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The topological θ -angle in gauge theories engenders a series of fundamental phenomena, includ-
ing violations of charge-parity (CP) symmetry, dynamical topological transitions, and confinement-
deconfinement transitions. At the same time, it poses major challenges for theoretical studies, as it implies
a sign problem in numerical simulations. Analog quantum simulators open the promising prospect of treat-
ing quantum many-body systems with such topological terms, but, contrary to their digital counterparts,
they have not yet demonstrated the capacity to control the θ -angle. Here, we demonstrate how a tunable
topological θ -term can be added to a prototype theory with U(1) gauge symmetry, a discretized version of
quantum electrodynamics in one spatial dimension. As we show, the model can be realized experimentally
in a single-species Bose-Hubbard model in an optical superlattice with three different spatial periods, thus
requiring only standard experimental resources. Through numerical calculations obtained from the time-
dependent density-matrix renormalization group method and exact diagonalization, we benchmark the
model system, and illustrate how salient effects due to the θ -term can be observed. These include charge
confinement, the weakening of quantum many-body scarring, as well as the disappearance of Coleman’s
phase transition due to explicit breaking of CP symmetry. This work opens the door towards studying the
rich physics of topological gauge-theory terms in large-scale cold-atom quantum simulators.

DOI: 10.1103/PRXQuantum.3.040316

I. INTRODUCTION

Synthetic quantum systems [1,2], i.e., well-controlled
quantum many-body systems based on cold atoms, trapped
ions, superconducting qubits, and photonic devices, hold
the promise of a new era of scientific discovery [3,4].
A particularly attractive arena is given by fundamental
questions in nuclear and high-energy physics [5–10], such
as the dynamics of quantum many-body systems in the
presence of a topological θ -angle. The θ -angle naturally
appears in the Lagrangian of certain gauge theories from
the very topological nature of the vacuum, depending on

∗ jad.halimeh@physik.lmu.de
†philipp.hauke@unitn.it

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license. Fur-
ther distribution of this work must maintain attribution to the
author(s) and the published article’s title, journal citation, and
DOI.

the gauge group and dimensionality. In particular, the
Lagrangian of the strong force—quantum chromodynam-
ics (QCD) in four-dimensional spacetime—allows for a
θ -term [11–13]. Experimentally, the strength of this term
has, however, been found to lie within vanishingly small
bounds [14]. This apparent fine tuning of nature has risen
to prominence under the name of the strong CP prob-
lem (with CP standing for charge-parity symmetry), for
which intriguing solutions have been proposed but not yet
experimentally corroborated, such as the existence of an
additional field (the axion) that couples to the θ -term [15–
18]. In practical terms, topological terms such as the θ -
angle imply a significant hurdle for theory investigations,
as they introduce a sign problem in numerical simula-
tions based on the Euclidean path integral formulations
[19]. Interestingly, a less involved gauge theory—quantum
electrodynamics in one spatial dimension (QED)—equally
hosts a θ -angle, and for this reason is often used as a proto-
type model for studying the effect of this topological term
[20–23]. The topological θ -angle in 1 + 1D QED gives
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FIG. 1. (a) Topological θ -angle. The ground state of quantum
electrodynamics (QED) is periodic under the θ -angle [34,35].
The quantum link model (QLM) formulation of the U(1) gauge
theory loses this periodicity, but retains key features, in particu-
lar Coleman’s phase transition and the deconfined line at θ = π .
(b) The U(1) QLM can be implemented in an optical super-
lattice with single-species bosonic atoms, where shallow sites
are associated to charged matter and deep sites to gauge fields.
On-site interaction U, a staggered potential δ, and a tilted poten-
tial � (not shown) provide energy penalties, which in interplay
with nearest-neighbor hopping J generate the desired QLM in
second-order degenerate perturbation theory and enforce Gauss’s
law on all triple wells centered around a matter site [36,37].
The topological θ angle can be realized by the straightforward
addition of a superlattice with spatial period 4 and of amplitude
χ = g2(θ − π)/(2π), where g is the gauge coupling.

rise to rich equilibrium and far-from-equilibrium physics
[see Fig. 1(a)], including a deconfinement-confinement
transition [23,24], the so-called Coleman’s quantum phase
transition in the ground state [25], and dynamical topolog-
ical phase transitions appearing after a rapid quench of the
θ -term [26–33]. However, getting control of this funda-
mental term, and thus gaining access to the rich physics
it encapsulates, is an open challenge in analog quantum
simulation.

In this work, we show how a tunable topological θ -
term can be engineered in a cold-atom setup that has
recently quantum simulated a gauge theory of 71 lattice
sites governed by the U(1) gauge group that underlies
QED [36,38]. As we show, the θ -term can be realized
experimentally by a surprisingly simple addition, namely
an optical superlattice with a period twice that of the one
already employed in the demonstrated setup; see Fig. 1(b).
Through numerical benchmarks using the time-dependent

density matrix renormalization group method (tDMRG)
[39–41], we show how this term lifts Coleman’s phase
transition that has been experimentally observed in Ref.
[36] (as well as in other setups [42,43]), and how it
leads to confinement of charged particles and gauge fields.
A striking signature illustrated by our numerics is the
undermining of many-body scarring due to confinement.
Detailed experimental considerations illustrate the feasi-
bility of the approach. Our proposal thus opens the door to
studying salient effects of the topological θ -angle in large
engineered quantum systems.

The rest of this work is organized as follows: In Sec.
II, we review the spin-1/2 quantum link formulation of
1 + 1D QED on a lattice, known as the U(1) quantum
link model, and discuss its salient features and relevance
in the context of condensed-matter and particle physics.
In Sec. III, we introduce the experimental cold-atom setup
on which we map the U(1) quantum link model, and dis-
cuss how the relevant initial states can be prepared in
an experiment. Our main numerical results obtained from
the time-dependent density-matrix renormalization group
method are then presented in Sec. IV for time evolution
under adiabatic ramps and quench dynamics, allowing us
to dynamically probe the deconfinement-confinement tran-
sition in the U(1) quantum link model. We conclude and
provide future outlook in Sec. V. We supplement our work
with Appendix A, which discusses in detail the quantum
link formulation of 1 + 1D QED on a lattice, in addition to
Appendix B, which provides details on the mapping of the
U(1) quantum link model onto the bosonic system that we
propose for its quantum simulation, as well as Appendix
C, which provides supporting numerical results.

II. MODEL

Fully fledged QCD in 3 + 1D is still beyond the abilities
of current quantum simulators. However, existing technol-
ogy can already simulate simpler gauge theories [36,38,
42–53]. Specifically, QED in one spatial dimension, also
known as the massive Schwinger model, becomes interest-
ing in our context as it shares with 3 + 1D QCD a non-
trivial topological vacuum structure, a chiral anomaly, and
a CP-odd θ -term [22,25,35,54]. These features make the
massive Schwinger model a prototype model for 3 + 1D
QCD for studying effects of CP violation and a topological
θ -angle.

In the temporal gauge, the Hamiltonian of the massive
Schwinger model with a topological θ -term can be written
as [20,25,35]

ĤQED =
∫

dx
[
ψ̂†

x γ
0
(

iγ 1D̂x + μ
)
ψ̂x + 1

2
Ê2

x + gθ
2π

Êx

]
,

(1)
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where Ê is the electric field, g the dimensionful gauge
coupling, ψ̂ are two-component fermion operators, and
γ 0/1 are the Dirac matrices in 1 + 1D. This Hamilto-
nian describes from left to right the kinetic energy of the
fermions (which couples to the gauge vector potential Âx

via the covariant derivative D̂x = ∂x + igÂx), the fermion
rest mass μ, the electric field energy, and the topological
θ -term. As can be seen by the form of the latter, it is equiv-
alent in this model to a homogeneous background field
Ebg = gθ/(2π).

In order to make this model amenable for quantum sim-
ulators such as cold atoms in optical lattices consisting of
discrete degrees of freedom, we employ here the quantum
link model (QLM) formalism [55–57]. This framework
considers a lattice discretization, for which we take stag-
gered fermions [58], as well as a replacement of gauge
fields by spin operators. Details of the following derivation
of the Hamiltonian can be found in Appendix A. The QLM
lattice version of the Schwinger model with Lm matter sites
is

Ĥ = − κ

2a

Lm−1∑
�=1

(
ψ̂

†
� ŝ+
�,�+1ψ̂�+1 + H.c.

) + μ

Lm−1∑
�=1

ψ̂
†
� ψ̂�

+ ag2

2

Lm−1∑
�=1

(
ŝz
�,�+1

)2 − aχ
Lm−1∑
�=1

(−1)�ŝz
�,�+1. (2)

In this model, matter fields live on sites �, which alternat-
ingly represent the particle and antiparticle component of
the Dirac spinor. The number of sites is Lm. The gauge
(electric) field lives on the links between sites � and �+ 1.
The fermion kinetic energy is controlled by κ , and in
what follows we set the lattice spacing a to unity. The
QLM formalism has replaced the typical parallel trans-
porter Û�,�+1 = eigÂ�,�+1 → ŝ+

�,�+1 and the electric field
Ê�,�+1 → gŝz

�,�+1, where ŝ�,�+1 are spin-S operators. The
QLM retains canonical commutation relations between
Ê�,�+1 and Û�,�+1, and controllably recovers QED in the
limits of S → ∞, large volume, and small lattice spac-
ing [59–63]. Even more, it shares many key features with
QED already for small spin representations [24,56,57,64].
Most relevant for our purposes, the QLM formalism for
half-integer S naturally includes a topological θ -angle of
π [24,62]. The last term in Eq. (2) accounts for this in the
parameter χ = g2(θ − π)/(2π), which describes the devi-
ation of θ from π . In what follows, we choose S = 1/2,
which is sufficient for obtaining the salient features we are
interested in here and at the same time is most convenient
for experimental implementation.

To connect to recent implementations with ultra-
cold bosonic single-species atoms, we further perform a
particle-hole transformation on odd matter sites (ψ̂� ↔ ψ̂

†
�

for � odd) followed by a Jordan-Wigner transformation of

fermionic matter ψ̂� to hard-core bosons or equivalently
Pauli operators σ̂� [57]. The resulting Hamiltonian reads
(see Appendix A)

Ĥ = −κ
2

Lm−1∑
�=1

(
σ̂−
� ŝ+

�,�+1σ̂
−
�+1 + H.c.

)

+ μ

2

Lm∑
�=1

σ̂ z
� − χ

Lm−1∑
�=1

(−1)�ŝz
�,�+1. (3)

QED, as given in the Hamiltonian of Eq. (1), is a gauge the-
ory with U(1) gauge symmetry encoding Gauss’s law. The
Hamiltonian in Eq. (3) retains that U(1) gauge symmetry.
It is generated by the operator

Ĝ� = (−1)�+1
[

ŝz
�,�+1 + ŝz

�−1,� + σ̂ z
� + 1

2

]
, (4)

which can be viewed as a discretized version of Gauss’s
law. The U(1) gauge symmetry of the Hamiltonian (3)
is encapsulated in the commutation relations

[
Ĥ , Ĝ�

] =
0, ∀�, and conservation of Ĝ�. We work in the physical
sector of states |φ〉 satisfying Ĝ� |φ〉 = 0, ∀�; see Fig. 1(b).

Although in the QLM formulation leading to the Hamil-
tonian in Eq. (3) the infinite-dimensional gauge field is
represented by a spin-1/2 raising operator, it inherits a
richness of physical phenomena from the paradigmatic
Schwinger model. This includes Coleman’s phase transi-
tion at a critical mass of μc = 0.3275κ for a topological
θ -angle of π [25]; see Fig. 1(a). This transition is related
to the spontaneous breaking of the charge conjugation and
parity (CP) symmetry, which is equivalent to a global
Z2 symmetry. This phase transition has been investigated
in pioneering quantum simulator experiments on various
platforms [36,42,43], where the θ -angle was fixed to π .
Upon tuning the topological θ -angle away from π , the
CP symmetry is explicitly broken, resulting in the vanish-
ing of Coleman’s phase transition, and the model becomes
confining [24]; see Fig. 1(a).

The U(1) QLM also hosts salient features that have
recently received great interest in condensed-matter
physics, such as different types of quantum many-
body scarring [42,65] in which thermalization is signifi-
cantly delayed despite the model being nonintegrable and
disorder-free. Using the translation and Z2 symmetries of
Eq. (3), we can express its ground states on a two-link
two-site unit cell as |sz

0,1, σ z
1 , sz

1,2, σ z
2 〉 with the eigenvalues

sz
�,�+1 and σ z

� of the electric field and matter-occupation
operators ŝz

�,�+1 and σ̂ z
� , respectively, serving as good quan-

tum numbers. Scarring occurs for massless quenches at
θ = π starting in the vacuum states |±1/2, −1, ∓1/2, −1〉,
which are the doubly degenerate Z2 symmetry-broken
ground states of Eq. (3) at μ → ∞ and θ = π [42,66].
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Scarring also occurs for massive quenches starting in the
charge-proliferated state |−1/2, +1, −1/2, +1〉, which is
the nondegenerate Z2-symmetric ground state of Eq. (3) at
μ → ∞ and θ = π [65,67,68]. In Sec. IV B 1, we inves-
tigate the effect of confinement on scarring in the quench
dynamics of the vacuum state of the U(1) QLM.

III. EXPERIMENTAL SETUP

In this section, we discuss how the QLM given by Eq.
(3) can be engineered microscopically in state-of-the-art
cold-atom setups.

A. Mapping

The U(1) QLM with the topological θ -term can
be obtained from strongly interacting ultracold bosons
trapped in a one-dimensional tilted optical superlat-
tice described by the Bose-Hubbard Hamiltonian (see
Appendix B for details)

ĤBH = −J
L−1∑
j =1

(
b̂†

j b̂j +1 + H.c.
) + U

2

L∑
j =1

n̂j
(
n̂j − 1

)

+
L∑

j =1

[
(−1)j

δ

2
+ j�+ χj

2

]
n̂j , (5)

where L = 2Lm is the total number of sites on the bosonic
lattice. Here, the b̂j , b̂†

j are the bosonic ladder operators
on site j satisfying the canonical commutation relations[
b̂j , b̂†

l

] = δj ,l and
[
b̂j , b̂l

] = 0, and n̂j = b̂†
j b̂j is the cor-

responding bosonic number operator on site j . The term
∝ J describes hopping of bosons between neighboring
wells and U is an on-site interaction. The tilt � serves
to suppress undesired second-order hopping to next-to-
nearest-neighbor sites. Further, the employed superlattice
generates local chemical potentials with two periodicities,
a two-site periodicity due to (−1)j δ/2, and a four-site
periodic term related to the topological θ -angle:

χj =
⎧⎨
⎩

0 if j mod 2 = 0,
χ if j mod 4 = 1,
−χ if j mod 4 = 3.

(6)

As we explain in detail in the following, in this mapping
the even (shallow) sites of the bosonic superlattice now
represent matter sites � of the U(1) QLM on which mat-
ter fields reside, while the odd (deep) sites of the bosonic
superlattice represent the links between matter sites � and
�+ 1 in the U(1) QLM where gauge and electric fields are
located. See Fig. 1(b) for an illustrative schematic of the
superlattice.

The QLM can be derived in second-order perturbation
theory in the limit U, δ 
 J ,μ. To see the effect of the
large energy scales, we collect all terms of the microscopic

Hamiltonian that are diagonal in boson occupations (i.e.,
including the superlattice in χ ), to obtain

Ĥdiag =
∑
�

{
U
2

[
n̂�

(
n̂� − 1

) + n̂�,�+1
(
n̂�,�+1 − 1

)]

−
[
δ − (−1)�

χ

2

]
n̂�,�+1

+�
[
2�n̂� + (2�+ 1)n̂�,�+1

]}
, (7)

where n̂�,�+1 denotes the boson occupation on the gauge
link, i.e., the odd site j = 2�+ 1 of the optical superlat-
tice, between matter (even) sites 2� and 2�+ 2. Defining
generators of a “proto-Gauss’s law,”

Ĝ� = (−1)�
[

1
2
(
n̂�−1,� + n̂�,�+1

) + n̂� − 1
]

, (8)

and tuning δ = μ+ U/2, this Hamiltonian can be rewrit-
ten as

Ĥdiag =
∑
�

{
U
2

[
n̂�

(
n̂� − 1

) + n̂�,�+1
(
n̂�,�+1 − 2

)]

+
[
(−1)�

χ

2
− μ

]
n̂�,�+1 + c�Ĝ�

}
, (9)

with c� = 2�(−1)��. The second and third terms are
mapped to the rest mass and topological θ -angle, respec-
tively. When U is large, the first term constrains the local
Hilbert space on even (matter) sites of the bosonic system
to {|0〉2� , |1〉2�}, which represent the two local eigenstates
of the Pauli operator σ̂ z

� , and it restricts the local Hilbert
space on odd (gauge) sites of Eq. (5) to {|0〉2�+1 , |2〉2�+1},
which represent the two local eigenstates of the spin-1/2
matrix ŝz

�,�+1. Thus, in this setup the even (shallow) sites
host the matter fields, while the odd (deep) sites repre-
sent the links at which the gauge and electric fields reside;
see Fig. 1(b). Further, in this regime, the “proto-Gauss’s
law” generators Ĝ� become equivalent to those of the
desired gauge theory, Ĝ�. The final term of Ĥdiag serves
to protect the gauge symmetry against gauge-breaking
terms [37,69], as we discuss further below at the end of
Sec. IV B 1.

The relation between the parameters of the Bose-
Hubbard model (5) and those of the U(1) QLM (3)
can be computed from degenerate perturbation theory,
taking the hopping ∝ J as the small perturbation. The
result is

κ = 2
√

2J 2
[

δ

δ2 −�2 + U − δ

(U − δ)2 −�2

]
, (10a)

μ = δ − U
2

. (10b)
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In addition, there will be second-order hopping to next-to-
nearest-neighbor sites, which are suppressed by the tilt �
by choosing � sufficiently larger than J 2/δ.

This proposed Bose-Hubbard quantum simulator uses
only well-tested experimental resources and allows for a
wide tunability of parameters. The hopping J and on-site
interaction U terms are controlled primarily by tuning the
depth of the main lattice with a periodicity of λ/2. The
energy offsets δ and χ in Eq. (5) can be generated by two
additional optical lattices with double (λ) and quadruple
wavelength (2λ) as compared to the main lattice, as shown
in Fig. 1(b). The lattices, with respective lattice depths
V1,2,3, are spatially overlapped along the x axis to gen-
erate the superlattice potential V(x) = V1 cos2(4πx/λ)−
V2 cos2(2πx/λ− π/4)+ V3 cos2(πx/λ− π/8). Their rel-
ative phases are fixed according to Eq. (5) and can be
stabilized with standard locking techniques. The energy
offsets are given by δ = V2 and χ = V3/2 and can be easily
tuned through the lattice depths. Since the relevant regime
is where χ is on the order of κ , i.e., of J 2/δ, we have that
χ/δ � 1. The addition of the tunable θ -term thus does not
incur any relevant experimental errors such as undesired
resonant transitions in the superlattice. Besides, the linear
potential � can be created by the projection of gravity or a
magnetic gradient field. Based on the experimental setup
in Ref. [36], only a lattice with spacing 2λ needs to be
added. This lattice can be formed conveniently by inter-
fering two λ-wavelength lasers with an intersection angle
of 29◦.

B. Undesired processes

In addition to the above desired processes, there will
be other terms that constitute errors of the target the-
ory and which have to be suppressed, e.g., by suitable
energy penalties. The most important of these are second-
order hopping processes to next-nearest-neighbor sites
∝ (J 2/δ)b†

j bj +2 + H.c. These become off-resonant thanks
to choosing the tilt � sufficiently larger than J 2/δ, and
are thus energetically suppressed. If the hopping occurs
between a singly occupied and an empty matter site,
one can interpret the process in the target theory as ∝
ψ

†
i ψi+1 + H.c., i.e., it would be mapped to the motion of

a charge without a corresponding adaption of the electric
field according to Gauss’s law. In contrast, other second-
order hopping events may not have an interpretation in
terms of the QLM. For example, a hopping to an already
occupied matter site would generate a matter occupation
of 2, which leaves the subspace enabling the mapping
to fermionic operators. Such a process will, however, be
suppressed by an additional interaction strength U.

In addition, continuing the perturbative expansion lead-
ing to the Hamiltonian in Eq. (3), there will appear higher-
order processes. The next leading terms are of fourth order.

Two examples are the sequences

|. . . , m, g, m, g, m, . . .〉 = |. . . , 1, 0, 1, 0, 1, . . .〉
→ |. . . , 0, 1, 1, 0, 1, . . .〉 → |. . . , 0, 0, 2, 0, 1, . . .〉
→ |. . . , 0, 0, 1, 1, 1, . . .〉 → |. . . , 0, 0, 1, 2, 0, . . .〉 , (11a)

|. . . , g, m, g, m, g, . . .〉 = |. . . , 2, 0, 0, 0, 2, . . .〉
→ |. . . , 1, 1, 0, 0, 2, . . .〉 → |. . . , 1, 1, 0, 1, 1, . . .〉

→ |. . . , 1, 0, 1, 1, 1, . . .〉 → |. . . , 1, 0, 2, 0, 1, . . .〉 , (11b)

where “m” and “g” denote matter and gauge sites of the
optical lattice, respectively. Also here, some such terms
stay within the QLM but break gauge invariance, e.g., the
process (11a), while other terms leave the target Hilbert
subspace of maximally singly occupied matter sites and
single doublons on links, e.g., process (11b). The strength
of these terms is on the order of J 4/δ3 and is thus sub-
leading as compared to the aforementioned unassisted
second-order hopping processes. They are suppressed by
a further factor of J 2/δ2 (for the experimentally relevant
parameters considered here, J 2/δ2 � 0.02) and can thus
modify the dynamics at the earliest at significantly later
times than the ones suggested as relevant by our numerical
benchmarks below.

A series of numerical and analytic results, based on dif-
ferent techniques such as exact numerics, tensor network
methods, and the continuous quantum Zeno effect, have
established that such undesired terms, daunting as they
may seem a priori, can be efficiently suppressed in the tar-
get model using energy penalties such as the tilt proposed
here [36–38,70]. In particular, exact numerics on the target
theory at θ -angle of π indicates the errors in finite systems
do not accumulate over time [37] while tensor-network
calculations using infinite matrix product states show that
the error suppression works reliably even in the thermo-
dynamic limit at least up to intermediate time scales [70].
Notably, these suppressions are perturbative in the micro-
scopic parameters of the Bose-Hubbard model, leading to
an effective low-energy description largely independently
of the parameters of the target model.

C. Initial states and their preparation

We are primarily interested in two initial states: a vac-
uum state |0, 0, 2, 0〉 or |2, 0, 0, 0〉, as defined on the two-
link two-site unit cell of the corresponding U(1) QLM,
which are the bosonic representations of the two dou-
bly degenerate ground states of Eq. (3) at μ/κ → ∞ and
θ = π , and an electron-positron pair state, where in the
center of the vacuum state the bosonic configuration 020 is
replaced with 101. As indicated by its name, this state rep-
resents an electron-positron pair, which, as we show, will
be confined when the θ -angle is tuned away from π . See
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Superfluid

Phase transition
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( ii ) Selectively removing atom

Electron-positron pair

( iii ) Local addressing

FIG. 2. Proposed experimental protocol for state initialization.
A single-species Bose-Einstein condensate is confined in one
spatial dimension. An optical superlattice is ramped up to drive
a phase transition from a superfluid to a Mott insulator in small
wedding-cake-like structures. After selectively removing atoms
from every second well, the system is initialized in the “vacuum
state” represented by |. . . , 0, 0, 2, 0, . . .〉. In scenarios where one
is interested in the state with one electron-positron excitation in
the vacuum, as |. . . 0, 2, 0, 0, 1, 0, 1, 0, 0, 2, 0, . . .〉, local address-
ing can selectively lower the potential barriers near one doublon
in order to allow for tunneling of the atoms to the matter site.

Fig. 2 for a depiction of these states and their preparation
scheme, which we describe in the following.

The state initialization begins with a one-dimensional
Mott insulator state represented by the site occupation
as |. . . , 0, 0, 2, 0, . . .〉. It can be obtained by adiabati-
cally loading a Bose-Einstein condensate into the stag-
gered superlattice. When the average filling factor is
n̄ = 0.75, and the superlattice is set to V1 cos2(4πx/λ)+
3U cos2(πx/λ− π/8), the mean occupation after the load-
ing process is around |. . . , 0, 0.5, 2, 0.5, . . .〉, see Fig. 2.
Here, the atoms undergo a quantum phase transition from
a superfluid to a Mott insulator as the lattice depth V1
is slowly ramped up. Meanwhile, the atoms residing on
sites j mod4 = 3 at the Mott state are cooled down by the
neighboring superfluid reservoirs [71]. The atom configu-
ration will be |. . . , 0, 0, 2, 0, . . .〉 after selectively removing
the atoms residing on the even sites [72]. In the following
section, we benchmark a ramp protocol for driving Cole-
man’s quantum phase transition from this initial state (Sec.
IV A) as well as abrupt quenches (Sec. IV B 1). Although
this initial state differs from the charge-proliferated state

used in Ref. [36], its preparation requires only demon-
strated experimental capabilities.

To achieve the state with an electron-position pair in the
vacuum, one can use a local addressing technique to enable
local oscillations between the states |. . . , 0, 2, 0, . . .〉 and
|. . . , 1, 0, 1, . . .〉, as seen in Ref. [36], confined to a selected
region. This state will be a starting point for the quench
dynamics in our numerical calculations in Sec. IV B 2.

IV. NUMERICAL BENCHMARKS

We now present our main numerical results on the time
evolution of our ramp and quench dynamics, obtained from
tDMRG [39–41] based on the Krylov-subspace method
[73–76]. In tDMRG, the quantum many-body wave func-
tion is represented by matrix product states [77,78] as
facilitated by repeated truncations of small Schmidt coef-
ficients. Upon appropriately tuning the fidelity threshold,
the accumulated error over evolution times in the numer-
ical simulation can be controlled. This sets the desired
accuracy over the calculation, the achievement of which
will lead to a corresponding increase in the bond dimen-
sion of the calculated wave function. For the main results
of our paper, we use L = 32 sites (Lm = 16 matter sites
and Lg = 16 gauge links) with open boundary conditions,
which we find converged with respect to system size for
our purposes [36,79]. For our numerically most stringent
calculations, we find excellent convergence for an on-site
maximal boson occupation of Nmax = 2 (indicative of good
imposition of our constraint described in Sec. III A), a time
step of dt = 10−1 ms, and a fidelity threshold of 10−6 per
time step.

A. Ramp

At a topological θ -angle of π (i.e., χ = 0), the U(1)
QLM Hamiltonian (3) is invariant under the parity trans-
formation and charge conjugation. This CP symmetry is of
a discrete Z2 nature, and can thus be spontaneously broken
in one spatial dimension (at zero temperature), leading to
the so-called Coleman’s phase transition [25]. The phase
transition can be captured by the order parameter E =∑Lm

�=1(−1)�〈ŝz
�,�+1〉/Lm. Upon tuning the topological θ -

angle away from π , the last term in Eq. (3) will explicitly
break CP symmetry, thus invalidating Coleman’s phase
transition.

To study this effect, we consider an adiabatic ramp pro-
tocol where we start in a Z2 symmetry-broken vacuum
state at μ/κ → ∞ in Eq. (3) and slowly sweep the mass
to μ/κ → −∞ in the Z2-symmetric phase. In the bosonic
model of Eq. (5), this is equivalent to sweeping J , U, and δ
as shown in Fig. 3, respectively. The resulting mass ramp
of μ/κ in the U(1) QLM (3) that the proposed experi-
ment would implement is depicted in the lower-right panel.
We note that the reverse of this ramp has been performed
experimentally, starting from the charge-proliferated state
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FIG. 3. The ramp protocol employed in this work, where J , U,
and δ of Eq. (5) are tuned in such a way that the mass μ/κ of Eq.
(3) is adiabatically ramped from a large positive value (where
the ground state is one of two doubly degenerate Z2 symmetry-
broken vacua in the deconfined regime) to a large negative value
(where the ground state is the charge-proliferated state in the
deconfined regime). Here, the total ramp time τ = 20 ms is much
smaller than the coherence time of the experimental setup in Ref.
[36], making this protocol experimentally feasible.

|0, 1, 0, 1〉, to probe Coleman’s phase transition [36] and
for preparing far-from-equilibrium states to study thermal-
ization dynamics in the wake of global quenches [38]. In
the bosonic picture relevant to the experimental imple-
mentation, the order parameter and chiral condensate are
defined as

E(τ ) = 2
L

L/2∑
m=1

(−1)m 〈ψ(τ)| n̂d
2m−1 |ψ(τ)〉 , (12a)

C(τ ) = 2
L

L/2∑
m=1

〈ψ(τ)| n̂2m |ψ(τ)〉 , (12b)

respectively. Here, τ denotes the time of the ramp,
|ψ(τ)〉 = T e−i

∫ τ
0 ds ĤBH(s) |vac〉, T is the time-ordering

operator, ĤBH(τ ) is Hamiltonian (5) with its parameters
taking on the values specified in Fig. 3 at ramp time τ ,
and n̂d

j = b̂†
j b̂†

j b̂j b̂j /2 is the doublon-occupation operator
at site j of the optical superlattice, which represents the
local electric flux when j is odd.

We now prepare our initial state in the vacuum state
|vac〉 = |0, 0, 2, 0〉, and perform the ramp protocol of Fig. 3
at various values of χ/κ . As κ varies during the ramp,
see Eq. (10a), χ is adjusted to compensate for the tuning
of the lattice parameters and thus keep χ/κ constant; see
inset of Fig. 4(a). The dynamics of E(τ ) as calculated in
tDMRG is shown in the main panel of Fig. 4(a). When
χ = 0, the topological θ -angle term vanishes, and Cole-
man’s phase transition exists in Eq. (3). This means that
the ramp can lead the dynamics into a Z2-symmetric phase,
which is indeed what the numerical results in Fig. 4(a) sug-
gest when χ = 0. This is indicated by a small final value of
E, where deviations from the ideal equilibrium value of 0
are due to Kibble-Zurek excitations generated by the final

(a)

(b)

FIG. 4. (a) Time evolution of the electric flux E(τ ), defined in
Eq. (12a), throughout the ramp protocol of Fig. 3. The param-
eter χ is tuned in such a way that χ/κ is constant throughout
the ramp (see inset), taking into account the corresponding varia-
tion of κ during the ramp. The order parameter reaches zero only
in the case of χ = 0 where Coleman’s phase transition exists in
the deconfined regime, while it is always finite throughout the
entire duration in the ramp when χ �= 0, since then the associ-
ated global Z2 symmetry is explicitly broken in this confined
regime, lifting Coleman’s phase transition. (b) Time evolution
of the chiral condensate C(τ ), defined in Eq. (12b), through-
out the ramp protocol of Fig. 3. The vacuum state is void of
matter, so naturally C(0) = 0. In the deconfined regime (χ = 0)
where Coleman’s phase transition is present, an adiabatic ramp
drives the system close to the charge-proliferated state within the
Z2-symmetric phase, where it exhibits a chiral condensate close
to unity. Ramping in the confined regime (χ �= 0) leads to the
final state having a lower value of the chiral condensate. This is
because the θ -angle term explicitly breaks the global Z2 symme-
try, imparting a finite electric flux on the final state. Due to the
effective stabilization of Gauss’s law in our proposed quantum
simulator, this in turn necessitates a smaller value of the chiral
condensate.

ramp speed [80]. Note that even though the critical point
(μ/κ)c = 0.3275 is reached at τ ≈ 6 ms, the order param-
eter first reaches zero at τ ≈ 15.87 ms. This is expected for
a slow ramp through a continuous phase transition, where
the Kibble-Zurek scenario predicts the system to reside
within a frozen-out regime until some time after having
crossed the critical point. Only once this regime is left
can the order parameter adapt to the new phase. Its width
depends on the critical exponents (of Ising class for Cole-
man’s phase transition [25]), which can be extracted by
extrapolation from varying ramp speeds [80].

In addition, there are high-frequency oscillations. These
are due to the energy penalty, with frequency given by
the penalty strength (on the order of δ). They can be
understood by going into an interaction picture with
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respect to the penalty terms, where fast oscillations rotate
gauge violations away [37,81,82].

Upon switching the topological θ -angle away from π

(i.e., χ �= 0), the U(1) QLM in Eq. (3) no longer hosts
Coleman’s phase transition, because the topological θ -
angle term explicitly breaks the global Z2 symmetry. As
such, one would expect E(τ ) to remain trivially finite
throughout the entire ramp, relaxing at μ/κ → ∞ towards
a value that increases with χ . Our tDMRG calculations
confirm this picture, indicating that the larger χ is, the
larger is the final value of E(τ ).

The chiral condensate dynamics during this ramp is
shown in Fig. 4(b). When χ = 0, we expect that the wave
function goes from the initial vacuum state to something
close to the charge-proliferated state in the Z2-symmetric
phase, where then C(τ ) ought to be close to unity. Our
t-DMRG calculations confirm this picture: for χ = 0, C
reaches large values, where deviations from unity can
again be attributed to Kibble-Zurek excitations due to the
finite ramp speed. For nonzero values of χ , we see that
the final value of C(τ ) in this ramp decreases the larger
χ is. This can be understood by noting that Coleman’s
phase transition vanishes for nonzero χ , and this explicit
breaking of the Z2 symmetry will favor a finite E(τ ) at late
times. Due to Gauss’s law, this then leads to a decrease in
the chiral condensate.

It is also worth noting that the ramp protocol we employ
here may be adapted to probe the order and universality
of possible underlying phase transitions in gauge theo-
ries. This is facilitated by adiabatically ramping the mass
at fixed infinitesimally small values of χ and measuring
the final value of E(τ ) to extract the corresponding critical
exponents [83].

B. Quench dynamics

We now turn to abrupt global quenches in our setup,
which have recently been employed to experimentally
probe thermalization dynamics in the U(1) QLM [38].
Such quench dynamics are essential in probing salient
features in gauge-theory quantum simulations relevant to
condensed-matter physics such as, for example, quantum
many-body scars [42,66,84] and disorder-free localization
[85,86], and also those relevant to high-energy physics,
such as thermalization of generic gauge theories [38,87],
string-breaking dynamics [24,88], and confinement [52,53,
89]. In the following, we focus on two main initial states:
the vacuum and electron-positron pair states. In order to
probe signatures of confinement, we numerically calcu-
late the quench dynamics of the electric flux, the chiral
condensate, and the von Neumann entanglement entropy,

E(t) = 2
L

L/2∑
m=1

(−1)m 〈ψ(t)| n̂d
2m−1 |ψ(t)〉 , (13a)

C(t) = 2
L

L/2∑
m=1

〈ψ(t)| n̂2m |ψ(t)〉 , (13b)

Sj (t) = −Trρ̂1→j (t) ln ρ̂1→j (t), (13c)

respectively, where |ψ(t)〉 = e−iĤBHt |ψ0〉, |ψ0〉 is the ini-
tial state, ĤBH is the quench Hamiltonian (5), and ρ̂1→j (t)
is the reduced density matrix at evolution time t of the
subsystem formed on the lattice along the sites 1, . . . , j .

For all quenches considered in this paper, we have set
U = 1368 Hz, J = 58 Hz, and � = 57 Hz. Then for a
given value of μ/κ , and employing Eqs. (10a) and (10b),
we arrive at an implicit equation for δ, which can then
be solved using, for example, Newton’s method. To lead-
ing approximation, the topological θ -term strength χ can
be set independently of the other parameters so long as
|δ ±�| 
 |χ | (see Appendix B for details).

1. Initial state: vacuum

The vacuum state of the U(1)QLM is of particular inter-
est in synthetic quantum matter experiments not just from
a high-energy perspective, but also in terms of intriguing
condensed-matter features it can give rise to. For exam-
ple, it has been shown in Ref. [42] that a massless quench
with χ = 0 of this vacuum state leads to the weak ergod-
icity breaking paradigm of quantum many-body scarring
[66,84,90,91]. The vacuum state resides in a cold subspace
that is weakly connected to the rest of the Hilbert space
of the quench Hamiltonian (3) at μ/κ = χ/κ = 0, which
leads to a significant delay of thermalization [66]. The
eigenstates of this cold subspace exhibit anomalously low
entanglement entropy and are roughly equally spaced in
energy across the entire spectrum. Furthermore, this scar-
ring behavior manifests as persistent oscillations in the
dynamics of local observables lasting well beyond rele-
vant timescales, along with an anomalously low and slowly
growing entanglement entropy [92,93].

Figure 5(a) shows the resulting dynamics of the electric
flux (13a) when starting in the vacuum state |0, 0, 2, 0〉 and
quenching with the Hamiltonian of Eq. (5) at μ/κ = 0. In
agreement with known experimental results on quantum
many-body scars [42,65], when χ = 0 we see persistent
oscillations around zero in the electric flux that last up
to all accessible times. The dynamics in this case can be
explained as “state transfer” [94] between the two doubly
degenerate vacua of Eq. (3). Upon tuning the topological
θ -angle away from π , we find that the oscillations remain,
but the mean of E(t) is no longer around zero and instead
takes on a finite value closer to E(0) = 1/2. This is a
hallmark of confinement. Namely, the global quench con-
sidered here generates excitations everywhere. Now, if the
system is deconfined, a charge-anticharge pair can sepa-
rate and thus flip the electric field from +1/2 to −1/2 over
large stretches of the system [95]. In contrast, if excitations
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(a) (b)

(c) (d)

FIG. 5. tDMRG calculations of the dynamics of the electric flux for a quench of the vacuum state with Hamiltonian (5) at mass (a)
μ/κ = 0, (b) μ/κ = 0.15, (c) μ/κ = 0.25, and (d) μ/κ = 0.35, with the topological term at strength χ/κ = 0, 0.2, 0.6, 1 (from light
to dark blue). Solid yellow curve depicts the corresponding dynamics in the ideal U(1) QLM (3) for the same quench at χ/κ = 1, as
obtained from ED. As χ increases, confinement forces the electric field to remain close to its initial value throughout all considered
evolution times. For nonzero rest mass, the persistent oscillations are enhanced, exhibiting a larger frequency with increasing χ . It is
worth noting here that the massless quench at χ = 0 exhibits quantum many-body scarring, first observed in a Rydberg-atom setup
[42]. This type of scarring, which involves state transfer between the two degenerate vacua of QED, is undermined in the strongly
confined regime, where the wave function remains close to the initial state at all evolution times (see text). For the small-mass quenches
in (a),(b), we add insets showing the estimated frequency of oscillations as a function of χ , as a rough metric of confinement.

are bound, they can only locally modify the electric field to
a limited degree. The low-frequency oscillations are a form
of “beating behavior” also observed in other confined mod-
els, such as the transverse-field Ising model with a longi-
tudinal field [96] or with long-range interactions [97–99],
and also in two-leg spin-1/2 ladders [100]. Interestingly,
we find that the frequency of oscillations increases with
confinement, see insets in Figs. 6(a) and 6(b), in agreement
with numerical results on confined dynamics in quantum
spin chains with long-range interactions [97–99] and the
quantum Ising model with both transverse and longitudinal
fields [96]. For the largest deviation of the θ -angle from π

that we investigate (χ = κ), we find strong confinement
of the electric field, where it is always E(t) � 0.22 over
all accessible evolution times in tDMRG. This indicates
that the time-evolved wave function remains very close to
the initial vacuum state throughout all accessible evolu-
tion times, and does not approach the second vacuum. In
other words, confinement prohibits state transfer between
the two vacua, and therefore alters the nature of quantum
many-body scarring in the U(1) QLM.

Using exact diagonalization (ED) calculations, we
benchmark the case of a massless quench at χ = κ with
the corresponding quench in the ideal U(1) QLM of Eq.

(3) at μ/κ = 0 and χ = κ . We find excellent quantita-
tive agreement at short times, and very good qualitative
agreement over all times. It is not surprising that the quan-
titative agreement at late times is not as good as at early
times, because in our mapping we obtain Eq. (5) up to lead-
ing order in perturbation theory, but subleading orders that
break gauge invariance will become less innocuous at later
times. As we elucidate later, this leads to a renormalized
gauge theory that nevertheless hosts the same U(1) gauge
symmetry of the ideal U(1) QLM, and which persists over
all relevant timescales.

In Figs. 5(b) and 5(c), we show tDMRG results for
quenches of the vacuum state |0, 0, 2, 0〉 at other values of
the mass μ/κ = 0.15, 0.25, which like the massless case
are across Coleman’s phase transition when χ = 0. We
again find that the order parameter oscillates around zero
in the deconfined regime (χ = 0), albeit these oscillations
are not as persistent since the dynamics is slightly away
from the scarred regime of μ/κ = 0 [66]. In the confined
regime (χ �= 0), we again see that E(t) oscillates around
a positive finite mean closer to its initial value. For large
χ , the oscillations in E(t) become more persistent—in that
they do not exhibit much decay—and possess a higher fre-
quency. Again, the overall qualitative agreement with the
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(a) (b)

(c) (d)

FIG. 6. Same as Fig. 5 but for the chiral condensate (13b). The dynamics is qualitatively different between the deconfined and
confined regimes. Whereas for χ/κ = 0 we find dynamics deviating significantly from the initial value of the chiral condensate, as
χ/κ is increased, the dynamics exhibits confined behavior with C(t) oscillating much closer to 0. For massive quenches, we find that
the frequency of oscillations increases with χ , but this is not so clear for the case of μ/κ = 0. This may be related to scars, in that
for this quench with χ = 0, the electric flux has half the frequency of the chiral condensate due to the state transfer between the two
doubly degenerate vacua during the dynamics; see text and Fig. 5(a). In the confined regime, however, the chiral condensate and the
electric flux both exhibit the same frequency.

corresponding case of the ideal U(1) QLM is very good,
with excellent quantitative agreement at early times.

We now consider a quench at μ/κ = 0.35, which does
not cross the critical point at χ = 0. The corresponding
quench dynamics of the electric flux are shown in Fig. 5(d).
As typical of quenches close to the critical point, we find
in the case of χ = 0 that the order parameter approaches
zero neither crossing it nor displaying violent dynamics
throughout all accessible evolution times in tDMRG, in
accordance with critical slowing down. There is no evi-
dence of oscillations similar to those for quenches across
the critical point. Repeating this quench at χ �= 0 indicates
a qualitative change in the behavior of E(t). Even for a
small value of χ = 0.2κ , E(t) settles to a value much larger
than 0 over all accessible evolution times, although we also
see the influence of the nearby critical point leading to non-
trivial dynamics. For larger χ values that we consider, the
electric flux exhibits oscillations that become faster with
increasing χ . The qualitative difference for this quench
between the deconfined and confined case is quite remark-
able, because the system goes from exhibiting asymptotic
decay towards zero in its dynamics to persistent oscilla-
tions around a mean value much closer to its initial value of
1/2. The ED results for the corresponding dynamics in the
U(1) QLM show very good qualitative agreement with the
tDMRG results for the dynamics in the bosonic mapping
(5) in the demonstrated case of χ = κ . The quantitative
comparison at early times is also excellent.

These oscillations we observe in Fig. 5 at larger values
of χ are a hallmark of confinement [96], where the time-
evolved wave function is always coming back very close to
the initial state as soon as it begins to deviate away from it
in its dynamics. A feature worth noting in Fig. 5 is that for
χ = κ , the oscillations in E(t) exhibit a larger frequency
the larger μ/κ is. In other words, a larger mass makes the
confinement more drastic, which has also been numerically
found in Ref. [24], for example.

The qualitative picture described in Fig. 5 remains
largely intact when considering the corresponding dynam-
ics of the chiral condensate (13b), shown in Fig. 6. Since
the vacuum is void of matter, C(0) = 0. For μ/κ = 0,
shown in Fig. 6(a), we again see for χ = 0 clear signa-
tures of state-transfer scarring with the chiral condensate
exhibiting persistent oscillations up to all accessible evo-
lution times in our tDMRG calculations. Note how in the
case of χ = 0, the chiral condensate has double the fre-
quency of the order parameter, which we study in Fig. 5(a).
This is because the state transfer occurring between the
two degenerate vacua, which takes half a cycle in the
order parameter, will necessitate that meanwhile the chi-
ral condensate completes a full cycle, since it has to be
at a local minimum when the wave function is at either
vacuum. Upon tuning χ to larger values, the chiral con-
densate shows signatures of confinement, remaining closer
to its initial value and exhibiting persistent oscillations.
Focusing on the case of χ = κ , we find that both the chiral

040316-10



TUNING THE TOPOLOGICAL θ -ANGLE IN COLD-ATOM QUANTUM... PRX QUANTUM 3, 040316 (2022)

(a) (b)

(c) (d)

FIG. 7. Same as Fig. 5 but for the bipartite entanglement entropy, which is Eq. (13c) for j = L/2. (a) In the case of χ/κ = 0,
this quench of the vacuum state gives rise to scarred dynamics, which manifest in an anomalously low and slowly growing SL/2(t).
Nevertheless, upon increasing χ , the bipartite entanglement entropy is suppressed even further, indicating confinement that constrains
the dynamics in the quench Hamiltonian’s Hilbert space more than “state-transfer” scarring at χ/κ = 0 does. (b)–(d) For quenches
at a finite mass μ/κ > 0, the confined regime shows much more suppressed growth of the bipartite entanglement entropy, where at
χ = κ there is almost no growth at late times within the timescales of our numerical calculations.

condensate and the electric flux share the same frequency,
which further confirms that “state transfer” scarring is no
longer present and there is therefore no resulting factor of
2 difference in the frequencies of these observables. Excel-
lent qualitative agreement is displayed in the case of χ = κ

with ED results for the corresponding dynamics in the ideal
U(1) QLM.

The transition from deconfined to confined dynamics is
even more striking for quenches at a finite mass μ/κ �= 0,
shown in Figs. 6(b)–6(d). In all cases, we find that the
larger χ is, the more confined is the dynamics of C(t),
with the latter remaining closer to its initial value of zero.
Unlike in the zero-mass case where the frequency does
not appear to change with χ , for μ/κ > 0 there is a clear
increase in the frequency of C(t) with increasing χ . In all
cases, we find greater persistence in oscillations when χ
is large, particularly at larger μ/κ . As in the zero-mass
quench, the dynamics shows good qualitative agreement
with the corresponding dynamics in the ideal U(1) QLM
at χ = κ , as obtained from ED calculations.

Confinement can greatly constrain the spread of the
wave function in the Hilbert space of the quench Hamil-
tonian. A good measure of this spread is the bipartite
entanglement entropy, Eq. (13c) for j = L/2, the dynamics
of which we calculate in tDMRG for the above quenches,
shown in Fig. 7. In the case of the zero-mass quench,
even the deconfined regime (χ = 0) shows an anoma-
lously low and slowly growing bipartite entanglement
entropy in Fig. 7(a)—in contrast with the deconfined

case for nonzero-mass quenches in Figs. 7(b)–7(d). Upon
increasing χ for a quench at any mass, SL/2(t) is further
suppressed and grows significantly slower, indicating con-
strained dynamics in a confined subspace of the quench-
Hamiltonian Hilbert space. In the massless quench, the
bipartite entanglement entropy is suppressed even further
in the confined regime than in the deconfined one where
state-transfer scarring is present. This shows that whereas
state-transfer scarring involves constrained dynamics in a
cold subspace of the quench Hamiltonian’s Hilbert space,
confinement further constrains the dynamics within this
subspace. For quenches at a nonzero μ/κ with χ � 0.6κ ,
confinement is so striking that the bipartite entanglement
entropy seems to no longer grow beyond short times.

Even though our numerical benchmarks with ED results
on the ideal U(1)QLM have shown good qualitative agree-
ment, indicating that the bosonic mapping of Eq. (5) is
an adequate renormalized U(1) gauge theory, it is inter-
esting to look at the dynamics of the gauge violation
in the considered quenches. Considering local constraints
specified at a matter (even) site jm, then only three local
configurations at this matter site and its neighboring gauge
sites in the bosonic system satisfy Gauss’s law: |0, 0, 2〉,
|2, 0, 0〉 that locally correspond to vacuum, and |0, 1, 0〉 that
locally corresponds to the charge-proliferated state. The
local projector onto the vacua local configurations is then
P̂ |002〉+|200〉

jm , and that onto the charge-proliferated local con-

figuration is P̂ |010〉
jm . In the ideal U(1) QLM, these are the
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(a) (b)

(c) (d)

FIG. 8. Same as Fig. 5 but for the gauge violation (14). In the effective implementation using a single bosonic species, gauge
invariance is enforced through energy penalties, leading to small violations of the exact gauge symmetry generated by the operators
defined in Eq. (4). Nevertheless, the gauge violations remain small and controlled throughout the entire considered evolution times,
leading to a renormalized gauge theory with the same U(1) gauge symmetry as the ideal model (3) [37]. The insets show the value of
the violation on a linear scale at t = 100 ms as a function of the considered values of χ . The exact form of the energy penalty and how
it arises in our mapping is discussed in Sec. III, and it is closely related to the recently introduced concept of Stark gauge protection
[69].

only allowed local configurations. However, as explained
in Sec. III A, our mapping is perturbatively valid in the
limit of U ≈ 2δ 
 J , but subleading terms from perturba-
tion theory violate Gauss’s law. Here, we define the gauge
violation as

ε(t) = 1 − 2
Lt

∫ t

0
ds

L/2∑
m=1

[
〈ψ(s)| P̂ |002〉+|200〉

2m |ψ(s)〉

+ 〈ψ(s)| P̂ |010〉
2m |ψ(s)〉

]
. (14)

The dynamics of the gauge violation (14) is shown in Fig. 8
for the above considered quenches. Regardless of the val-
ues of μ/κ and χ , we find very good stability of gauge
invariance throughout the whole duration of the experi-
ment, where the gauge violation settles into a steady state
with finite value after a small increase at short times. In
fact, it seems that at larger values of χ the value of the
gauge-violation plateau is slightly lower. Nevertheless, the
overall picture of a gauge violation that is constant at inter-
mediate to long evolution times, and which is significantly
below 10%, indicates a very reliable implementation that
quantum simulates faithful gauge-theory dynamics.

This stability arises from an effective linear gauge
protection term

VĤG =
∑
�

c�Ĝ�, (15)

where Ĝ� is the generator of Gauss’s law, given in Eq.
(4), and c� are a sequence of numbers depending on the
matter site � and the parameters of Eq. (5). If the c�
are chosen appropriately, violations of Gauss’s law are
energetically penalized, which in ideal situations can sta-
bilize the gauge symmetry up to exponentially long times
[101]. In the present case, the energy penalty is pro-
vided by on-site interaction strength U, the tilt �, and the
staggered potential δ. As discussed in Sec. III, with coef-
ficients explicitly read c� = (−1)�[��+ (U − δ +�/2)].
As comparison with Ref. [37] shows, the addition of the
θ -angle does not modify the protection with respect to
the recent experiments of Refs. [36,38], where approx-
imately gauge-invariant adiabatic and quench dynamics
have already been shown. The success of this protection
scheme with the above coefficients, that include a stag-
gered term as well as a tilt, can be further corroborated
based on the concept of Stark gauge protection [69], from
which it can be shown that gauge symmetry is stabilized
up to essentially all relevant timescales.

2. Initial state: electron-positron pair

A very pertinent state to consider when investigating
confinement is that of an electron-positron pair on top of
vacuum [102]. In our bosonic mapping, this is equivalent
to having all sites empty except for the middle two matter
sites, with each hosting a single boson. With the impres-
sive advancements of quantum gas microscopes [103], it
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Deconfined:χ/κ = 0 Confined:χ/κ = 1

FIG. 9. Dynamics of the electron-positron pair state (see Fig. 2) in the wake of a quench by Hamiltonian (5) at μ/κ = 0, with the
strength of the topological θ -term set to χ/κ = 0 (left-column panels) or χ/κ = 1 (right-column panels). Top panels show the quench
dynamics of the matter occupation on the even sites of the optical superlattice (where matter fields reside), representing the local chiral
condensate. In the deconfined case (χ/κ = 0), we find clear ballistic dynamics, which can be interpreted as the electron and positron
propagating away from each other linearly in time at no energy cost. The dynamics fundamentally changes when χ/κ = 1, where
the electron-positron pair is confined, and there is virtually no dynamics. This qualitative picture is confirmed in the dynamics of the
site-resolved doublon occupation (middle panels) on odd sites of the superlattice, which represents the local electric flux. Whereas
the flipped electric flux between the electron and positron can no longer be distinguished at long times from the electric fluxes at
other sites in the deconfined case, when χ = κ confinement stabilizes this flux up to all accessible evolution times. As shown in the
bond entanglement entropy in the bottom panels, in the deconfined regime Sj (t) spreads qualitatively much faster than in the confined
regime. It is interesting to note that the confined case allows for longer accessible evolution times in tDMRG due to slower growth in
entanglement entropy.

is now possible to probe the dynamics of electron-positron
pairs in modern quantum simulations. We now quench this
system for different values of μ/κ and χ/κ and study the
ensuing dynamics of the electron-positron pair.

The first quench is at μ/κ = 0, shown in Fig. 9 for
the deconfined case with χ = 0 (left column) and for
the confined case with χ = κ (right column). The top
row shows strikingly different dynamics for the matter
fields—defined as the bosonic occupation on even sites
of the superlattice—between the deconfined and confined
regimes (although there are significant boundary effects,
as these numerics show present-day experiments already
reach sufficient system sizes in order to distinguish the

relevant features [36,38]). Whereas for χ = 0, excitations
propagate ballistically away from each other—information
travels over space linearly in time—indicative of decon-
fined dynamics, for χ = κ they are strongly confined up to
all accessible evolution times in tDMRG.

This picture is confirmed by the corresponding dynam-
ics of the electric fluxes on gauge links, represented in
the bosonic model by the doublon occupation n̂d

jg on the
odd sites of the superlattice. Whereas for χ = 0 there is
evidence of ballistic propagation in the associated flux
in between the electron-positron pair, for χ = κ it dis-
plays strongly confined dynamics, with the local flux
remaining in roughly the same configuration throughout all
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Deconfined:χ/κ = 0 Confined:χ/κ = 1

FIG. 10. Time evolution of the site-resolved matter occupation (top panels), which resides on even sites of the superlattice and
represents the local chiral condensate, the site-resolved doublon occupation (middle panels) on odd sites of the superlattice, which
represents the local electric flux, and the site-resolved bond-entanglement entropy (bottom panels) in the wake of a global quench
at μ/κ = 0.35 starting in the electron-positron pair state, within either the deconfined regime (χ/κ = 0, left-column panels) or its
confined counterpart (χ/κ = 1, right-column panels). In agreement with results in Sec. IV B 1, we find that a finite mass enhances the
confinement for a given value of χ/κ . In the deconfined regime, a finite mass leads to quench dynamics that is markedly faster than
the ballistic behavior seen in the corresponding case of a massless quench (see Fig. 9, left-column panels). However, at χ = κ , the
confinement is much stronger for the quench at μ/κ = 0.35 than that at μ/κ = 0.

accessible evolution times. This is to be expected given
that the associated electron-positron pair is also confined.

To further validate this conclusion, we look at the von
Neumann entanglement entropy at each bond in the lat-
tice. There is a clear ballistic spread in the entanglement
entropy in the deconfined dynamics with χ = 0. In con-
trast, when χ = κ , we find that the entanglement entropy
growth is strongly suppressed, which is typical of confined
dynamics.

Let us now repeat the same quenches but for a mass
μ/κ = 0.35. The corresponding quench dynamics are
shown in Fig. 10 for χ = 0 (left column) and χ = κ (right
column). The contrast here between the deconfined and
confined regimes is even more striking than in the case
of the zero-mass quenches in Fig. 9. In the deconfined
regime (χ = 0, left column), the initial presence of the
electron-particle pair is quickly washed out in both the

site-resolved matter occupation and electric flux. How-
ever, for χ = κ (right column), the dynamics is strongly
confined, and the matter and electric-flux configurations
remain virtually unchanged throughout the dynamics. This
is also reflected in the entanglement entropy dynamics
shown in the bottom row of panels in Fig. 10. Whereas
for χ = 0 (left) the dynamics of Sj (t) indicates a very fast
spread throughout the Hilbert space of the quench Hamil-
tonian typical of deconfinement, for χ = κ it shows very
slow spreading indicative of strong confinement.

V. CONCLUSIONS AND OUTLOOK

We have presented an experimental proposal for real-
izing the spin-1/2 quantum link formulation of 1 +
1D quantum electrodynamics on a cold-atom quantum
simulator including a tunable topological θ -angle. The
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setup is composed of a tilted Bose-Hubbard superlattice
with three periodicities, that not only allow for the stabi-
lization of gauge invariance through the entire duration of
the experiment, but also give rise to the topological θ -term
in the effective model derived in leading-order perturbation
theory. We discuss how an effective Stark gauge protection
term [69] emerges that allows for a renormalized gauge
theory with the same local gauge symmetry as the ideal
model.

Using the time-dependent density-matrix renormaliza-
tion group method, we have calculated the time evolution
of the vacuum state during an adiabatic ramp to probe the
effect of a modification of the θ -angle term on Coleman’s
phase transition. Our results suggest that our proposed
experiment can probe how Coleman’s phase transition dis-
appears once the topological θ -angle is tuned away from
π .

We further calculated the far-from-equilibrium dynam-
ics of the vacuum state for massless and massive quenches
in both the deconfined (χ = 0) and confined (χ �= 0)
regimes. The qualitative difference between both regimes
is striking, especially at large fermionic rest mass. For a
massless quench of the vacuum, the weak ergodicity break-
ing paradigm of quantum many-body scars emerges in the
form of persistent oscillations in local observables last-
ing well beyond relevant timescales within the deconfined
regime. However, at finite values of the θ -term strength,
scarring is altered or even undermined by confinement, and
state transfer between the two degenerate vacua, a staple of
scarring in this system, is prohibited as the time-evolved
wave function stays close to the initial vacuum state over
all times. Numerical benchmarks comparing the dynamics
of the bosonic model with those of the ideal target gauge
theory show very good qualitative agreement through-
out the accessible timescales, with excellent quantitative
agreement at short times.

A paradigmatic “Gedanken” state for the investigation
of confinement in particle physics is that of an electron-
positron pair in a vacuum background. We have presented
numerical simulations of a massless as well as a mas-
sive global quench on this initial state at various val-
ues of the θ -term strength. Whereas in the deconfined
regime the dynamics exhibits ballistic propagation in local
observables, and a fast spread in the bond entanglement
entropy, the confined regime shows constrained dynam-
ics, where the electron-positron pair remains confined up
to all accessible evolution times. For the massive quench,
the qualitative difference between the deconfined and con-
fined regimes is even more striking, with much stronger
confinement in the latter.

We focused here on signatures of tuning the topolog-
ical θ -angle as are observable in cold-atom experiments
such as Ref. [36,38] without significant additional over-
head. The discussed signatures of confinement can be
clearly observed over experimentally accessible evolution

times before decoherence effects become non-negligible.
Indeed, the experiments of Refs. [36,38] are able to access
evolution times up to around 120 ms. Assuming experi-
mentally relevant microscopic parameters, our numerical
results show that hallmarks of confinement appear already
on the order of 50 ms. Other phenomena that could be
interesting to observe in future experiments include the
extraction of the meson spectrum that leads to confine-
ment, dynamical quantum phase transitions following a
quench of the topological θ -angle [26], or how different
values of the θ-angle modify thermalization in a gauge
theory [38,87].
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to the arXiv on the same day.

APPENDIX A: LATTICE SCHWINGER MODEL
AND ITS QUANTUM LINK FORMULATION

The lattice Schwinger model is described by the Hamil-
tonian [20,21,23,58,105]

Ĥ = − κ

2a

Lm−1∑
j =1

(
ψ̂

†
� Û�,�+1ψ̂�+1 + H.c.

)

+ μ

Lm∑
�=1

(−1)�ψ̂†
� ψ̂� + a

2

Lm−1∑
�=1

(
Ê�,�+1 + Ebg

)2,

(A1)

where matter on site � is described by Kogut-Susskind
(staggered) fermions of annihilation and creation opera-
tors ψ̂�, ψ̂

†
� , with mass μ. We set the lattice spacing a = 1

throughout our work. Equation (A1) adopts the Wilso-
nian lattice formulation where the gauge (electric) field
on the link between sites � and �+ 1 is described by the
infinite-dimensional operator Û�,�+1 (Ê�,�+1), satisfying the
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commutation relations

[
Ê�,�+1, Ûr,r+1

] = gδ�,rÛ�,�+1, (A2a)[
Û�,�+1, Û†

r,r+1

] = 0. (A2b)

The lattice Schwinger model hosts a U(1) gauge symmetry
with generator

Ĝ� = Ê�,�+1 − Ê�−1,� − g
[
ψ̂

†
� ψ̂� + (−1)� − 1

2

]
. (A3)

The topological θ -angle is incorporated here through the
background field Ebg = gθ/(2π) [35].

We now perform the Jordan-Wigner transformation

ψ̂
†
� = exp

[
iπ

∑
r<�

σ̂ z
r + 1

2

]
σ̂+
� , (A4a)

ψ̂� = exp
[
−iπ

∑
r<�

σ̂ z
r + 1

2

]
σ̂−
� , (A4b)

ψ̂
†
� ψ̂� = σ̂ z

� + 1

2
. (A4c)

Moreover, we adopt the quantum link formulation, where

Û�,�+1 → ŝ+
�,�+1√

S(S + 1)
, (A5a)

Ê�,�+1 → gŝz
�,�+1. (A5b)

This transforms the commutation relations (A2) as

[
Ê�,�+1, Ûr,r+1

] → g√
S(S + 1)

[
ŝz
�,�+1, ŝ+

r,r+1

]

= gδ�,r
ŝ+
�,�+1√

S(S + 1)
, (A5c)

[
Û�,�+1, Û†

r,r+1

] → 1
S(S + 1)

[
ŝ+
�,�+1, ŝ−

r,r+1

]

(A5d)

= 2
S(S + 1)

δ�,rŝz
�,�+1. (A5e)

Equation (A6a) reproduces the canonical commutation
relation given by Eq. (A2a) for any S, while Eq. (A6b)
reduces to Eq. (A2b) in the limit of S → ∞. The above
transformations render Eq. (A1), up to an inconsequential

energetic constant, in the form

Ĥ = −κS

Lm−1∑
�=1

(
σ̂+
� ŝ+

�,�+1σ̂
−
�+1 + H.c.

) + μ

2

Lm∑
�=1

(−1)�σ̂ z
�

+ g2

2

Lm−1∑
�=1

[(
ŝz
�,�+1

)2 + θ − π

π
ŝz
�,�+1

]
, (A6)

with κS = κ/
[
2
√

S(S + 1)
]
. For half-integer S, the QLM

formulation naturally incorporates a θ -angle of π [24,62].
To account for that as we work with S = 1/2, we shift the
last term by π . In this formulation, Gauss’s law takes the
form

Ĝ� = ŝz
�,�+1 − ŝz

�−1,� − σ̂ z
� + (−1)�

2
. (A7)

For experimental purposes, S = 1/2 is the most feasi-
ble choice, which we use henceforth. In the case of S =
1/2,

(
ŝz
�,�+1

)2 = 1, and neglecting this irrelevant energetic
constant further simplifies our Hamiltonian to

Ĥ = − κ√
3

Lm−1∑
�=1

(
σ̂+
� ŝ+

�,�+1σ̂
−
�+1 + H.c.

)

+ μ

2

Lm∑
�=1

(−1)�σ̂ z
� + g2(θ − π)

2π

Lm−1∑
�=1

ŝz
�,�+1. (A8)

We further employ the particle-hole transformation [57,
106]

σ̂
z(y)
� → (−1)�σ̂ z(y)

� , (A9a)

ŝz(y)
�,�+1 → (−1)�+1ŝz(y)

�,�+1, (A9b)

which leaves our U(1) QLM Hamiltonian in the form

Ĥ = − κ√
3

Lm−1∑
�=1

(
σ̂−
� ŝ+

�,�+1σ̂
−
�+1 + H.c.

)

+ μ

2

Lm∑
�=1

σ̂ z
� − g2(θ − π)

2π

Lm−1∑
�=1

(−1)�ŝz
�,�+1. (A10)

Up to a renormalized tunneling coefficient κ , this is the
Hamiltonian of Eq. (3) studied in our work. Furthermore,
the generator of the U(1) gauge symmetry now reads

Ĝ� = (−1)�+1
[

ŝz
�,�+1 + ŝz

�−1,� + σ̂ z
� + 1

2

]
. (A11)
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APPENDIX B: FURTHER DETAILS ON MAPPING
BETWEEN THE QUANTUM LINK MODEL AND

BOSE-HUBBARD MODEL

In this section, we provide further details on the map-
ping of Eq. (3) onto a single-species bosonic model that
can be implemented using ultracold atoms. We first iden-
tify the two local bosonic states |0〉� and |1〉�, associated
with the bosonic ladder operators â� and â†

�, on matter site
� with the two eigenstates of the local Pauli operator:

σ̂−
� = P̂�â�P̂�, (B1a)

σ̂+
� = P̂�â†

�P̂�, (B1b)

σ̂ z
� = P̂�

(
2â†

�â� − 1
)
P̂�, (B1c)

where P̂� is the projector onto the local subspace H� =
span

{ |0〉� , |1〉�
}
. Restricting to this subspace, the bosonic

commutation relation
[
â�, â†

�

] = 1 reproduces the spin
commutation relations

[
σ̂+
� , σ̂−

�

] = σ̂ z
� and

[
σ̂ z
� , σ̂±

�

] =
±2σ̂±

� .
In a similar fashion, we identify the local bosonic states

|0〉�,�+1 and |2〉�,�+1, associated with the bosonic ladder
operators â�,�+1 and â†

�,�+1, on the link between matter sites
� and �+ 1 with the two eigenstates of the local spin-1/2
operator:

ŝ−
�,�+1 = 1√

2
P̂�,�+1

(
â�,�+1

)2P̂�,�+1, (B2a)

ŝ+
�,�+1 = 1√

2
P̂�,�+1

(
â†
�,�+1

)2P̂�,�+1, (B2b)

ŝz
�,�+1 = 1

2
P̂�,�+1

(
â†
�,�+1â�,�+1 − 1

)
P̂�,�+1, (B2c)

where P̂�,�+1 is the projector onto the local subspace
H�,�+1 = span

{ |0〉�,�+1 , |2〉�,�+1
}
. Restricting to this sub-

space, the bosonic commutation relation
[
â�,�+1, â†

�,�+1

] =
1 reproduces the spin commutation relations

[
ŝ+
�,�+1, ŝ−

�,�+1

]
= 2ŝz

�,�+1 and
[
ŝz
�,�+1, ŝ±

�,�+1

] = ±ŝ±
�,�+1.

Inserting Eqs. (B1) and (B2) into Eq. (3), and neglecting
inconsequential constant energetic terms, renders Eq. (3)
in the form

Ĥ = P̂
∑
�

{
− κ

2
√

2

[
â�

(
â†
�,�+1

)2â�+1 + H.c.
]

+ μâ†
�â�

− g2(θ − π)

4π
(−1)�â†

�,�+1â�,�+1

}
P̂ , (B3)

where P̂ = ∏
� P̂�P̂�,�+1.

To map this model to an effective Hamiltonian derived
from the Bose-Hubbard model, one can follow degener-
ate perturbation theory as outlined in Ref. [36]. Using U

and δ as large energy scales, the hopping term ∝ J in the
Bose-Hubbard model, Eq. (5), becomes a perturbation to
the diagonal terms Ĥdiag as collected in Eq. (7). Focusing
on the target subsector of the Bose-Hubbard model consist-
ing of bosonic occupations {|0〉2� , |1〉2�} on even (matter)
optical lattice sites j = 2� and {|0〉2�+1 , |2〉2�+1} on odd
(gauge) sites j = 2�+ 1, and states that fulfil Gauss’s
law, second-order degenerate perturbation theory yields
the effective Hamiltonian (B3), where

κ =
√

2J 2
(

1
δ +�∓ χ

+ 1
U − δ +�± χ

+ 1
δ −�∓ χ

+ 1
U − δ −�± χ

)
, (B4)

with the alternating sign of χ in this expression occurring
between odd and even sites. The rest mass of fermions is
given by μ = δ − U/2. In the experiment, the large energy
scale δ is on the order of 700 Hz, while the largest value of
χ we use here is always below 30 Hz, ensuring that |δ ±
�| 
 |χ | and, since U ≈ 2δ, also that |U − δ ±�| 
 |χ |.
This permits us to neglect χ in the expression for κ , leading
to Eq. (10a) used in the main text.

APPENDIX C: RAMPING THE
CHARGE-PROLIFERATED STATE

As mentioned in the main text, the experiments of
Refs. [36,38] started in the charge-proliferated state
|. . . , 0, 1, 0, 1, 0, 1, 0, . . .〉, which represents the ground
state of Eq. (3) at μ/κ → −∞, and employed the inverse
of the ramp protocol described in Fig. 3. Let us now con-
sider the same adiabatic ramp as Refs. [36,38] but with
the additional θ -term of strength χ . The corresponding
dynamics of the electric flux and chiral condensate are
shown in Figs. 11(a) and 11(b), respectively. We find
perfect quantitative agreement in the chiral-condensate
dynamics for the case of χ = 0 with the corresponding
result in Ref. [38].

Focusing first on the case of χ = 0, we find that the
electric flux starts at zero, as the state at τ = 0 is the
charge-proliferated state, and then goes to 0.1 at the end of
the ramp. Even though the state is now in the Z2 symmetry-
broken phase, it is roughly a superposition between the two
vacua of the U(1) QLM. Indeed, the charge-proliferated
initial state is Z2 symmetric as is ĤBH, and so numerically
this symmetry is only slightly broken at the edges of the
chain (we employ open boundary conditions for experi-
mental feasibility). This finite-size effect is the main reason
why E(τ ) is not exactly zero throughout the whole ramp.
A small value of the θ -term strength, χ = 0.2κ , helps bias
the system toward one of the two vacua, rendering E(τ )
larger at the end of the ramp. However, when χ is quite
large, the dynamics of the electric flux is no longer mono-
tonic, exhibiting fast growth at early times, but then drops
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(a)

(b)

FIG. 11. Starting in the charge-proliferated state
|. . . , 0, 1, 0, 1, 0, 1, 0, . . .〉, we perform the inverse of the
adiabatic ramp protocol depicted in Fig. 3 for various values of
χ/κ (see legends). (a) The ensuing dynamics of the electric flux.
The explicit symmetry breaking introduced by the θ -term allows
the electric flux to go to larger values at moderate values of χ ,
since now the system is no longer mostly in a superposition
of vacua at late times as in the case of the deconfined regime
at χ = 0. At larger values of χ , the physics is completely
changed, and the monotonic behavior of the electric flux is no
longer there. (b) The ensuing dynamics of the chiral condensate
confirms this picture (see text).

to a lower value that further decreases with larger χ . This
reversal in the growth of the electric flux also occurs earlier
with increasing χ .

Turning to the chiral condensate in Fig. 11(b), the
behavior is as expected for χ = 0. The chiral condensate is
maximal at unity in the charge-proliferated state at τ = 0,
and then steadily decreases during the ramp, approaching
close to zero at its end (τ = 20 ms), where the system is
deep in the Z2 symmetry-broken phase. As χ gets larger,
this monotonic decay is fundamentally altered, in con-
gruence with the corresponding case in the electric flux.
Again, the reversal of the monotonic behavior occurs ear-
lier with increasing χ , with the chiral condensate finishing
the ramp at a finite value that increases with χ .

The qualitatively different behavior in the ramp dynam-
ics of the charge-proliferated state at larger values of χ
indicate that the physics is fundamentally different under
strong confinement.
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Arnab Sen, Zlatko Papić, and Jad C. Halimeh, Promi-
nent quantum many-body scars in a truncated Schwinger
model, (2022), 10.48550/ARXIV.2204.01745.

[69] Haifeng Lang, Philipp Hauke, Johannes Knolle, Fabian
Grusdt, and Jad C. Halimeh, Disorder-free localization
with stark gauge protection, (2022),.

[70] Maarten Van Damme, Haifeng Lang, Philipp Hauke, and
Jad C. Halimeh, Reliability of lattice gauge theories in the
thermodynamic limit, (2021), ArXiv:2104.07040.

[71] Bing Yang, Hui Sun, Chun-Jiong Huang, Han-Yi Wang,
Youjin Deng, Han-Ning Dai, Zhen-Sheng Yuan, and Jian-
Wei Pan, Cooling and entangling ultracold atoms in
optical lattices, Science 369, 550 (2020).

[72] Bing Yang, Han-Ning Dai, Hui Sun, Andreas Reingru-
ber, Zhen-Sheng Yuan, and Jian-Wei Pan, Spin-dependent
optical superlattice, Phys. Rev. A 96, 011602 (2017).

[73] Peter Schmitteckert, Nonequilibrium electron transport
using the density matrix renormalization group method,
Phys. Rev. B 70, 121302 (2004).

[74] Adrian E. Feiguin and Steven R. White, Time-step tar-
geting methods for real-time dynamics using the density
matrix renormalization group, Phys. Rev. B 72, 020404
(2005).

[75] Juan José García-Ripoll, Time evolution of matrix product
states, New J. Phys. 8, 305 (2006).

[76] Ian P. McCulloch, From density-matrix renormalization
group to matrix product states, J. Stat. Mech.: Theory Exp.
2007, P10014 (2007).

[77] Ulrich Schollwöck, The density-matrix renormalization
group in the age of matrix product states, Ann. Phys. (N.
Y) 326, 96 (2011)., January 2011 Special Issue

[78] Sebastian Paeckel, Thomas Köhler, Andreas Swoboda,
Salvatore R. Manmana, Ulrich Schollwöck, and Claudius
Hubig, Time-evolution methods for matrix-product states,
Ann. Phys. (N. Y) 411, 167998 (2019).

[79] Jad C. Halimeh, Robert Ott, Ian P. McCulloch, Bing Yang,
and Philipp Hauke, Robustness of gauge-invariant dynam-
ics against defects in ultracold-atom gauge theories, Phys.
Rev. Res. 2, 033361 (2020).

[80] Wojciech H. Zurek, Uwe Dorner, and Peter Zoller,
Dynamics of a Quantum Phase Transition, Phys. Rev.
Lett. 95, 105701 (2005).

[81] Henry Lamm, Scott Lawrence, and Yukari Yamauchi,
Suppressing coherent gauge drift in quantum simulations,
(2020), ArXiv:2005.12688.

040316-20

https://doi.org/10.1103/PhysRevD.101.074512
https://doi.org/10.1016/0550-3213(82)90229-2
https://doi.org/10.1016/S0550-3213(97)80041-7
https://doi.org/10.1002/andp.201300104
https://doi.org/10.1103/PhysRevA.94.052321
https://doi.org/10.1103/PhysRevD.11.395
https://doi.org/10.1103/PhysRevD.95.094509
https://doi.org/10.22323/1.334.0022
https://doi.org/10.1088/1361-6633/ab6311
https://arxiv.org/abs/2104.00025
https://arxiv.org/abs/2112.04501
https://doi.org/10.1103/physrevlett.109.175302
https://arxiv.org/abs/2201.00821
https://doi.org/10.1038/s41567-018-0137-5
https://arxiv.org/abs/2203.08830
https://arxiv.org/abs/2104.07040
https://doi.org/10.1126/science.aaz6801
https://doi.org/10.1103/PhysRevA.96.011602
https://doi.org/10.1103/PhysRevB.70.121302
https://doi.org/10.1103/PhysRevB.72.020404
https://doi.org/10.1088/1367-2630/8/12/305
https://doi.org/10.1088/1742-5468/2007/10/p10014
https://doi.org/https://doi.org/10.1016/j.aop.2010.09.012
https://doi.org/10.1016/j.aop.2019.167998
https://doi.org/10.1103/PhysRevResearch.2.033361
https://doi.org/10.1103/PhysRevLett.95.105701
https://arxiv.org/abs/2005.12688


TUNING THE TOPOLOGICAL θ -ANGLE IN COLD-ATOM QUANTUM... PRX QUANTUM 3, 040316 (2022)

[82] Valentin Kasper, Torsten V. Zache, Fred Jendrzejew-
ski, Maciej Lewenstein, and Erez Zohar, Non-abelian
gauge invariance from dynamical decoupling, (2021),
ArXiv:2012.08620.

[83] Jonathan D’Emidio, Alexander A. Eberharter, and
Andreas M. Läuchli, Diagnosing weakly first-order phase
transitions by coupling to order parameters, (2021),.

[84] Sanjay Moudgalya, Stephan Rachel, B. Andrei Bernevig,
and Nicolas Regnault, Exact excited states of noninte-
grable models, Phys. Rev. B 98, 235155 (2018).

[85] A. Smith, J. Knolle, D. L. Kovrizhin, and R. Moessner,
Disorder-Free Localization, Phys. Rev. Lett. 118, 266601
(2017).

[86] Marlon Brenes, Marcello Dalmonte, Markus Heyl, and
Antonello Scardicchio, Many-Body Localization Dynam-
ics from Gauge Invariance, Phys. Rev. Lett. 120, 030601
(2018).

[87] Jürgen Berges, Michal P. Heller, Aleksas Mazeliauskas,
and Raju Venugopalan, QCD thermalization: Ab initio
approaches and interdisciplinary connections, Rev. Mod.
Phys. 93, 035003 (2021).

[88] F. Hebenstreit, J. Berges, and D. Gelfand, Real-Time
Dynamics of String Breaking, Phys. Rev. Lett. 111,
201601 (2013).
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