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Abstract
The level of habitat availability influences genetic divergence among populations and the genetic diversity within popula-
tions. In the marine environment, near-shore species are among the most sensitive to habitat changes. Knowledge of how 
historical environmental change affected habitat availability and genetic variation can be applied to the development of 
proactive management strategies of exploited species. Here, we modeled the contemporary and historical distribution of 
Lutjanus jocu in Brazil. We describe patterns of genomic diversity to better understand how climatic cycles might correlate 
with the species demographic history and current genetic structure. We show that during the Last Glacial Maximum, there 
were ecological barriers that are absent today, possibly dividing the range of the species into three geographically separated 
areas of suitable habitat. Consistent with a historical reduction in habitat area, our analysis of demographic changes shows 
that L. jocu experienced a severe bottleneck followed by a population size expansion. We also found an absence of genetic 
structure and similar levels of genetic diversity throughout the sampled range of the species. Collectively, our results suggest 
that habitat availability changes have not obviously influenced contemporary levels of genetic divergence between popula-
tions. However, our demographic analyses suggest that the high sensitivity of this species to environmental change should be 
taken into consideration for management strategies. Furthermore, the general low levels of genetic structure and inference of 
high gene flow suggest that L. jocu likely constitutes a single stock in Brazilian waters and, therefore, requires coordinated 
legislation and management across its distribution.

Keywords Species distribution modeling · Conservation genomics · Demographic history · Brazil · South Atlantic

Responsible Editor: C. Eizaguirre.

 * Julia Tovar Verba 
 juliatovarv@gmail.com; verba@bio.lmu.de

1 Programa de Pós-Graduação em Ecologia, Universidade 
Federal do Rio Grande do Norte, Natal, RN 59078-970, 
Brazil

2 Conservation Genetics Lab, Macquarie University, Sydney, 
NSW 2109, Australia

3 Division of Evolutionary Biology, Faculty of Biology, 
Ludwig-Maximilians-Universität München, 
Planegg-Martinsried 82152, Germany

4 Fishing Ecology, Management and Economics, Department 
of Ecology, Universidade Federal do Rio Grande do Norte, 
Natal, RN 59078-970, Brazil

5 Instituto Español de Oceanografía/Consejo Suoperior de 
Investigaciones Cientificas, Vigo 36390, Spain

6 Department of Oceanography, Universidade Federal de 
Pernambuco, Recife, PE 50740-540, Brazil

7 Laboratório de Ictiologia Sistemática e Evolutiva, 
Universidade Federal do Rio Grande do Norte, Natal, 
RN 59078-970, Brazil

8 Department of Zoology, State Museum of Natural History 
Stuttgart, Stuttgart 70191, Germany

http://crossmark.crossref.org/dialog/?doi=10.1007/s00227-022-04149-1&domain=pdf
http://orcid.org/0000-0001-5399-6890


 Marine Biology (2023) 170:5

1 3

5 Page 2 of 15

Introduction

Understanding how genetic variability is partitioned 
between and within populations of the same species is 
relevant for conservation management because it defines 
how many populations should be managed (Ovenden et al. 
2015; Petrolo et al. 2021), and their potential differences 
in population size (Hauser and Carvalho 2008). Such pat-
terns of genetic diversity are strongly influenced by migra-
tion and, thus, by how the connectivity between areas of 
suitable habitat changes over time. Although it is well 
understood how spatial and temporal changes in habitat 
suitability have driven diversification in terrestrial species 
(Laiolo and Tella 2006; Lim et al. 2011; Dennison et al. 
2015; Camurugi et al. 2021), relatively less is known about 
how these processes affect marine species (Nanninga et al. 
2014; Gonzalez et al. 2016; Choo et al. 2021).

High levels of genetic divergence have been revealed 
in less vagile marine species and attributed to unsuitable 
habitat restricting gene flow between suitable ones (e.g., 
Riginos and Nachman 2001; Bernardi and Vagelli 2004; 
Hemmer-Hansen et al. 2007; Nanninga et al. 2014; Cata-
rino et al. 2017; Momigliano et al. 2017). Conversely, it 
has long been assumed that a lack of genetic structure will 
result from unrestricted gene flow between populations in 
species with higher dispersal capacity (Roughgarden et al. 
1985; Ward et al. 1994; Doherty et al. 1995; Waples 1998). 
While this hypothesis has been supported by studies with 
limited numbers of genetic markers (e.g., Habib and 
Sulaiman 2016; Lacerda et al. 2016; Souza et al. 2019), 
recent genomic studies are changing this paradigm (e.g., 
Lah et al. 2016; Rodrígues-Ezpeleta et al. 2016; Cheng 
et al. 2021; Fahradi et al. 2022).

Studies of several marine species that have high dis-
persal capacity have shown that environmental gradients, 
such as ocean depth, salinity, oceanic currents, and water 
temperature are associated with patterns of genetic dif-
ferentiation (Bekkevold et al. 2005; Galarza et al. 2009; 
Amaral et al. 2012; Ludt and Rocha 2015; e.g., the Black 
Sea Bass, Roy et al. 2012; the Atlantic Cod, Bradbury 
et al. 2013; the Atlantic Bluefin Tuna, Albaina et al. 2013; 
the Spiny Lobster, Truelove et al. 2017; and the Red Cusk-
Eel, Córdova-Alarcón et al. 2019). Therefore, more effort 
is needed to describe present day environmental associa-
tions with genetic structure in marine species of high dis-
persal capacity to ascertain whether there are general pat-
terns and to identify the relative importance of particular 
life history traits or habitat requirements.

The historical distribution of environmental features 
has also been shown to contribute to current patterns of 
genetic variation in marine species (Féral 2002; Hauser 
and Carvalho 2008; Briggs and Bowen 2012). During the 

glacial periods of the Pleistocene, lower sea levels changed 
the extent and distribution of available habitat, particularly 
for coastal species (Reeder-Myers et al. 2015; Ludt and 
Rocha 2015; Dolby et al. 2020). For example, during the 
Last Glacial Maximum (LGM), some 20 kya, sea surface 
temperature, salinity and sea level were lower than pre-
sent (sea level 120 ± 5 m lower; Fairbanks 1989; Chap-
pell et al. 1996). This led to demographic contractions 
and genetic drift in isolated populations of many coastal 
species (Keller et al. 2005; Alò and Turner 2005; Hauser 
and Carvalho 2008; England et al. 2010; Pavlova et al. 
2017; Brauer and Beheregaray 2020). In addition, glacial 
cycles also affected oceanic currents, which will directly 
determine patterns of migration and gene flow in species 
with a pelagic larval phase (Ottersen et al. 2010; White 
et al. 2010; Neves et al. 2016).

Demographic changes induced by glacial cycles have 
been hypothesized to explain the low effective population 
sizes relative to census size generally observed in marine 
species (Hauser and Carvalho 2008). Although the LGM has 
been associated with demographic and genetic bottlenecks 
in many marine species (e.g., cod, Ólafsdóttir et al. 2014), 
some species were shown to have experienced a demo-
graphic expansion (e.g., Atlantic Bluefin Tuna and Sword-
fish, Alvarado Bremer et al. 2005; Thornback Ray, Chevolot 
et al. 2006; Angler, Charrier et al. 2006; Sand goby, Larmu-
seau et al. 2009; Jenkins et al. 2018). This suggests that the 
impact of the LGM on demography and genetic variation 
cannot be broadly generalized across species. Understanding 
genetic diversity variation due to environmental changes is 
especially relevant for exploited species because it can affect 
adaptation capacity.

Species of the Lutjanidae family, known as Snappers, 
are heavily exploited worldwide, reaching a yearly catch of 
125,000 tons in 2018 (Pauly et al. 2020). In some regions 
of Brazil, the catch of this species represents approximately 
40% of all the fishery resources (Rezende et al. 2003; Frédou 
et al. 2006), making it one of the most economically impor-
tant species of the country. Nevertheless, several species of 
this group are already in an overexploited or collapsed state 
in Brazil (Anderson et al. 2015; Lindeman et al. 2016; Verba 
et al. 2020), demonstrating the need for establishing sustain-
able fisheries practices. Among the most exploited species 
is the large carnivorous Dog snapper Lutjanus jocu, with a 
yearly global catch close to 2000 tons, of which 99% is in 
Brazil (Freire et al. 2015).

Lutjanus jocu inhabits reefs, estuaries, and mangroves, 
and is strongly dependent on coastal and rocky shores (Caló 
et al. 2009; Moura et al. 2011; Reis-Filho et al. 2019). It 
is distributed throughout the western coast of the Atlantic 
Ocean, from north-eastern USA to south-eastern Brazil, 
including isolated oceanic islands (Feitoza et al. 2003; Lima 
Viana 2009). Similar to other closely related species, L. jocu 
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has a pelagic larval phase that lasts between 20 and 40 days, 
which potentially allows long-distance dispersal facilitated 
by oceanic currents (Zapata and Herrón 2002; Pineda et al. 
2007; Bezerra et al. 2021). Accordingly, a study using one 
mitochondrial gene found no genetic structure along the Bra-
zilian coast and demographic signals consistent with a range 
expansion (Souza et al. 2019). Yet, mitochondrial studies 
offer a limiting view of population divergence and diversity 
because these markers are often under selection, are only 
maternally inherited, cannot detect subtle and recent diver-
gence due to incomplete lineage sorting, and are sensitive 
to sample size (Hurst and Jiggins 2005; Fratini et al. 2016; 
Younger et al. 2017). Genomic data are required to infer 
finer grained spatial genetic structure and the demographic 
history of wild marine species (e.g., Petrolo et al. 2021). 
Understanding the habitat connectivity and demographic 
history of L. jocu is timely, because it is listed as ‘data defi-
cient’ in the IUCN Red List, has no identified areas dedi-
cated to its conservation (Lindeman et al. 2016), and shows 
a decreasing population size and body size consistent with 
overexploitation (Bender et al. 2013).

To examine how past environmental cycles have affected 
genetic divergence and diversity of L. jocu we applied 
species distribution modeling to compare habitat avail-
ability during the LGM and present day and characterized 
genetic variation using a data set of 6286 Single Nucleotide 
Polymorphisms (SNPs). With this data set, we tested the 
hypotheses that less habitat will be associated with a lower 
population size and that low genetic structure will be found 
across areas of largely contiguous habitat. More generally 
we describe genetic structure and diversity for its application 
to the sustainable management of a heavily exploited and 
data deficient fish species.

Materials and methods

Species distribution modeling

To understand how glacial cycles affected the distribution 
of L. jocu, we have inferred the habitat suitability of the 
species during the current interglacial period, projected this 
model to the LGM, and compared the two models. First, we 
collected recent presence data of L. jocu along the entire 
coast of Brazil, using the geographic coordinates of the 
databases Global Biodiversity Information Facility (GBIF, 
https:// www. gbif. org) and SpeciesLink project (https:// 
www. splink. cria. org. br). After the exclusion of duplicates, 
we considered a total of 130 presence points. Since we do 
not have information about absences, pseudo-absences were 
generated by randomly selecting other 130 points within the 
study area with maximum bathymetry of 100 m (similar to 
the known limit of depth for this species; Froese and Pauly 

2000; Feitoza et al. 2003; Frédou and Ferreira 2005; Olavo 
et al. 2011).

Second, to identify the most important environmental 
variables that affect the distribution of L. jocu, we used an 
approach based on Bayesian Additive Regression Trees 
(BART), implemented in the embarcadero package (Carl-
son 2020) in R (R Core Team 2021). BART was shown to 
perform better than more traditional methods when using 
small datasets as it implements a Bayesian approach that 
allows a better quantification of associated uncertainties 
(Baquero et al. 2021; Konowalik and Nosol 2021). These 
models estimate the probability of the suitability (chance of 
occurrence) of a species presence based on decision “trees” 
that divide predictor variables with nested binary rule sets. 
The rules for generating these trees in BART are defined by 
posterior probabilities (Carlson 2020).

To fit BARTs, we tested the following environmental var-
iables for the present time, extracted from the Marine Spa-
tial Ecology database (MARSPEC, Braconnot et al. 2007; 
Sbrocco and Barber 2013; Sbrocco 2014): mean bathymetry 
(m, 30 arc-second); slope (degrees, 30 arc-second); aspect 
(East–West and North–South, the azimuthal direction of the 
steepest slope, a horizontal orientation of the seabed; radi-
ans, 30 arc-second); distance from the coast (km); minimum, 
maximum, mean and range of Sea Surface Temperature 
(SST; ºC, 2.5 arc-minute); and minimum, maximum, mean 
and range of Sea Surface Salinity (SSS; psu, 1 arc-degree) 
(Fig. S1). These variables were selected because they are 
likely to have an effect on marine fish distribution, disper-
sal, reproduction, and survival (Godoy et al. 2002; Hopkins 
and Cech 2003; Wiley et al. 2003; Lara and González 2005; 
Pittman and Brown 2011; Barneche et al. 2018; Wellington 
et al. 2021). Variables selection procedure was done using 
the automatic variable.step function of the embarcadero 
package (Carlson 2020). This function estimates for 50 times 
a complete model with all predictors and a small predefined 
set of trees (n = 20), eliminating the least informative vari-
ables in all 50 runs. Each time the least informative variable 
is removed, the function runs the models again (n = 50 more 
times), recording the Root Mean Square Error (RMSE). 
These steps are repeated automatically until there are only 
three covariates left and the model with the lowest average 
RMSE is selected.

Once the most important variables for the present time 
were selected, the same variables were extracted for the 
LGM (also from MARSPEC) and habitat suitability was 
projected for the current and the LGM scenarios. Given that 
the occurrence of this species has a relatively small number 
of points and that these are not randomly distributed across 
environmental variables, we estimated favorability instead 
of suitability using the probability of occurrence. Environ-
mental favorability reflects the variation of the occurrence 
probability and is less affected by the presence/absence 

https://www.gbif.org
https://www.splink.cria.org.br
https://www.splink.cria.org.br
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ratio (Real et al. 2006; Acevedo and Real 2012). It can vary 
between 0 (unsuited for the species) and 1 (ideal for occur-
rence of the species). Here, we considered that favorability 
values higher than 0.70 are highly suitable for the species, 
values between 0.40 and 0.70 have intermediate suitability, 
and values below 0.40 have low suitability.

Genetic analyses

To assess if the habitat suitability variation is consistent with 
genetic patterns, we collected samples along most of the 
species distribution in Brazil and used SNP data to calculate 
genetic diversity, infer population structure, and investigate 
changes in effective population size through time.

Specimen collection and genomic sequencing

To assess population differentiation, we sampled tissues 
from 82 individuals of L. jocu collected from nine sites in 
Brazil (Fig. 1), representing ~ 60% of the whole distribu-
tion range of the species (Froese and Pauly 2000). These 

localities encompass several possible barriers to gene flow, 
such as two opposing oceanic currents (the Brazil Current 
and the North Brazil Current; Stramma and England 1999), 
and about 400 km of deeper habitat separating the conti-
nental shelf from an oceanic island (Fernando de Noronha 
Archipelago). Muscle tissues were collected during landings 
and from fish markets when the specific fishing locality was 
known, or provided by researchers from different institu-
tions, and were preserved in 70% ethanol.

DNA extraction, library preparation, sequencing and 
SNPs genotyping were carried out by DArT™ (Diversity 
Array Technology), following Georges et al. (2018). In short, 
this protocol is similar to ddRAD-sequencing approaches, 
and uses two restriction enzymes (Pst I and Sph I) to digest 
genomic DNA at homologous sites across samples. Adap-
tors with individual barcodes are ligated to DNA fragments 
and the resulting library amplified for 77 PCR cycles. The 
cleaned libraries are then sequenced on Illumina Hiseq 2500 
at a minimum of 25x coverage per individual. Technical 
replicates were carried out by the company for 30% of the 
samples. Each SNP is classified according to three indexes: 

Fig. 1  Sampling of Lutjanus jocu. a Sampling localities along the 
Brazilian coast: MA Maranhão, CE Ceará, RN Rio Grande do Norte, 
FN Fernando de Noronha Archipelago, PE Pernambuco, AL Alagoas, 
BAN Bahia North, BAS Bahia South, ES Espírito Santo; main oce-
anic currents are represented by arrows: NECC North Equatorial 

Countercurrent, NBC North Brazil Current, SEC South Equatorial 
Current, and BC Brazil Current; Depth is represented by shades of 
blue. b An adult individual of L. jocu caught near BAS (Photo: União 
das Associações Brasileiras de Pesca Subaquática) and c An adult 
near FN (Photo: Natália Roos)
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“Reproducibility”, which varies from 0 to 1 and represents 
the percentage of times that the same SNPs were found for 
the technical replicates; “Call Rate”, which varies between 0 
and 1 and represents the percentage of individuals that were 
scored for that particular SNP; and “Polymorphism Informa-
tion Content”, which varies between 0 and 1 and indicates 
how polymorphic each SNP is.

Data filtering

The initial raw dataset consisted of 41,462 SNPs and 82 
individuals. Because missing data can lead to an underes-
timation of population structure, we excluded 14 individu-
als collected in eight different sites with more than 20% of 
missing data, likely due to low quality of the samples. For 
the remaining 68 individuals, the raw genotypic data were 
imported to R in genlight format using gl.read.dart function, 
and the data was filtered using the dartR package (Gruber 
et al. 2018).

We filtered the SNPs with the following criteria and 
order: (1) to guarantee high-quality sequences, we kept 
SNPs with > 97% Reproducibility (function gl.filter.repAvg); 
(2) to exclude uninformative loci, we only maintained poly-
morphic SNPs (function gl.filter.monomorphs); (3) to avoid 
linked SNPs, i.e., those known to be physically linked, we 
retained one SNP per read (per locus), selecting the SNP 
with the higher frequency (function gl.filter.secondaries); 
and (4) SNPs with a minimum Call Rate of 1, 0.95, 0.80 
and 0.60, which reflect 0, 5, 20, and 40% of missing data, 
respectively, to test for biases caused by missing data (func-
tion gl.filter.callrate). After filtering, the number of SNPs 
retained was 6286 SNPs with 0% missing data, 9204 SNPs 
with 5% of missing data, 12,020 SNPs with 20%, and 14,253 
SNPs with 40% missing data (Fig. S2). The dataset with 
0% of missing data was used for all analyses, except when 
indicated.

Population genetic analysis

To estimate levels of genetic diversity in each individual 
and in each sampling locality, we used the package dartR 
in R and the Software DNAsp (Rozas et al. 2017). To 
estimate expected and observed heterozygosity for each 
sampling locality, the genlight file was used, and the func-
tion gl.report.heterozygosity from the package dartR was 
applied. To calculate π-SNP for each individual and for 
each sampling locality, DNAsp was used. To convert our 
data (genlight format) to a suitable format (fasta format), 
we used the function gl2fasta from the dartR package in 
R, coding all heterozygous positions as ambiguity codes 
(Gruber et al. 2018). Our fasta file was imported to DNAsp 
and split into two pseudohaplotypes, using the function 
Unfold fasta file for diploid individuals with ambiguity 

codes. The exported unfolded file was again imported to 
DNAsp, and the samples from each sampling locality were 
aggregated into sets using the Define sequence sets func-
tion. The function DNA Polymorphism from DNAsp was 
used on each sequence set to calculate π-SNP for each 
sampling locality, and for each individual to calculate indi-
vidual diversity.

To infer population structure, we selected complementary 
methods that differ in their assumptions. First, the distri-
bution of genetic variation was visualized using Principal 
Coordinate Analysis (PCoA) based on the Pearson Correla-
tion Coefficient using the function gl.pcoa from dartR pack-
age (Gruber et al. 2018). We used the 4 datasets with the dif-
ferent thresholds of missing data for the PCoA, to investigate 
if different levels of missing data could affect the results. 
Second, using the 0% missing data dataset, population struc-
ture was further evaluated using the STRU CTU RE software 
(Pritchard et al. 2000). STRU CTU RE clusters individuals 
into K ancestral populations that maximize Hardy–Weinberg 
and linkage equilibria (Pritchard et al. 2000). For this, the 
data were converted from genlight to STRU CTU RE format 
in R using the gl2structure function from the dartR pack-
age. We used the Admixture model, to account for possible 
genetic connectivity between differentiated clusters, and 
considered the allele frequencies of each population to be 
dependent because population divergence, if existent, was 
likely to still involve gene flow. We considered models with 
1–4 ancestral clusters, representing the four coastal regions 
that are ecologically distinct: the north coast (MA, CE and 
RN), oceanic island (FN), northeast coast (PE, AL, BAN) 
and central coast (BAS and ES). We considered 10,000 itera-
tions of burn-in, and a run length of 100,000 MCMC steps. 
We ran 10 independent replicates of each model to assess 
convergence of the alpha parameter, which was assessed 
visually based on the plots provided by the software. The 
most likely number of ancestral clusters (K) was inferred 
based on (1) higher values of log-likelihood visualized in 
CLUMPAK (Kopelman et al. 2015), (2) the stabilization of 
the curve of the mean log-likelihood, (3) the standard devia-
tion of log-likelihood for each K, and (4) the geographic 
proximity of individuals assigned to the same cluster. When 
models assuming different number of clusters show similar 
log-likelihoods, we favored the lowest number of K, follow-
ing the recommendation of Pritchard et al. (2009).

To assess whether gene flow is influenced by the geo-
graphic distance among sampling localities, we tested 
for isolation by distance. For each pairwise comparison 
among sampling localities, we calculated  FST and their 
linear geographic distance (km). We used a Mantel test (gl.
ibd function from dartR package in R) with 999 permuta-
tions to test the significance of any association between 
genetic and geographic distances.
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Demographic history

To infer the historical changes of the effective population 
size of L. jocu from the study area, we applied two meth-
ods: Tajima’s D and δaδi. First, we estimated Tajima’s D as 
a measure of departure from demographic stability based 
on the mutation-drift equilibrium, and the significance was 
assessed based on the confidence limits of D (two-tailed test) 
and a calculation of a p value, assuming that D follows a beta 
distribution (Tajima 1989). In DNAsp the same unfolded 
fasta file used to calculate π-SNP was used and Tajima’s 
D was estimated for the whole study area using the func-
tion Tajima’s test. Additionally, to investigate differences 
between demographic histories on the different sampling 
localities, samples from each locality were aggregated using 
the function Define sequence sets in DNAsp, and Tajima’s 
D was estimated for each set.

Second, to further investigate changes in population size 
based on deviations of the site frequency spectrum (SFS), 
we used the program δaδi (Gutenkunst et al. 2010) that 
implements a diffusion approximation method to explicitly 
compare alternative demographic models for the species 
on the study area. We converted the genlight file with 0% 
missing data (68 individuals, 6286 SNPs) into the SNP data 
format supported by δaδi with the R package radiator (Gos-
selin 2020) and calculated the observed one-dimensional 
folded SFS. We simulated four demographic models with an 
increasing number of parameters: (1) a neutral model with 
constant population size (no parameters); (2) a two-epoch 
model with an instantaneous change in population size to 
NuF at time T (2 parameters); (3) a bottlegrowth model with 
an instantaneous size change to NuB at Tt followed by an 
exponential size change to the present population size NuF 
(3 parameters); and (4) a three-epoch model with two instan-
taneous size changes (NuB, NuF) at times TB and TF (4 
parameters). We used the δaδi pipeline (Portik et al. 2017) to 
optimize these models. This tool implements a customizable 
number of optimization rounds and the number of replicates 
per round, where the parameters with the highest likelihood 
score of any given round are passed as starting input to the 
next round. For the neutral model (model 1), we did not 
perform multiple rounds of optimization, as no parameters 
have to be fitted. For the three other models, we performed 
optimizations with the following settings: three rounds of 
optimization with 10, 20, 100 replicates in each round, 
with maximum iterations of 5, 10, 50 per replicate in each 
round. For optimization, we used the default Nelder–Mead 
method (Nelder and Mead 1965). We reran this approach 
five times to assess convergence of parameter estimates and 
likelihood of the models. To visualize the model fit we plot-
ted the optimized SFS of each model against the empiri-
cal SFS, also plotting the residuals. Lastly, we compared 
model fit by choosing the model with the lowest Akaike 

information criterion (AIC) score (Akaike 1974), which 
takes into account both model likelihood and the number of 
parameters estimated.

Results

Species distribution modeling

Based on the lowest RMSE, the three out of thirteen envi-
ronmental variables selected to model the L. jocu distribu-
tion on the study area were: (i) distance from the coast, (ii) 
range of Sea Surface Temperature (SST) and (iii) minimum 
Sea Surface Salinity (SSS). Using these variables, the dis-
tribution of the present data was successfully calibrated and 
favorability was estimated (Fig. S3, Fig. 2). For the LGM 
projection, favorability was always lower than 0.70, with an 
intermediate favorability (between 0.56 and 0.70) mostly 
concentrated in the southern region of the study area, in BAS 
(Fig. 2a). The region in the center of the study area, where 
the continental shelf is narrower, presented a lower favora-
bility (between 0.42 and 0.56). Two areas with the lowest 
favorability (less than 0.40) appear between the intermediate 
regions during the LGM (Fig. 2a). The present day model 
projection indicates that the habitat suitability is high along 
the coast, with favorability values consistently over 0.70, 
and continuous (Fig. 2b). Overall, both the extent of habitat 
suitability and the connectivity along the coast of Brazil has 
increased from the LGM to the present, with the strongest 
increase of habitat suitability being observed in the isolated 
oceanic archipelago of FN, and in the region between the 
states of AL and RN.

Population genetic analysis

Genetic diversity measures of L. jocu per sampling location 
were similar in general. The π-SNP varied between 0.198 in 
AL, at the center of our sampling area, and 0.254 in ES (the 
southernmost site; Table 1). The observed levels of heterozy-
gosity per sampling locality varied between 0.177 (MA) and 
0.246 (ES; Table S1 in the Supplement), and the individual 
levels of genetic diversity ranged from 0.167 (one individual 
from RN) and 0.350, (one from PE; Fig. S4).

Using the standard data set with 0% of missing data, 
the first four dimensions of the PCoA explained a total of 
8.1% of the genetic variation observed across the study 
area (Fig. 3). PC1, PC2 and PC4 indicate some dissimilar-
ity of ES samples (the southernmost sample locality) in 
comparison with the others, but this is explained by a low 
percentage of the variance. Less stringent filtering datasets 
resulted in the same pattern (Fig. S5). In the STRU CTU RE 
analyses assuming K = 1, the parameter alpha did not con-
verge even when increasing length to 1,000,000 of burn-in 
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and 1,000,000 of run length. For the remaining Ks tested 
(2–4), alpha converged with the initial burn-in and length 
run (10,000 and 100,000; respectively). The assessment 
of likelihood showed that both K = 1 and K = 2 resulted in 
similar scores: average for K = 1 is − 372,998.7 (standard 
deviation = 19.11) and, for K = 2, − 368,582.4 (standard 
deviation = 5081.80; Fig. S6 and Table S2). When assum-
ing K = 2, we find one ancestral cluster spread across most 
sampling localities, and a less frequent cluster represented 
by individuals in ES and PE sites, which are more than 

1400 km apart, and also individuals from FN and BAN, with 
a lower percentage of contribution (Fig. S7). For K = 3, we 
find a third cluster spread in all the individuals, except the 
two samples from ES and one from PE. Given the combina-
tion of no convergence of the alpha parameter in STRU CTU 
RE, low difference in likelihood scores between K = 1 and 
K = 2, the large standard deviations for K = 2, and the lack 
of geographic cohesion of clusters, we consider that there 
is no significant population structure in our dataset. This 
conclusion is also in agreement with the results visualized 
in the PCoA (Fig. 3).

Most  FST values were below 0.006, with the only excep-
tions being between ES and other sites, in which maximum 
 FST was 0.04 (ES x RN), between BAN and PE (0.01) and 
between BAN and FN (0.01; Table S3). Isolation by distance 
results showed a positive but non-significant correlation 
between genetic and geographic distances (Mantel r = 0.366, 
p value = 0.061) (Fig. S8).

Demographic history

Tajima’s D for the whole study area was positive (0.4712) 
but not significant (p > 0.05). When calculating for each 
sampling locality, Tajima’s D was positive for eight of the 
nine sampling localities (Table 1) and negative for ES, yet 
none of these deviations from the neutral expectation was 
significant (p > 0.05).

Fig. 2  Habitat favorability for Lutjanus jocu in Brazil during the last 
glacial cycle estimated using BART. a Favorability model for the Last 
Glacial Maximum and b Favorability model for present day. Gray 

brackets indicate regions with lower favorability during LGM (maxi-
mum around 0.40)

Table 1  Number of samples (N) of Lutjanus jocu, Tajima’s D and 
nucleotide diversity (π-SNP) per sampling locality

For Tajima’s D, all p values were higher than 0.05

Sampling locality Abbreviation N Tajima’s D π -SNP

Maranhão MA 12 0.7083 0.2007
Ceará CE 9 0.5799 0.2002
Fernando de Noronha 

Archipelago
FN 14 0.7533 0.2035

Rio Grande do Norte RN 10 0.5645 0.2019
Pernambuco PE 10 0.1318 0.2260
Alagoas AL 3 0.1906 0.1978
Bahia North BAN 2 0.1110 0.2009
Bahia South BAS 6 0.4179 0.2033
Espírito Santo ES 2 − 0.0689 0.2539
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In the demographic modeling estimated using δaδi, the 
neutral model with constant population size had the highest 
AIC score (Fig. 4a, Table 2), and was therefore rejected in 
favor of every model incorporating a change in population 
size. The two-epoch model showed an intermediate AIC 
score and no convergence in the estimated parameters across 
replicates, reflecting a poor representation of the empirical 
data. The bottlegrowth and three-epoch models showed the 

lowest AIC scores with little differences and the parameter 
estimates converged across replicates and across models 
(Fig. 4a, Table 2), showing that the observed data fit equally 
well to both models. The residuals reflect the same trend as 
the AIC values, with the simpler models showing a deficit 
of singletons and excess of low-frequency SNPs and the two 
most complex models showing virtually no residuals (Fig. 
S9). Estimates of effective population size reflect an initial 

Fig. 3  Clustering analysis of Lutjanus jocu using 0% missing data 
(6286 SNPs). a PC1 and PC2, b PC3 and PC4, and c histogram 
showing percentage of explanations for each axis. MA Maranhão, CE 

Ceará, RN Rio Grande do Norte, FN Fernando de Noronha Archi-
pelago, PE Pernambuco, AL Alagoas, BAN Bahia North, BAS Bahia 
South, ES Espírito Santo

Fig. 4  Demographic history of Lutjanus jocu. a Parameters estimated 
for the bottlegrowth model and b for the three epochs model. nuB 
ratio of population size immediately after change to the ancient popu-

lation size, nuF ratio of the contemporary to ancient population size, 
T time in the past in units of 2Ne*generations, TB length of bottle-
neck, TF time since bottleneck recovery

Table 2  Parameter estimation 
for each model with δaδi. 
Dashes represent parameters 
not relevant for the respective 
model

nuB ratio of population size after change to ancient population size, nuF ratio of contemporary to ancient 
population size, T time in the past in units of 2Ne*generations, TB length of bottleneck, TF time since bot-
tleneck recovery

Model AIC nuB nuF T TB TF

Neutral 1163.5 – – – – –
Two epochs 1025.8 – 0.0541 0.2102 – –
Bottlegrowth 589.14 0.0401 4.8967 0.0335 – –
Three epochs 573.84 0.0649 2.4098 – 0.0100 0.0214
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bottleneck down to 6.49 and 4.01% of the ancestral popula-
tion size, followed by a subsequent expansion of 240.98 and 
489.67% of the ancestral populations, respectively for the 
three-epoch and the bottlegrowth models (Fig. 4, Table 2).

Discussion

Knowledge of the evolutionary processes shaping the 
distribution of genetic variation is fundamental to devel-
oping sustainable management practices and predicting 
responses to environmental changes (Ward 2006; Reiss 
et  al. 2009; Young et  al. 2015; Benestan et  al. 2021). 
Coastal marine species are generally sensitive to glacial 
cycles because changes in sea level alter the areas of habi-
tat suitability. However, the extent to which these cycles 
impacted the size of current populations and the genetic 
variation of marine species appears to vary considerably 
and general patterns are not yet apparent for species in 
tropical waters.

Here, we modeled temporal changes in habitat suit-
ability along the Brazilian coast for the commercially 
exploited marine fish L. jocu, which inhabits intermediate 
depths (20–90 m; Frédou and Ferreira 2005; Olavo et al. 
2011), and is, therefore, expected to have experienced 
decreases in habitat as the sea level retracts during glacial 
periods. We then characterized current patterns of genetic 
diversity for L. jocu and looked for evidence of genetic 
structure associated with historical discontinuities in habi-
tat and genetic bottlenecks associated with past reductions 
in habitat. More generally, the knowledge of how genetic 
variation of L. jocu is distributed across the study area 
is needed to establish whether fishing pressure is being 
applied to one or to several genetically distinct popula-
tions, and if the fishery is impacting genetically depauper-
ate populations (Petrolo et al. 2021). In addition, levels 
of genetic variation can help managers gauge the likely 
resilience to environmental change because genome-wide 
levels of genetic variation reflect adaptive potential and 
the risks imposed by inbreeding (Harrisson et al. 2014).

Low genetic structure in a species with high vagility

The distribution of genetic variation revealed by our PCA 
and STRU CTU RE analyses shows no evidence for strong 
genetic divergence across the entire study area. Both anal-
yses did, however, show that individuals from the ES site 
(far south) and the PE site (center) were genetically differ-
ent. Notably, these two sites also have higher nucleotide 
diversity and observed heterozygosity than the remaining 
localities, suggesting that this genetic difference could 
reflect local demographic effects, such as higher effective 

population size or migration rates, rather than independ-
ent ancestry (Lawson et al. 2018). Future studies with a 
denser population level sampling in this region can test 
these hypotheses. We find no significant isolation by dis-
tance (p value = 0.061; Fig. S8), suggesting that gene flow 
is not restricted by geographic distance at the scale of our 
sampling. Although our sampling covers most of the spe-
cies’ distribution in Brazil (Fig. 3), we note that we did not 
include samples from the extremes of the species range in 
the country, such as the states of São Paulo, in the south, 
and Pará, in the north.

The lack of evidences of strong genetic structure or isola-
tion by distance in L. jocu is consistent with other species 
with similar life history traits, such as an extensive pelagic 
larval phase, long lifespan and high dispersal capability 
(Palumbi 1994, 2003; Pineda et al. 2007; Haye et al. 2014). 
Therefore, it is likely that the larvae are capable of long-
distance movement with oceanic currents, thereby main-
taining the genetic connectivity. In addition, L. jocu forms 
large spawning aggregations throughout its range (Claro 
and Lindeman 2003; Heyman and Kjerfve 2008; Biggs and 
Nemeth 2014), including in Brazil (França and Olavo 2015; 
Bezerra et al. 2021; França et al. 2021). Wide-spread move-
ment of adults to spawning aggregations will also contribute 
to genetic homogenization. Lack of genetic structure has 
been found in other co-occurring Lutjanidae species with 
similar dispersal rates, such as L. purpureus (Gomes et al. 
2012), L. analis (Souza et al. 2019), and Ocyurus chrysurus 
(Vasconcellos et al. 2008), indicating that this might be a 
general pattern for species of this group.

The low levels of genetic structure are consistent with 
the high habitat connectivity shown in the contemporary 
distribution model (Fig. 2b) that potentially facilitate disper-
sal and gene flow. In contrast, the LGM distribution model 
shows an area of low habitat suitability in the region of CE 
and BAN potentially acting as a historical barrier to gene 
flow (Fig. 2a). Such low level of population divergence 
across a historical barrier to dispersal can be explained either 
because habitats that were less suitable for adults did not 
constrain the exchange of pelagic larvae carried by oceanic 
currents, or because more recent periods with higher habitat 
connectivity were sufficient to homogenize previously dif-
ferentiated populations (Taylor et al. 2006).

Historical changes in habitat suitability are 
concordant with demographic change

Our demographic modeling strongly supports the hypoth-
esis of a past genetic bottleneck, a result that is consist-
ent with the distribution modeling showing a reduction in 
available habitat during the LGM. The two best supported 
demographic models (Three epoch and bottlegrowth mod-
els; Fig. 4, Table 2) suggest an initial strong bottleneck to 
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around 5% of the ancestral population size, consistent with 
the positive values of Tajima’s D for nuclear markers. The 
decrease was followed by a recent two- to fourfold increase 
in effective population size relative to the ancestral popula-
tion size. Our finding of a recent population size expansion 
is consistent with another study of L. jocu covering nearly 
the same study area, based on a single mitochondrial gene, 
that reported negative values of Tajima’s D (Souza et al. 
2019). Contrasting demographic signals from maternally 
inherited mitochondrial data compared with bi-parentally 
inherited nuclear markers can be explained by their differ-
ences in effective population size, which in turn translates 
to different recovery times following a demographic change 
(Gattepaille et al. 2013). For example, in the Atka Mackerel, 
microsatellite markers provided no indication for population 
size variation, while mitochondrial DNA analysis showed 
significantly negative Tajima’s D, indicating a bottleneck, 
founder effect or selection (Canino et al. 2010).

The most recent increase in effective population size, 
following the bottleneck, is consistent with the distribu-
tion models that indicate an expansion of suitable habitat 
from the LGM to the present. During the LGM, when sea 
level was lower, most of the Brazilian continental shelf was 
exposed, reducing the habitat of near-shore species. Contrac-
tion of available habitat affects L. jocu’s feeding grounds, 
such as the shallow reefs on the continental shelf where most 
of its prey occurs. Sea-level reduction also leads to a con-
traction of estuaries, which are essential for the development 
of juvenile L. jocu prior to moving to reef areas (Moura et al. 
2011). The loss of estuarine habitat during the LGM was 
possibly stronger on the Brazilian coast in contrast to other 
areas of distribution of the species, such as the coast of the 
USA, because Brazilian estuaries are narrower and more 
sensitive to sea level variation (Lessa et al. 2018).

Implications for management

Our results indicate little population structure (Fig. 3), 
lack of isolation by distance (Fig. S7), and similar levels of 
genetic diversity throughout L. jocu’s range in Brazil (Fig. 
S8). The combination of high gene flow and sufficient levels 
of protection could result in localized exploited areas being 
supplemented by dispersal from elsewhere (Bar-David et al. 
2007; Goñi et al. 2010; Lawton et al. 2011; Sutherland et al. 
2012). Conversely, the existence of highly connected popu-
lations means that high levels of overexploitation within 
regions of the species range impacts the entire population, 
including no-take protected areas (Jones et al. 2007; Agardy 
et al. 2011; Moffitt et al. 2011).

The extensive exploitation of L. jocu (Freire et al. 2015) 
in conjunction with our data showing high levels of connec-
tivity point to the need of a coordinated approach to ensuring 
a sustainable fishery. Furthermore, our demographic analysis 

demonstrates the sensitivity of L. jocu to past environmental 
changes. Consequently we suggest that management also be 
vigilant for additional reductions in population size in this 
commercially important and heavily exploited species that 
are a result of habitat alteration from ongoing global warm-
ing (Woodroffe 2007; Hauser and Carvalho 2008; Albouy 
et al. 2013; James et al. 2013).
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