry) phase of the underlying
Bloch bands [2,3]. For interacting many-body systems with
periodic boundaries this result was later generalized by
Resta, who related polarization to the many-body position
operator in 1D [4]. The underlying intuition is that building
up polarization in the bulk or charge at the boundary
requires quantized charge transport as described by topo-
logical Thouless pumps [5,6].
With the recent discovery of higher-order topological

insulators [7,8], efforts were made to generalize these con-
cepts to describe electrical multipole moments [7–14] and
higher-order Thouless pumps [8,9,14–16]. A n-dimensional

bulk with topology of order m can exhibit (n −m)-
dimensional corner or hinge states, when open boundary
conditions (OBC) are applied. Such systems have been
realized in solids and classical metamaterials [15,17–26].
Higher-order boundary states are anticipated to have versatile
applications in electronics and photonics [27], e.g., for
topological nanolasers [28,29].
Higher-order topological invariants have been proposed

for both band insulators in a single-particle picture (higher-
order topological insulators) and interacting quantum
many-body systems (symmetry-protected higher-order
topological phases of matter, or HOSPTs) protected by
crystalline symmetries [8,9,13,14,16,30–37]. Yet, there is
an ongoing debate on which of the proposed quantities
constitute true bulk invariants and how exactly the multi-
pole polarization can be calculated in extended systems
with periodic boundary conditions [11,13]. For instance,
recent works [9,13] proposed to extend the work of Resta,
which connects the polarization to the Zak (Berry)
phase [4], by defining a many-body quadrupole operator.
However, these approaches have sparked controversy [11].
In this Letter, we provide a theoretical framework for

understanding bulk polarization in HOSPTs. By introduc-
ing corner-periodic boundary conditions (CPBC) we ex-
tend Resta’s argument [4] to higher-order systems. This
allows us to describe charge transport between corners
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during Thouless pumping cycles in a direction-dependent
fashion. Moreover, charge flow can be precisely tracked
and an intuitive picture of bulk polarization in HOSPTs
emerges.
Our results show that quantized Thouless pumps con-

necting topologically distinctC4-symmetricHOSPTs can be
characterized by a tuple of four Chern numbers. The
underlying Zak (Berry) phases are quantized in the
C4 × Z2-symmetric HOSPTs and serve as topological
invariants of the latter. The invariants we define are similar
to those introduced by Araki et al. [32], but without the
necessity to introducemagnetic flux in the bulk—hence they
yield a definite value for any gapped phase in the thermo-
dynamic limit. Our approach allows to directly relate the
quantized corner charge in a HOSPT [10,12,38] to the Zak
(Berry) phase, giving new physical meaning to the latter.
For concreteness, we discuss interacting bosonic

C4ð×Z2Þ-symmetric HOSPTs. For these systems, we
propose higher-order Thouless pumps that are in reach
of current experiments with ultracold atoms and classical
metamaterials [15,39–42]. We show that different types of
pumps can create nontrivial HOSPTs in a quadrupole
configuration (with vanishing dipole) and a dipole con-
figuration (with vanishing quadrupole); see Fig. 1.

Model.—As a hallmark model exhibiting a higher-order
symmetry-protected phase, we study the 2D superlattice-
Bose-Hubbard model (SL-BHM) [33,38,43], which can be
experimentally realized using ultracold atoms [44–47]. On
a square lattice with OBC it is defined by the Hamiltonian

ĤOBC ¼ −
�XD−1

x¼−D

XD
y¼−D

ðtðxÞâ†x;yâxþ1;y þ H:c:Þ þ x ↔ y

�

þU
2

XD
x;y¼−D

n̂x;yðn̂x;y − 1Þ; ð1Þ

where D ¼ ðL − 1Þ=2, â†x;yðâx;yÞ is the creation (annihila-
tion) operator at site ðx; yÞ, n̂x;y ¼ â†x;yâx;y is the particle
number operator, and U is the on-site interaction energy;
see Fig. 1(a). The origin (0,0) is the C4-symmetry center
and for U → ∞ the model has an additional Z2 symmetry,
â†x;y ↔ âx;y. The hopping amplitudes tðζÞ; ζ ∈ fx; yg are
staggered:

tðζÞ¼
�
1− t for ζ∈f−D;−Dþ2;…;D−1g
t for ζ∈f−Dþ1;−Dþ3;…;D−2g; ð2Þ

with t ∈ ½0; 1� controlling the transition from the trivial
(t ¼ 0) to the topological (t ¼ 1) phase [38]. In the
following, we propose two types of Thouless pumps in
this model.
Thouless pumping cycle.—AThouless pump is the cyclic

adiabatic variation of an external parameter. It leads to
quantized charge transport that characterizes the topology
of the bulk [5,48]. For the 2D SL-BHM, our full pumping
cycle consists of a closed trajectory in a Δ − t parameter
space. It crosses two C4-symmetric points and avoids
closing the bulk gap; see Fig. 1(b). Here, Δ controls the
strength of additional on-site potentials whose arrangement
dictates the direction of the charge transport. We will show
two types of Thouless pumps that transport charge diago-
nally (diagonal pump) or horizontally (nondiagonal pump).
For the former, each plaquette has on-site potentials in a
cross-diagonal arrangement (Fig. 1(c), top left); for the
latter, each plaquette has on-site potentials with equal sign
on the same side (Fig. 1(c), bottom left). The total
Hamiltonians then read as follows:

Ĥdiag ¼ ĤOBC þ Δ
XD

x;y¼−D
n̂x;yð−1ÞðxþDÞþðyþDÞ

Ĥnondiag ¼ ĤOBC − Δ
XD

x;y¼−D
n̂x;yð−1ÞðxþDÞ: ð3Þ

The pump cycle is parametrized by λ ∈ ½0; 2πÞ, with
tðλÞ ¼ ½1þ cosðλÞ�=2 and ΔðλÞ ¼ sinðλÞ, as illustrated in
Fig. 1(b). It breaks the C4 symmetry, except for λ ∈ πZ.

Diagonal pump

Nontrivial

Trivial

Nondiagonal pump

(b)(a)

(c)

FIG. 1. Thouless pumps in the 2D SL-BHM. (a) Interacting
bosons on a square lattice with staggered tunneling (strengths t
and 1 − t, respectively) and OBC. (b) Thouless pump, para-
metrized by λ ∈ ½0; 2πÞ, as defined in the text, with Δ controlling
additional on-site potentials shown in (c). (c) Density evolution
during a diagonal (upper panel) and a nondiagonal (lower panel)
half-Thouless pump, ending in a quadrupole and a dipole
configuration, respectively. On the left the corresponding ar-
rangements of the additional on-site potentials are sketched. For
creating a diagonal Thouless pump, in each plaquette shifts of
equal sign are added on diagonally opposite sites. For creating a
nondiagonal Thouless pump, shifts of the same sign are added on
the same side.
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In Fig. 1(c), we show the density evolution of the
diagonal (upper panel) and nondiagonal (lower panel)
pumps with OBC and at half-filling (N ¼ L2=2). We use
exact diagonalization for L ¼ 4 and assume hard-core
bosons, i.e., U → ∞. At the beginning of the pump, charge
accumulates at the sites that are subject to negative energy
shifts −Δ. Then, once λ ¼ π=2 is passed and jΔj decreases,
the density evens out in the bulk and along the edges. At the
corners, however, the average density increases further up
to 1 or down to 0, respectively, until λ ¼ π. This yields four
corner-localized fractional charges, two with charge
−1=2 and two with charge þ1=2. The arrangement of
these corner charges at λ ¼ π corresponds either to a
quadrupole (diagonal pump) or a dipole (nondiagonal
pump) configuration.
Higher-order Zak phase and bulk-boundary corres-

pondence in HOSPTs.—Next, we develop a theoretical
framework relating the fractional corner charges of the
HOSPTs at λ ¼ πZ to bulk properties. By introducing
CPBC, we define a tuple of Zak (Berry) phases that act as
topological invariants for HOSPTs. In addition, each Zak
(Berry) phase will be associated with a certain direction,
such that its change can be connected to a current operator
pointing along that direction.
To achieve CPBC, as illustrated in Fig. 2(a), we add

corner-connecting links to the Hamiltonian in Eq. (1):

ĤC ¼ −tðâ†c1 âc2 þ â†c2 âc3 þ â†c3 âc4 þ â†c4 âc1 þ H:c:Þ; ð4Þ

where ci denotes the coordinates of the ith corner,
i.e., c1 ¼ ð−D;DÞ, c2 ¼ ð−D;−DÞ, c3 ¼ ðD;−DÞ, and
c4 ¼ ðD;DÞ with D ¼ L=2 − 1=2. The total Hamiltonian
with CPBC then reads ĤCPBC ¼ ĤOBC þ ĤC. With CPBC
applied, the four corner sites form one additional plaquette.

They also give rise to four supercells outside the bulk,
delimited by the edge of ĤOBC and one of the corner-
connecting links; see Fig. 2(a).
We start by extending the definition of the (many-body)

Zak (Berry) phase to higher-order systems. To this end,
magnetic flux Φ is adiabatically inserted in the two
supercells meeting at corner i. This process is associated
with an induced electric field pointing along a diagonal [49]
(see Fig. 2) and can be formally described by gauge
transformations Ûi, i ∈ f1; 2; 3; 4g, which we apply only
to the corner parts of the Hamiltonian:

ĤC
i ðθÞ ¼ Û†

i ðθÞĤCÛiðθÞ; ð5Þ

with ÛiðθÞ ¼ eiX̂iðθÞ and X̂iðθÞ ¼ θn̂ci . Here, n̂ci is the
particle number operator at the ith corner.
The four gauge transformations Ûi with i ∈ f1; 2; 3; 4g

are related to each other through C4 symmetry, i.e.,
C−1
4 ÛiðθÞC4 ¼ Ûiþ1ðθÞ. The resulting Hamiltonians,

ĤiðθÞ ¼ ĤC
i ðθÞ þ ĤOBC, are sketched in Fig. 2: Each

gauge transformation adds a phase θ to a pair of corner-
connecting links. As desired, the supercells outside the bulk
are pierced by a flux Φ ¼ θ.
Next, separately for each gauge choice Ûi, we define a

higher-order Zak (Berry) phase γi as the geometric phase
picked up by the ground state wave function jψ iðθÞi of
ĤiðθÞ when changing θ from 0 to 2π [2,53]:

γi ¼
I

2π

0

dθhψ iðθÞji∂θjψ iðθÞi: ð6Þ

We note that, like the 1D Zak phase [2], the higher-order
version γi explicitly depends on our choice of gauge for
inserting 2π flux through the supercells, while the differ-
ence Δγi is gauge-invariant.
As a direct consequence of Z2 symmetry in the case

of hardcore bosons, the higher-order Zak (Berry) phase is
Z2-quantized,

γi ∈ πZ ð7Þ

(see the Supplemental Material [49] for an explicit proof).
The higher-order Zak (Berry) phases we introduce are

related to the C4-symmetry-protected geometric phases
proposed by Araki et al. [32,49]. However, in contrast
to the construction in [32], our bulk Hamiltonian ĤOBC

remains independent of θ and our gauge choice creates a
twist of the Hamiltonian ĤiðθÞ without introducing flux in
the bulk. Hence, the gap remains open during flux insertion
in the thermodynamic limit [49], rendering Eq. (6) a well-
defined topological invariant. Extending Araki’s scheme by
introducing their fluxes through our corner-periodic links
yields a robust Z4-quantized invariant protected by C4

symmetry.

(a) (b)

FIG. 2. Direction-dependent sensing of charge flow. Model
with CPBC. We propose four gauge choices Û1 (a), Û2, Û3, and
Û4 (b) that are connected by C4 symmetry, Eq. (5). The Zak
(Berry) phases defined on these choices act as sensors of charge
flow. They are only sensitive in the direction of the electric field
(blue) that is induced when the flux in the outer supercells
becomes time-dependent.
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Figure 3 depicts γ1 as a function of the tunneling
parameter t in the SL-BHM at C4 × Z2-symmetric points
(the plots for γ2;3;4 look identical). The wave functions in
Eq. (6) were calculated in a small system (L ¼ 4) with
CPBC. The Zak (Berry) phase is quantized, as predicted,
and jumps from 0 (trivial phase) to π (nontrivial phase).
With CPBC applied, the nontrivial phase is characterized
by a density imbalance between bulk and edge doublets.
Finally, we relate the higher-order Zak (Berry) phase to

charge transport and derive a bulk-boundary correspon-
dence for HOSPTs. This is achieved by extending Resta’s
argument to higher-order systems and introducing a many-
body position operator in the bulk (see the Supplemental
Material [49], Sec. II for details). A key step in this process
is to note that the adiabatic flux insertion in Eq. (5) can be
directly related to the current passing diagonally through a
corner, Ĵi ¼ ∂θĤiðθÞjθ¼0 for i ¼ 1;…; 4. Integrating up
these currents along an adiabatic path connecting two
HOSPTs (e.g., along a half-Thouless pump cycle) yields
a total change of the corner charge Δqci in corner i, and we
can show (Supplemental Material [49], Sec. II F) that

Δqci ¼ −
Δγi
2π

; ð8Þ

that is, the fully gauge invariant difference Δγi of the
higher-order Zak (Berry) phases in two HOSPTs is directly
related to the difference of their corner charges. Since we
showed that γi is quantized by C4 × Z2 symmetry, it
follows that the corner charge Δqci is also quantized and
represents an intrinsic topological invariant distinguishing
HOSPTs.

Chern numbers of higher-order Thouless pumps.—We
can now apply the higher-order Zak (Berry) phase defined
in Eq. (6) to track the charge flow during the Thouless
pumps introduced in Fig. 1. The total amount of charge
ΔQci ¼

H
dqci transported during one full pumping cycle,

or equivalently, the amount of charge piling up at the
corners as corner states with OBC, can be measured by four
Chern numbers Ci with i ∈ f1; 2; 3; 4g. Using our main
result from Eq. (8), the latter are obtained as winding
numbers of the higher-order Zak (Berry) phase (Note that in
the numerical calculations we defined the Berry Phase
positively, such that the minus sign cancels.),

Ci ¼
I

2π

0

dλ
2π

∂λγiðλÞ ¼
X
n

�
γiðλnþ1Þ

2π
−
γiðλnÞ
2π

�
: ð9Þ

The second expression is a discretized version, with a
sufficiently large number of discrete points λn ∈ ½0; 2πÞ.
Our conventions are such that a negative (positive) Chern
number Ci indicates a particle current from the center
toward the corner ci (from the corner ci toward the center);
see the Supplemental Material [49], Sec. II F.
Since the Zak (Berry) phase is defined mod 2π, it follows

directly from Eq. (9) that the Chern numbers, Ci, and the
associated bulk charge transport along the corresponding
diagonal ΔQci ¼ −Ci, are integer quantized. Note that this
remains true even at finite U where Z2 symmetry is
broken. Moreover, by C4 symmetry, half-Thouless pumps
connecting HOSPTs lead to a change of the corner charge
Δqci ¼ −Ci=2 given by half the Chern number. The sum
rule

P
4
i¼1 Ci ¼ 0 guarantees net charge conservation.

Now we calculate the Chern numbers characterizing
the higher-order Thouless pumps introduced earlier for
the SL-BHM. Figures 4(b) and 4(d) show the evolution of
the four higher-order Zak (Berry) phases as a function of
the pump parameter λ. The Chern numbers Ci are extracted
from the windings of γi and read Cdiag: ¼ ð−1; 1;−1; 1Þ for
the diagonal and Cnondiag: ¼ ð−1;−1;þ1;þ1Þ for the non-
diagonal pump. The resulting overall charge flow is
sketched in Figs. 4(a) and 4(c) for both pumps. The result
is consistent with the density evolution we find in Fig. 1 for
a system with OBC. There, the half-charged particle (hole)
corner states emerge where the associated Chern
number is negative (positive)—in accordance with our
result Δqci ¼ −Ci=2.
Our example shows that the tuple of Chern numbers Ci

can describe Thouless pumps building up both a dipole and
a quadrupole moment. This sheds light on previously
reported difficulties with defining a pure quadrupole
operator in systems without dipole conservation [11].
Our case study also demonstrates that three Chern numbers
need to be known to distinguish diagonal from non-
diagonal pumps.

FIG. 3. Quantized higher-order Zak (Berry) phase. We show γ1
as a function of the tunneling parameter t at half-filling
(N ¼ L2=2) and with CPBC for L ¼ 4. The insets show the
density expectation values of a 4 × 4 system at filling
N ¼ L2=2þ 2. Even though the nontrivial phase (t > 0.5) does
not exhibit any corner states due to CPBC, the two extra particles
above half-filling lead to an occupation imbalance between edge
doublets and bulk plaquettes that is unique to the nontrivial phase.
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Summary and outlook.—In conclusion, we have inves-
tigated quantized charge transport in higher-order topo-
logical systems and provided a description of higher-order
Thouless pumps. In doing so, we introduced the higher-
order Zak (Berry) phase as a new topological invariant of
HOSPTs that enters in the bulk-boundary correspondence.
We have found a way to extend Resta’s earlier work [4] to
HOSPTs and relate the many-body Zak (Berry) phase to
charge transport in the bulk. For a concrete system with
C4ð×Z2Þ invariance, we demonstrated that a tuple of four
Chern numbers characterizes its HOSPTs and can be used
to track the emergence of dipoles and quadrupoles in the
system’s bulk during an experimentally accessible higher-
order Thouless pump.
Our approach can straightforwardly be applied to other

discrete symmetries, geometries, fillings, or settings with-
out translational symmetry in the bulk. We leave detailed
analysis of such cases to future work. Particularly interest-
ing directions include the SL-BHM at quarter filling or
quasicrystals constituting HOSPTs.
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