
DustPy: A Python Package for Dust Evolution in Protoplanetary Disks

Sebastian M. Stammler1 and Tilman Birnstiel1,2
1 University Observatory, Faculty of Physics, Ludwig-Maximilians-Universität München, Scheinerstr. 1, D-81679, Munich, Germany; stammler@usm.lmu.de

2 Exzellenzcluster ORIGINS, Boltzmannstr. 2, D-85748 Garching, Germany
Received 2022 May 2; revised 2022 June 25; accepted 2022 June 28; published 2022 August 10

Abstract

Many processes during the evolution of protoplanetary disks and during planet formation are highly sensitive to the
sizes of dust particles that are present in the disk: the efficiency of dust accretion in the disk and volatile transport
on dust particles, gravoturbulent instabilities leading to the formation of planetesimals, or the accretion of pebbles
onto large planetary embryos to form giant planets are typical examples of processes that depend on the sizes of the
dust particles involved. Furthermore, radiative properties like absorption or scattering opacities depend on the
particle sizes. To interpret observations of dust in protoplanetary disks, a proper estimate of the dust particle sizes is
needed. We present DustPy: a Python package to simulate dust evolution in protoplanetary disks. DustPy
solves gas and dust transport including viscous advection and diffusion as well as collisional growth of dust
particles. DustPy is written with a modular concept, such that every aspect of the model can be easily modified or
extended to allow for a multitude of research opportunities.

Unified Astronomy Thesaurus concepts: Protoplanetary disks (1300); Astronomy software (1855); Astronomical
simulations (1857); Circumstellar dust (236); Planet formation (1241); Planetesimals (1259)

1. Introduction

Dust plays an important role in many processes of planet
formation. Interstellar micrometer-sized dust particles accumu-
late in protoplanetary disks due to angular momentum
conservation and grow to millimeter-sized pebbles via colli-
sional growth. However, various growth barriers prevent
particles from growing directly into planetesimals, e.g., the
charge barrier, the bouncing barrier, the drift barrier, or the
fragmentation barrier. As soon as particles reach millimeter
sizes gravoturbulent instabilities can play an important role.
These instabilities have the ability to concentrate particles in
pebble clouds, which can subsequently collapse under their
own gravity into planetesimals if they are massive enough (see
Youdin & Goodman 2005; Johansen et al. 2007). These
planetesimals can collide to form larger bodies and eventually
planetary embryos. Leftover dust pebbles in the disk accrete
onto these embryos to assemble terrestrial planets or the cores
of giant planets (see Ormel 2017).

The efficiency of said processes like planetesimal formation
(Krapp et al. 2019; Paardekooper et al. 2020) or pebble
accretion onto planetary embryos (Liu & Ormel 2018; Ormel &
Liu 2018) is highly sensitive to the sizes of dust particles
available in protoplanetary disks. To understand the formation
of planets and to interpret the population and composition of
observed exoplanets it is therefore crucial to know which
particle sizes can exist at any specific time and location in the
lifetime of protoplanetary disks. Furthermore, it is important to
understand the size evolution of dust particles when interpret-
ing observations of dust in protoplanetary disks (Sierra et al.
2021).

To simulate the collisional evolution of micrometer-sized
dust particles up to planets it is unfeasible to simulate every
dust particle individually. Several techniques have been

developed in the past to overcome this. One is the Monte
Carlo method wherein several dust particles are combined into
a few representative particles, whose evolution can be
simulated (see Ormel et al. 2007; Zsom & Dullemond 2008;
Drażkowska et al. 2013). Another method is to simulate the
evolution of a particle size distribution instead of individual
particles (see Weidenschilling 1980; Nakagawa et al. 1981;
Dullemond & Dominik 2005; Brauer et al. 2008; Birnstiel et al.
2010). The advantage of Monte Carlo methods is that it is
relatively easy to include additional particle properties like
electrical charge, porosity, or composition, while this is a rather
complex task in the case of particle distributions (see Okuzumi
et al. 2009; Stammler et al. 2017). Monte Carlo methods,
however, are computationally expensive, while methods with
particle distributions can cover longer time spans of disk
evolution.
We developed the Python package DustPy,3 which

simulates the evolutions of a dust mass distribution in
protoplanetary disks accounting for collisional growth and
transport of dust particles, as well as the evolution of the gas
disk. It can be used to simulate the evolution of the gas and dust
within a protoplanetary disk over its entire life span.
The main object of DustPy is to calculate the evolution of

the gas surface density Σg and Nm dust surface densities Σd,i of
different particle masses in a protoplanetary disk with Nr radial
grid cells, including viscous evolution of the gas, advection and
diffusion of the dust, as well as collisional dust growth by
solving the Smoluchowski equation. It is therefore one-
dimensional in space. DustPy itself uses the Simframe
framework for scientific simulations (Stammler & Birnstiel
2022), which allows the user to easily customize every aspect
of the model or to extend it with additional functionality. This
publication, therefore, discusses the default functionality of
DustPy, i.e., the model that is run without any customization.

The Astrophysical Journal, 935:35 (16pp), 2022 August 10 https://doi.org/10.3847/1538-4357/ac7d58
© 2022. The Author(s). Published by the American Astronomical Society.

Original content from this work may be used under the terms
of the Creative Commons Attribution 4.0 licence. Any further

distribution of this work must maintain attribution to the author(s) and the title
of the work, journal citation and DOI.

3 DustPy repository: https://github.com/stammler/dustpy. Documentation:
https://stammler.github.io/dustpy/. Installation of the latest version: pip
install dustpyDustPy v1.0.1: https://doi.org/10.5281/zenodo.
6874878.

1

https://orcid.org/0000-0002-1589-1796
https://orcid.org/0000-0002-1589-1796
https://orcid.org/0000-0002-1589-1796
https://orcid.org/0000-0002-1899-8783
https://orcid.org/0000-0002-1899-8783
https://orcid.org/0000-0002-1899-8783
mailto:stammler@usm.lmu.de
http://astrothesaurus.org/uat/1300
http://astrothesaurus.org/uat/1855
http://astrothesaurus.org/uat/1857
http://astrothesaurus.org/uat/1857
http://astrothesaurus.org/uat/236
http://astrothesaurus.org/uat/1241
http://astrothesaurus.org/uat/1259
https://doi.org/10.3847/1538-4357/ac7d58
https://crossmark.crossref.org/dialog/?doi=10.3847/1538-4357/ac7d58&domain=pdf&date_stamp=2022-08-10
https://crossmark.crossref.org/dialog/?doi=10.3847/1538-4357/ac7d58&domain=pdf&date_stamp=2022-08-10
http://creativecommons.org/licenses/by/4.0/
https://github.com/stammler/dustpy
https://stammler.github.io/dustpy/
https://doi.org/10.5281/zenodo.6874878
https://doi.org/10.5281/zenodo.6874878

DustPy is written in Python to allow for easy access and
great flexibility. Computationally expensive routines are
written in Fortran. However, the main focus is on usability,
not on optimizing the execution time.

This publication is structured as follows. Section 2 introduces
the relevant equations for gas evolution. In Section 3 we discuss
dust evolution, which consists of two major parts: dust transport
in Section 3.1 and collisional dust growth in Section 3.2. In
Section 4 we compare the coagulation algorithm of DustPy to
test cases that have analytical solutions. In Section 5 we present
example simulations that show the full potential of DustPy
customizations. Finally, in Section 6 we summarize the features
and caveats ofDustPy.

2. Gas Evolution

DustPy assumes an axisymmetric disk. All quantities,
therefore, only have one spatial coordinate, the radial distance r
from the star. If applicable, DustPy assumes vertical
hydrostatic equilibrium in the z direction, i.e., the height above
the midplane of the disk. By default, DustPy viscously
evolves the gas surface density via the viscous advection-
diffusion equation

() ()¶
¶

S +
¶
¶

S =
t r r

r v S
1

, 1g g g ext

including external source terms Sext, which can be used to
implement, for example, infall of matter onto the disk or losses
due to photoevaporation. In the default model Sext is set to zero.
The radial gas velocity is given by

()h= +v Av B v2 , 2g visc K

with the Keplerian velocity *=v GM

rK and the viscous
accretion velocity given by Lynden-Bell & Pringle (1974) as

() ()n= -
S

¶
¶

Sv
r r

r
3

, 3
g

gvisc

with the kinematic viscosity ν. G is the gravitational constant
and M* the mass of the central star. In the default DustPy

model the kinematic viscosity is given by n a=
W
cs

2

K
, with the α

viscosity parameter introduced by Shakura & Sunyaev (1973),

the sound speed cs, and the Keplerian frequency *W = GM

rK 3 .
η is the pressure gradient parameter, given by

⎛
⎝

⎞
⎠

()h = -
¶
¶

H

r

P

r

1

2

log

log
, 4P

2

with the pressure scale height =
W

H c
P

s

K
. The parameters A and

B in Equation (2) are used to implement the dynamic back
reaction of dust particles onto the gas. In the default model
DustPy uses A= 1 and B= 0, i.e., no back reaction. This is
accurate as long as the dust mass is small compared to the gas
mass. With decreasing A and increasing B, gas accretion can be
halted or even reversed. Gárate et al. (2020) implemented back
reaction of dust particles onto the gas in a region with an
increased dust-to-gas ratio caused by a “traffic jam” at the line
into DustPy. For details on the implementation of A and B we
refer to that publication.

2.1. Algorithm

Equation (1) can be discretized and written as a matrix
equation implicitly in Sn

gas, where the superscript n represents
the time coordinate

 · ()
S S

S
-

D
= +

+
+ S

t
. 5

g
n

g
n

g
n

1
1

ext

The Jacobian  is a tri-diagonal matrix, since the radial grid
cells only interact with themselves or with neighboring grid
cells.
A sketch of the Jacobian  can be seen in Figure 1.

Exceptions to the tri-diagonal shape of the Jacobian are the first
and the last rows, which are used to set the boundary
conditions. By default the inner boundary is set to a constant
gradient, while the outer boundary is set to the gas floor value
to prevent inflow of gas through the outer boundary. Since
most of the elements of  are zero, DustPy uses the scipy.
sparse package (Virtanen et al. 2020) to store the Jacobian in
a sparse matrix format.
Equation (5) can be solved for S +

g
n 1 via

 () · () ()S S= - D + D+ - St t 6g
n

g
n n1 1

ext

by inverting the matrix  - Dt . To achieve this, the matrix is
factorized with scipy.sparse.linalg.splu, before
solving the system of equations with scipy.sparse.
linalg.SuperLU.solve.

3. Dust Evolution

Dust evolution in DustPy consists of two parts: dust transport
and dust growth. Dust transport is calculated by solving the
advection-diffusion equation, similar to gas evolution. Dust growth
is calculated by solving the Smoluchowski equation. The dust

Figure 1. Sketch of the gas Jacobian in an example with 15 radial grid cells.
The Jacobian consists of the main diagonal and one upper and one lower off-
diagonal, because the gas can only interact with itself or with neighboring grid
cells. Exceptions are the first and the last rows, which are used to set the
boundary conditions.

2

The Astrophysical Journal, 935:35 (16pp), 2022 August 10 Stammler & Birnstiel

quantities consist of Nm different dust species of different masses at
every radial position.

3.1. Dust Transport

To account for dust transport DustPy solves the advection-
diffusion equation (Clarke & Pringle 1988) for every dust
species i:

⎜ ⎟
⎡

⎣
⎢

⎛
⎝

⎞
⎠

⎤

⎦
⎥

()

()

¶
¶

S +
¶
¶

S

-
¶
¶

S
¶
¶

S
S

=

t r r
r v

r r
rD

r
S

1

1
. 7

i i i

i g
i

g
i

d, d, d,

d,
ext,

The radial dust velocity vd,i is given by

() ()= +
+

v v v2 St
1

St 1
, 8i g i

i
d, drift

max
2

with the maximum drift velocity given by

()h= -v Bv A v
1

2
, 9drift

max
visc K

where A and B are the back reaction coefficients introduced in
Equation (2). The Stokes number, Sti, is a measure of the
aerodynamic size of a dust particle. DustPy considers by
default two aerodynamic drag regimes: the Epstein and the
Stokes I regimes:

⎧

⎨

⎪

⎩
⎪

()

()
()

p r
l

p r

l

=
S

<

S

a
a

a
St

2
for

9

4
Epstein

2

9
else StokesI

, 10i

i i

g
i

i i

g

s,
mfp

2
s,

mfp

with the dust particle radius ai, the dust bulk density ρs,i, and
the mean free path of the gas λmfp. The Stokes I regime is
typically only important for large particles in the inner parts of
protoplanetary disks. The dust diffusivity in Equation (7) is
taken from Youdin & Lithwick (2007) and is given by

()d
=

W +
D

c 1

1 St
. 11i

i

r s
2

K
2

The parameter δr describes the strength of radial diffusion of
the dust particles and is similar to the turbulent α parameter.

3.2. Dust Growth

Modeling collisional dust growth in protoplanetary disks is
challenging. To form an Earth-like planet out of micrometer-
sized dust particles one would need to simulate the evolution of
about 1040 individual dust particles, which is not feasible. To
overcome this problem a number of strategies have been
developed in the past. One is the so-called Monte Carlo
method, in which many physical particles are combined into a
few representative particles whose evolution can be calculated
(see Ormel et al. 2007; Zsom & Dullemond 2008; Drażkowska
et al. 2013).

DustPy, on the other hand, calculates dust growth by
solving the Smoluchowski equation:

() () ()

() ()

() () () ()

ò ò

ò

¶
¶

= ¢ ¢¢ ¢ ¢¢

´ ¢ ¢¢ ¢¢ ¢

- ¢ ¢ ¢

¥ ¢

¥

t
n m K m m m R m m

n m n m m m

n m R m m n m m

, , ,

d d

, d . 12

m

0 0

0

Instead of tracking individual particles, DustPy calculates the
collisional evolution of a distribution ()n m of particles with
masses m. The first double integral on the right-hand side sums
over all possible collisions of particles with masses ¢m and ¢¢m
and collision rate ()¢ ¢¢R m m, . The matrix ()¢ ¢¢K m m m, , holds
information about the collision outcomes of each collision and
describes the amount that gets added into ()n m from a single
collision of particles with masses ¢m and ¢¢m . A perfectly
sticking collision would be described with ()¢ ¢¢ =K m m m, ,

(())d - ¢ + ¢¢m m m .
The upper boundary of the inner integral is ¢m instead of∞ ,

because collisions of particles with masses ¢m and ¢¢m are
identical to collisions of particles with masses ¢¢m and ¢m and
should not be counted twice. The negative term on the right-
hand side accounts for the particles that get removed from the
distribution, because they have collided with other particles.
DustPy discretizes ()n m on a mass grid with Nm mass bins

by integrating ()n m over the mass bin width:

() ()ò=
-

+
n n m md . 13i

m

m

i

i

1
2

1
2

With this the discretized Smoluchwoski equation can be written
as

() ()åå å d
¶
¶

= - +
= = =t

n K R n n n n R 1 . 14k
i

N

j

i

ijk ij i j k
j

N

j jk jk
1 1 1

m m

Please note the Kronecker δ in the second term on the right-
hand side. For equal particle collisions ()=j k two particles
from the same mass bin have to be removed from the
distribution.
This section discusses the various challenges in implement-

ing Equation (14) into the numerical algorithm of DustPy.
This is rather technical. Readers that want to skip the derivation
can continue reading at Section 3.2.3. In a typical DustPy
simulation the user does not need to modify the collisional
subroutines, unless the goal is to implement a custom collision
model.

3.2.1. Coagulation

The case of pure coagulation, i.e., perfect sticking of two
particles forming a new larger body, has a number of
computational challenges. First, the mass grid of DustPy is
logarithmically spaced to cover a large dynamic range from
submicrometer-sized particles to large boulders. This has the
disadvantage that the resulting mass of two colliding particles
mcoll=mi+mj will in general not fall exactly onto the mass
grid itself, but in between two mass bins. We follow the
approach of Brauer et al. (2008) to linearly distribute the newly
formed particle between the two adjacent mass bins. Assuming
the mass of the particle resulting from a sticking collision of
particle mi and mj falls in between the two mass bins

3

The Astrophysical Journal, 935:35 (16pp), 2022 August 10 Stammler & Birnstiel

mm�mcoll<mn, we split the coagulation rate linearly between
both mass bins:




⎧
⎨
⎩

()=
=

- =K
if m m

1 if m m
0 else,

, 15ijk

k m

k n

where ò is given by

 ()=
-
-

m m

m m
. 16n

n m

coll

If mcoll=mm⇒ ò= 1 and the entire particle will be distributed
into mass bin mm. Since by definition mn>mcoll, mass will
always be distributed into a mass bin that is larger than the
combined mass of the colliding particles, leading to artificial
growth. The mass grid, therefore, needs to be fine enough to
limit this numerical inaccuracy. This limitation is discussed in
Section 4.1 in more detail.

Another challenge is purely computational and is caused by
the limited precision of computers. For double-precision
numbers, for example, we face the problem that mi+mj=mi, if
mi is more than 15 orders of magnitudes more massive than mj.
This would prevent large particles from growing by sweeping up
many small particles. This problem can be solved by rearranging
the sums in the discrete Smoluchowski equation. We, again,
follow the approach of Brauer et al. (2008). Figure 2 shows a
sketch of three types of particle collision that are dealt with
separately in this section.

Starting from Equation (14) we can separate the diagonals
from the first term on the right-hand side, i.e., the equal-mass
particle collisions, and combine it with the Kronecker δ of the
negative term:

()

()

 å

åå å

d= -

+ -

=

= =

-

=

n R n K

K R n n n n R . 17

k
i

k

ii i iik ik

i

k

j

i

ijk ij i j k
j

N

j jk

s

1

s 2

1 1

1
s

1

s
m

The superscript “s” denotes that these are the source terms and
collisions rates for purely sticking collisions. The sum over i
does not need to go all the way to Nm but only up to k, because
sticking collisions involving particles larger than mk can never
positively contribute to nk. We now look more closely at the
second and third terms on the right-hand side and separate the
case k= i from the second term, i.e., those collisions that can
be affected by machine-precision errors, when a large particle
with mass mk is sweeping up a small particle mj such that the

resulting mass is in between mk and mk+1:

()

åå å

åå

å å

-

=

+ -

= =

-

=

=

-

=

-

=

-

=

K R n n n n R

K R n n

K R n n n n R . 18

i

k

j

i

ijk ij i j k
j

N

j jk

i

k

j

i

ijk ij i j

j

k

kjk kj k j k
j

N

j jk

1 1

1
s

1

s

1

1

1

1
s

1

1
s

1

s

m

m

The second term on the right-hand side with Kkjk represents
these special collisions for which particles with masses mk and
mj collide, but still have a positive contribution to nk (type 1 in
Figure 2). The term only describes particle collisions for which
mk+mj�mk+1, otherwise the resulting mass of the collision
would be too large to positively contribute to nk. We therefore
introduce a number, c, which is defined as the smallest integer
for which the condition mk+mk+1−c�mk+1 is fulfilled. In
general, c would depend on k. But since the mass grid of
DustPy is regular logarithmic, c will be a constant as long as
the mass grid does not change. We can now replace the upper
boundary of the sum in the second term with k+ 1− c and
combine it with the respective negative part of the sum in the
third term:

()

()

å å

å

å

-

= -

-

=

-

=

=

+ -

= + -

K R n n n n R

R n n K

n n R

1

. 19

j

k

kjk kj k j k
j

N

j jk

j

k c

jk j k kjk

k
j k c

N

j jk

1

1
s

1

s

1

1
s

2

s

m

m

Please note that c� 2, since the equal-size collisions ()=j k are
already included in the first term in Equation (17). In any case,
mass grids with Kkkk≠ 0 that lead to mk�mk+mk<mk+1

would have fewer than »log 10 3.32 mass bins per decade.
Simulations should have at least seven mass bins per decade for
simple collision models (Ohtsuki et al. 1990), and even more for
complex collision models (Drażkowska et al. 2014). Further,
note that the collision rates are symmetric, i.e., =R Rjk kj

s s .
Collisions of particle mj with mk occur at the same rate as
collisions of particle mk with mj. Since Kkjk in the first term
means that mk�mk+mj<mk+1 we can set mm=mk and use

Figure 2. Sketch of the mass grid with three special types of collisions highlighted. Type 1: particle of mass mj collides with particle of mass mk with the resulting
mass being between mk and mk+1. Type 2a: particle of mass mj collides with particle of mass mk−1 with the resulting mass being between mk−1 and mk. Type 2b:
particle of mass mj collides with particle of mass mk−1 with the resulting mass being between mk and mk+1.

4

The Astrophysical Journal, 935:35 (16pp), 2022 August 10 Stammler & Birnstiel

Equation (15) to get


()

()

- = - =
- +

-
-

= -
-

+

+

+

K
m m m

m m
m

m m

1 1 1

. 20

kjk
k k j

k k

j

k k

1

1

1

In collisions prone to machine-precision errors, a computer
would falsely calculate mk+mj=mk. Already manipulating
Kkjk− 1 in advance in these collisions eliminates these errors.
Using this for the first term and combining it with the second
term, we get

()

()

å å

å

- -

=

=

+ -

= + -

=

K R n n n n R

D R n n

1

, 21

j

k c

kjk jk j k k
j k c

N

j jk

j

N

jk jk j k

1

1
s

2

s

1

s

m

m

with

⎧
⎨
⎩

()=
-

-
+ -

- > + -
+D

m

m m
j k c

j k c

if 1

1 if 1
. 22jk

j

k k1

Up to this point the coagulation equation reads

()

()

 å åå

å

d= - +

+

= =

-

=

-

=

n R n K K R n n

D R n n . 23

k
i

k

ii i iik ik
i

k

j

i

ijk ij i j

j

N

jk jk j k

s

1

s 2

1

1

1

1
s

1

s
m

Now we look at the second term on the right-hand side for the
case i= k− 1:

()å
=

-

- - -K R n n . 24
j

k

k jk k j k j
1

2

1, 1,
s

1

These are the other types of collision that can be affected by
machine-precision errors. In this case particles with masses
mk−1 and mj collide and have a positive contribution to nk. We
can distinguish two cases here. In the first case the resulting
mass of the colliding particles falls in between mk−1�m

k−1+mj<mk (type 2a in Figure 2). This means mk=mn in
Equation (15) and therefore


()

()

= - = -
- +

-

=
-

-
-

-

-

K
m m m

m m
m

m m

1 1

. 25

k jk
k k j

k k

j

k k

1,
1

1

1

These collisions are identical to type 1 but look at the mass that
is distributed into the larger mass bin. In the second case the
resulting mass falls in betweenmk�mk−1+mj<mk+1 (type
2b in Figure 2). Here we have mk=mm in Equation (15) and

therefore



⎡
⎣⎢

⎤
⎦⎥

()
()

() ()

=

=
- +

-
Q - -

= -
+ -

-
Q - -

-

+ -

+
+ -

-

+
+ -

K

m m m

m m
m m m

m m m

m m
m m m1 . 26

k jk

k k j

k k
k k j

j k k

k k
k k j

1,

1 1

1
1 1

1

1
1 1

Cases withmk−1+mj>�mk+1 do not contribute positively
toward nk. The Heaviside step function takes care of these
cases. In both cases either 1− ò or ò itself can be affected by
machine-precision errors. It is therefore advisable to manipulate
directly these cases in advance, as shown above. We can now
split the sum into both cases using the constant c that has been
introduced earlier:

()

å

å=

=

-

- - -

=

-

- -

K R n n

E R n n . 27

j

k

k jk k j k j

j

k

jk k j k j

1

2

1, 1,
s

1

1

2

1,
s

1

The matrix E is given by

⎧

⎨

⎪

⎩
⎪

⎡
⎣⎢

⎤
⎦⎥

()

()
=

-
-

-
- -

-
Q - - > -

-

-

+
+ -

28

E

m

m m
j k c

m m m

m m
m m m j k c

if

1 if .
jk

j

k k

j k k

k k
k j k

1

1

1
1 1

The full coagulation equation now reads

()

()

 å å

åå å

d= - +

+ +

= =

=

-

=

-

=

-

- -

n K R n D R n n

K R n n E R n n . 29

k
i

k

iik ik ii i
j

N

jk jk j k

i

k

j

i

ijk ij i j
j

k

jk k j k j

s

1

s 2

1

s

1

2

1

1
s

1

2

1,
s

1

m

It is useful to bring the equation into a double sum form:

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

()

()

 åå åå

åå

åå

d d d

d

= - +

+ Q - - Q - -

+ Q - -

= = = =

= =

= =
+ -

n K R n n D R n n

K R n n k i i j

E R n n k j

3

2

1

2

3

2
,

30

k
i

N

j

N

ijk ik ij i j ij
i

N

j

N

ij ij i j jk

i

N

j

N

ijk ij i j

i

N

j

N

j i ij i j i k

s

1 1

s

1 1

s

1 1

s

1 1
, 1

s
, 1

m m m m

m m

m m

where the Kronecker δ and the Heaviside step function Θ are
used to pick the correct values and ranges for i and j. In that
way the coagulation equation can be written with one single
double sum. Note that the inner sum has to go up until Nm,
because the matrices Dji and Ejk are not symmetric. Since i and
j are integer numbers, the terms of 1

2
and 3

2
in the Heaviside step

functions are used to avoid a potentially undefined behavior
for ()Q 0 .
From a computational perspective it is beneficial to bring the

equation into a symmetrical form to save half of the iterations.

5

The Astrophysical Journal, 935:35 (16pp), 2022 August 10 Stammler & Birnstiel

DustPy, therefore, solves the following equation:

() åå=
= =

n C R n n , 31k
i

N

j

i

ijk ij i j
s

1 1

s
m

with

⎧
⎨⎩

˜ ˜
()= +C C C i jif

0 else
32ijk

ijk jik

and

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

˜

()

d d

d

= +

+ Q - - Q - -

+ Q - -+ -

C K D

K k i i j

E k j

1

2
3

2

1

2
3

2
. 33

ijk ijk ij ij jk

ijk

j i i k, 1 , 1

Please note that diagonal entries ()=i j must not be counted

twice. All diagonals need therefore a factor of 1

2
. Only the first

two terms of Equation (30) contain diagonals. The first term
contains only diagonal entries, while the second term contains
both diagonal and off-diagonal entries. However, since c� 2,
this means for the diagonals of the second term Dkk=−1. This
is one particle that gets removed from the distribution in
collisions with two equal-size particles. The other particle is
removed by δik in the first term of Equation (30). We can
therefore omit the δik in the first term and the factor of 1

2
for the

second term in Equation (33).
For any given collision of particles with masses mi and mj,

Cijk will either have zero, three, or four nonzero elements. Cijk

will always have two positive entries for k=m and k= n (the
two mass bins in between which the resulting collisional mass
falls) and negative entries for k= i and k= j (the colliding
particles), leading to four nonzero entries. In special cases,
when i= j, k= i, or k= j, this number can be reduced to three.
If mi+mj is larger than the largest mass of the mass grid Cijk

will be set to zero to prevent mass loss through the upper
boundary of the mass grid.

A peculiar property of Cijk for any particle collision is

⎧
⎨⎩

()å =
-

+ >
=

C m m m
1

0 if . 34
k

N

ijk
i j N

1

m

m

Since the coagulation equation described above works on
number densities, the sum of Cijk over k for any combination of
i and j has to be −1 as long as the mass of the colliding
particles is within the mass grid. Two particles collide, stick,

and form a single larger particle. Therefore, for every sticking
collision the total number of particles is reduced by one.
Cijk only needs to be calculated once in the beginning of the

simulation as long as the mass grid does not change. Because
there are a maximum of four nonzero elements for any
combination of i and j, the coagulation problem is of the
order()Nm

2 .
Equation (31) can be written in matrix form:

 · ()¶
¶

=n n
t

, 35s

with the sticking Jacobian Js being defined as

()å=
=

J C R n . 36ki
j

i

ijk ij j
s

1

A sketch of the structure of the Jacobian with the contributions
of the four terms in the definition of C̃ in Equation (33) is shown
in Figure 3 for a mass resolution of seven mass bins per decade.
The last column is always empty, since collisions with particles
of mass mNm will always result in a particle exceeding the mass
grid. In this setup the element J21 is empty, because it represents
collisions involving at least one particle of mass m1 that have a
positive contribution to n2. However, the mass grid is fine
enough, such that m1+m1>m3, which means that n2 cannot be
filled from these types of collisions. The first term represents
equal particle collisions, the second term contains the  matrix
with the negative contributions to the distribution, the fourth term
contains the contribution of the  matrix, and the third term
contains the remaining collisions.

3.2.2. Fragmentation

If the relative velocity of the colliding particles exceeds the
fragmentation velocity, particles fragment rather than stick and
grow. DustPy distinguishes by default two types of
fragmentation events: full fragmentation and erosion.
Full fragmentation means that both colliding particles fully

fragment, leaving behind a fragment distribution that follows a
power law:

() ()µ gn m m m md d . 37

The exponent γ has to be determined experimentally. DustPy
uses by default g = - 11

6
, taken from Dohnanyi (1969).

Erosion, on the other hand, happens when both colliding
particles differ significantly in mass. The smaller projectile
particle then fully fragments while chipping off some mass
from the larger target particle. The outcome of a erosive
collision is a fragment distribution and a slightly less massive
remnant target particle. In DustPy the transition between full

Figure 3. Sketch of the sticking Jacobian with the contributions of the four terms in Equation (33).

6

The Astrophysical Journal, 935:35 (16pp), 2022 August 10 Stammler & Birnstiel

fragmentation and erosion is by default at a particle mass ratio
of 10.

To calculate the contribution of fragmenting collisions,
DustPy uses the()Nm

2 algorithm developed by Rafikov et al.
(2020). We slightly modified the algorithm to make it strictly
mass conserving and to account for the DustPy code units,
where the dust quantities are integrated over the mass bin. For
this purpose we define a normalized fragment distribution:

⎛
⎝

⎞
⎠

()j =
å

Q - + ´
g

g

+

=
+

m

m
i j

1

2

1

g cm
. 38ij

j

j
i

j

1

1
1 3

jij is the amount that gets added to nj from a fragment
distribution with a total mass 1 and a largest fragment mass of
mi. The Heaviside step function sets jij to zero if the index j is
greater than the largest mass bin of the fragment distribution.
The exponent is 1+ γ instead of γ, because the quantity is
integrated over the mass bin. As another quantity we define the
total mass of fragments that is created in a single particle
collision event:

⎧
⎨⎩() ()

c
=

+
+

A
m m

m

for full fragmentation

1 for erosion.
39ij

i j

j

For fully fragmenting collisions the fragment mass is the total
mass of the colliding particles. For erosive collisions the
projectile particle chips off a fraction of χ of its own mass from
the target particle. In DustPy χ= 1 by default. Without loss
of generality, mj is always the mass of the smaller projectile
particle. Another quantity that is needed is the largest mass, mk,
of the fragment distribution. The index of the largest fragment
is given by

⎧
⎨⎩

()=k
i
j
for full fragmentation
for erosion

. 40ij
lf

In fully fragmenting collisions the fragment distribution goes
all the way up to the largest particle. In erosive collisions, the
largest particle of the fragment distribution has the mass of the
projectile particle. With these quantities we can now sum up
the contribution of all collisions to the total fragment
distribution multiplied with their individual fragment mass
and weighted by their collision rates and store them in a vector,
*Ak , at the position of the largest fragment:

* ()åå d=
= =

A A R n n , 41k
i

N

j

i

ij ij i j k k
1 1

f
,

m

ij
lf

where the superscript “f” denotes the collision rates for
fragmenting collisions. The contribution from fragments of
all collisions into nk is then given by

* () å j=
=

n A . 42k
i k

N

i ik
fragments

m

In both cases, full fragmentation and erosion, the smaller
projectile particle will fully fragment and has to be removed
from the particle distribution:

() åå d= -
= =

n R n n . 43k
i

N

j

i

ij i j jk
projectile

1 1

f
m

Similarly, the larger target particle has to be removed in fully
fragmenting collisions. In erosive collisions, however, the target
particle has to be removed from the distribution and then added,
as a remnant particle, at another place in the distribution:

˜ ()

 åå

åå

d= -

+

= =

= =

n R n n

H R n n . 44

k
i

N

j

i

ij i j ik

i

N

j

i

ijk ij i j

target

1 1

f

1 1

f

m

m

The matrix H̃ijk is similar to Kijk in Equation (15) from the
previous section and decides between which two mass bins the
remnant particle has to be distributed, but with the mass of
the remnant particle instead of the total mass of both collision
partners. If the remnant particle has a mass mi−1�mi−
χmj<mi, mass would be removed and then added into the
target particleʼs mass bin ni. If that is the case, a similar
manipulation as for the coagulation can be performed to avoid
machine-precision errors. Since the mass grid of DustPy is
logarithmically spaced and the transition between full frag-
mentation and erosion is defined by the mass ratio of the
colliding particles, we can define a constant p, such that full
fragmentation happens if j� i− p:

()

 å å

å å d

=

-

= =

- -

= = -

n H R n n

R n n . 45

k
i

N

j

i p

ijk ij i j

i

N

j i p

i

ij i j ik

target

1 1

1
f

1

f

m

m

The first term now holds both the positive and the negative
contribution for the target particle from erosive collisions. We
can distinguish two cases. In the first case the positive and
negative contributions can be combined, since they both affect
the same mass bin:
1. mi−1�mi− χmj<mi:



 

()

()

c c

c

= =
- -

-
=

-

= - - = - = -
-

-
- -

-

H
m m m

m m

m

m m

H
m

m m
1 1 . 46

ij i
i i j

i i

j

i i

iji
j

i i

, 1
1 1

1

2. mm�mi− χmj<mn<mi:





()

()

()

c

c

= =
- -

-

= - = -
- -

-
= -

-H
m m m

m m

H
m m m

m m
H

1 1

1. 47

ij n
n i j

n m

ij n
n i j

n m

iji

, 1

,

The full equation for fragmentation and erosion is therefore the
sum of all three contributions:

()   = + +n n n n . 48k k k k
f fragments projectile target

The source terms of fragmentation can also be written in
matrix form. A sketch of the fragmentation Jacobian is shown
in Figure 4 for a model where every collision leads to a
fragmentation event. The fragmentation Jacobian is a simple
upper triangular matrix.

7

The Astrophysical Journal, 935:35 (16pp), 2022 August 10 Stammler & Birnstiel

This fragmentation and erosion prescription is of the order
()Nm

2 . The full dust growth equation can then be simply
combined to

() ¶
¶

= +
t
n n n , 49k k k

s f

with the dust Jacobian being the sum of the sticking and
fragmentation Jacobians:

   ()= + . 50coag s f

3.2.3. Collision Rates

The collision rates for sticking/fragmenting collisions are
the product of the geometrical cross section, the relative
velocities of the particles, and the sticking/fragmentation
probabilities, respectively:

()/ /

d
s=

+
R v p

1

1
, 51

ij
ij

s f
geo

rel s f

with ()s p= +a ai jgeo
2. However, please note that the

DustPy quantities are vertically integrated, which has been
ignored so far. Vertical integration of the Smoluchowski
equation introduces a correction factor, which will be
incorporated into the collision rates. This is discussed in
Section 3.2.6 in more detail. Further note, that a population of
N equal-sized particles has ()-N N 11

2
possible collisions

amongst each other, which is»N

2

2

in the limit of large N. Equal

particle collisions, therefore, need a factor of 1

2
, which is

incorporated via the dij in the collision rates in Equation (51).

3.2.4. Relative Velocities

DustPy considers by default five different sources of
relative velocities between dust particles: Brownian motion,
radial and azimuthal drift, vertical settling, and turbulence.

Figure 5 shows all five contributions to the relative velocities
in an example simulation of the default DustPy model at a
distance 1 au from the star. Brownian motion is especially
important as a driver of initial dust growth, when the particles
are rather small.
Brownian motion. The relative velocities due to Brownian

motion are given by

⎛

⎝
⎜

⎞

⎠
⎟

()
()

p
=

+
v

k T m m

m m
cmin

8
, . 52ij

i j

i j

rel,brown B
s

Since this formula is diverging for very small particle masses,
the relative velocities are limited to the sound speed cs.
However, one should note that for very small particles and high
temperatures, the relative velocities due to Brownian motion
can easily exceed typical values for the fragmentation velocity.
In the simple collision model that is used by default in
DustPy, there is no distinction on particle size when deciding
between sticking and fragmentation. Even though these small
particles would in reality still stick (or bounce) at these velocities
(Chokshi et al. 1993; Blum & Wurm 2008), DustPy would
treat those collisions as fragmentation events.
Azimuthal drift. Since dust particles of different sizes have

different degrees of sub-Keplerian motion, this leads to a
relative velocity in azimuthal direction, which is given by

⎛

⎝
⎜

⎞

⎠
⎟ ()=

+
-

+
v v

1

1 St

1

1 St
. 53ij

i j

rel,azi
drift
max

2 2

Dust particles of the same Stokes number do not experience
any relative velocity due to azimuthal drift, because they drift at
the same speed.
Radial drift. Dust particles of different sizes have different

radial drift speeds. This induces relative velocities between dust
particles. They are given by

∣ ∣ ()= -v v v , 54ij i j
rel,rad

d, d,

with the radial dust velocities from Equation (8).
Vertical settling. Dust particles of different sizes settle with

different velocities toward the midplane. DustPy uses the
descriptions of Dullemond & Dominik (2004) and Birnstiel
et al. (2010) to account for this effect:

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

()= - Wv h hmin St ,
1

2
min St ,

1

2
, 55ij i i j j

rel,sett
K

where hi is the dust scale height, given by Dubrulle et al. (1995)
as

()d
d

=
+

h H
St

. 56i
z

z i
P

δz is the vertical settling parameter similar to the turbulent α
parameter.
Turbulent motion. To calculate the relative velocities due to

turbulent motion we follow the prescription of Ormel & Cuzzi
(2007). Instead of the turbulent α parameter we use the δt

Figure 4. Sketch of the fragmentation Jacobian.

8

The Astrophysical Journal, 935:35 (16pp), 2022 August 10 Stammler & Birnstiel

parameter, which works in an identical way but allows us to
disentangle both effects.

The total relative velocity is then the quadratic sum of all
contributions:

() ()å=v v . 57ij
k

ij
krel rel, 2

3.2.5. Coagulation/Fragmentation Probabilities

If the relative collision velocity exceeds the fragmentation
velocity, particles start to fragment instead of growing to larger
bodies. In the default DustPy model the fragmentation
velocity is set to vfrag= 1 ms−1.

Different particles, however, do not collide with a single
relative velocity as described in Section 3.2.4. Instead,
the relative velocities follow the Maxwell–Boltzmann
distribution:

 ⎜ ⎟
⎡

⎣
⎢

⎛
⎝

⎞
⎠

⎤

⎦
⎥() ()

p
D =

D
-

D
v v

v

v

v

v
;

54
exp

3

2
, 58rms

2

rms
3

rms

2

with the rms velocity vrms, which DustPy assumes to be the
single velocity derived in Section 3.2.4.

The collision rate for fragmenting collisions described in
Section 3.2.3 would therefore be an integral over all possible
relative velocities in the Maxwell–Boltzmann distribution,
which are above the fragmentation velocity:

() ()ò s= D D D
¥

R v v v v, d . 59ij
v

f
geo rms

frag

This integral has an analytical solution, and therefore the
fragmentation probability in Equation (51) can be written as

⎛

⎝
⎜

⎛

⎝
⎜

⎞

⎠
⎟

⎞

⎠
⎟

⎡

⎣
⎢
⎢

⎛

⎝
⎜

⎞

⎠
⎟

⎤

⎦
⎥
⎥

¯

()

s
=

D

= + -

p
R

v

v

v

v

v

3

2
1 exp

3

2
, 60

ij
ij

ij ij

f
f

geo

frag

rel

2
frag

rel

2

with the mean velocity of the Maxwell–Boltzmann distribution

¯D = pv vij
8

3
rel. In that way, it is sufficient to only calculate one

relative velocity per particle collision while accounting for the
velocity distribution in the fragmentation probability.
The sticking probability is then given by

()= -p p1 . 61ij ij
s f

Bouncing, i.e., neither sticking nor fragmentation, is not
included in the default model of DustPy, but can be easily
implemented if + <p p 1ij ij

s f . Figure 6 shows the Maxwell–
Boltzmann distribution in the case of an rms velocity equal to
the fragmentation velocity and the sticking/fragmentation
probabilities for different relative velocities.
The same approach of a velocity distribution was used by

Windmark et al. (2012), while Birnstiel et al. (2010) originally
used a simple formula for the transition between sticking and
fragmentation at the fragmentation velocity.

3.2.6. Vertical Integration

So far we have ignored the vertical dimension of the disk.
The Smoluchowski equation discussed in previous chapters

Figure 5. Example of the different sources of relative velocities in the default model of DustPy at a distance of 1 au.

9

The Astrophysical Journal, 935:35 (16pp), 2022 August 10 Stammler & Birnstiel

works on volume densities. DustPy, on the other hand, only
has one spatial dimension, the distance from the star r. Here we
describe the method of Birnstiel et al. (2010) in vertically
integrating the Smoluchowski equation. We assume that the
vertical dust distribution can be described with a Gaussian:

⎜ ⎟
⎡

⎣
⎢

⎛
⎝

⎞
⎠

⎤

⎦
⎥() () ·

()
()= -n r z n r

z

h r
, , 0 exp

1

2
, 62k k

k

2

with the dust scale height hk given by Equation (56).
Integration over z leads to

() ()

() () ()

ò
p

=

=
-¥

¥
N r n r z z

h r n r

, d

2 , 0 . 63

k k

k k

Every single term in the collisional dust source terms
introduced in Sections 3.2.1 and 3.2.2 contain the product of
two densities with the collision rates Rijninj. Integrating this
term over z and assuming to zeroth order that the collision rates
do not depend on z leads to

⎡

⎣
⎢

⎛

⎝
⎜

⎞

⎠
⎟

⎤

⎦
⎥

() ()

()
˜ ()

ò

ò

p

= - +

=
+

º

-¥

¥

-¥

¥

R n r z n r z z

R n n z
h h

z

R

h h
N N R N N

, , d

exp
1

2

1 1
d

2
. 64

ij i j

ij i j
i j

ij

i j

i j ij i j

2
2 2

2 2

Vertically integrating the Smoluchowski equation can
therefore be achieved by simply replacing the midplane
volume densities ni with the vertically integrated number
densities Ni and by multiplying the collision rates with a
correction factor. The quantity R̃ij is stored as kernel in
DustPy.

DustPy does not store the vertically integrated number
densities but uses dust surface densities, which are simply
given by

()S = m N . 65i i id,

Note that by using surface densities instead of number
densities, this introduces further mass factors in quantities like
Cijk, *Ai , or Hijk introduced above. This is straightforward to do,

but increases the complexity of the equations presented here.
We therefore refer the interested reader to the software for
details on the implementation.
Further note, that only the dust densities have been vertically

integrated. Other quantities, like the relative velocities needed
for R̃ij, are still calculated in the midplane. This is a valid
simplification, since most of the mass will settle anyway rather
quickly toward the midplane.

3.3. Algorithm

Similar to the gas evolution algorithm, dust evolution can be
written as a matrix equation. To achieve this, the two-
dimensional (distance and mass) dust surface densities are
flattened into a one-dimensional vector:

() ()()S = S º S- +r m, . 66j k j N k id d, 1 d,m

With this definition the dust evolution equation can be written
in an implicit form:

 



() ·

· ()

S S
S

S

-
D

= + +

= +

+
+

+

S

S
t

. 67

n n
n

n

d
1

d hyd coag
d

1
ext

d
1

ext

The Jacobian in the case of dust evolution consists of two parts,
hydrodynamic transport and dust growth. This equation can be
solved for the new dust surface densities via

 () · () ()S S= - D + D+ - St t 68n n n
d

1 1
d ext

by inverting the matrix  - Dt .
Figure 7 shows a sketch of the dust Jacobian in the case of

six radial grid cells and eight mass bins. The Jacobian has a size
of NrNm×NrNm. The large coarse boxes represent the radial
grid cells, while the fine grids within the larger boxes represent
the mass grid. As was the case for gas evolution, grid cells only
interact with themselves or with neighboring radial grid cells
for dust transport. These are the main diagonal and the off-
diagonals that are Nm rows above and below the main diagonal.
In the case of dust growth, mass bins can only interact with

mass bins in the same radial grid cell. These are the filled boxes
along the main diagonal in the Jacobian. The boxes are not
completely filled, because in the case of sticking—that is
shown here—not all collisions are possible. The Jacobian is set
to zero for collisions that would result in particles that are

Figure 6. Left: Maxwell–Boltzmann velocity distribution for a rms velocity of 1 m s−1. Assuming a fragmentation velocity of 1 m s−1, some of the particles may
fragment while some others can still grow. Right: sticking and fragmentation probabilities depending on the rms velocity assuming a Maxwell–Boltzmann velocity
distribution and a fragmentation velocity of 1 m s−1.

10

The Astrophysical Journal, 935:35 (16pp), 2022 August 10 Stammler & Birnstiel

larger than the mass grid. Furthermore, the lower-left triangle
within a box is empty, because these terms have been added to
the respective entries in the upper triangle to save loop
iterations in the software.

The first Nm and last Nm rows of the Jacobian are used to set
the boundary conditions without calculating coagulation here.
In the default DustPy model the inner boundary is set to a
constant gradient, while the outer boundary is set to a floor
value. Diffusion is turned off at the boundaries by setting the
diffusivity to zero.

Since most of the entries of the Jacobian are zero—in a typical
simulation only about 1% of the Jacobian is filled—the Jacobian
is stored in a sparse matrix format using scipy.sparse. To
invert the matrix and solve the system of equations, in the default
DustPy model the matrix is factorized with scipy.sparse.
linalg.splu, before the equation is solved with scipy.
sparse.linalg.SuperLU.solve. Factorizing the matrix
before inversion reduced the runtime of the code in most cases.

Since, the inversion of a large matrix is computationally
heavy, DustPy also has two additional options to integrate the
dust quantities for large simulation sizes. The first option is to
use the generalized minimal residual method, which is an
iterative solver, for which DustPy uses scipy.sparse.
linalg.gmres. The second option is to integrate the dust
quantities explicitly using a fifth-order adaptive Cash–Karp
integration scheme, which does not require the inversion of a
matrix.

The timestep Δt is calculated such that neither the gas nor
the dust densities could become negative in a first-order Euler

scheme, while only considering the negative source terms S-
g,d:

()D = ´
S

S-t 0.1 min . 69
g,d

g,d

4. Test Cases

There are a few test cases with analytical solutions that can
be used to benchmark DustPy against. In this section we
compare the dust growth algorithm against two collision
kernels with analytical solutions, and we compare the gas
evolution algorithm against the self-similar solutions for
viscous accretion.

4.1. Dust Coagulation

Starting from the Smoluchowski Equation (12):

() () ()

() ()

() () () ()

ò ò

ò

¶
¶

= ¢ ¢¢ ¢ ¢¢

´ ¢ ¢¢ ¢¢ ¢

- ¢ ¢ ¢

¥ ¢

¥

t
n m K m m m R m m

n m n m m m

n m R m m n m m

, , ,

d d

, d . 70

m

0 0

0

and assuming perfect sticking, i.e., () (d¢ ¢¢ = -K m m m m, ,
)¢ - ¢¢m m , leads to

() () () ()

() () () ()

ò

ò

¶
¶

= ¢ - ¢ ¢ - ¢ ¢

- ¢ ¢ ¢

¥

¥
t
n m R m m m n m n m m m

n m R m m n m m

, d

, d . 71

0

0

This equation has analytical solutions for three special cases:
the constant kernel () a¢ =R m m, , the linear kernel ()¢ =R m m,

()a + ¢m m , and the product kernel () a¢ = ¢R m m mm, . The
discretized form of this equation for pure sticking was derived
in Section 3.2.1.
We will discuss the constant and the linear kernel in this

section. The product kernel represents runaway growth that
would quickly accumulate the entire mass of the system into a
single particle, which cannot be properly addressed within
DustPy as it uses particle distributions instead of physical
particles. Solutions to the constant and the linear kernel are
discussed in Silk & Takahashi (1979) and Wetherill (1990).

4.1.1. The Constant Kernel

The solution of Equation (71) with the constant kernel is
given by

⎜ ⎟

⎜ ⎟

⎛
⎝

⎞
⎠

⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥

()

()

a

a

=

´ -

n m t
N

m N t

N t

m

m

,
2

exp
2

1 , 72

0

0 0

2

0 0

where m0 is the smallest possible mass and N0 the initial total
number density of particles:

() ()ò=
¥

N n m m, 0 d . 730
0

Note that the DustPy code units are the number densities
integrated over the mass bin. We therefore initialize the

Figure 7. Sketch of the dust Jacobian in an example with six radial grid cells
and eight mass bins with only sticking and no fragmentation. The Jacobian has
a size NrNm × NrNm. The 6 × 6 larger squares represent the radial grid, while
the smaller 8 × 8 subgrids within each larger square represent the mass grid.
Since for dust growth dust particles only collide with dust particles within the
same radial grid cell, the Jacobian is only densely filled along the large
diagonal squares. For dust transport particles only interact with dust particles of
the same mass in the same and adjacent radial grid cells. This is represented in
the Jacobian by the main diagonal and the two off-diagonals. The first Nm and
last Nm rows are exceptions, since they are used to set the boundary conditions.

11

The Astrophysical Journal, 935:35 (16pp), 2022 August 10 Stammler & Birnstiel

simulation by setting the first mass bin to N0 and all other mass
bins to zero.

The result is shown in Figure 8 (left panel) for a simulation
with the default mass resolution of DustPy with dotted lines
and for a simulation with a four times higher mass resolution
with solid lines for α= 1. The analytical solutions given by
Equation (72) are plotted with black solid lines. There is a
slight deviation visible at the upper mass tail of the distribution
in the default resolution run. An explanation for this is given at
the end of the next section.

4.1.2. The Linear Kernel

The solution of the linear kernel is given by

⎡
⎣⎢

⎤
⎦⎥

()
()

() ()

p
=

-

´ - - -

n m t
N

m

g

g

m

m
g

,
2 1

exp 1 1 , 74

0

0
2 0.75

0

2

with N0 being the initial total number density as for the
constant kernel and

[] ()a= -g N m texp . 750 0

Initially, only the first mass bin was filled with N0 while all
other mass bins were set to zero.

The result is shown in Figure 8 (right panel) for a simulation
with the default mass resolution of DustPy with dotted lines
and for a simulation with a four times higher mass resolution
with solid lines for α= 1. The analytical solutions given by
Equation (74) are plotted with black solid lines. As for the
constant kernel there is a deviation at the upper mass end of the
distribution that is worse the lower the mass resolution is.

The reason for this is the algorithm described in
Section 3.2.1. Since the mass grid is logarithmically spaced,
the combined mass of both colliding particles in a sticking
collision will not directly fall onto the mass grid itself, but has
to be distributed between the adjacent mass bins as described in
Equation (15). This leads to artificial growth, because material
will be added to a bin that is more massive than the combined
mass of the collision partners. This causes the simulations to be
more massive at the higher mass end and—due to mass
conservation—less massive at the lower mass end compared to

the analytic solutions. The situation is worse for the linear
kernel, because the kernel is proportional to the colliding mass
itself. An overestimation of mass will overestimate the kernel
itself.
But since the computational time is highly sensitive to the

number of mass bins, one has to find a compromise between
accuracy and execution time. For the simple collision model in
the default DustPy simulation, the default mass resolution
should be sufficient, since growth will be eventually halted by
the fragmentation or by the drift barrier. Only the growth
timescale might be slightly underestimated. For more complex
collision models, including, for example, mass transfer, a
higher mass resolution might be crucial. For more details on
this we refer to Drażkowska et al. (2014), which performed
mass resolution tests for more complex collision models. In any
case, we advise to always run selected simulations with a
higher mass resolution to verify that the default mass resolution
was sufficient.
Figure 9 shows the relative errors in mass for the two

benchmark models of the constant and linear kernels with the
default and the high-resolution runs. In all cases the errors are
very close to machine-precision levels for double-precision
floating point numbers. The coagulation algorithm of DustPy
is therefore mass conserving.

4.2. Gas Transport

Viscous gas accretion as given by Equations (1) and (3) has
an analytical solution, as discussed by Lynden-Bell & Pringle
(1974) and Hartmann et al. (1998) and is given by

⎜ ⎟
⎛
⎝

⎞
⎠

() ()
pn

S = -
g

g
g

g- -
-

-
R

C

R
T

R

T3
exp , 76g

1

5 2
2

2

with the dimensionless time = +T 1t

ts
, with a dimensionless

scaling of the radial grid =R r

r1
, and with the viscosity at the

scaling location ()n n= r1 1 . γ is the exponent of the viscosity
assuming it is a power law:

() · · · · ()n a=
W

µ º gr c r r r r
1

. 77s q
s
2

K

3
2

Figure 8. Comparison of the analytical solutions (black solid lines) of the constant kernel (left) and the linear kernel (right) to DustPy simulations with the default
mass resolution (dotted colored lines) and with a four times higher mass resolution (solid colored lines).

12

The Astrophysical Journal, 935:35 (16pp), 2022 August 10 Stammler & Birnstiel

In the default DustPy simulation with s= 0 and = -q 1

2
it

follows that γ= 1. The scaling factor of time is given by

()
()

g n
=

-
t

r1

3 2
78s 2

1
2

1

and the mass normalization factor

()
()n

g
=

-
C M

r

3

2 2
, 790

1

1
2

with M0 being the initial mass of the disk. We compare in
Figure 10 a simulation with the default DustPy parameters
against the analytical solution given by Equation (76). As can

be seen, the result of DustPy is in good agreement with the
analytical solution. Only in the last snapshot there is a small
deviation close to the outer edge of the grid. The reason for this
is that the outer gas boundary is set to the gas floor value,
which is a very small number. This causes a minor under-
estimation of the surface density when the disk expands and
reaches the outer boundary.
A word of caution on other slopes of the surface density: with

the above default parameters of DustPy the surface density slope
in the inner disk will be −1. If one wants to achieve slopes other
than −1, it is not enough to simply change the initial surface
density profile. Over time the surface density will approach−γ as
given by Equation (77), since the viscosity profile determines the

Figure 9. Relative error in mass in the benchmarks for the constant (top) and linear (bottom) kernels in the default (open circles) and the high-resolution (filled
circles) runs.

13

The Astrophysical Journal, 935:35 (16pp), 2022 August 10 Stammler & Birnstiel

gas profile in the long run. One has to change the slopes of the
viscosity or the temperature profile accordingly.

Similarly, the inner boundary has to be changed from a constant
gradient to constant power law, for any other surface density
profile than −1. For more details we refer to the documentation.4

5. Examples

In this section we discuss selected examples of simulations
performed with DustPy. The left panel of Figure 11 shows the
default model of DustPy that is run when no parameter or
function has been modified. The plotted snapshot is after
1 Myr. The quantity σd that is plotted is defined by

() () ()ò sS =
¥

r r m m, d log , 80d
0

d

such that it is independent of the mass grid, since the code units
of DustPy are integrated over the mass bin and therefore
depend on the mass grid.

Table 1 lists the key parameters of the default model. But
since DustPy is under continuous development, these
parameters might be subject to change in the future. We would
therefore like to refer to the documentation,5

* *() ()» µ -T r
T R

r
r

2
, 81

1
2

with the stellar radius and temperature R* and T*.
The blue line in Figure 11 is the fragmentation barrier. As

particles grow their relative velocities increase, as shown in
Figure 5. If their relative velocities exceed the fragmentation
velocity, which is 1 m s−1 in the default model, the particles
start to fragment instead of growing further. The fragmentation
barrier is an estimate by Birnstiel et al. (2012) and is given by

()
p r d

=
S

a
v

c

2

3
, 82

g

t
frag

s

frag
2

s
2

where afrag is the maximum size a particle can reach at any
location in the disk where particle growth is fragmentation
limited.
The green line is the drift barrier. As seen in Equation (8),

particles have increasing drift speeds with increasing Stokes
numbers, i.e., with increasing size, until they reach the
maximum drift speed at a Stokes number of unity. At some
point the particles drift more rapidly toward the star, before
they can grow to larger sizes. This is called the drift barrier and
estimated by Birnstiel et al. (2012) as

⎛
⎝

⎞
⎠

()
p r

=
S ¶

¶

- -

a
H

r

P

r

2 log

log
, 83drift

d

s

P
2 1

Figure 10. Comparison of the gas evolution of DustPy against the analytical solution of Equation (76).

Figure 11. Example simulations of dust evolution with DustPy after a simulation time of 1 Myr. Left: the default model. Center: the default model with three ice
lines changing the fragmentation velocity. Right: the default model including Jupiter and Saturn opening gaps.

4 Documentation: https://stammler.github.io/dustpy/.
5 Documentation: https://stammler.github.io/dustpy/. This will always list
the most recent model parameters. The default temperature profile is that of a
passively irradiated disk with an irradiation angle of 0.05.

14

The Astrophysical Journal, 935:35 (16pp), 2022 August 10 Stammler & Birnstiel

https://stammler.github.io/dustpy/
https://stammler.github.io/dustpy/

where adrift is the maximum size particles can reach anywhere
in the disk where growth is drift limited. The white lines in
Figure 11 represent particle sizes with a Stokes number of
unity, i.e., particles with the highest drift speeds and highest
relative velocities. To achieve this simulation result only seven
lines of Python code were needed including the import of
modules and the initialization.

The center panel of Figure 11 shows the default model but
with three ice lines at which the fragmentation velocity is
changing. The model is similar to the model of Pinilla et al.
(2017). The idea behind the model is that the fragmentation
velocity of particles depends on their chemical composition,
where icy particles could be more sticky than pure silicate
particles (Schäfer et al. 2007; Wada et al. 2009). The adopted
fragmentation velocity in this model is given by

⎧

⎨

⎪
⎪
⎪

⎩

⎪
⎪
⎪

()

()

()

()

()=

>

> >

> >
v

T

T

T

1
m

s
for 150 K pure silicate

10
m

s
for 150 K 80 K water ice

7
m

s
for 80 K 40 K ammonia

1
m

s
else carbon dioxide

. 84frag

Please note, however, that newer experiments suggest that the
fragmentation velocity does not change that dramatically with
composition (Musiolik & Wurm 2019). In regions with higher
fragmentation velocity particles can grow to larger sizes, before

they fragment. Since larger particles drift more rapidly, this
depletes the outer disk rather quickly, enriching the inner disk
inside the water ice line with material. To set up this model,
only 14 lines of Python code were required, mainly to write a
function for the fragmentation velocity. Please note further, that
this example is only a showcase of the potential of DustPy
and does not include evaporation and condensation of the
molecules in question. It is relatively easy to include additional
gas species in DustPy. The addition of new dust parameters
like ice contents would require greater modifications to the dust
distributions (see Okuzumi et al. 2009; Stammler et al. 2017).
The right panel of Figure 11 shows the default model but

with Jupiter and Saturn inserted at their current locations. The
planets open gaps in the gas disk and, since dust particles
follow pressure gradients, the gap is also cleared of dust. It is
difficult to achieve this gap opening in an one-dimensional
simulation self-consistently. We therefore use the gap profiles
provided by Kanagawa et al. (2017) obtained from two-
dimensional hydrodynamical simulations. Since we also want
to model gas accretion, we cannot simply set the gas surface
density directly to these profiles. But since the product of the
viscosity ν and the gas surface density Σ g is a constant in
steady state, we can impose the inverse of the gap profile on the
viscosity.
As seen in Figure 11, the planetary regions are cleared of

gas. Since the Stokes number is inversely proportional to the
gas surface density, the white line for particles of Stokes
number unity is directly proportional to the gas surface density.
The particles in the planetary regions have larger Stokes
numbers due to the reduced gas surface density leading to
higher relative velocities and therefore smaller particles sizes.
To set up this simulation about 80 lines of Python code were
necessary, where most of the code is needed to define the gap
profiles of Kanagawa et al. (2017).
Further examples of research that have been done with

DustPy include Stammler et al. (2019), which implemented
planetesimal formation in dust rings at the outer edges of gaps
to explain the observed optical depths in protoplanetary disks.
In a similar model, Miller et al. (2021) showed that moving
pressure bumps could explain the observations of wide exo-
Kuiper belts. Gárate et al. (2020) implemented back reaction of
dust particles onto the gas in DustPy to investigate the
influence of dust enrichment at ice lines on the accretion rate.
Pinilla et al. (2021) performed a parameter study on the α, δr,
δt, and δz parameters to investigate their influence on the
maximum particle sizes dust particles can reach. Drażkowska
et al. (2021) used DustPy to benchmark a simple model for
the prediction of the pebble accretion rate in protoplanetary
disks.

6. Summary

We developed DustPy, a Python package to simulate dust
evolution in protoplanetary disks. DustPy solves for viscous
gas evolution, dust advection and diffusion, and dust growth by
coagulation and fragmentation. Computationally expensive
routines are written in Fortran and called from within the
Python environment.
DustPy uses the Simframe framework for scientific

simulations, which makes it easy to change every aspect of the
code to allow for a multitude of research opportunities.

Table 1
Key Parameters of the Default DustPy Model

Parameter Description Value Equations

Rin Inner grid boundary 1 au
Rout Outer grid boundary 1000 au
Nr Number of radial grid cells 100

mmin Minimum particle mass 10−12 g
mmax Maximum particle mass 105 g
Nmbpd Number of mass bins per decade 7

M* Stellar mass 1 Me

R* Stellar radius 2 Re (81)
T* Stellar effective surface

temperature
5772 K (81)

Mdisk Initial disk mass 0.05 Me

p Power law of surface density −1
Rc Initial critical cutoff radius 30 au

Initial dust-to-gas ratio 10−2

α α-viscosity parameter 10−3 (3)
δr Radial mixing parameter 10−3 (11)
δt Turbulent mixing parameter 10−3

δz Vertical mixing parameter 10−3 (56)

amax
ini Maximum initial particle size 1 μm

β Initial particle size distribu-
tion () µ bn a a

−3.5

γ Fragment distribution −11/6 (37)
Mass ratio for erosion 10

ρs Dust bulk mass density 1.67 g cm−3

vfrag Fragmentation velocity 1 m s−1 (60)
χ Excavated erosive mass fraction 1 (39)

15

The Astrophysical Journal, 935:35 (16pp), 2022 August 10 Stammler & Birnstiel

Dust growth is simulated by solving the Smoluchowski
equation for a dust mass distribution. In contrast to Monte
Carlo methods, which simulate the evolution of representative
particles, the advantage of DustPy is its execution time. The
default model of DustPy takes about 25 minutes to evolve a
full protoplanetary disk for 100,000 yr. The Monte Carlo model
of Drażkowska et al. (2013), for example, takes about 25 days
to simulate an annulus within a protoplanetary disk for 30,000
yr with 100,000 representative particles. The advantage of
Monte Carlo methods, however, is that it is straightforward to
add additional parameters to them, such as porosity or ice
fraction to the dust particles, while this requires greater
modifications to the dust densities in Smoluchowski solvers
(see Okuzumi et al. 2009; Stammler et al. 2017).

DustPy is a one-dimensional code that only has one spatial
coordinate, the radial distance from the star, to simulate
axisymmetric disks. Nonaxisymmetric features as reported by
Drażkowska et al. (2021) can therefore not be modeled. The
vertical extent of the disk—the height above the midplane—is
assumed to be always in hydrostatic equilibrium. This
assumption is good enough for most parts of the disk, but
might be violated in parts, where the collisional timescale
becomes significantly shorter than the mixing timescale (see
Krijt & Ciesla 2016; Klarmann et al. 2018). Furthermore,
sedimentation-driven coagulation by particles settling toward
the midplane cannot be modeled (Zsom et al. 2011).

DustPy uses a logarithmic mass grid to cover large
dynamic ranges from submicron interstellar medium grain
sizes to meter-sized boulders. Particles resulting from hit-and-
stick collisions will therefore not generally lie on the mass grid
itself. Their mass will be added into the two adjacent mass bins.
This will, however, artificially create particles that are too large.
In the default model this will not be an issue since dust growth
is halted by fragmentation and drift; only the growth timescale
will be slightly underestimated. In more complex collision
models, as in Windmark et al. (2012), where large particles can
continue growing by sweeping up small particles, it is crucial to
not overestimate the sizes of the largest particles. Other
algorithms, like Lee (2000), Dullemond & Dominik (2005) or
Lombart & Laibe (2021), may be better suited to conserve the
shape of the particle distribution. The coagulation algorithm of
DustPy, on the other hand, conserves the dust mass up to
machine-precision. In any case, we advise users to always
compare their results to high-resolution runs and check for
convergence.

We thank the referee for their very helpful comments and
suggestions as well as the rigorous cross-checking of the
equations presented in this publication. The authors acknowl-
edge funding from the European Research Council (ERC)
under the European Unionʼs Horizon 2020 research and
innovation program under grant agreement No. 714769 and
funding by the Deutsche Forschungsgemeinschaft (DFG,
German Research Foundation) under grant Nos. 361140270,
325594231, and under Germany ʼs Excellence Strategy—EXC-
2094-390783311.

ORCID iDs

Sebastian M. Stammler https://orcid.org/0000-0002-
1589-1796
Tilman Birnstiel https://orcid.org/0000-0002-1899-8783

References

Birnstiel, T., Dullemond, C. P., & Brauer, F. 2010, A&A, 513, A79
Birnstiel, T., Klahr, H., & Ercolano, B. 2012, A&A, 539, A148
Blum, J., & Wurm, G. 2008, ARA&A, 46, 21
Brauer, F., Dullemond, C. P., & Henning, T. 2008, A&A, 480, 859
Chokshi, A., Tielens, A. G. G. M., & Hollenbach, D. 1993, ApJ, 407, 806
Clarke, C. J., & Pringle, J. E. 1988, MNRAS, 235, 365
Dohnanyi, J. S. 1969, JGR, 74, 2531
Drażkowska, J., Stammler, S. M., & Birnstiel, T. 2021, A&A, 647, A15
Drażkowska, J., Windmark, F., & Dullemond, C. P. 2013, A&A, 556, A37
Drażkowska, J., Windmark, F., & Dullemond, C. P. 2014, A&A, 567, A38
Dubrulle, B., Morfill, G., & Sterzik, M. 1995, Icar, 114, 237
Dullemond, C. P., & Dominik, C. 2004, A&A, 421, 1075
Dullemond, C. P., & Dominik, C. 2005, A&A, 434, 971
Gárate, M., Birnstiel, T., Drążkowska, J., & Stammler, S. M. 2020, A&A,

635, A149
Hartmann, L., Calvet, N., Gullbring, E., & D’Alessio, P. 1998, ApJ, 495, 385
Johansen, A., Oishi, J. S., Mac Low, M.-M., et al. 2007, Natur, 448, 1022
Kanagawa, K. D., Tanaka, H., Muto, T., & Tanigawa, T. 2017, PASJ, 69, 97
Klarmann, L., Ormel, C. W., & Dominik, C. 2018, A&A, 618, L1
Krapp, L., Benítez-Llambay, P., Gressel, O., & Pessah, M. E. 2019, ApJL,

878, L30
Krijt, S., & Ciesla, F. J. 2016, ApJ, 822, 111
Lee, M. H. 2000, Icar, 143, 74
Liu, B., & Ormel, C. W. 2018, A&A, 615, A138
Lombart, M., & Laibe, G. 2021, MNRAS, 501, 4298
Lynden-Bell, D., & Pringle, J. E. 1974, MNRAS, 168, 603
Miller, E., Marino, S., Stammler, S. M., et al. 2021, MNRAS, 508, 5638
Musiolik, G., & Wurm, G. 2019, ApJ, 873, 58
Nakagawa, Y., Nakazawa, K., & Hayashi, C. 1981, Icar, 45, 517
Ohtsuki, K., Nakagawa, Y., & Nakazawa, K. 1990, Icar, 83, 205
Okuzumi, S., Tanaka, H., & Sakagami, M.-A. 2009, ApJ, 707, 1247
Ormel, C. W. 2017, in Formation, Evolution, and Dynamics of Young Solar

Systems, ed. M. Pessah & O. Gressel, Vol. 445 (Cham: Springer), 197
Ormel, C. W., & Cuzzi, J. N. 2007, A&A, 466, 413
Ormel, C. W., & Liu, B. 2018, A&A, 615, A178
Ormel, C. W., Spaans, M., & Tielens, A. G. G. M. 2007, A&A, 461, 215
Paardekooper, S.-J., McNally, C. P., & Lovascio, F. 2020, MNRAS, 499, 4223
Pinilla, P., Lenz, C. T., & Stammler, S. M. 2021, A&A, 645, A70
Pinilla, P., Pohl, A., Stammler, S. M., & Birnstiel, T. 2017, ApJ, 845, 68
Rafikov, R. R., Silsbee, K., & Booth, R. A. 2020, ApJS, 247, 65
Schäfer, C., Speith, R., & Kley, W. 2007, A&A, 470, 733
Shakura, N. I., & Sunyaev, R. A. 1973, A&A, 24, 337
Sierra, A., Pérez, L. M., Zhang, K., et al. 2021, ApJS, 257, 14
Silk, J., & Takahashi, T. 1979, ApJ, 229, 242
Stammler, S., & Birnstiel, T. 2022, JOSS, 7, 3882
Stammler, S. M., Birnstiel, T., Panić, O., Dullemond, C. P., & Dominik, C.

2017, A&A, 600, A140
Stammler, S. M., Drążkowska, J., Birnstiel, T., et al. 2019, ApJL, 884, L5
Virtanen, P., Gommers, R., Oliphant, T. E., et al. 2020, NatMe, 17, 261
Wada, K., Tanaka, H., Suyama, T., Kimura, H., & Yamamoto, T. 2009, ApJ,

702, 1490
Weidenschilling, S. J. 1980, Icar, 44, 172
Wetherill, G. W. 1990, Icar, 88, 336
Windmark, F., Birnstiel, T., Ormel, C. W., & Dullemond, C. P. 2012, A&A,

544, L16
Youdin, A. N., & Goodman, J. 2005, ApJ, 620, 459
Youdin, A. N., & Lithwick, Y. 2007, Icar, 192, 588
Zsom, A., & Dullemond, C. P. 2008, A&A, 489, 931
Zsom, A., Ormel, C. W., Dullemond, C. P., & Henning, T. 2011, A&A,

534, A73

16

The Astrophysical Journal, 935:35 (16pp), 2022 August 10 Stammler & Birnstiel

https://orcid.org/0000-0002-1589-1796
https://orcid.org/0000-0002-1589-1796
https://orcid.org/0000-0002-1589-1796
https://orcid.org/0000-0002-1589-1796
https://orcid.org/0000-0002-1589-1796
https://orcid.org/0000-0002-1589-1796
https://orcid.org/0000-0002-1589-1796
https://orcid.org/0000-0002-1589-1796
https://orcid.org/0000-0002-1589-1796
https://orcid.org/0000-0002-1899-8783
https://orcid.org/0000-0002-1899-8783
https://orcid.org/0000-0002-1899-8783
https://orcid.org/0000-0002-1899-8783
https://orcid.org/0000-0002-1899-8783
https://orcid.org/0000-0002-1899-8783
https://orcid.org/0000-0002-1899-8783
https://orcid.org/0000-0002-1899-8783
https://doi.org/10.1051/0004-6361/200913731
https://ui.adsabs.harvard.edu/abs/2010A&A...513A..79B/abstract
https://doi.org/10.1051/0004-6361/201118136
https://ui.adsabs.harvard.edu/abs/2012A&A...539A.148B/abstract
https://doi.org/10.1146/annurev.astro.46.060407.145152
https://ui.adsabs.harvard.edu/abs/2008ARA&A..46...21B/abstract
https://doi.org/10.1051/0004-6361:20077759
https://ui.adsabs.harvard.edu/abs/2008A&A...480..859B/abstract
https://doi.org/10.1086/172562
https://ui.adsabs.harvard.edu/abs/1993ApJ...407..806C/abstract
https://doi.org/10.1093/mnras/235.2.365
https://ui.adsabs.harvard.edu/abs/1988MNRAS.235..365C/abstract
https://doi.org/10.1029/JB074i010p02531
https://ui.adsabs.harvard.edu/abs/1969JGR....74.2531D/abstract
https://doi.org/10.1051/0004-6361/202039925
https://ui.adsabs.harvard.edu/abs/2021A&A...647A..15D/abstract
https://doi.org/10.1051/0004-6361/201321566
https://ui.adsabs.harvard.edu/abs/2013A&A...556A..37D/abstract
https://doi.org/10.1051/0004-6361/201423708
https://ui.adsabs.harvard.edu/abs/2014A&A...567A..38D/abstract
https://doi.org/10.1006/icar.1995.1058
https://ui.adsabs.harvard.edu/abs/1995Icar..114..237D/abstract
https://doi.org/10.1051/0004-6361:20040284
https://ui.adsabs.harvard.edu/abs/2004A&A...421.1075D/abstract
https://doi.org/10.1051/0004-6361:20042080
https://ui.adsabs.harvard.edu/abs/2005A&A...434..971D/abstract
https://doi.org/10.1051/0004-6361/201936067
https://ui.adsabs.harvard.edu/abs/2020A&A...635A.149G/abstract
https://ui.adsabs.harvard.edu/abs/2020A&A...635A.149G/abstract
https://doi.org/10.1086/305277
https://ui.adsabs.harvard.edu/abs/1998ApJ...495..385H/abstract
https://doi.org/10.1038/nature06086
https://ui.adsabs.harvard.edu/abs/2007Natur.448.1022J/abstract
https://doi.org/10.1093/pasj/psx114
https://ui.adsabs.harvard.edu/abs/2017PASJ...69...97K/abstract
https://doi.org/10.1051/0004-6361/201833719
https://ui.adsabs.harvard.edu/abs/2018A&A...618L...1K/abstract
https://doi.org/10.3847/2041-8213/ab2596
https://ui.adsabs.harvard.edu/abs/2019ApJ...878L..30K/abstract
https://ui.adsabs.harvard.edu/abs/2019ApJ...878L..30K/abstract
https://doi.org/10.3847/0004-637X/822/2/111
https://ui.adsabs.harvard.edu/abs/2016ApJ...822..111K/abstract
https://doi.org/10.1006/icar.1999.6239
https://ui.adsabs.harvard.edu/abs/2000Icar..143...74L/abstract
https://doi.org/10.1051/0004-6361/201732307
https://ui.adsabs.harvard.edu/abs/2018A&A...615A.138L/abstract
https://doi.org/10.1093/mnras/staa3682
https://ui.adsabs.harvard.edu/abs/2021MNRAS.501.4298L/abstract
https://doi.org/10.1093/mnras/168.3.603
https://ui.adsabs.harvard.edu/abs/1974MNRAS.168..603L/abstract
https://doi.org/10.1093/mnras/stab2935
https://ui.adsabs.harvard.edu/abs/2021MNRAS.508.5638M/abstract
https://doi.org/10.3847/1538-4357/ab0428
https://ui.adsabs.harvard.edu/abs/2019ApJ...873...58M/abstract
https://doi.org/10.1016/0019-1035(81)90018-X
https://ui.adsabs.harvard.edu/abs/1981Icar...45..517N/abstract
https://doi.org/10.1016/0019-1035(90)90015-2
https://ui.adsabs.harvard.edu/abs/1990Icar...83..205O/abstract
https://doi.org/10.1088/0004-637X/707/2/1247
https://ui.adsabs.harvard.edu/abs/2009ApJ...707.1247O/abstract
https://ui.adsabs.harvard.edu/abs/2017ASSL..445..197O/abstract
https://doi.org/10.1051/0004-6361:20066899
https://ui.adsabs.harvard.edu/abs/2007A&A...466..413O/abstract
https://doi.org/10.1051/0004-6361/201732562
https://ui.adsabs.harvard.edu/abs/2018A&A...615A.178O/abstract
https://doi.org/10.1051/0004-6361:20065949
https://ui.adsabs.harvard.edu/abs/2007A&A...461..215O/abstract
https://doi.org/10.1093/mnras/staa3162
https://ui.adsabs.harvard.edu/abs/2020MNRAS.499.4223P/abstract
https://doi.org/10.1051/0004-6361/202038920
https://ui.adsabs.harvard.edu/abs/2021A&A...645A..70P/abstract
https://doi.org/10.3847/1538-4357/aa7edb
https://ui.adsabs.harvard.edu/abs/2017ApJ...845...68P/abstract
https://doi.org/10.3847/1538-4365/ab7b71
https://ui.adsabs.harvard.edu/abs/2020ApJS..247...65R/abstract
https://doi.org/10.1051/0004-6361:20077354
https://ui.adsabs.harvard.edu/abs/2007A&A...470..733S/abstract
https://ui.adsabs.harvard.edu/abs/1973A&A....24..337S/abstract
https://doi.org/10.3847/1538-4365/ac1431
https://ui.adsabs.harvard.edu/abs/2021ApJS..257...14S/abstract
https://doi.org/10.1086/156949
https://ui.adsabs.harvard.edu/abs/1979ApJ...229..242S/abstract
https://doi.org/10.21105/joss.03882
https://ui.adsabs.harvard.edu/abs/2022JOSS....7.3882S/abstract
https://doi.org/10.1051/0004-6361/201629041
https://ui.adsabs.harvard.edu/abs/2017A&A...600A.140S/abstract
https://doi.org/10.3847/2041-8213/ab4423
https://ui.adsabs.harvard.edu/abs/2019ApJ...884L...5S/abstract
https://doi.org/10.1038/s41592-019-0686-2
https://ui.adsabs.harvard.edu/abs/2020NatMe..17..261V/abstract
https://doi.org/10.1088/0004-637X/702/2/1490
https://ui.adsabs.harvard.edu/abs/2009ApJ...702.1490W/abstract
https://ui.adsabs.harvard.edu/abs/2009ApJ...702.1490W/abstract
https://doi.org/10.1016/0019-1035(80)90064-0
https://ui.adsabs.harvard.edu/abs/1980Icar...44..172W/abstract
https://doi.org/10.1016/0019-1035(90)90086-O
https://ui.adsabs.harvard.edu/abs/1990Icar...88..336W/abstract
https://doi.org/10.1051/0004-6361/201220004
https://ui.adsabs.harvard.edu/abs/2012A&A...544L..16W/abstract
https://ui.adsabs.harvard.edu/abs/2012A&A...544L..16W/abstract
https://doi.org/10.1086/426895
https://ui.adsabs.harvard.edu/abs/2005ApJ...620..459Y/abstract
https://doi.org/10.1016/j.icarus.2007.07.012
https://ui.adsabs.harvard.edu/abs/2007Icar..192..588Y/abstract
https://doi.org/10.1051/0004-6361:200809921
https://ui.adsabs.harvard.edu/abs/2008A&A...489..931Z/abstract
https://doi.org/10.1051/0004-6361/201116515
https://ui.adsabs.harvard.edu/abs/2011A&A...534A..73Z/abstract
https://ui.adsabs.harvard.edu/abs/2011A&A...534A..73Z/abstract

	1. Introduction
	2. Gas Evolution
	2.1. Algorithm

	3. Dust Evolution
	3.1. Dust Transport
	3.2. Dust Growth
	3.2.1. Coagulation
	3.2.2. Fragmentation
	3.2.3. Collision Rates
	3.2.4. Relative Velocities
	3.2.5. Coagulation/Fragmentation Probabilities
	3.2.6. Vertical Integration

	3.3. Algorithm

	4. Test Cases
	4.1. Dust Coagulation
	4.1.1. The Constant Kernel
	4.1.2. The Linear Kernel

	4.2. Gas Transport

	5. Examples
	6. Summary
	References

