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A B S T R A C T   

Study region: The Danube River Basin. 
Study focus: Hydrological modelling of large, heterogeneous watersheds requires appropriate 
meteorological forcing data. The global meteorological reanalysis ERA5 and the global forcing 
dataset WFDE5 were evaluated for driving an uncalibrated setup of the mechanistic hydrological 
model PROMET (0.00833333◦/1 h resolution) for the period 1980–2016. Different climatologies 
were used for linear bias correction of ERA5: the global WorldClim 2 temperature and precipi-
tation climatologies and the regional GLOWA and PRISM Alpine precipitation climatologies. 
Simulations driven with the uncorrected ERA5 reanalysis, the WFDE5 forcing dataset, ERA5 bias- 
corrected with WorldClim 2 and ERA5 bias-corrected with a GLOWA-PRISM-WorldClim 2 mosaic 
were evaluated regarding percent bias of discharge and model efficiency. 
New hydrological insights for the region: Simulations yielded good model efficiencies and low 
percent biases of discharge at selected gauges. Uncalibrated model efficiencies corresponded with 
previous hydrological modelling studies. ERA5 and WFDE5 were well suited to drive PROMET in 
the hydrologically complex Danube basin, but bias correction of precipitation was essential for 
ERA5. The ERA5-driven simulation bias-corrected with a GLOWA-PRISM-WorldClim 2 mosaic 
performed best. Bias correction with GLOWA and PRISM outperformed WorldClim 2 in the Alps 
due to more realistic small-scale Alpine precipitation patterns resulting from higher station 
densities. In mountainous terrain, we emphasize the need for regional high-resolution precipi-
tation climatologies and recommend them for bias correction of precipitation rather than global 
datasets.   

1. Introduction 

Hydrological modelling is critically dependent on accurate meteorological forcing data. Observations from ground-based weather 
station networks are a very appropriate source of meteorological forcing data, but are often only available at the scale of smaller 
watersheds. However, hydrological modelling of large-scale watersheds covering hundreds of thousands of km2 or more has gained 
increasing scientific interest. At this scale, international river basin organizations (IRBOs) have been established for most trans-
boundary watersheds around the world, such as the International Commission for the Protection of the Danube River (ICPDR) for the 
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Danube River Basin (DRB). For instance, the IRBOs require scenario analyses of trade-offs between different management interventions 
regarding agriculture or water management in the context of climate change, biodiversity or aquatic ecology, for which hydrological 
modelling provides an indispensable contribution (Abbaspour et al., 2015; Döll et al., 2009; Malagó et al., 2017). However, when it 
comes to hydrological modelling of large-scale watersheds, continuous observation time series from weather station networks typically 
become sparse. Therefore, modelling studies have increasingly relied on high-resolution, gridded meteorological forcing datasets such 
as global reanalyses or regional climate models (RCMs) (e.g. Beck et al., 2017; Chen et al., 2018; Essou et al., 2017; Essou et al., 2016; 
Kay et al., 2015; Tarek et al., 2020). For example, the newly available global reanalysis ERA5 (Hersbach et al., 2020) and the global 
forcing dataset WFDE5 (Cucchi et al., 2020) deliver a global coverage with a spatial resolution of 0.25◦ and 0.5◦ and hourly temporal 
resolution. For most of the global land surface, these meteorological forcing datasets now approximate or surpass the spatial data 
density of available weather station networks, significantly facilitating hydrological modelling in data-scarce regions (Tarek et al., 
2020). Even in well-equipped regions such as Central Europe, high-resolution meteorological forcing datasets approach the spatial 
density and temporal resolution of weather station networks. In Switzerland, for example, the weather station density corresponds to 
one station per 475 km2 for temperature and one per 100 km2 for precipitation (Gubler et al., 2017). 

Moreover, a decline in operating ground-based weather stations has been observed in recent years in most countries around the 
world (Essou et al., 2016). The availability of global to regional high-resolution, gridded meteorological drivers offers great potential 
to compensate for this declining trend in observation data availability (Tarek et al., 2020), but still raises questions regarding their 
suitability for driving hydrological models, especially in large and complex watersheds. Being the successor to ERA-Interim (Dee et al., 
2011), ERA5 benefits from a decade of developments in model physics, core dynamics and data assimilation (Hersbach et al., 2020) 
and should therefore outperform classical and even sophisticated interpolation of weather station network observations in terms of 
adequately describing atmospheric dynamics. 

Nevertheless, global reanalyses often show systematic, regionally distributed biases compared to ground-based weather station 
observations – especially of precipitation – which has led to the development of bias correction methodologies (Muñoz-Sabater et al., 
2021; Weedon et al., 2011). From a meteorological perspective, bias correction of reanalyses is widely considered an essential task to 
better reproduce spatial patterns of meteorological observations, but is nonetheless controversial for hydrological modelling purposes 
(Essou et al., 2016). The bias correction procedure is usually embedded in the downscaling routine of the gridded meteorological data, 
where complex sub-scale spatial characteristics of the meteorological parameters especially in mountainous terrain are incorporated 
(Shrestha et al., 2017). Interestingly, existing studies on the evaluation of bias correction routines have focused almost exclusively on 
different methods for bias correction (e.g. linear vs. quantile mapping) (Chen et al., 2013; Lafon et al., 2013) and have very rarely 
questioned the choice of appropriate reference observational data. First attempts of questioning the application-specific choice of 
reference datasets in the light of observational uncertainties have been undertaken by Prein and Gobiet (2017), Kotlarski et al. (2019) 
and Gampe et al. (2019), finding that observational uncertainties can be considerable depending on the reference dataset. Gampe et al. 
(2019) emphasized that considering multiple reference datasets for bias correction is highly important for obtaining robust results in 
climate change impact studies. 

From a hydrological perspective, model calibration is widely perceived as another essential task to account for conceptualizations 
and aggregations of hydrological processes in the model description that are not fully physically described (Yilmaz et al., 2010). For 
this purpose, suitable model parameters are often determined by “trial-and-error” calibration of the hydrological model. Across the 
hydrological modelling community, great efforts are being undertaken to calibrate empirical and physically-based hydrological 
models down to the scale of smallest sub basins to maximize model efficiency (for the DRB, e.g. Pagliero et al., 2014 and Stagl and 
Hattermann, 2015). Such calibration efforts result in the best possible model fit over the chosen spatial and temporal model frame-
work, but limit transferability over space and time, especially when considering, for example, climate change impact effects or – as in 
our case – comparing the suitability of different meteorological forcing datasets for hydrological modelling. 

In this paper, we analysed the performance of the global meteorological reanalysis ERA5 and the global bias-adjusted forcing 
dataset WFDE5 for driving a physically-based hydrological model in a large, heterogeneous watershed and the possible improvements 
that could be achieved by linear temperature and precipitation bias correction of ERA5 with different global and regional reference 
climatologies. For this purpose, we applied different configurations for bias correction of ERA5 during the downscaling process. In a 
first step, no bias correction was applied at all. In a second step, different combinations of the global WorldClim 2 temperature and 
precipitation climatologies (Fick and Hijmans, 2017), the GLOWA Alpine precipitation climatology (Früh et al., 2006) and the PRISM 
Alpine precipitation climatology (Frei and Schär, 1998) were used as reference datasets for linear bias correction of temperature and 
precipitation. To ensure the best possible comparability between these different meteorological forcing datasets, the hydrological 
model was not calibrated with measured discharge and an identical model setup and parametrization was used for all simulation runs 
(ceteris paribus conditions). 

We chose the large-scale DRB for a regional case study, which features very heterogeneous natural regions and hydrological 
characteristics comprising mountain ranges (Alps, Dinarides, Carpathians) and extended lowlands (Pannonian Basin, Romanian Plain). 
Due to its complexity, the DRB is a very appropriate pilot basin for a detailed analysis of the performance of global-scale meteorological 
forcing datasets for hydrological modelling and of the suitability of different reference datasets for bias correction under widely 
varying landscape conditions. 

For our simulation studies, we used the mechanistic hydro-agroecological model PROMET (Mauser and Bach, 2009) at a spatial 
resolution of 30′′ (0.00833333◦). We performed four different long-term hydrological simulation runs (see Sect. 2.4) driven with the 
downscaled and optionally bias-corrected global meteorological reanalysis ERA5 and the downscaled global meteorological forcing 
dataset WFDE5 in the DRB for the period 1980–2016. First, we show a comparison of spatial patterns of long-term mean annual 
precipitation between the different downscaled meteorological forcing datasets and compare them with existing observation-derived 
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precipitation maps of the Danube. Second, we compare area averages of sub basin-specific long-term annual means of temperature, 
precipitation and evapotranspiration between the forcing datasets. Third, we evaluate the performance of the (optionally 
bias-corrected) global meteorological forcing datasets in terms of percent bias of discharge and model efficiency metrics for all 
simulation runs. Model efficiency metrics and percent bias of discharge were calculated from the comparison between modelled and 
observed daily discharge at selected sub basin gauges. Based on our results, we discuss the performance of the uncalibrated hydro-
logical model in general, evaluate the suitability of the global meteorological datasets for driving a hydrological model in a larger 
watershed and discuss the importance of bias correction. In this context, we particularly highlight how the choice of different global to 
regional reference climatologies for bias correction of precipitation affected percent bias of discharge and model efficiency. 

2. Materials and methods 

2.1. The Danube River Basin 

Shared by 20 countries, the DRB is the most international river basin in the world and the second largest river basin (~817,000 
km2) in Europe (Jungwirth et al., 2014). The Danube river drains wide parts of Central and South-eastern Europe and, as a waterway, 
connects very heterogeneous natural, cultural and economic regions (Jungwirth et al., 2014). The Danube originates in the Black 
Forest in south-western Germany and passes 10 countries to its mouth in the Black Sea. On its way, the Danube gradually changes its 
character from a mountain to a lowland river, crossing mountainous terrain along the eastern Alpine foothills as well as large basins 
like the Vienna Basin, the Pannonian Basin and the Romanian Plain (see Fig. 1). Hence, its watershed comprises very heterogeneous 
hydrological characteristics including mountain watersheds such as the Upper Danube, the Drava and the Sava basin and lowland 
watersheds such as the tributary basins of the Middle and Lower Danube. Linked to this, the DRB is commonly divided by mountain 
ranges into three main sections. The Upper Danube extends from its source to the Devín Gate in the Little Carpathians at the border of 
Austria and Slovakia (Jungwirth et al., 2014). The Middle Danube extends to the Iron Gate in the Carpathians at the border of Hungary 
and Romania and from here, the Lower Danube extends down to the mouth, including the Danube delta (Jungwirth et al., 2014). 

In accordance with the heterogeneous topography, annual precipitation is very unevenly distributed throughout the Danube basin. 
In contrast to the “water towers” Alps and Dinarides with annual rainfall of up to 3200 mm/a in the Alpine high mountain range, the 
Lower Danube features rather dry lowland regions like the Pannonian Basin and the Romanian Plain, where annual rainfall amounts to 
350 mm/a (Schiller et al., 2010). After 2857 river-km from source to mouth, the average discharge (MQ) of the Danube river at the 
outlet gauge in Ceatal Izmail amounts to 6550 m3/s (Schiller et al., 2010). 

2.2. The hydro-agroecological model PROMET 

The physically-based hydro-agroecological model PROMET (Processes of Radiation, Mass and Energy Transfer) (Mauser and Bach, 
2009; Mauser et al., 2015) models water, energy and carbon fluxes in an interlinked manner, strictly closing energy and mass balance 
on the land surface. PROMET simulates all processes in hourly time steps on a spatially distributed, raster-based architecture of custom 
spatial resolution. In this study, we chose to run PROMET on a 30′′ grid (0.00833333◦ spatial resolution, ~1 km2 at the equator) and 
with hourly temporal resolution. The model framework of PROMET comprises different components such as meteorology, soil, 
groundwater, vegetation, channel flow and agricultural management (with e.g. fertilization and irrigation options) modules, which are 

Fig. 1. Map of the Danube River Basin with its river network and major natural regions 
(data sources: Farr et al., 2007, Lehner et al., 2008). 
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described in detail in Mauser and Bach (2009), Hank et al. (2015), Mauser et al. (2015) and Zabel et al. (2014). The vegetation module 
simulates net primary production, land surface energy balance and evapotranspiration in an iterative manner using the mechanistic 
plant-physiology approach of Farquhar et al. (1980) and Chen et al. (1994), dynamically computing transpiration and CO2 assimilation 
by C3 and C4 plant photosynthesis processes. Thereby a phenological component is triggered that uses trait information to simulate the 
weather-dependent annual development of 28 different plant types, representing various agricultural crops, pasture, forest and natural 
vegetation (see Sect. 2.5). The channel flow component calculates the channel routing of surface flow, interflow and baseflow through 
the river network to an outlet gauge following the approach of Muskingum-Cunge-Todini (Cunge, 1969; Todini, 2007). Due to its 
physical and physiological basis and spatial heterogeneity, a classical calibration of the PROMET model parameters to fit measured 
discharge is neither feasible nor desirable. Therefore, heterogeneous input parameters are used for watershed characterization 
(terrain, soil, land use, river width, channel slope and Manning coefficients) as well as for the system of linear storages, which receive 
percolation and are used to determine baseflow. The dynamical vegetation module is likewise supplied with consistent parameter sets 
for each plant type in the basin (see Sect. 2.5). In this study, PROMET was run with a comprehensive and plausibility-tested 
parametrization for hydrology and vegetation. 

2.3. Meteorological downscaling and bias correction 

The PROMET hydrological simulations are driven with gridded hourly time series of meteorological input parameters. Required 
parameters are air temperature (2 m height), total precipitation, air humidity (2 m height), surface air pressure, wind speed (2 m 
height), surface downwelling direct and diffuse shortwave solar radiation as well as surface downwelling longwave radiation. The 
PROMET meteorology module contains a routine that downscales and disaggregates coarse gridded meteorological forcing data to the 
custom spatial and temporal model resolution. In PROMET, a spatial downscaling approach is applied to the meteorological forcing 
data according to Marke et al. (2014) to bridge the gap between the coarse spatial resolution of the meteorological forcing datasets and 
the custom internal PROMET model resolution (30′′ in this study). According to the approach of Marke et al. (2014), local elevation 
gradients are determined for elevation-dependent parameters and combined with the interpolation of de-trended residuals. 

As part of the spatial downscaling routine, a spatially distributed, linear bias correction of hourly temperature and precipitation can 
optionally be applied. For this, PROMET applies spatially distributed daily patterns of bias correction coefficients to the downscaled 
meteorological forcing data to account for local biases in the meteorological parameters. Spatially distributed daily bias correction 
coefficients are derived from observed monthly climatologies of temperature and precipitation. For the linear bias correction, additive 
bias correction factors are used for temperature and multiplicative bias correction factors are used for precipitation. Bias correction of 
temperature is calculated following Eq. (1): 

Tcorr,t = TRAW,t + fTbias,d, (1)  

where TRAW,t is the downscaled hourly temperature from the meteorological forcing data on a certain pixel, fTbias,d the pixel-specific 
daily additive temperature correction factor and Tcorr,t the resulting bias-corrected hourly temperature value on the pixel. Bias 
correction of precipitation is calculated following Eq. (2): 

Pcorr,t = PRAW,t * fPbias,d , (2)  

where PRAW,t is the downscaled hourly precipitation from the meteorological forcing data on a certain pixel, fPbias,d the pixel-specific 
daily multiplicative precipitation correction factor and Pcorr,t the resulting bias-corrected hourly precipitation value on the pixel. 
Spatially distributed additive temperature correction factors are calculated following Eq. (3): 

fTbias,mon = TCLIMmean,mon − TRAWmean,mon, (3)  

where fTbias,mon is the pixel-specific monthly additive temperature correction factor, TCLIMmean,mon the long-term monthly mean tem-
perature of the reference climatology on the pixel and TRAWmean,mon the long-term monthly mean temperature of the downscaled 
meteorological forcing data on the pixel. Spatially distributed multiplicative precipitation correction factors are calculated following 
Eq. (4): 

fPbias,mon = PCLIMmean,mon
/

PRAWmean,mon, (4)  

where fPbias,mon is the pixel-specific monthly multiplicative precipitation correction factor, PCLIMmean,mon the long-term monthly mean 
precipitation sum of the reference climatology on the pixel and PRAWmean,mon the long-term monthly mean precipitation sum of the 
downscaled meteorological forcing data on the pixel. In a last step, daily correction factors for temperature and precipitation are 
determined by a simple cubic interpolation of the monthly correction factors for each pixel. 

2.4. Meteorological forcing data and climatologies for bias correction 

For the hydrological modelling study in this paper, we used the ERA5 climate reanalysis produced by the European Centre for 
Medium-Range Weather Forecasts (ECMWF) and the derived bias-corrected WFDE5 forcing dataset as meteorological drivers. ERA5 is 
a global atmospheric, land and oceanic reanalysis calculated by the Integrated Forecasting System Cy41r2 (Hersbach et al., 2020). It is 
available from 1 January 1979 until present with a spatial resolution of 0.25◦ and hourly temporal resolution. WFDE5 is a global 
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forcing dataset directly based on ERA5, which is available from 1 January 1979 until 31 December 2018 on a spatial resolution of 0.5◦

and hourly temporal resolution. WFDE5 was derived from ERA5 surface meteorological variables, which were aggregated to 0.5◦

spatial resolution and some of them bias-corrected according to the WATCH Forcing Data (WFD) methodology (Cucchi et al., 2020; 
Weedon et al., 2011). For precipitation, bias correction is either based on the observed monthly Climate Research Unit Times Series 
version 4.03 (CRU TS4.03) (Harris et al., 2014) precipitation totals for 1979–2018 or on the observed monthly Global Precipitation 
Climatology Centre version 2018 (GPCCv2018) (Schneider et al., 2017) precipitation totals for 1979–2016 (Cucchi et al., 2020). 
Hence, WFDE5 precipitation is provided in a CRU-based and in a GPCC-based version (Cucchi et al., 2020). In this study, we used 
WFDE5 version 1.1 with GPCC-based precipitation. For the ERA5 and WFDE5 meteorological forcing datasets, it was necessary to 
apply a spatial downscaling procedure to comply with the PROMET model resolution of 30′′ in this study (see Sect. 2.3). However, 
since both ERA5 and WFDE5 are available on hourly temporal resolution, no temporal disaggregation was necessary to comply with 
the hourly model time steps in PROMET. 

To systematically determine the comparative skills of ERA5 and WFDE5 for driving PROMET, we used the downscaled ERA5 
reanalysis as meteorological forcing for the hydrological simulations in different modifications: first, without any bias correction. 
Subsequently, we bias-corrected temperature and precipitation based on different global to regional reference climatologies. For this, 
we used the following temperature and precipitation reference climatologies:  

• The global WorldClim 2 climatologies (Fick and Hijmans, 2017) of long-term mean monthly temperature and precipitation for the 
period 1970–2000 with a spatial resolution of 30′′ (0.00833333◦). The WorldClim 2 climatologies are based on 34,542 global 
weather stations from multiple sources (Fick and Hijmans, 2017).  

• The regional PRISM climatology of long-term mean monthly precipitation covering the European Alps (Frei and Schär, 1998; 
Schwarb et al., 2001) for the period 1971–1990 with a spatial resolution of 2.5′ (0.04166666◦). The PRISM climatology is based on 
more than 6600 rain gauge stations (Frei and Schär, 1998) and was thus created from a higher station density in the European Alps 
than WorldClim 2.  

• The regional GLOWA climatology of long-term mean monthly precipitation covering the Upper Danube basin (Früh et al., 2006) for 
the period 1991–2000 with a spatial resolution of 30′′ (0.00833333◦). The GLOWA climatology is directly based on the PRISM 
climatology, which was transformed to the more recent reference period using 2198 weather stations (Früh et al., 2006). 

For temperature, we created a single dataset of spatially distributed bias correction factors with a spatial resolution of 30′′ ac-
cording to Eq. (3). Here, we used long-term monthly mean temperatures of the WorldClim 2 reference climatology (1970–2000) and 
long-term monthly means of downscaled ERA5 temperature (1979–2000). For precipitation, we created two different datasets of 
spatially distributed bias correction factors with a spatial resolution of 30′′ based on different combinations of precipitation correction 
factors derived from WorldClim 2, GLOWA and PRISM. According to Eq. (4), we used long-term monthly mean precipitation sums of 
the respective climatology (WorldClim 2, GLOWA or PRISM) and long-term monthly means of downscaled ERA5 precipitation sums for 

Fig. 2. Spatial coverage of precipitation climatologies within the Danube River Basin used to derive mosaicked spatial precipitation correction 
factors for bias correction of ERA5 resulting in the ERA5-GPW forcing dataset 
(data sources: Lehner et al., 2008, Früh et al., 2006, Frei and Schär, 1998, Fick and Hijmans, 2017). 
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respective overlapping reference periods. For the WorldClim 2-derived precipitation bias correction factors, we took the ERA5 period 
1979–2000, for the GLOWA-derived correction factors, we took the ERA5 period 1991–2000 and for the PRISM-derived correction 
factors, we took the ERA5 period 1979–1990. The two bias correction factor datasets for precipitation generated in this way consisted 
of:  

• (i) the WorldClim 2-derived precipitation correction factors for the whole Danube basin. The meteorological forcing dataset 
consisting of ERA5 variables of which precipitation was bias-corrected with this precipitation correction dataset (and of which 
temperature was bias-corrected with the WorldClim 2-derived temperature correction factors) is further referred to as ERA5-WC in 
this paper,  

• (ii) a mosaic of the GLOWA-derived precipitation correction factors for the Upper Danube basin, the PRISM-derived precipitation 
correction factors for the Alps and northern Dinarides outside the Upper Danube basin and the WorldClim 2-derived precipitation 
correction factors in the remaining Danube basin (see Fig. 2). The meteorological forcing dataset consisting of ERA5 variables of 
which precipitation was bias-corrected with this precipitation correction dataset (and of which temperature was bias-corrected 
with the WorldClim 2-derived temperature correction factors) is further referred to as ERA5-GPW in this paper. 

In contrast to ERA5, we applied no additional bias correction to the downscaled WFDE5 product as it has already been bias- 
corrected according to the WFD methodology described in Cucchi et al. (2020) and Weedon et al. (2011). In this study, we there-
fore performed four different hydrological simulation runs in the DRB, each driven by one of the following meteorological forcing 
datasets: (i) ERA5, (ii) ERA5-WC, (iii) ERA5-GPW and (iv) WFDE5. In Table 1, we give an overview of the four different meteorological 
forcing datasets and global to regional datasets optionally used for bias correction of temperature and precipitation. 

2.5. Model setup and gridded input data 

PROMET used a digital terrain model derived from the global SRTM (Shuttle Radar Topography Mission) digital elevation model 
(Farr et al., 2007), in which radiometric slope and aspect was calculated from the SRTM elevation information. PROMET requires 
radiometric slope and aspect together with cloud cover from the meteorological forcing data to retrieve hourly direct and diffuse 
shortwave solar radiation components from the surface downwelling shortwave solar radiation. Soil properties data were derived from 
the Harmonized World Soil Database (HWSD) (FAO/IIASA/ISRIC/ISSCAS/JRC, 2012). Soil-specific sets of physical and hydraulic 
parameters were created for a four-layer soil column of 2 m depth following the approach of Brooks and Corey (1964). In mountainous 
terrain of > 10% slope, we reduced total soil depth to 0.9 m. Watershed delineation, spatial flow direction and accumulation were 
derived from the global HydroSHEDS database (Lehner et al., 2008). 

The land use map of the DRB used in this study is based on a mosaic of the CORINE Land Cover 2012 (European Environmental 
Agency (EEA), 2012) and the global ESA CCI Land Cover 2015 (European Space Agency (ESA), 2015). The CORINE Land Cover in-
cludes all EU member states within the DRB (i.e. Germany, Austria, Italy, Poland, Czech Republic, Slovakia, Hungary, Slovenia, 
Croatia, Romania and Bulgaria) as well as Switzerland and the non-EU Balkan states (i.e. Bosnia and Herzegovina, Serbia, Montenegro, 
Kosovo, North Macedonia and Albania). The ESA CCI Land Cover includes the territories of Ukraine and Moldova within the DRB that 
are missing in the CORINE Land Cover. The two land cover products provide detailed spatial information on a wide range of land cover 
categories, but lack information on the distribution of most agricultural crops (except for rice fields, vineyards, olive groves, fruits and 
berries, which are explicitly spatially distributed in the CORINE Land Cover). For hydrological modelling though, the proportional 
distribution of crops within sub basins is vital, because the modelled biophysical processes and water fluxes such as (evapo)transpi-
ration are very crop-specific. To account for this, the PROMET dynamical vegetation module comprises several land use classes. They 
consist of 21 classes of agricultural crops (maize, winter/summer wheat, winter/summer barley, rye, oat, rapeseed, sunflower, soy-
bean, silage, forage, hop, legumes, potato, sugar beet, rice, cotton, vegetables, fruits, set-aside), 2 pasture classes (extensive/intensive 
grassland) and 5 classes of natural vegetation (coniferous/deciduous forest, natural grassland, wetland, alpine vegetation). They are 
completed by 5 non-vegetative classes (rock, water, glacier, residential/industrial built-up). To create a land use map including the 
spatial distribution of agricultural crops, we consulted EU-wide and national statistics (EUROSTAT, 2013) on the cultivation area [ha] 

Table 1 
Overview of the meteorological forcing datasets and global to regional datasets optionally used for bias correction of temperature and precipitation 
(WFDE5 information according to Cucchi et al., 2020).  

Meteorological forcing dataset Datasets used for bias correction of temperature (T) and precipitation (P) 

T P 

ERA5 None None 

ERA5-WC WorldClim 2 temperature WorldClim 2 precipitation 

ERA5-GPW WorldClim 2 temperature GLOWA precipitation (Upper Danube), 
PRISM precipitation (Alps/Dinarides outside Upper Danube), 
WorldClim 2 precipitation (remaining Danube) 

WFDE5 CRU TS4.03 temperature and diurnal temperature range CRU TS4.03 number of wet days, 
GPCCv2018 precipitation totals  
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of the different crops per NUTS-II region for 2013 as reference year. Based on the cultivation statistics, we performed a spatially 
randomized distribution of agricultural crops over the agricultural land in the CORINE and the ESA CCI Land Cover within each 
NUTS-II region. In doing so, we did not attempt to achieve a completely spatially accurate distribution of agricultural crops (which is 
not even necessary due to crop rotation), but we developed a statistically correct representation of the proportional shares of crops on 
the agricultural land in each NUTS-II region. Comprehensive parameters for vegetation parametrization (sowing date, growing season, 
fertilization level) were derived from Sacks et al. (2010) and from agricultural crop yield statistics on country level (EUROSTAT, 
2021). 

2.6. Sub basin division and evaluation metrics 

Considering long-term availability of discharge measurements, we divided the Danube basin into 8 sub basins (see Fig. 3), for which 
we analysed spatial precipitation patterns, area-averaged values for temperature, precipitation, evapotranspiration as well as percent 
bias of discharge and model efficiency based on modelled and observed daily discharge at the respective sub basin outlet gauges. 
Discharge measurements were obtained from the Global Runoff Data Centre (GRDC) (2019) and the International Commission for the 
Protection of the Danube River (ICPDR) (2021). Within the overlapping ERA5 and WFDE5 data availability period (1979–2018), daily 
discharge observations were available mainly for the period 1979–2016 (see Table 2). Thus, we performed the four different hy-
drological simulation runs driven by ERA5, ERA5-WC, ERA5-GPW and WFDE5 for the period 1980–2016, considering a decent model 
spin-up of 5 preceding years (1975–1979). 

From the results of the four different hydrological simulation runs, we calculated the percent bias PBIAS[%] of the long-term daily 
discharge at the outlet gauges of the Danube basin and each of its sub basins according to Yapo et al. (1996) (Eq. (5)): 

PBIAS =

∑T

t=1
(Qmod,t− Qobs,t)

∑T

t=1
(Qobs,t)

* 100% , (5)  

where Qmod,t stands for modelled discharge at time step t and Qobs,t for observed discharge at time step t. With PBIAS, we investigated 
whether the model correctly predicted the volume of modelled runoff or whether there was a potential tendency to over- or under-
estimate modelled discharge in the specific sub basins. We determined model efficiency based on Nash-Sutcliffe efficiency (NSE) and 
Kling-Gupta efficiency (KGE) of the daily discharge at the outlet gauges of the Danube basin and each of its sub basins. We calculated 
NSE according to Nash and Sutcliffe (1970) (Eq. (6)): 

Fig. 3. Sub basin delineation within the Danube River Basin (A: Upper Danube, B: Middle Danube, C: Drava, D: Sava, E: Mures, F: Tisza, G: Siret, H: 
Lower Danube) and the corresponding outlet gauges (a: Achleiten, b: Bezdan, c: Dravaszabolcs, d: Sremska Mitrovica, e: Nagylak, f: Senta, g: 
Lungoci, h: Ceatal Izmail) 
(data sources: Global Runoff Data Centre (GRDC), 2019; International Commission for the Protection of the Danube River (ICPDR), 2021; Lehner 
et al., 2008). 
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Table 2 
Overview of the Danube sub basins and the corresponding outlet gauges with data source and availability of daily discharge measurements.  

ID (Fig. 3) Sub basin Gauge Data source Daily discharge data availability for 1979–2018 

A Upper Danube Achleiten (DE) GRDC 1979–2015 
A and B Upper + Middle Danube Bezdan (RS) GRDC 1992–2010 
C Drava Dravaszabolcs (HU) ICPDR 1998–2000; 2002–2016 
D Sava Sremska Mitrovica (RS) GRDC 1992–2010 
E Mures Nagylak (HU) ICPDR 2007–2009; 2011–2016 
F Tisza Senta (RS) GRDC 1979–2010 
G Siret Lungoci (RO) GRDC 1979–2010 
A to H Danube overall Ceatal Izmail (RO) GRDC 1979–1995; 1997–2010  

Fig. 4. Map of long-term annual mean precipitation [mm/a] in the Danube basin from interpolated observations for the period 1961–1990 created 
by the Institute of Hydrology at the Slovak Academy of Sciences (SAS) (Kovács, 2010; Petrovič et al., 2010). Adapted by permission from Springer 
Nature Customer Service Centre GmbH: Springer Nature, Characterization of the Runoff Regime and Its Stability in the Danube Catchment by P. 
Kovács, In: Brilly, M. (Ed.), Hydrological Processes of the Danube River Basin. © Springer Science+Business Media B.V. (2010) (https://doi.org/10. 
1007/978-90-481-3423-6_5). All rights in Fig. 4a are owned by Springer Nature; permission for any further reuse must be obtained from Springer 
Nature (a). Maps of long-term annual mean precipitation [mm/a] in the Danube basin for the period 1980–2016 from the E-OBS gridded pre-
cipitation observation product (v22.0e, 0.1◦) (Cornes et al., 2018) (b) and from the downscaled forcing datasets ERA5 (c), ERA5-WC (d), ERA5-GPW 
(e) and WFDE5 (f). 
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NSE = 1 −

∑T

t=1
(Qmod,t − Qobs,t)

2

∑T

t=1
(Qobs,t − Qobs)

2
, (6)  

where Qmod,t is the modelled discharge at time step t, Qobs,t is the observed discharge at time step t and Qobs is the mean of observed 
discharges. We calculated KGE according to Gupta et al. (2009) and Kling et al. (2012) (Eq. (7)): 

KGE = 1 −

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(r − 1)2
+ (

μmod
μobs

− 1)2
+ (

σmod/μmod
σobs/μobs

− 1)2

√

, (7)  

where r is the correlation coefficient between modelled and observed discharge, μmod is the mean modelled discharge, μobs is the mean 
observed discharge, σmod is the standard deviation of modelled discharge and σobs is the standard deviation of observed discharge. The 
KGE metric is widely perceived as a significant improvement to NSE and can be understood as a decomposition of NSE into its 
components, which measure the linear correlation, the bias and the variability of flow (Gupta et al., 2009). Nevertheless, both metrics 
have very specific strengths and weaknesses and cannot be directly compared to each other (Knoben et al., 2019). NSE = 1 and KGE 
= 1 indicate perfect agreement between model and observations, NSE = 0 and KGE = − 0.41 indicate that the model has the same 
explanatory power as the mean of the observations and NSE < 0 and KGE < − 0.41 indicate that the model is a worse predictor than the 
mean of the observations (Knoben et al., 2019). 

3. Results 

3.1. Spatial precipitation patterns 

A realistic representation of spatial precipitation patterns in the meteorological forcing data is crucial for successful hydrological 
modelling, as rainfall distribution strongly influences the dynamics of runoff formation within a watershed and the timing and po-
tential coincidence of flood waves at the confluences of rivers. It is important to note that spatial precipitation patterns from inter-
polated observations are strongly dependent on the underlying interpolation methods. Interestingly, we found that precipitation 
patterns differ greatly in various precipitation maps of the Danube available in the literature. Fig. 4 depicts a comparison of different 
maps showing observed precipitation from various sources as well as downscaled precipitation from our meteorological forcing 
datasets. We show long-term annual mean precipitation from interpolated observations for the period 1961–1990 created by the 
Institute of Hydrology at the Slovak Academy of Sciences (Kovács, 2010; Petrovič et al., 2010) (in the following denoted as SAS map) 
(a). Moreover, we show long-term annual mean precipitation from the E-OBS gridded precipitation observation product (version 
22.0e, ensemble mean, 0.1◦ spatial resolution) for the period 1980–2016 (Cornes et al., 2018) (b). Furthermore, we show long-term 
annual mean downscaled precipitation for the period 1980–2016 from our forcing datasets ERA5 (c), ERA5-WC (d), ERA5-GPW (e) and 
WFDE5 (f). 

Apparently, there are large differences in precipitation patterns visible between the two observation maps, especially in mountain 
regions like the Alps, the Dinarides and the Carpathians. Particularly striking is that the SAS precipitation map (a) shows a distinct 
rainfall band in the Bavarian Alpine foreland (extending far to the east), which is far less pronounced in the E-OBS precipitation map 
(b). The SAS map moreover shows a round-shaped dry region in the south-eastern (Slovenian) Alps, which is not present in the E-OBS 
map. In the SAS map, precipitation ranges from ~200 mm/a near the Danube delta to ~2300 mm/a in the Alpine foreland close to the 
Northern Limestone Alps and around the Dinaric mountain peaks. In the E-OBS map, average precipitation amounts to 684 mm/a with 
rainfall ranging from 273 mm/a near the Danube delta to 2218 mm/a at the Dinaric mountain peaks in the Sava basin. 

The ERA5 (c) and WFDE5 (f) precipitation maps show rather smooth precipitation patterns due to the downscaling procedure 
without bias correction. In contrast, the ERA5-WC (d) and ERA5-GPW (e) precipitation maps feature visible topography structures due 
to the bias correction step included in the downscaling procedure. Here, corresponding reference climatologies used for bias correction 
augmented the precipitation maps with small-scale structures at a spatial resolution of 30′′. ERA5 was the wettest forcing dataset with 
824 mm/a precipitation on average over the whole basin. Minimum and maximum rainfall ranged from 449 mm/a in the Moldovan 
Plain to 1943 mm/a in the eastern Alps. In the Alps and the Alpine foreland, rainfall patterns in the ERA5 map are rather evenly 
distributed and show little of the more complex structures that are visible in the SAS and E-OBS maps of observed precipitation 
(especially the inner-Alpine dry valleys of the Inn catchment in the south-western part of the Upper Danube). In the southern Sava 
basin and in the Carpathian region, patchy rainfall patterns are visible. ERA5-WC was the driest forcing dataset with 754 mm/a 
precipitation on average with rainfall ranging from 337 mm/a near the Danube delta to 2516 mm/a around the Alpine and Dinaric 
mountain peaks in the Drava and Sava basins. The ERA5-WC precipitation patterns in the Alpine region (especially the inner-Alpine 
dry valleys), in the Dinaric region and in the Lower Danube around the southern Carpathian region are strikingly similar to the 
structures in the E-OBS rainfall map. In the ERA5-GPW forcing dataset, average precipitation amounted to 764 mm/a with rainfall 
ranging from 337 mm/a in the Danube delta (like ERA5-WC) to very high local maxima of 3225 mm/a at single mountain peaks in the 
northern Sava basin. In the ERA5-GPW precipitation map, a strong resemblance to the SAS map is noticeable for the Alpine region: 
first, the distinct rainfall band in the Alpine foreland extending far to the east, second, the pronounced inner-Alpine dry valleys of the 
Inn catchment in the south-western Upper Danube and third, the round-shaped dry region at the transition between the Alps and the 
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Dinarides in the Drava basin. The WFDE5 forcing dataset yielded an average precipitation of 788 mm/a with rainfall ranging from 
278 mm/a near the Danube delta to 2251 mm/a at single mountain peaks in the northern Sava basin. The likewise smooth WFDE5 
precipitation patterns in the map are quite similar to the ERA5 patterns with a few spatial shifts due to the WFD bias correction and 
with some more indications of Alpine precipitation patterns (e.g. the inner-Alpine dry valleys and the round-shaped dry region in the 
Drava basin) that are visible in the SAS and E-OBS observation maps. 

3.2. Temperature, precipitation, evapotranspiration and percent bias of discharge 

The percent bias (PBIAS) of discharge is an important quality criterion in hydrological modelling, as it provides information on 
whether the water volume of the modelled discharge in a basin is well predicted or rather over- or underestimated. In Table 3 and  
Fig. 5, we show the modelled long-term annual means of temperature [◦C], precipitation [mm/a] and evapotranspiration [mm/a] as 
well as PBIAS of discharge [%] for the period 1980–2016 in the DRB and its sub basins for the simulation runs driven by ERA5, ERA5- 
WC, ERA5-GPW and WFDE5. Here, long-term annual mean temperature, precipitation and evapotranspiration are given as area- 
averaged values, which were calculated for the whole basin area upstream of the basin’s associated gauge station (see Table 2). 
Apparently, there was much more variation in precipitation and PBIAS than in temperature and evapotranspiration between the 
different forcing datasets and consequently, simulation runs. The downscaled uncorrected ERA5 forcing dataset gave highest pre-
cipitation in most of the sub basins, i.e. the Upper and Middle Danube (gauges Achleiten, Bezdan), the Mures, Tisza and Siret tributary 
basins and the Danube overall (outlet gauge Ceatal Izmail) compared to the other forcing datasets. In most of these sub basins, also 
evapotranspiration – and in a lesser extent temperature – showed highest values for ERA5. Higher annual precipitation in most Danube 
sub basins and the Danube overall coincided with more or less high positive PBIAS (esp. the Mures and Tisza basins) for ERA5. In 
contrast, the Sava basin showed least precipitation for the ERA5 forcing dataset, which coincided with a relatively high negative 
PBIAS. Introducing bias correction of ERA5 with the global WorldClim 2 climatologies (ERA5-WC forcing dataset) led to a significant 
reduction of precipitation in the Upper and Middle Danube (gauges Achleiten, Bezdan), the Mures, Tisza and Siret tributary basins and 
the Danube overall on the one hand, and to an increase of precipitation in the Drava and Sava basins on the other. At the same time, 
PBIAS turned negative in the Upper Danube and more positive in the Drava basin. For the ERA5-WC forcing dataset, the more or less 
highly positive PBIAS in the Mures, Tisza and Siret basins and the Danube overall resulting from ERA5 were mitigated due to the 
reduction of precipitation. In total, PBIAS was especially low in the Danube overall at gauge Ceatal Izmail. Similarly, the negative 
PBIAS in the Sava basin resulting from ERA5 was slightly mitigated in ERA5-WC. The additional integration of the regional precip-
itation climatologies GLOWA and PRISM for the Alpine and Dinaric region into the bias correction process of ERA5 (ERA5-GPW forcing 
dataset) led to an increase of precipitation in the Upper and Middle Danube (gauges Achleiten, Bezdan) and also slightly in the Sava 
basin. At the same time, precipitation in the Drava basin decreased to about the same magnitude as in the uncorrected ERA5 forcing 
dataset. For the ERA5-GPW forcing dataset, the negative PBIAS in the Upper Danube and the positive PBIAS in the Drava basin 
resulting from the ERA5-WC forcing dataset was mitigated. Moreover, the negative PBIAS in the Sava basin resulting from ERA5 and 
ERA5-WC was slightly mitigated for ERA5-GPW. For the WFDE5 forcing dataset, precipitation increased again in the Upper and Middle 
Danube (gauge Bezdan), the Mures, Tisza and Siret tributary basins and the Danube overall, which coincided with more positive PBIAS 

Table 3 
Long-term annual means of temperature [◦C], precipitation [mm/a], evapotranspiration [mm/a] and PBIAS of discharge [%] in the Danube and its 
sub basins for the period 1980–2016 as modelled by the forcing datasets ERA5, ERA5-WC, ERA5-GPW and WFDE5.   

Temperature [◦C] Precipitation [mm/a] 

Sub basin ERA5 ERA5- 
WC 

ERA5- 
GPW 

WFDE5 ERA5 ERA5- 
WC 

ERA5- 
GPW 

WFDE5 

Upper Danube  7.0  7.1  7.1  7.4  1143  994  1095  1054 
Upper + Middle Danube  8.4  8.3  8.3  8.6  912  825  873  882 
Drava  7.7  7.7  7.7  7.8  1017  1119  1035  1003 
Sava  10.2  9.8  9.8  10.0  984  1061  1083  1040 
Mures  8.4  8.0  8.0  8.1  863  656  656  693 
Tisza  9.3  9.0  9.0  9.1  805  682  682  721 
Siret  7.9  8.1  8.1  7.9  758  582  582  690 
Danube overall  9.4  9.2  9.2  9.4  830  761  772  795  

Evapotranspiration [mm/a] PBIAS of discharge [%] 

Sub basin ERA5 ERA5- 
WC 

ERA5- 
GPW 

WFDE5 ERA5 ERA5- 
WC 

ERA5- 
GPW 

WFDE5 

Upper Danube  521  524  527  511  +8.4  − 17.5  − 1.1  − 5.8 
Upper + Middle Danube  515  510  512  500  +22.1  − 1.9  +11.3  +18.4 
Drava  530  539  543  519  +16.0  +36.5  +15.6  +12.8 
Sava  566  571  572  540  − 29.6  − 17.8  − 14.6  − 16.4 
Mures  535  506  506  492  +72.1  − 16.2  − 16.2  +38.5 
Tisza  521  504  504  495  +80.8  +24.3  +24.3  +46.1 
Siret  492  469  469  470  +56.9  − 26.4  − 26.4  +24.2 
Danube overall  519  510  511  497  +26.8  +4.7  +8.5  +20.0  
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values in those basins. Compared to the other forcing datasets, WFDE5 showed intermediate precipitation values for most sub basins 
and highest temperature values for the Upper and Middle Danube (gauges Achleiten, Bezdan) and the Drava basin. Interestingly, the 
WFDE5 forcing dataset gave smallest PBIAS for the Drava (+12.8%) and Siret basins (+24.2%) compared to the other forcing datasets. 
However, for the majority of the sub basins, smallest PBIAS values were obtained with the ERA5-WC and ERA5-GPW forcing datasets. 
ERA5-GPW yielded smallest PBIAS for the Upper Danube at gauge Achleiten (− 1.1%) and for the Sava basin (− 14.6%). ERA5-WC 
yielded smallest PBIAS for the Upper and Middle Danube at gauge Bezdan (− 1.9%) and for the Danube overall at gauge Ceatal 
Izmail (+4.7%). For two tributary basins of the Lower Danube, smallest PBIAS were equally obtained by ERA5-WC and ERA5-GPW, i.e. 
the Mures basin (− 16.2%) and the Tisza basin (+24.3%). ERA5 did not show smallest PBIAS values in any of the sub basins. 

3.3. Model efficiency based on daily discharge 

In Table 4 and Fig. 6, we show model efficiencies (NSE and KGE) based on observed and modelled daily discharge as modelled by 
the ERA5, ERA5-WC, ERA5-GPW and WFDE5 forcing datasets for the period 1980–2016 for the Danube and its sub basins. In com-
parison to all other simulation runs, the ERA5-driven simulation showed poorest results for the majority of sub basins (esp. the 
tributary basins of the Lower Danube) concerning NSE and KGE. Especially low model efficiencies were achieved in the Mures and 
Tisza basins (NSE < 0) for ERA5. In contrast, relatively high model efficiencies were achieved for the Upper Danube (gauge Achleiten) 
and the Drava basin. The poor ERA5 model efficiencies especially in the Sava, Mures, Tisza and Siret basins and the Danube overall 
(gauge Ceatal Izmail) could be significantly improved by ERA5-WC. However, model efficiencies of the ERA5-WC-driven simulation 
slightly declined in the Upper Danube (gauge Achleiten) and vastly dropped in the Drava basin to NSE < 0 in comparison to ERA5. 
Through the additional introduction of the regional precipitation climatologies GLOWA and PRISM for the bias correction in the Alps 
and Dinarides, the ERA5-GPW-driven simulation showed improved model efficiencies especially for the Upper Danube, the Drava and 
the Sava basins. In comparison to ERA5-GPW, discharges from the WFDE5-driven simulation showed lower efficiencies for the ma-
jority of sub basins with especially low results for the Mures and Tisza basins. In contrast, the WFDE5-driven simulation showed best 
model efficiencies for the Drava (NSE = 0.66, KGE = 0.83), the Sava (NSE = 0.66, KGE = 0.66) and the Siret basin (NSE = 0.54, KGE =
0.57) in comparison to all other forcing datasets. For the Upper Danube (gauge Achleiten), best NSE was obtained with the ERA5-GPW- 
driven simulation (NSE = 0.75), whereas best KGE was obtained with the ERA5-driven simulation (KGE = 0.83; although KGE was 
very similar for ERA5, ERA5-GPW and WFDE5). For two tributary basins of the Lower Danube, efficiency measures were equally best 
for ERA5-WC and ERA5-GPW (NSE = 0.47 and KGE = 0.69 for the Mures and NSE = 0.39 and KGE = 0.54 for the Tisza basin). 
Moreover, ERA5-WC yielded best efficiencies for the Upper and Middle Danube at gauge Bezdan (NSE = 0.71, KGE = 0.78) and for the 
Danube overall at gauge Ceatal Izmail (NSE = 0.70, KGE = 0.77). Also for these two basins, KGE values were very similar for the ERA5- 
WC-driven and the ERA5-GPW-driven simulation. 

4. Discussion 

4.1. Performance of the uncalibrated hydrological model 

Our results showed that satisfactory model results in terms of the goodness-of-fit criteria PBIAS, NSE and KGE could be equally 
achievable without extensive model calibration. Considering the fact that no calibration with observed discharge has been undertaken 
at all, we obtained satisfactory results by using a reasonably and comprehensively parameterized mechanistic hydrological model, 
which takes physical processes of water flows into account due to its process-based nature. Also for methodological reasons, it is 
appropriate to dispense with calibration so that the hydrological model is not parameterized differently for each meteorological 
forcing dataset. Calibration that aims to best fit the discharge observations would prevent an objective comparison of the suitability of 
the different meteorological drivers for hydrological modelling applications from the outset. 

The NSE results obtained in our study are in good accordance compared to other model studies, where extensive calibration efforts 
have been undertaken. In Table 5, we show NSE of daily discharges from the respective best simulation run in this study compared to 
the daily NSE of validation obtained at the exact or nearby gauges from the study of Stagl and Hattermann (2015). As can be seen, our 
NSE were quite similar to the NSE given in the comparative study and were even better for the Upper Danube, the Upper and Middle 
Danube (NSE at Bezdan/Bratislava gauges), the Drava and the Siret basin. 

Concerning the relationship between NSE and KGE across all sub basins and all simulation runs, our results gave a positive linear 
correlation between NSE and KGE values. This means that higher NSE tended to be associated with higher KGE and vice versa (see  
Fig. 7). KGE is often used in addition to or instead of NSE to account for specific shortcomings of NSE. With KGE, it is possible to rate the 
model’s ability to yield simultaneously good solutions for the linear correlation, the bias and the variability of flow, which is not the 
case with NSE (Gupta et al., 2009). As Knoben et al. (2019) vividly showed, an exemplary strength of KGE is the ability to capture a 
model’s potential tendency to overestimate discharge peaks (which NSE cannot) and in contrast, an exemplary strength of NSE is the 
ability to capture potential systematic offsets between the modelled and the observed hydrograph (which KGE cannot). A positive 
correlation of NSE and KGE therefore indicates that there are no one-sided deficiencies in the physically-based description of hy-
drological processes in PROMET that would manifest as systematic over- or underestimations of the modelled hydrograph or a 

Fig. 5. Long-term annual means of temperature [◦C] (a), precipitation [mm/a] (b), evapotranspiration [mm/a] (c) and PBIAS of discharge [%] (d) 
in the Danube and its sub basins for the period 1980–2016 as modelled by the forcing datasets ERA5, ERA5-WC, ERA5-GPW and WFDE5. 
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systematic overestimation of modelled flood peaks. 

4.2. Performance of the meteorological forcing datasets and climatologies for bias correction 

Our results showed that sub basin-specific variations in long-term annual means of precipitation between the different forcing 
datasets and thus, simulation runs were much greater than of temperature or evapotranspiration, connected with corresponding 
impacts on PBIAS. Sub basin-specific higher PBIAS values (positive or negative) coincided primarily with variations in forcing data- 
specific precipitation between the different simulation runs and very little with variations in temperature or evapotranspiration. This 
clearly suggests that a small PBIAS and thus, well predicted water budget within a basin is above all dependent on the correct rep-
resentation of precipitation in the meteorological data and underlines the importance of choosing appropriate precipitation forcing 
data as input for hydrological modelling, combined with suitable climatologies especially for precipitation bias correction. 

The uncorrected ERA5 forcing dataset showed highest annual mean precipitation for most sub basins (except for Drava and Sava), 
leading to systematic positive PBIAS for the ERA5-driven simulation in these sub basins. The poor performance of the ERA5-driven 
simulation concerning NSE and KGE compared to the other simulations may be traced back to the relatively smooth patterns in the 
downscaled ERA5 precipitation map, especially over mountainous terrain (see Fig. 4). In mountain regions, the ERA5 precipitation 
map sharply contrasted with the SAS and E-OBS maps of observed precipitation, both of which showed detailed small-scale rainfall 
structures in the Alps, the Dinarides and the Carpathians, especially inner-Alpine dry valleys and drier regions in the Drava basin. This 
suggests that the smooth precipitation patterns in ERA5 may have led to a distortion of spatial runoff dynamics and to an inadequate 
emulation of the hydrograph. Interestingly, the downscaled WFDE5 forcing dataset showed similar smooth precipitation patterns 
compared to the downscaled uncorrected ERA5 reanalysis, but the WFDE5-driven simulation yielded much better results in terms of 
PBIAS, NSE and KGE in almost all sub basins compared to the ERA5-driven simulation. WFDE5 even yielded best NSE and KGE for the 
mountain watersheds Drava and Sava and also for the Siret basin across all forcing datasets. Apparently, the WFD bias correction 
methodology used to create WFDE5 offers great benefits for hydrological modelling purposes in the DRB. 

Another aspect, which is particularly important in mountainous regions, may also be a determining factor for the good performance 
of WFDE5 in the mountain watersheds: the presence of undercatch correction. Especially in mountainous regions, a major source of 
uncertainty is systematic measurement bias due to wind-induced undercatch at precipitation gauging stations. This is particularly 
significant in wind-exposed areas and during snowfall periods, leading to systematic underestimations of precipitation (Sevruk, 2005). 
In contrast to all other forcing datasets, precipitation climatologies and observation datasets presented in this study (ERA5, WorldClim 
2, PRISM, GLOWA and E-OBS), the WFDE5 forcing dataset is in fact the only one, which includes an undercatch correction (Cornes 
et al., 2018; Cucchi et al., 2020; Fick and Hijmans, 2017; Frei and Schär, 1998; Früh et al., 2006). Although the mountainous Upper 
Danube, Drava and Sava basins featured highest area-averaged precipitation means in the ERA5, ERA5-WC and ERA5-GPW forcing 
datasets and not in the WFDE5 dataset, absent undercatch correction can nevertheless lead to local underestimations of rainfall at 
higher altitudes within the sub basins. This may result in inadequately predicted dynamics of discharge formation and to a possible 
distortion of the hydrograph. Therefore, a possible explanation for the best model efficiencies of WFDE5 in the Drava, the Sava and the 
Siret basins may well be the presence of both bias correction and undercatch correction in the WFDE5 dataset, leading to better 
predicted dynamics of the mountain watershed hydrology. 

Concerning ERA5, the introduction of bias correction vastly reduced PBIAS and improved NSE and KGE for the simulations driven 
by ERA5-WC and ERA5-GPW compared to the simulation driven by the uncorrected ERA5 reanalysis. Solely incorporating the global 
WorldClim 2 temperature and precipitation climatologies for bias correction (ERA5-WC) led to smaller PBIAS values and improved 
model efficiency especially in the Lower Danube and its tributary basins, where WorldClim 2 significantly reduced precipitation 
amounts. In contrast, in the complex terrains of the Alps and Dinarides (esp. Upper Danube and Drava basin), WorldClim 2 indeed 
added some structure to the precipitation map, but did not appear to reproduce the complex actual precipitation patterns in an eligible 
way as NSE and KGE considerably dropped compared to the ERA5-driven simulation. This is particularly interesting given that the 
spatial patterns in the ERA5-WC precipitation map in the Alps and Dinarides (Fig. 4) were in close correspondence to the patterns in the 
E-OBS precipitation map, but not to those in the SAS map. This similarity may well be due to the fact that WorldClim 2 and E-OBS 
incorporate overlapping precipitation stations across Europe. E-OBS is created from data by the European Climate Assessment and 

Table 4 
Nash-Sutcliffe efficiency (NSE) and Kling-Gupta efficiency (KGE) of modelled and observed daily discharge in the Danube and its sub basins for the 
period 1980–2016 as modelled by the forcing datasets ERA5, ERA5-WC, ERA5-GPW and WFDE5.   

NSE KGE 

Sub basin ERA5 ERA5- 
WC 

ERA5- 
GPW 

WFDE5 ERA5 ERA5- 
WC 

ERA5- 
GPW 

WFDE5 

Upper Danube  0.66  0.53  0.75  0.71  0.83  0.73  0.81  0.80 
Upper + Middle Danube  0.41  0.71  0.66  0.57  0.71  0.78  0.75  0.73 
Drava  0.51  − 0.09  0.51  0.66  0.79  0.60  0.78  0.83 
Sava  0.39  0.60  0.63  0.66  0.57  0.62  0.62  0.66 
Mures  − 1.23  0.47  0.47  0.06  0.24  0.69  0.69  0.55 
Tisza  − 0.98  0.39  0.39  0.15  0.12  0.54  0.54  0.46 
Siret  0.26  0.46  0.46  0.54  0.30  0.55  0.55  0.57 
Danube overall  0.12  0.70  0.66  0.56  0.68  0.77  0.75  0.75  
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Dataset (ECA&D) initiative (Klein Tank et al., 2002; Klok and Klein Tank, 2009), sourcing station data from many National Meteo-
rological Services (NMS) and other providers across Europe (Cornes et al., 2018). The WorldClim 2 station data basis is mainly 
compiled from global datasets like CRU TS3.22 station observations, some of which are shared by numerous national weather services 
through the World Meteorological Organization (WMO) (Harris et al., 2014). However, a considerable proportion of the station data 
basis for WorldClim 2 also directly originates from the ECA&D pool. In addition to the directly included ECA&D stations, there is also a 
larger number of stations in Europe which are duplicated in ECA&D and global sources used for WorldClim 2 (Fick and Hijmans, 2017). 

Fig. 6. Nash-Sutcliffe efficiency (a) and Kling-Gupta efficiency (b) of modelled and observed daily discharge in the Danube and its sub basins for the 
period 1980–2016 as modelled by the forcing datasets ERA5, ERA5-WC, ERA5-GPW and WFDE5 (Note: for clearer visualization, negative NSE are 
displayed as 0). 

Table 5 
Comparison of Nash-Sutcliffe efficiencies (NSE) of daily discharges in this study to daily NSE of validation from Stagl and Hattermann (2015) in the 
Danube and its sub basins.   

This study Study of Stagl and Hattermann (2015) 

Sub basin Gauge Forcing dataset yielding best NSE NSE Gauge NSE 

Upper Danube Achleiten ERA5-GPW 0.75 Achleiten 0.69 
Upper + Middle Danube Bezdan ERA5-WC 0.71 Bratislava / Bazias 0.62 / 0.74 
Drava Dravaszabolcs WFDE5 0.66 Borl 0.41 
Sava Sremska Mitrovica WFDE5 0.66 Sremska Mitrovica 0.77 
Mures Nagylak ERA5-WC/ERA5-GPW 0.47 Arad 0.67 
Tisza Senta ERA5-WC/ERA5-GPW 0.39 Szeged 0.54 
Siret Lungoci WFDE5 0.54 Lungoci 0.51 
Danube overall Ceatal Izmail ERA5-WC 0.70 Ceatal Izmail 0.76  
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As Fick and Hijmans (2017) and Hijmans et al. (2005) stated, there are greater uncertainties in the WorldClim 2 precipitation 
climatology in mountainous terrain, mainly due to the lower station density and the simplifying assumption of an elevation depen-
dence of precipitation in the spatial interpolation routine. Uncertainties were also reported for the E-OBS precipitation dataset in 
mountainous and data-scarce regions (Cornes et al., 2018). In contrast, Frei and Schär (1998) argued that precipitation-elevation 
correlations should only be used very carefully when interpolating station data in the Alpine region. They pointed out that precipi-
tation measured at stations is highly dependent on broader-scale synoptic characteristics and topographical factors like slope or 
exposure (summit vs. valley location, windward vs. leeward aspect), which lead to particular variations in the Alpine region and 
especially across the Alpine ridge (Frei and Schär, 1998). The relatively high uncertainties for precipitation in mountainous terrain in 
WorldClim 2 could be the reason for overestimations of precipitation at highest elevations in the Danube basin and excess precipitation 
especially in the Drava basin connected with a highly positive PBIAS. Excess rainfall at highest elevations in the model may also have 
caused an inadequate simulation of runoff volume, dynamics and timing and may have resulted in a hydrograph yielding poor NSE and 
KGE in the Drava and Upper Danube basins. 

We learned that the additional integration of the regional precipitation climatologies GLOWA and PRISM in the bias correction 
routine of precipitation (ERA5-GPW) led to better results concerning PBIAS, NSE and KGE in the Upper Danube, Drava and Sava basins 
than the bias correction with the WorldClim 2 precipitation climatology alone (ERA5-WC). An interesting finding here is that the 
ERA5-GPW precipitation map (Fig. 4) showed very similar spatial patterns in the Alps and Dinarides compared to the SAS map (in 
particular, the distinct rainfall band in the Bavarian Alpine foreland, the inner-Alpine dry valleys of the Inn catchment in the south- 
western Upper Danube and the round-shaped dry region in the Drava basin). In contrast, the ERA5-GPW map did not resemble the E- 
OBS map in these regions. In total, the described precipitation patterns resulted in a higher basin precipitation in the Upper Danube for 
ERA5-GPW and in a much smaller PBIAS compared to ERA5-WC. Thus, the reduced PBIAS and the improved model efficiencies for the 
Upper Danube, Drava and Sava basins may indicate that the ERA5-GPW precipitation map (which was similar to the SAS map) showed 
more realistic spatial precipitation patterns in the Alpine region than the ERA5-WC map (which was similar to the E-OBS map). We 
assume that the underlying higher station density for the generation of the regional precipitation climatologies GLOWA and PRISM 
leads to a much more realistic reproduction of the actual spatial precipitation patterns in the Alps and Dinarides than WorldClim 2 is 
able to provide. This is a strong indication that observation datasets should not be considered trustworthy based on their mere 
observational nature. Taking observational uncertainties into account, the selection of an appropriate reference climatology dataset for 
bias correction should be handled just as critically as, for example, the selection of an appropriate bias correction method. 

5. Summary and conclusions 

In this paper, we analysed the performance of the global meteorological reanalysis ERA5 and the global bias-adjusted forcing 
dataset WFDE5 for driving the physically-based hydro-agroecological model PROMET in the large, heterogeneous Danube River Basin. 
Furthermore, we investigated the suitability of the global to regional reference climatologies WorldClim 2, GLOWA and PRISM for 
linear bias correction of ERA5 temperature and precipitation incorporated in the downscaling routine. We performed four uncalibrated 
hydrological simulation runs of 30′′ spatial and hourly temporal resolution for the period 1980–2016 driven by the following con-
figurations of meteorological forcing data:  

• the uncorrected ERA5 reanalysis (denoted as ERA5),  
• the WFDE5 forcing dataset bias-corrected according to the WFD methodology (denoted as WFDE5), 
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Fig. 7. Relationship between Nash-Sutcliffe efficiency (NSE) and Kling-Gupta efficiency (KGE) for all sub basins and all simulation runs in the 
Danube River Basin. 
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• the ERA5 reanalysis bias-corrected with the WorldClim 2 temperature and precipitation climatologies (denoted as ERA5-WC),  
• the ERA5 reanalysis bias-corrected with the WorldClim 2 temperature climatology and a mosaic of the GLOWA and PRISM Alpine 

precipitation climatologies and the WorldClim 2 precipitation climatology (denoted as ERA5-GPW). 

Our simulations showed significant differences in performance between the different meteorological forcing datasets ERA5, 
WFDE5, ERA5-WC and ERA5-GPW. We evaluated the performance of the simulation runs using the PBIAS of discharge and the model 
efficiency metrics NSE and KGE, calculated from modelled and observed daily discharge at selected gauges in the Danube basin and its 
sub basins. The ERA5-GPW-driven simulation yielded the smallest PBIAS values and the best model efficiencies across the majority of 
sub basins compared to the other simulation runs. Given the poor performance of the ERA5-driven simulation in terms of PBIAS, NSE 
and KGE across nearly all sub basins, bias correction is essential for hydrological modelling in the DRB. Compared to ERA5, the 
WFDE5-driven simulation yielded much better results in terms of PBIAS, NSE and KGE (with even best NSE and KGE in the moun-
tainous Drava and Sava basins). This could be due to the WFD bias correction and the undercatch correction applied in WFDE5, which 
is apparently very suitable for hydrological modelling purposes. Concerning ERA5, we learned that bias correction with the global and 
widely used WorldClim 2 temperature and precipitation climatology alone (ERA5-WC forcing dataset) significantly improved the 
Lower Danube and its tributary basins in terms of PBIAS, NSE and KGE. However, WorldClim 2 was insufficient to capture the complex 
spatial precipitation patterns in mountainous terrain in the Alps and Dinarides, which are located in the Upper Danube, Drava and Sava 
basins. Here, the greater uncertainties in the interpolation of precipitation in mountainous terrain are likely to be a major limitation. 
Instead, additionally incorporating the regional high-resolution GLOWA and PRISM Alpine precipitation climatologies (derived from a 
much higher underlying station density in the European Alps) in the bias correction routine of ERA5 (ERA5-GPW forcing dataset) 
noticeably added distinct small-scale spatial precipitation patterns in the Alps and Dinarides. This approach reduced PBIAS values and 
improved model efficiencies for the mountain watersheds Upper Danube, Drava and Sava in comparison to the bias correction with 
WorldClim 2 alone. 

We draw three major conclusions from the findings of our simulation study: 
First, we have shown that with a reasonable and comprehensive parametrization of a process-based hydrological model such as 

PROMET, satisfying results for PBIAS, NSE and KGE can be obtained without extensive calibration of model parameters to best fit 
measured discharges. The ability of PROMET to simulate water flows, runoff formation and flood propagation in the channel through a 
physical process description without “trial-and-error” calibration was the prerequisite to perform an objective comparison of different 
meteorological forcing datasets in the next step. 

Second, we have demonstrated the applicability of the global meteorological reanalysis ERA5 (with appropriate bias correction as a 
prerequisite) and the global bias-adjusted forcing dataset WFDE5 for hydrological modelling. We obtained satisfying results for PBIAS, 
NSE and KGE at a comparatively fine spatial resolution of 30′′ even in a hydrologically complex, large and diverse basin such as the 
Danube. Nevertheless, we have shown that appropriate bias correction, especially of precipitation, is an essential part of the down-
scaling routine of the ERA5 reanalysis for driving hydrological models in the DRB. 

Third, we emphasize the need for regional high-resolution precipitation climatologies for the precipitation bias correction process 
of reanalyses for hydrological modelling applications in topographically complex mountain terrains such as the Alps and Dinarides. 
High-resolution precipitation climatologies such as GLOWA and PRISM, created from high station density, can more adequately ac-
count for small-scale precipitation patterns. In contrast, global climatologies created from lower station density quickly reach their 
limits. Based on our findings, we therefore argue that the choice of an appropriate reference climatology dataset for bias correction of 
precipitation in Alpine terrain is of utmost importance and needs to be carefully considered. 

Further research must be undertaken to determine whether and to what extent the need for regional high-resolution precipitation 
climatologies for bias correction applies for other mountainous regions around the globe. It seems plausible that this issue is not unique 
to the European Alps. In this light, our results also emphasize the importance of further research to develop appropriate reanalysis 
schemes for mountainous regions of much higher spatial resolution with the ultimate goal of eventually eliminating the need for 
downscaling and bias correction of meteorological forcing data for hydrological modelling. 
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