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Preparation of Functionalized Amides Using Dicarbamoylzincs
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Abstract: We report a new convenient preparation of
dicarbamoylzincs of type (R1R2NCO)2Zn by the treat-
ment of ZnCl2 and formamides R

1R2NCHO with LiTMP
in THF (15 °C, 15 min) or by the reaction of formamides
R1R2NCHO with TMP2Zn (25 °C, 16 h). This second
method tolerates sensitive groups such as an ester,
ketone or nitro function. Reaction of these dicarbamoyl-
zincs with allylic, benzylic, aryl, alkenyl bromides, acid
chlorides, aldehydes or enones provided various poly-
functional amides in 47–97% yields. 13C NMR character-
ization of these new carbamoylzinc derivatives is
reported.

Reagents displaying an umpolung of reactivity have
attracted much attention.[1] Especially, acyl anion equiva-
lents have found many synthetic applications.[2] Also, related
carbamoyl organometallics of type 1 have been prepared
either by reduction of the corresponding carbamoyl chloride
2 by lithium metal (pathway A),[3] by the insertion of CO to
copper or lithium amides of type 3 (pathway B)[4] or by the
metalation of various formamides 4 with lithium bases such
as LDA or t-BuLi at low temperature (Scheme 1).[5, 6]

Recently, Reeves used carbamoyllithiums prepared in
toluene by lithiation with LDA for the addition to N-
sulfonyl imines producing α-amino acids.[7] All these meth-
ods suffer from drawbacks such as a limited functional group
compatibility, the use of a toxic gas or cryogenic reaction
temperatures. Recently, we have reported that lithium
amides like LiTMP (TMP=2,2,6,6-tetramethylpiperidyl)

were compatible with metallic salts such as ZnCl2·2LiCl,
MgCl2 and CuCN·2LiCl at low temperature.

[8] The stability
of such Lewis pairs, which may be considered as frustrated
Lewis pairs,[9] allowed in situ trapping metalations of various
arenes and heteroarenes.[8] This in situ protocol was
expanded by generating carbamoyllithiums of type 1a in the
presence of various electrophiles in continuous flow.[10] The
Barbier procedure was essential for the success of the
reaction conducted in continuous flow and allowed to
prepare a wide range of products of type 5. Although this
reaction represented a synthetic advance, it did not allow
the performance of cross-couplings with aryl and heteroaryl
halides and required a flow apparatus. Catalytic amino-
carbonylation protocols[11] involve usually highly toxic CO
gas, an amine and an aryl halide. Those performed in the
absence of CO gas are scarce.[6e, f, 12] Herein, we have
reported the synthesis of a new room temperature stable
dicarbamoylzinc species 6 (stable at least 16 h at 25 °C)[13]

using two complementary methods (Method A and B) and
their reactions with a range of electrophiles such as allylic
and benzylic bromides, aldehydes, acid chlorides, enones
and heteroaryl or alkenyl bromides producing functionalized
amides of type 7.
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Scheme 1. Preparations of carbamoylmetal reagents.
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Thus, in preliminary experiments we have treated a THF
mixture of formamides of type 4 (1.0 equiv) and ZnCl2
(0.5 equiv) in the presence (or absence) of Et3N
(0.5 equiv)[14] with various lithium amide bases such as LDA,
Cy2NLi (Cy=cyclohexyl)[15] and LiTMP in order to prepare
the dicarbamoylzinc species 6 at temperatures between 0–
25 °C for 15 min. The conversion to the zinc reagent 6 was
evaluated by performing copper-catalyzed allylations with
allyl bromide on reaction aliquots.[16] These experiments
showed that LiTMP (2.2 equiv; 0.5 M in THF) was the best
base for achieving this lithiation (performed in the presence
of ZnCl2) providing the dicarbamoylzinc 6.

[17]

With these conditions in hand, we have examined the
reaction scope. Thus, N,N-dibutylformamide (4a) was con-
verted to the dicarbamoylzinc 6a (LiTMP, 2.2 equiv;
ZnCl2·NEt3, 1.0 equiv; 15 °C, 15 min). We have isolated, after
a copper-catalyzed allylation with allyl bromide, the ex-
pected amide 8a in 94% isolated yield (both carbamoyl
moieties were reacting). Various formamides (4b–4h) were
zincated by this procedure leading to 6b–j, which provided
the desired allylated products 8b–8 j in 57–97% yield
(Scheme 2). Interestingly, although copper-zinc cuprates of
type RCu(CN)ZnX[18] gave usually SN2’-substitution allyla-
tion products, we have observed the formation of only SN2-
substitution allylation products using prenyl bromide (8h

and 8 i; 61–62% yield) or cinammyl bromide (8 j: 57% yield,
SN2/SN2’>9 :1).

[19] This unusual regioselectivity may be due
to the carbonyl group coordination to the copper center
resulting in a different Zn/Cu-cluster. In contrast, with
propargyl bromide, we have obtained only the SN2’ product,
i.e. the allenic amide 8k (58% yield). Interestingly, we have
also used this method for the preparation of 13C-labeled
amide 8 l from Bu2N

13CHO.[20]

In order to tolerate more sensitive groups such as an
ester, ketone or a nitro function, we have directly treated
several formamides (4k–o) with TMP2Zn

[21] in THF at 25 °C
for 16 h (Method B) affording the desired zinc reagents 6k–
o which after allylation gave the desired polyfunctional
products 8m–q containing an ester, a ketone, an imide and a
nitro group (Scheme 3).
Dicarbamoylzincs of type 6 also underwent smooth

benzylations with various benzylic bromides in the presence
of MgCl2·LiCl (1.0 equiv) affording polyfunctional arylaceta-
mide derivatives (9a–9 i) in 57–88% yield (Scheme 4). In the
absence of MgCl2·LiCl, a homo-coupling product of benzylic
bromide (1,2-diarylethane) was observed. The positive effect
of MgCl2 was also mandatory for performing addition
reactions to aldehydes.[22] Thus, the reaction of 6a and 6e
with benzaldehydes in the presence of MgCl2·LiCl
(1.0 equiv) gave the expected α-hydroxyamides (10a,b) in
57–74% yield (Scheme 5).[23]

Acylation with various acid chlorides were performed in
the absence of any catalyst and a complete acylation of
various dicarbamoylzinc reagents of type 6 with acid
chlorides at 25 °C, 16 h resulting in the formation of α-
ketoamides (11a–11d) in 54–84% yield (Scheme 6). In the
reaction of 6a with diphenylphosphinic chloride N,N-
dibutyl-1-(diphenylphosphoryl)formamide 11e was pro-
duced in 70% yield.

Scheme 2. Allylation of dicarbamoylzincs of type 6 with allylic and
propargylic bromides providing polyfunctional amides of type 8. The
indicated yields refer to analytically pure isolated product.

Scheme 3. Allylation of dicarbamoylzincs of type 6 with allylic bromides
providing polyfunctional amides of type 8. The indicated yields refer to
analytically pure isolated product.
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Interestingly, a 1,4-addition was achieved starting with 2-
cyclohexen-1-one and amide 4a. Thus, the corresponding
zinc reagent 6a was cooled to � 78 °C and treated with
CuCN·2LiCl (1.0 equiv) for 0.5 h followed by BF3·OEt2
(1.0 equiv)[24] and cyclohexenone (1.0 equiv) to give after
16 h at � 78 °C the Michael adduct 12 in 54% isolated yield
(Scheme 7).
We have examined cross-coupling reactions with various

functionalized aryl bromides and noticed that a dual-
catalysis[25] involving a copper catalyst (4 mol%
CuCN·2LiCl) and a palladium catalyst (10 mol% Pd-
(dppf)Cl2) (dppf=1,1’-bis(diphenylphosphino)ferrocene)
was required. Using only Pd(dppf)Cl2 or a CuCN·2LiCl gave
almost no product. In a typical experiment, we have
prepared 6a from N,N-dibutylformamide (2.0 equiv) with
the usual procedure (Method A). Addition of 10 mol%
Pd(dppf)Cl2, aryl/alkenyl bromide and 4 mol% CuCN·2LiCl
gave after heating the reaction mixture for 16 h at 45 °C in a
sealed tube the desired cross-coupling products 13a–13q in
53–93% isolated yield (Scheme 8). Scale-up of this proce-
dure has been demonstrated in the preparation of 13k
(10 mmol scale; Scheme 8) with reduction of catalyst loading
(2 mol% Pd(dppf)Cl2, 0.8 mol% CuCN·2LiCl).
A 13C NMR-characterisation of N,N-dibutylcarbamoyl-

zinc reagent was done. Thus, the 13C NMR spectra of the
reaction mixture obtained by treating 4a/ZnCl2 mixture with
LiTMP showed a new characteristic carbonyl signal (δ=

219.4 ppm), together with a broad signal around δ=225 ppm
(Figure 1a). To confirm the assigment of these resonances,
we have prepared dicarbamoylzinc 6a by an alternative
method. Thus, treatment of Bu2NLi at � 78 °C with CO gas
led to N,N-dibutylcarbamoyllithium[4d,e] (1.0 equiv) which
was transmetalated under CO atmosphere with ZnCl2
(0.5 equiv) to give the dicarbamoylzinc reagent 6a. Indeed,
an identical 13C NMR signal with a chemical shift for the
carbonyl group δ=219.4 ppm (Figure 1b) was observed.
Also, by using 0.3 equiv of ZnCl2 we obtained the zincate
14a (Figure 1c). Finally, TMP2Zn·2LiCl as a metalation
reagent afforded spectroscopically pure diorganozinc re-
agent 6a (Figure 1d).
In summary, we have reported a new convenient in situ

lithiation with LiTMP of various formamides 4 in the
presence of ZnCl2 providing new dicarbamoylzincs 6 which
underwent allylations, benzylations, arylations, alkenyla-
tions, acylations, hydroxyalkylations and 1,4-additions pro-
viding polyfunctional amides in good yields (Method A).

Scheme 4. Cu-catalyzed benzylation of dicarbamoylzincs 6 with benzylic
bromides. The indicated yields refer to analytically pure isolated
product.

Scheme 5. Mg-mediated hydroxyalkylation of dicarbamoylzincs 6 with
aldehydes. The indicated yields refer to analytically pure isolated
product.

Scheme 6. Acylation of dicarbamoylzincs 6 with acid chlorides. The
indicated yields refer to analytically pure isolated product.

Scheme 7. Cu-mediated 1,4-addition of 6a to 2-cyclohexen-1-one in the
presence of BF3·OEt2. The indicated yields refer to analytically pure
isolated product.
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Alternatively, we have also demonstrated that the reaction
of polyfunctional formamides with TMP2Zn provides dicar-
bamoylzincs containing sensitive functions such as ester,
ketone or nitro (Method B). 13C NMR investigations
confirmed the formation of (R2NCO)2Zn and related
aggregate (R2NCO)3ZnLi under these reaction conditions.
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