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Abstract: Radar data assimilation has been operational at the Deutscher Wetterdienst for several
years and is essential for generating accurate precipitation forecasts. The current work attempts to
further enhance the radar data assimilation by improving the latent heat nudging (LHN) scheme and
by reducing the observation error (OE) caused by the representation error of the efficient modular
volume radar operator (EMVORADO). First of all, a series of hindcasts for a one-month convective
period over Germany are performed. Compared with radar reflectivity and satellite observations,
it is found that the LHN scheme that implicitly adjusts temperature performs better, and the beam
broadening effect and the choice of the scattering schemes in EMVORADO are important. Moreover,
the Mie scheme with the new parameterization to reduce the brightband effect not only proves to
be the best in hindcasts but also that it results in the smallest standard deviations and the shortest
horizontal correlation length scales of the OE in data assimilation experiments.

Keywords: hindcasts; latent heat nudging; representation error; radar; satellite; convective scale;
data assimilation

1. Introduction

Since February 2021, the convection-permitting isosahedral non-hydrostatic Deutsch-
land (Germany) 2 (ICON-D2) horizontal grid spacing of 2 km) model has been operational
for short-range forecasts at the Deutscher Wetterdienst (DWD, Germany’s National Mete-
orological Service). Initial conditions are provided by the kilometre-scale ensemble data
assimilation (KENDA) [1]) system, in which the local ensemble transform Kalman filter
(LETKF [2]) scheme is implemented to assimilate conventional observations as well as
remote sensing data, e.g., satellite and weather radar data (including 3D volume-scanning
reflectivity and radial wind data). In addition, the latent heat nudging (LHN [3]) is em-
ployed to assimilate radar-derived surface precipitation rates. Since the KENDA system
has become operational, continuous efforts have been made to improve it. The current
study focuses on how to enhance the performance of the radar data assimilation, in which
two aspects are of particular interest. First, the LHN schemes could be associated with
the imbalance (also called “ramp-down” [4]) issue, i.e., the model is nudged toward obser-
vations too strongly and shocks could be introduced to model (thermo)dynamics, which
therefore could cause a rapid loss of forecast skills. Secondly, Zeng et al. [5] used the
ICON-D2-KENDA with the efficient modular volume radar operator (EMVORADO [6–10])
to investigate observation error statistics of reflectivity and radial wind. It is found that

Remote Sens. 2022, 14, 5295. https://doi.org/10.3390/rs14215295 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs14215295
https://doi.org/10.3390/rs14215295
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://doi.org/10.3390/rs14215295
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs14215295?type=check_update&version=2


Remote Sens. 2022, 14, 5295 2 of 12

representation error in the radar forward operator (hereafter denoted by “FE”) caused by
neglecting the effects of reflectivity weighting or terminal fall speed of hydrometeors is
omittable by average, but the FE due to neglecting the beam broadening effect as well
as due to the scattering schemes can be significant. For instance, the Mie scheme with a
specific parameterization for melting particles results in a considerably larger FE around
the melting layer than the Rayleigh scheme. This could be due to the inappropriate pa-
rameterization, but this could also be associated with the strong nonlinearity of the Mie
scattering scheme that the LETKF cannot cope with well.

In this work, first of all, we attempt to obtain an easier and better understanding of
the impacts of the LHN schemes as well as impacts of configurations of EMVORADO
(e.g., the beam broadening effect and the scattering schemes) by performing a series
of hindcasting experiments with ICON-D2 for a summer period over Germany, with-
out possible mutual influences with the data assimilation. A similar study has been
conducted by Geiss et al. [11] but for tuning the novel visible satellite image forward op-
erator (VISOP) that extends the method for fast satellite image simulation (MFASIS) for
1D radiative transfer [12] to account for most important 3D radiative transfer effects [13].
By analysing results of hindcasts, it may in turn help us refine the KENDA system. There-
fore, in the second half of this work, a series of data assimilation experiments with different
configurations of EMVORADO are executed, based on the KENDA system. The statistics
of the OE are then estimated by the Desroziers method [14], aiming to explore whether
improved configurations of EMVORADO indicated by the hindcasts also reduce the FE
and consequently OE in data assimilation.

The paper is organized as follows. Section 2 briefly introduces ICON-D2 and observa-
tions that are used to validate the performance of hindcasts, and proposes two different
LHN schemes and describes the Desroziers method. Sections 3 and 4 describe the experi-
mental designs and results for hindcasts and data assimilation, respectively. Section 5 gives
the summary and outlook.

2. Model, Observations, and Methodology

ICON-D2, the regional model of the German weather service is used in this study. It
has a horizontal resolution of 2 km and 65 vertical levels, and its domain covers Germany
and some parts of neighboring nations (see Figure 1). ICON-D2 is initialized by downscaled
ICON-EU analysis and is hourly driven by analysis lateral boundary conditions from the
ICON-EU (one-way nesting). The one-moment bulk microphysical scheme for cloud
ice qi, cloud droplets qc, snow qs, rain qr, and graupel qg is used [15,16]. In addition,
the turbulence is parametrized by the scheme of Raschendorfer [17] and the shallow
convection is parametrized by the scheme of Tiedtke [18], and the deep convection is
explicitly resolved.

The DWD operates a C-band Doppler radar network of 17 stations (distributed
throughout Germany) with a uniform scan strategy that takes about 5 min to be completed.
The scan begins with the terrain-following precipitation scan (horizontal range: 150 km),
followed by the volume scan which starts with six consecutive antenna rotations for el-
evations of 5.5◦, 4.5◦, 3.5◦, 2.5◦, 1.5◦, and 0.5◦ (horizontal range: 180 km) and then does
another four rotations for elevations of 8.0◦, 12.0◦, 17.0◦, and 25.0◦ (horizontal ranges de-
creasing from 160 km to 120 km as elevations increase). Based on five categorized empirical
reflectivity-rainfall (Z–R) relationships that depend on the meteorological situations [3],
precipitation rates are derived from reflectivity obtained by the precipitation scan.

To validate model outputs with radar reflectivity, EMVORADO is used to produce syn-
thetic radar reflectivity, which is one of the most comprehensive radar forward operators
utilized in operational suites (i.e., for each physical process, it provides different options
associated with different accuracies and costs). For instance, for the beam broadening effect,
EMVORADO provides the possibility of taking the varying beam width into account by
using a certain amount of auxiliary rays in horizontal and vertical directions (relative to
the beam axis), and the pulse-volume integration is performed over nodes given by the
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numerical Gauss–Legendre quadrature. For scattering schemes, there are two methods
available, namely the Rayleigh method for (near-)spherical particles with relatively small
sizes compared to the wavelength and the Mie method for one- or two-layered spherical
particles with arbitrary sizes. For the former one, only one effective medium approximation
(EMA) approach, namely the Oguchi-model [19] is implemented for calculating partially
melted particles, which allows for analytic solutions. For the latter one, two EMA ap-
proaches, namely the Maxwell–Garnett and Bruggemann models [20,21], are implemented,
which allows for the tuning for the melting layer, depending on the melting state and the
particle morphology [9]. For detailed descriptions of the EMVORADO (e.g., equations for
simulating reflectivity and radial wind), readers are referred to [5]. In order to validate
the impacts of LHN schemes, VISOP and RTTOV are [22] additionally used to provide
synthetic satellite data. As in [11], we use the visible 0.6 µm channel (VIS006, simulated by
VISOP), which usually has relatively smaller errors in the surface albedo, and the 10.8 µm
thermal infrared window channel (IR108, simulated by RTTOV), whose signals are in large
part determined by the emission from the ground and clouds (only slightly affected by
gaseous absorption).

Figure 1. Illustration of the ICON-D2 domain with the radar network of the DWD (each station is
denoted by a red bullet with a station number, the scanning range is denoted by a circle).

The general concept of the LHN schemes assume that the surface precipitation rate
at one grid point is proportional to the column-integrated latent heat, based on which
the vertical profiles of (positive) temperature increments ∆T are generated. In this work,
two LHN schemes are employed. In the first one (denoted by “LHN1”), temperature
increments ∆T are generated based on the prognostic precipitation [3]; additionally, qv
is adapted to ∆T accordingly, so that the relative humidity rh remains unchanged. In
the second one (denoted by “LHN2”), ∆T is only used to derive ∆qv and then is set to
zero. The modifications to T are eventually realized via the saturation adjustment due to
the increasing qv. Consequently, ∆T is generated over the whole column for the LHN1,
whereas ∆T are only available at points with occurrence of the saturation adjustment for
the LHN2. Therefore, the LHN2 is considered as an implicit approach to adjust T. The
LHN schemes are applied continuously during the integration of the model by using data
linearly interpolated in time between two consecutive observed precipitation rate fields.
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The Desroziers method [14] is commonly used to estimate the observation error
covariance matrix as

Rest = E[do−adT
o−b], (1)

where do−b = yo−H(xb) and do−a = yo−H(xa) are background and analysis departures,
and yo is the observation vector. Theoretically, the Desroziers method is an iterative process;
however, in practice, the estimation of one iteration is often used due to its sufficient
accuracy and low computational expense [23–26]), as in this work.

3. Results
3.1. Experimental Design

Similar to Geiss et al. [11], to obtain robust statistics, a one-month period from 1 June
to 30 June 2020 with high occurrence of convection is chosen, characterized by the typical
changeable central European summer weather. In particular, between 10 and 20 June,
the sultry hot air caused thunderstorms with heavy showers often developed in a low-
pressure trough, which was situated on a diagonal (from the northwest to the southeast)
over Germany. Precipitation in this month amounted to approximately 90 mm, which
was slightly higher than its long-term average of 85 mm for June. Overall, the length of
the period and the size of the domain size are sufficient for the model to develop its own
convection distribution.

In order to investigate the impacts of the LHN schemes and different configurations of
EMVORADO, six different hindcasting experiments are performed with ICON-D2, hourly
driven by the lateral boundary conditions throughout the one-month convective period
described above. The goal of the first three ones is to investigate the performance of LHN
schemes. For comparison, a control run without using any LHN schemes is done. The
other three hindcasts are used to evaluate the different configurations of the EMVORADO,
by which it is straightforward to see the representation error caused by the EMVORADO,
not influenced by the LETKF algorithm or by the settings of the KENDA system. For
instance, to evaluate the impacts of the beam broadening effect, E_mie1_lhn2 is compared
to E_mie1_lhn2_bb, while the latter one accounts for the beam broadening effect with
five auxiliary rays in the vertical direction (the horizontal direction is omitted because
its impacts are insignificant [5]). To evaluate impacts of different scattering schemes and
EMA approaches, E_mie1_lhn2_bb, E_ray_lhn2_bb and E_mie2_lhn2_bb are compared.
E_ray_lhn2_bb employs the Rayleigh method (with the Oguchi-model for melting particles).
Both E_mie1_lhn2_bb and E_mie2_lhn2_bb employ the Mie method; the latter one uses
the Maxwell–Garnett model with a new parameterization, which includes increasing the
starting melting temperature from 263.160 to 270.16 K to lower the height of the melting
layer, decreasing the melting degree from 0.2 to 0.1 to abbreviate the refraction index and
using “maisms” instead of “mawsms” for the particle morphology to shrink the size of
particles. All of these contribute to the reduction of the brightband effect. Experimental
setups are given in Table 1. It is noted that the use of the forward operators EMVORADO,
VISOP, and RTTOV allows for direct comparison of radar and satellite observations with
their corresponding synthetic observations.

Table 1. Experimental setups: X means “on” or “applicable” and ×means “off” or “not applicable”.

EXP LHN Beam Broadening Scattering Scheme

E_mie1_nolhn × × Mie1
E_mie1_lhn1 LHN1 × Mie1
E_mie1_lhn2 LHN2 × Mie1
E_ray_lhn2_bb LHN2 X Rayleigh
E_mie1_lhn2_bb LHN2 X Mie1
E_mie2_lhn2_bb LHN2 X Mie2
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3.2. Verification Method

In this work, experimental results are evaluated primarily in terms of the contoured
frequency by altitude diagrams (CFADs [27]). Based on the 3D volume scanning data of the
radar network for the entire one-month period, the CFADs for observed and simulated re-
flectivities are constructed. Additionally, In order to analyse cloud statistics, pseudo CFADs
combining two satellite channels (i.e., brightness temperature (denoted by “BT”) of IR108)
and solar reflectance (denoted by “R”) of VIS006) are constructed as in Geiss et al. [11],
in which BT is referred to as height. For clouds with BT ≥ 275 K are considered as low
clouds, 243 K < BT < 275 K as middle clouds and ≤ 243 K as high clouds. In addition,
depending on R, clouds are classified into clear-sky (0 ≤ R ≤ 0.2), thin to intermediate
clouds (0.2 < R < 0.6), and thick clouds (R ≥ 0.6).

3.3. Evaluation of the LHN Schemes

Figure 2 illustrates the CFADs of radar reflectivity for observations, E_mie1_nolhn,
E_mie1_lhn1 and E_mie1_lhn2. In the observed CFAD (Figure 2a), broad distributions
of reflectivity values occur at all heights, which is in line with Yuter and Houze [27]
for the convective period. The highest frequencies can be seen for 10–20 dBZ around
the melting layer (about 3 km high). Below the melting layer, reflectivity values with
peak frequencies decrease rapidly with decreasing heights, probably due to evaporation.
Reflectivity values ≥ 60 dBZ are possibly caused by the raindrop collision/coalescence
process and the melting large ice-phase particles. Above the melting layer, reflectivity
values with peak frequencies decrease slowly with increasing heights. High reflectivity
values (≥40 dBZ) indicate the existence of a considerable amount of graupel and hail, due
to the riming of ice particles favored by convective updrafts. In contrast to observations,
there are three clear differences in common among all experiments (Figure 2b–d): (1) Above
6 km, the amounts of reflectivities between 40 and 50 dBZ are prone to be overestimated but
underestimated for reflectivities≥ 60 dBZ. As stated in Zeng et al. 2021c, the overestimation
could be owing to the small slope intercept parameter N0 for the graupel in the one-
moment microphysical scheme; therefore, too much graupel with considerable sizes could
be produced. The underestimation can be attributed to the model resolution (2 km) that
may be not fine enough to resolve convective cores. The one-moment scheme utilized
here could be another reason: as is known, reflectivity is proportional to D6 (D particle
size), which is in turn proportional to (q/N)2 (q: mixing ratio; N: number concentration).
In case of the one-moment scheme, larger q is coupled with larger N; therefore, it is not
able to produce a few very large particles (here probably graupel). Below 4 km, the ground
clutter effect can also contribute to very high observed reflectivities. (2) Reflectivities are
considerably overestimated around the melting layer. (3) Fewer reflectivities are available
above 12 km. For (1), one can consider using the two-moment instead of the one-moment
scheme, but it is out of the scope of the current work. For (2) and (3), more discussion can
be found in Section 3.4.

By comparing Figure 2b,c, the most remarkable differences between not using and
using the LHN1 can be seen for reflectivity values 0–20 dBZ between heights 8 and 10 km
(highlighted by dashed line squares). The LHN1 results in closer frequency distributions
to observed ones as it either effectively extends the depth of convection or generates deep
convection missing in the model. By comparing Figure 2c,d, frequency distributions of
the LHN2 are closer to observed ones than those of the LHN1 for reflectivities 10–30 dBZ
between heights 4 and 7 km (highlighted by dashed line ellipses). This could be because
the LHN2 adjusts T in an implicit way that may mitigate the imbalance issue and may be
more favorable for longer life cycles of convection.
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1

a) b)

c) d)

Figure 2. The CFADs of radar reflectivity from 1 June to 1 July 2020 for (a) observations,
(b) E_mie1_nolhn, and (c) E_mie1_lhn2. In calculations of the CFADS, in order to consider the
beam broadening effect (i.e., pulse volume grows as distances increase), frequencies of reflectivities at
further distances are multiplied with larger factors than those at shorter distances. Solid lines in (b–d)
indicate contour lines of observations. Dashed line ellipses highlight impacts of the LHN scheme.

Furthermore, Figure 3 compares observations with experiments by means of pseudo
CFADs that combine satellite channels of brightness temperature and solar reflectance (the
former one is regarded as the height information). It is noticed in observations (Figure 3a)
that the peak distributions occur for low and thin clouds, and the amounts of clouds
decrease gradually with growing altitudes and cloud thickness. Compared to the observed
pseudo CFADs, Figure 3b exhibits similar distributions on the whole; however, clear dif-
ferences can be also seen. First, the slope of the BT-reflectance relation characterizing
low-level clouds with reflectance between 0.3 and 0.9 (highlighted by solid lines) is steeper
in Figure 3a than in Figure 3b, (in line with Geiss et al. [11]), which could indicate deficien-
cies in shallow convection parameterization of the model. Secondly, for middle clouds
(highlighted by solid line ellipses), thin clouds at lower (higher) levels are underestimated
(overestimated) for reflectance between 0.2 and 0.6, and a local peak centered at brightness
temperature 240 K and reflectance 0.7 in the observed CFAD is shifted to 250 K and 0.8.
The difficulty in representing middle clouds is a common problem in NWP models [28],
likely due to systematic biases of models [29], caused, for instance, by a too active deep
convection scheme. By using the LHN1 (see Figure 3c), the slope of the reflectance between
0.3 and 0.9 becomes a bit steeper and the overestimation of very thin clouds at the boundary
layer is slightly corrected. The representation of middle clouds is considerably improved.
For instance, the overestimation of thin clouds at higher levels is reduced and the center of
the local peak moves slightly leftward (from 0.8 to 0.75). By using the LHN2 (see Figure 3d),
no clear further improvements can be seen compared to the LHN1.
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Figure 3. The pseudo CFADS of reflectance from 1 June to 1 July 2020 for (a) observations, (b)
E_mie1_nolhn, (c) E_mie1_lhn1, and (d) E_mie1_lhn2.

3.4. Evaluation of the Radar Forward Operator

In order to show the impacts of accounting for the beam broadening effect, Figure 4
compares the CFAD of radar reflectivity observations with those of E_mie1_lhn2 and
E_mie1_lhn2_bb. The most noticeable differences occur for reflectivity values 0–20 dBZ
above 9 km (highlighted by dashed line ellipses), where probability distributions of
E_mie1_lhn2_bb are considerably closer to observations. This is obviously due to the fact
that the beam broadening effect becomes prominent as further distances (higher heights,
accordingly) are reached. In addition, differences can be also seen for 0–30 dBZ between
heights 4 and 7 km (highlighted by solid line ellipses). Because it is closer to the melting
layer, this is likely caused by the beam interception of the melting layer, which leads to the
pulse-volume averaging over inhomogeneous vertical profiles of reflectivity. Results are in
line with the smaller FE of EMVORADO by accounting for the beam broadening effect in
Zeng et al. [5].

In order to show the impacts of scattering schemes and EMA approaches, Figure 5
compares the CFAD of radar reflectivity observations with those of E_mie1_lhn2_bb,
E_ray_lhn2_bb, and E_mie2_lhn2_bb. It is easily recognized that reflectivity values are con-
siderably overestimated around the melting layer in E_mie1_lhn2_bb, indicating that the
parameterization for the the melting particles may not be appropriate. Smaller reflectivity
values are produced at the melting layer by using the Rayleigh–Oguchi approximation
in E_ray_lhn2_bb, which are much closer to observations. Results are consistent with the
smaller FE of EMVORADO around the melting layer by using the Rayleigh–Oguchi ap-
proximation in [5]. However, in case of the Mie scheme, by using the new parameterization
for the melting particles (see Section 3.1), the overestimation due the brightband effect is
reduced in E_mie2_lhn2_bb, which results in a similar pattern as E_ray_lhn2_bb.
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a)

1

b) c)

Figure 4. Same as Figure 2 but for (a) observations (b) E_mie1_lhn2, and (c) E_mie1_lhn2_bb.

1

a) b)

c) d)

Figure 5. Same as Figure 2 but for (a) observations (b) E_mie1_lhn2_bb (c) E_ray_lhn2_bb, and
(d) E_mie2_lhn2_bb.
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4. Experimental Design and Results of Data Assimilation

For data assimilation experiments, we use the ICON-LAM-KENDA system with
the the LETKF and choose the convective period 10–15 June in 2020 (part of the specific
period for hindcasts). As in previous studies [5,26], the assimilation window is one hour.
The ensemble size is 40 and additionally a deterministic run is carried on. Observations
include conventional data and radar data (reflectivity and radial wind). To thin radar data
(including 3D volume-scanning reflectivity and radial wind data), only data from the latest
5 min before the analysis time are used and additionally a superobbing approach with
horizontal resolution 5 km is applied. To avoid spurious analysis increments, all reflectivity
values lower than 0 dBZ are set to 0 dBZ. For the observation error covariance, a diagonal
R is used. R = 10 · 10 · I [dBZ2] for reflectivity, and R = 2.5 · 2.5 · γ · I [m2/s2] for radial
wind, where γ is a scaling factor that inflates errors if onsite reflectivities are too small
(more about this in [26]). A horizontal localization radius of 16 km and a height-depending
vertical localization radius (0.0075 to 0.5 in logarithm of pressure) are applied to radar data.
The adaptive multiplicative inflation [30], the relaxation to prior perturbations (RTPP [31],
and the additive noise (Zeng et al. [32] are used for inflation. In addition, in all experiments,
the LHN2 scheme is adopted due to its better performance as shown in Section 3.3. A more
detailed description of the ICON-LAM-KENDA system can be found in Zeng et al. [5].

In this work, four data assimilation experiments are executed (see Table 2). DA_dwd
adopts the operational settings of the KENDA at the DWD, DA_dwd, and DA_mie1 differ
in that the latter one takes the beam broadening effect into account and neglects attenuation
(because measurements are corrected for attenuation). In contrast to DA_mie1, DA_ray uses
the Rayleigh scattering scheme, whereas DA_mie2 uses the Mie scattering scheme with new
parameters to reduce the brightband effect. As in Zeng et al. [5,26], Waller et al. [33], for the
Desroziers method, samples of do−adT

o−b of the deterministic run are used to calculate the
statistics of the OE. For each elevation, standard deviations and horizontal correlations are
averaged over all samples from all times and stations.

Table 2. Experimental setups: X means “on” or “applicable” and ×means “off” or “not applicable”.

EXP Attenuation LHN Beam Broadening Scattering Scheme

DA_dwd X LHN2 × Mie1
DA_mie1 × LHN2 X Mie1
DA_ray × LHN2 X Rayleigh
DA_mie2 × LHN2 X Mie2

Figure 6 demonstrates vertical profiles of the estimated standard deviations of the
OE for reflectivity data ≥ 5 dBZ at elevation 3.5◦ as well as numbers of samples used for
estimation (varying between 103 and 104, sufficient for robust statistics [33]). It is obvious
that DA_dwd results in the largest standard deviations, mainly due to neglecting the beam
broadening effect. Standard deviations of DA_mie1 are considerably smaller, especially
at heights above 4 km. Compared to DA_mie1, DA_ray exhibits much smaller standard
deviations between 2 and 6 km. As pointed out in Zeng et al. [5], this can be attributed to
inappropriate microphysics melting parameterization in case of the Mie scattering scheme,
and due to the vertical localization, the standard deviations around the melting layer are
affected as well. By using the new parameterization, the standard deviations of DA_mie2 are
very similar to those of DA_ray and even slightly smaller above 6 km.

Figure 7 shows the horizontal correlations of the OE for reflectivity data ≥ 5 dBZ for
elevation 3.5◦ at a height of 2.0 km. The horizontal correlation length scales of DA_dwd,
DA_mie1, DA_ray, and DA_mie2 are about 40, 30, 25, and 20 km. As argued in Zeng et al. [5],
the impacts of neglecting the beam broadening effect are neutral; therefore, the longest error
correlation length scale of DA_dwd is due to the attenuation effect. By using the Rayleigh
scheme in DA_ray, the length scale is shorter than in DA_mie1, and by using the new
parameterization in case of the Mie scheme in DA_mie2, the shortest length scale is obtained.
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1

Figure 6. Vertical profiles of the estimated standard deviations of the OE for reflectivity data ≥ 5 dBZ
at elevation 3.5◦ (left pannel) and the numbers of samples used for estimation (right panel). The sam-
ples are binned every 200 m in the vertical.

°

Figure 7. The estimated horizontal correlations of the OE for reflectivity data ≥ 5 dBZ for elevation
3.5◦ at heights of 2.0 km. For each elevation, the samples are binned every 5 km in the separation
distance. As in Zeng et al. [5,26], Waller et al. [33], the correlation length scale is the distance where
the correlation coefficient becomes not longer than 0.2.

5. Conclusions

The convective-scale data assimilation system ICON-D2-KENDA with the LETKF
is operational at the DWD, and radar volume data are assimilated by using the forward
operator EMVORADO, which is one of the most comprehensive operators at operational
centers. In addition, LHN is employed to assimilate radar-derived precipitation rates.
The goal of this work is to improve the LHN scheme as well as to reduce representation
error of EMVORADO (denoted by “FE”) in the convective-scale data assimilation based on
the ICON-D2-KENDA system for a summer period over Germany.

First of all, a series of one-month hindcasts are performed, in which two LHN schemes
(LHN1 and LHN2) are compared with not using the LHN schemes. The scheme LHN1
generates temperature increments ∆T over the whole column and adapts qv accordingly so
that the relative humidity rh remains unchanged. The LHN2 derives ∆T from increments
of qv and ∆T are only available at points with occurrence of the saturation adjustment;
therefore, the LHN2 is considered as an implicit approach to adjust T. It is shown by the
CFADS of reflectivity that both LHN schemes produce closer frequency distributions to
observed ones than no use of the LHN schemes, and the LHN2 scheme is better than the
LHN1 scheme for reflectivities 10–30 dBZ between heights 4 and 7 km. Furthermore, it
is shown by satellite-based pseudo-CFADS by using a visible channel to quantify cloud
water/ice content and an infrared channel indicating cloud top height that both LHN
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schemes considerably improve the representation of middle clouds compared with no use
of the LHN schemes but no clear differences results from two LHN schemes. In addition,
hindcasts are also run to investigate the impacts of the beam broadening effect and the
scattering schemes in EMVORADO. Compared to the CFADS of observed reflectivities, it is
concluded that the beam broadening effect is more important at further distances and at the
the melting layer and that the Mie scheme overestimates reflectivity values at the melting
layer and the Rayleigh scheme as well as the Mie scheme with a new parameterization (to
decrease the brightband effect) considerably reduce the overestimation. Secondly, a series
of convective-scale data assimilation experiments in the ICON-D2-KENDA system are
performed, based on different settings of EMVORADO, and the Desroziers method is used
to estimate the statistics of the observation error (OE). In particular, it is found that the Mie
scheme with the new parameterization for melting particles results in the smallest standard
deviations of the OE and the shortest horizontal correlation length scale.

Overall, the current work uses the hindcasts to show the better performance of the
LHN2, and it also demonstrates the importance of the beam broadening effect and the
choice of the scattering schemes in EMVORADO, which are in line with the conclusion
for the FE in Zeng et al. [5]. Moreover, the Mie scheme with the new parameterization
for the melting particles proves to be the best in hindcasts as well as in estimation of the
OE. A reduction in the FE and consequently in the OE will allow for better use of radar
reflectivity observations in the data assimilation. Therefore, in the next steps, we will take
advantage of the best settings of EMVORADO and its estimated statistics of the OE to
improve the radar data assimilation in the ICON-D2-KENDA system, and the impacts on
analyses and on forecast skills will be investigated.
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