
1.  Introduction
Over the second half of the last century the study of the sliding behavior of frictional surfaces, such as those 
believed to occur in the earth's crust, has led to a general understanding that it is governed by competition of 
stabilizing viscous-like effects and potentially destabilizing processes that affect the texture of the interface in 
a time-dependent manner and self-organize into periods during which the interface is arbitrarily close to elastic 
stick punctuated with periods of anelastic slip (Bowden & Tabor, 1966; Brace & Byerlee, 1966; Dieterich, 1978; 
Dieterich & Kilgore, 1994; Ida, 1972; Rabinowicz, 1958; Ruina, 1980, 1983; Scholz et al., 1972).

Abstract  The theory of rate and state friction unifies field, laboratory, and theoretical analysis of the 
evolution of slip on natural faults. While the observational study of earthquakes and aseismic fault slip is 
hampered by its strong multi-scale character in space and time, numerical simulations are well-positioned to 
link the laboratory study of grain-scale processes to the scale at which rock masses move. However, challenges 
remain in accurately representing the complex and permanently evolving sub-surface fault networks that 
exist in nature. Additionally, the common representation of faults as interfaces may miss important physical 
aspects governing volumetric fault system behavior. In response, we propose a transient viscous rheology that 
produces shear bands that closely mimic the rate- and state-dependent sliding behavior of equivalent fault 
interfaces. Critically, we show that the expected tendency of the continuum rheology for runaway localization 
and mesh dependence can be halted by including an artificial diffusion-type regularization of anelastic strain 
rate in the softening law. We demonstrate analytically and numerically using a simplified fault transect that 
important aspects of the frictional behavior are not significantly affected by the introduced regularization. 
Any discrepancies with respect to the interfacial description of fault behavior are critically evaluated using 
one dimensional numerical velocity stepping and spring-slider experiments. Since no new physical parameters 
are introduced, our model may be straightforwardly used to extend the existing modeling techniques. The 
model predicts the emergence of complex patterns of shear localization and delocalization that may inform the 
interpretation of complex damage distributions observed around faults in nature.

Plain Language Summary  How, where, and when earthquakes nucleate is one of the great 
questions in science and society that, despite steady progress, has hardly been answered to any practical 
degree. Based on field observations, laboratory experiments, and theoretical work it is believed that a cocktail 
of escalating mechanical, chemical, and thermal grain-scale processes cause the sudden and rapid onset of 
earthquakes. The net effect of these processes are characterized by an immediate strengthening and a gradual 
weakening response to deformation and are unified in simplified form in the theory of "rate and state friction.” 
This theory is commonly used in computer simulations of earthquake sequences. We point out that rate and 
state friction, unlike some physical theories of earthquake rupture, does not incorporate a diffusion process 
such as for example heat conduction. We show the introduction of an artificial diffusion process can prevent 
the mathematical reduction of a fault zone to a two-dimensional interface while retaining the properties of 
the original friction law. This in turn enables simulation techniques that rely on an interface-free description 
of the earth and promise to provide new insights into the spontaneous organization of seismic and aseismic 
phenomena in developing fault zones.
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1.1.  Rate- and State-Dependent Friction

This has led to the proposition of the phenomenological rate- and state-dependent friction law by Dieter-
ich (1978); Dieterich (1979a); Ruina (1980, 1983), which reads in its general form as

𝑓𝑓 = 𝑓𝑓0 + 𝑎𝑎log𝑉𝑉 + 𝑏𝑏 logΘ.� (1)

In this law, the friction coefficient 𝐴𝐴 𝐴𝐴 is given by the linear combination of a reference friction coefficient 𝐴𝐴 𝐴𝐴0 , a 
logarithmic contribution from dimensionless slip rate 𝐴𝐴 𝐴𝐴  multiplied by a coefficient 𝐴𝐴 𝐴𝐴 , and another logarithmic 
contribution from a dimensionless state variable 𝐴𝐴 Θ multiplied by a coefficient 𝐴𝐴 𝐴𝐴 . All quantities are taken to be 
positive.

The rate effect or direct effect is to a variable degree strengthening with increasing slip rate and thus exerts a 
stabilizing influence on the frictional interface for any strictly positive a. The state effect or evolution effect is 
to be governed by an evolution law that has the evolving steady state 𝐴𝐴 Θss𝑉𝑉 (𝑡𝑡) = 1 . Then, if 𝐴𝐴 𝐴𝐴 𝐴 𝐴𝐴 , this allows an 
externally loaded system with a frictional interface to move to a configuration with lower elastic strain energy and 
thus a frictional-mechanical instability may occur.

One of the most widely used state evolution laws is the aging law of Ruina (1980, 1983), given by

Θ̇ = 𝑟𝑟0 (1 − 𝑉𝑉 Θ) ,� (2)

with 𝐴𝐴 𝐴𝐴0 a rate constant that is commonly expressed by dividing the reference velocity 𝐴𝐴 𝐴𝐴0 by a critical slip distance 
𝐴𝐴 𝐴𝐴𝑐𝑐 . It should be noted that several other evolution laws that govern the state variable have been proposed. The 

most commonly cited contender is the slip law (Dieterich, 1979a; Ruina, 1980, 1983). In this work we do not 
consider it because its functional form 𝐴𝐴

(

Θ̇ ∝ Θ𝑉𝑉 logΘ𝑉𝑉
)

 is unfortunately not amenable to the type of analytical 
treatment that is performed. We note that rate and state friction captures only the first-order behavior of the stick-
slip cycle and that laboratory experiments have brought to light many secondary effects (e.g., Chester, 1994; Mair 
& Marone, 1999; Marone, 1998; Passelègue et al., 2020; Ruina, 1983).

Following Amonton's law the friction coefficient is expressed as the ratio of shear stress 𝐴𝐴 𝐴𝐴 to normal stress 𝐴𝐴 𝐴𝐴 , 
implying a cohesionless fault. It is further assumed that the fault is always critically loaded, that is, shear stress is 
equal to the shear strength and 𝐴𝐴 𝐴𝐴 𝐴 0 . The assumption of criticality is necessary because Equation 1 degenerates 
at 𝐴𝐴 𝐴𝐴 = 0 , but has also been suggested to be realistic for faults in nature (Bak & Tang, 1989).

The rate and state friction law is frequently applied in numerical studies of fault slip, whether that be a study over 
the course of a single earthquake or a complex sequence of slip transients (e.g., Ben-Zion & Rice, 1997; Dieter-
ich, 1979b; Erickson et al., 2020; Gabriel et al., 2012; Jiang & Lapusta, 2016; Lapusta & Liu, 2009; Lapusta 
et al., 2000; D. Li & Liu, 2017; P. G. Okubo, 1989; Rice, 1993; Rice & Ben-Zion, 1996; Rubin & Ampuero, 2005). 
The use of interfacial friction laws in these models necessitates the treatment of faults as mesh features on which 
internal boundary conditions can be applied. It can be laborious to construct such meshes for non-trivial fault 
geometries, and the procedure does not scale well with increasing fault network complexity. There is currently 
no established method to construct meshes with time-dependent geometry and topology reflecting an evolving 
fault system, but we refer to K. Okubo et al. (2019) for work in this direction. With some exceptions (e.g., D. Li & 
Liu, 2017; Perez-Silva et al., 2021; Sathiakumar et al., 2020) many studies focus on the already complex behavior 
of long-term sequences of slip transients on linear or planar faults in simple domains.

1.2.  Continuum Fault Rheology

There is strong field and experimental evidence that faults in nature are not infinitely thin planes but consist 
of complex evolving networks of strongly localized shear zones within a wider region of damaged host rock 
(Barth et al., 2013; Chester & Chester, 1998; Faulkner et al., 2011; Granier, 1985; Katz et al., 2004; Locatelli 
et al., 2019, 2018; Passelègue et al., 2016; Perrin et al., 2016; Pozzi et al., 2019, 2021, 2018; Ritter, Rosenau, 
& Oncken, 2018; Ritter, Santimano, et al., 2018; Ross et al., 2019; Savage & Brodsky, 2011; Tchalenko, 1970). 
This knowledge has spurred a search for intermediate-scale continuum homogenizations of distributed micro-
scale processes that obey the rate and state framework in a somewhat generalized sense. Currently proposed 
models focus on rheological feedback mechanisms involving temperature (Braeck & Podladchikov, 2007; Gara-
gash, 2012; John et al., 2009; Platt et al., 2014; Pozzi et al., 2021; Rice, 2006; Rice et al., 2014; Roubíček, 2014; 
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Thielmann, 2018; Thielmann et al., 2015), grain size (Barbot, 2019; Pozzi et al., 2021; Rozel et al., 2011; Thiel-
mann, 2018; Thielmann et al., 2015), porosity (Chen & Spiers, 2016; Niemeijer & Spiers, 2007; Sleep, 1997; 
Van den Ende et  al.,  2018), fluid pressure (Alevizos et  al.,  2014; Barbot & Fialko,  2010; Garagash,  2012; 
Platt et  al.,  2014; Poulet et  al.,  2014; Rattez, Stefanou, & Sulem,  2018; Rattez, Stefanou, Sulem, Veveakis, 
& Poulet, 2018; Rice et al., 2014; Veveakis et al., 2014), damage (Kurzon et al., 2019, 2020; Lyakhovsky & 
Ben-Zion, 2014a, 2014b; Lyakhovsky et al., 2011, 2016), granular physics (Daub & Carlson, 2008, 2009; Daub 
et al., 2008, 2010; Elbanna & Carlson, 2014; Hermundstad et al., 2010) or combinations thereof. Continuum 
models employing a rate and state formulation with the slip rate and tractions replaced by strain rate and stress 
invariants have been developed by Herrendörfer et  al.  (2018) and applied to self-organizing fault systems in 
Preuss et al. (2019); Preuss et al. (2020); Dal Zilio et al. (2021); Behr et al. (2021). Since the state of the subsur-
face is typically difficult to accurately characterize on a regional basis, these models are important to develop a 
generic understanding of the long-term evolution of seismogenic fault systems.

A problem commonly associated with strain softening rheologies without internal length scale is unconstrained 
localization (Hobbs et  al.,  1990). As a shear zone localizes to the scale of a mesh element or grid cell they 
become poorly resolved and cause mesh dependence of the simulation. Models that possess an internal length 
scale perpendicular to the direction of shear may not suffer from this issue, provided that this length scale is 
resolved by the discretization. For example, as thermo-rheological feedback mechanism causes localization the 
heat diffusion term may gain prominence until localizing and delocalizing (e.g., diffusing) influences find a 
balance. Unfortunately some of the proposed fault rheologies do not possess an internal length scale, and some 
possess one that has physical meaning and cannot be changed without changing the behavior of interest. If such a 
physical length scale is very small in nature, then that may place insurmountable constraints on the mesh resolu-
tion in two- or three-dimensional regional simulations (e.g., Platt et al., 2014; Rice et al., 2014). A few models do 
contain a controllable internal length scale; these are the unified rate and state friction theory of Sleep (1997) and 
the damage-breakage rheology of Lyakhovsky and Ben-Zion (2014a, 2014b); Lyakhovsky et al. (2016); Kurzon 
et al. (2019, 2020).

1.3.  Objective

In summary, we state the need for a rigorous treatment of a continuum framework in which Dieterich-Ruina-type 
rate and state friction can be embedded based on the following observations:

1.	 �Rate and state friction is a useful and powerful homogenization of the complex micro-scale processes that give 
rise to slip transients in nature.

2.	 �Numerical modeling exploration of the complex and evolving relation that fault networks have with their 
tectonic environment is hampered by the long-standing challenges with mesh adaptive generation as well as 
lack of detailed knowledge of the structure of the subsurface.

3.	 �The description of fault friction as a continuum process can be an elegant and practical way to avoid these 
problems provided they possess a controllable internal length scale in order to produce sensible results given 
reasonable computational resources.

4.	 �A continuum faulting rheology may readily model important transient effects that might be missed in an 
equivalent interfacial description.

5.	 �Much effort has been dedicated to understanding rate and state friction as an ingredient in numerical models—
not all proposed continuum rheologies can equally benefit from this.

In response, we develop a Dieterich-Ruina-type continuum reformulation of rate and state friction that

1.	 �possesses a controllable internal length scale 𝐴𝐴 𝐴𝐴0 that enforces a constraint on localization,
2.	 �yields mesh-independent results once 𝐴𝐴 𝐴𝐴0 is sufficiently well resolved,
3.	 �retains the parameters to the interfacial friction (Equation 1) and evolution (Equation 2) laws and yields simi-

lar trajectories of 𝐴𝐴 𝐴𝐴  and 𝐴𝐴 𝐴𝐴 for the same choice of parameter values, but that also
4.	 �has interesting implications for fault zone behavior during and between earthquakes.

The model we propose here bears close relation to the earlier works of Sleep (1997) and Herrendörfer et al. (2018). 
Contrary to Sleep (1997) we refrain from in-depth discussion of fault physics but concentrate on the introduced 
spatial regularization, which is also a necessary extension of Herrendörfer et al. (2018).
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In Section 2, we will motivate our choice of constitutive model, focusing on 
the formal links between interfacial and continuum models. In Section 3, we 
will present our equivalent continuum rate and state rheology. In Section 4, 
we build our rheology into a numerical model of a simplified one-dimen-
sional fault transect to demonstrate both its localization and delocalization 
behavior as well as its similarities and differences with respect to the original 
laws of Dieterich and Ruina. We close with a discussion—in which we will 
comment on possible links to existing theories of the physics of faulting—
and a summary in Sections 5 and 6.

2.  Material Model and Continuum Mechanics
We will first describe how the existing interfacial description of rate and state 
friction can be embedded in a continuum mechanical framework with inter-
nal discontinuities, and then generalize this to internal friction and distrib-
uted anelastic deformation in an interface-free model.

2.1.  A Fault Reference Frame

We consider the immediate neighborhood 𝐴𝐴 Ω ⊂ ℝ
3 of a section of fault 𝐴𝐴 Γ ⊂ Ω 

(Figure 1) that is described as the set of points belonging to a differentiable 
2D manifold. We invoke the existence of a surjective function 𝐴𝐴 𝐴𝐴𝐴𝑓𝑓

(

⃗𝑥𝑥
)

 that maps a coordinate 𝐴𝐴 𝐴𝐴𝐴 ∈ Ω to its near-
est Euclidian neighbor 𝐴𝐴 𝐴𝐴𝐴𝑓𝑓 ∈ Γ . Next, we define the fault transect 𝐴𝐴 𝐴𝐴

(

𝑥⃗𝑥𝑓𝑓

)

⊂ Ω as the 1D curve that includes all 
the points 𝐴𝐴 𝐴𝐴𝐴 ∈ Ω that map to a particular fault coordinate 𝐴𝐴 𝐴𝐴𝐴𝑓𝑓 ∈ Γ , in short 𝐴𝐴 𝐴𝐴 = 𝑥⃗𝑥−1

𝑓𝑓

({

𝑥⃗𝑥
})

⊂ Ω . Finally, we let 
𝐴𝐴 𝐴𝐴𝐴

(

𝑥⃗𝑥
)

∈ ℝ
3, 𝑥⃗𝑥 ∈ Ω be a unit vector field locally tangent to the transecting curve 𝐴𝐴 𝐴𝐴

(

𝑥⃗𝑥𝑓𝑓

(

𝑥⃗𝑥
))

 and therefore normal 
to the fault.

The state of the body 𝐴𝐴 Ω is described by a symmetric Cauchy stress tensor field 𝐴𝐴 𝝈𝝈

(

𝑡𝑡𝑡 𝑡𝑡𝑡
)

∈ ℝ
3 ⊗ℝ

3 and a velocity 
vector field 𝐴𝐴 𝐴𝐴0 𝑣𝑣

(

𝑡𝑡𝑡 𝑡𝑡𝑡
)

∈ ℝ
3 . Their governing equations are stated after the introduction of some further scaffold-

ing. Let t denote time.

We define the normal traction 𝐴𝐴 𝐴𝐴 = −𝑛̂𝑛 ⋅ 𝝈𝝈 ⋅ 𝑛̂𝑛 (positive in compression), the shear traction vector 𝐴𝐴 𝐴𝐴𝐴 = 𝝈𝝈 ⋅ 𝑛̂𝑛 + 𝜎𝜎 𝜎𝜎𝜎 , 
and the shear traction magnitude 𝐴𝐴 𝐴𝐴 =

√

𝜏𝜏 ⋅ 𝜏𝜏 . The rupture process is most efficient when the slip rate vector 
𝐴𝐴 𝑉𝑉 ∈ ℝ

3 is parallel to the in-plane shear traction vector 𝐴𝐴 𝐴𝐴𝐴 , and so alongside the full velocity field 𝐴𝐴 𝐴𝐴𝐴 we define a 
purely slip-induced velocity double couple field 𝐴𝐴 𝐴𝐴𝐴⇌ around the coordinate 𝐴𝐴 𝐴𝐴𝐴 as

�⃗⇌
(

�, �⃗
)

∶= 1
2
� (�, �⃗� ) �̂

(

�⃗�
)

sgn
(

�̂
(

�⃗�
)

⋅
[

�⃗ − �⃗�
])

,� (3)

with �̂ ∈ ℝ3∶= �⃗∕� the unit tangent vector and sgn the sign function, which has sgn(0) = 0.

2.2.  Assumptions

In the following, we will assume that continuum processes that occur around the fault are predominantly confined 
to the small neighborhood 𝐴𝐴 Ω , which itself includes only a small section of a whole fault. The neighborhood 𝐴𝐴 Ω is 
assumed to be sufficiently small that in-plane variations of fault properties such as state, slip rate, and curvature 
are negligible. This assumption comes at a loss of generality, especially around fault kinks, branches, and tips, 
but does not necessarily limit the applicability of our formulation. We will revisit this assumption in Section 5.5 
of the Discussion.

We also assume that the material has uniform static properties throughout the domain. This means that the 
gouge layer is effectively assumed to be infinitely wide, or alternatively that the only quality that distinguishes 
the fault gouge from the host rock is its “state.” Undoubtedly there is a collection of state variables that govern 
the long-term structure of fault zones in nature that are not modeled here. We will revisit this assumption too in 

Figure 1.  A region 𝐴𝐴 Ω in the enclosing a portion of a fault interface 𝐴𝐴 Γ , 
with normal and tangent vectors 𝐴𝐴 𝐴𝐴𝐴 and 𝐴𝐴 𝑡⃗𝑡  indicated. A transect T is drawn 
perpendicular to the fault. The fault interface may be substituted by a shear 
band on which anelastic shear strain is distributed according to 𝐴𝐴 𝐴𝐴

(

𝑥⃗𝑥
)

 , as 
indicated by the colored contours.

Ω
Τ Ω

Γ Ω

φ

n

t
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Section 5.5, but in the mean time note that its impact is largely confined to inferences made about the de-locali-
zation behavior of rate strengthening faults in Section 3.

2.3.  Generalization of a Fault to a Shear Band

We now generalize the fault interface to a distributed shear band by substituting a smoothed step function 
𝐴𝐴 Φ = Φ(𝑡𝑡𝑡 𝑡𝑡; 𝜆𝜆0) ∈ [−1,+1], 𝜆𝜆0 > 0 (e.g., 𝐴𝐴 Φ(𝑡𝑡𝑡 𝑡𝑡; 𝜆𝜆0) ∶= tanh(𝑥𝑥∕𝜆𝜆0) ) for the sign function in Equation  3. We 

require that the chosen function converges in a pointwise manner to the sign function as 𝐴𝐴 𝐴𝐴0 → 0
+ , such that Equa-

tion 3 can be seen as the result of taking the limit

�⃗⇌
(

�, �⃗; �0
)

∶= 1
2
� (�, �⃗� ) �̂

(

�⃗
)

Φ
(

�, �̂ ⋅
[

�⃗ − �⃗�

�0

])

�⃗⇌
(

�, �⃗
)

∶= lim
�0→0+

�⃗⇌
(

�, �⃗; �0
)

.
� (4)

Recognizing that fault slip is an anelastic process, the anelastic strain rate tensor 𝐴𝐴 𝜺̇𝜺¬e is defined to be the symmetric 
gradient 𝐴𝐴 ∇𝑠𝑠 of the (continuous) slip-induced velocity field 𝐴𝐴 𝐴𝐴𝐴⇌

(

𝑡𝑡𝑡 𝑡𝑡𝑡; 𝜆𝜆0

)

 :

�̇¬e
(

�, �⃗
)

∶= �0∇��⃗⇌
(

�, �⃗; �0
)

∶=1
2
�0

[

(

∇�⃗⇌
)T +

(

∇�⃗⇌
)

]

(

�, �⃗; �0
)

≈ 1
2
�0
�0

� (�, �⃗� )�
(

�, �̂ ⋅
[

�⃗ − �⃗�

�0

])

[

�̂ ⊗ �̂ + �̂ ⊗ �̂
] (

�⃗
)

=∶ �0�
(

�, �⃗
)

�̂
(

�⃗
)

.
� (5)

Here the equivalent anelastic shear strain rate (a scalar value) has been introduced as

𝛾𝛾0𝛾𝛾(𝑡𝑡𝑡 𝑡𝑡) = 𝑣𝑣0𝑉𝑉 (𝑡𝑡)𝜑𝜑(𝑡𝑡𝑡 𝑡𝑡),� (6)

with reference value 𝐴𝐴 𝐴𝐴0 = 𝑣𝑣0∕𝜆𝜆0 and strain rate distribution 𝐴𝐴 𝐴𝐴(𝑡𝑡𝑡 𝑡𝑡; 𝜆𝜆0) = 𝜕𝜕𝑥𝑥Φ(𝑡𝑡𝑡 𝑡𝑡; 𝜆𝜆0) (illustrated in blue 
shading in Figure 1). The symbol 𝐴𝐴 𝒔̂𝒔 denotes the Schmidt tensor 𝐴𝐴 𝒔̂𝒔 =

1

2

[

𝑡𝑡 𝑡 𝑡𝑡𝑡 + 𝑛̂𝑛𝑛  𝑡𝑡
]

 , and its Frobenius norm 
𝐴𝐴 ‖𝒔̂𝒔‖ =

√

tr 𝒔̂𝒔
T
𝒔̂𝒔 = 1∕

√

2 , which is an important property to maintain when generalizing 𝐴𝐴 𝒔̂𝒔 later on because it is 
compatible with the interpretation of 𝐴𝐴 𝐴𝐴0𝛾𝛾 as the fault-perpendicular derivative of fault-parallel velocity, that is, as 
an accurate measure of simple shear. In the derivation of Equation 5 the gradients of 𝐴𝐴 𝐴𝐴  and the orthonormal bases 

𝐴𝐴 𝑡𝑡 and 𝐴𝐴 𝐴𝐴𝐴 have been dropped under the assumption set out in Section 2.2 that they are small compared to the gradient 
of 𝐴𝐴 Φ . For this assumption to be met, the across-fault length scale 𝐴𝐴 𝐴𝐴0 must be small compared to the along-fault 
length scales that exists in the interfacial rate and state formulation.

Since the derivative of half a smoothed step function 𝐴𝐴
1

2
Φ(𝑥𝑥) ∈

[

−
1

2
,+

1

2

]

 has the properties of a distribution—is a 
non-negative and importantly integrates to unity over its domain—we may express the integral relation

(�)∶= �0 ∫�
�
(

�, �⃗
)

d� = �0� (�, �⃗� )� (7)

over the fault transect T, which is again compatible with the notion that 𝐴𝐴 𝐴𝐴0𝛾𝛾 is a measure of simple shear in the 
fault reference frame. We note that the above integral strictly requires that all anelastic strain occurs over the 
length of the fault transect T, implying that the anelastic strain rate distribution has compact support in space. In 
practice, we can relax that requirement if said distribution is narrow and thin-tailed.

Subtracting the anelastic shear strain rate tensor 𝐴𝐴 𝜺̇𝜺¬e from the full strain rate tensor 𝐴𝐴 𝜺̇𝜺 = ∇𝑠𝑠𝑣𝑣 results in the elastic 
strain rate tensor. This additive decomposition of elastic and anelastic strains is known as the Maxwell model. 
Application of Hooke's law of linear elasticity to the elastic strain rate tensor leads to

�̇ = � [�̇ − �0� �̂]� (8)

with fourth-order elastic stiffness tensor S and the dot over a symbol denoting the time derivative. The relation 
above is standard in the context of elasto-plasticity (e.g., Mühlhaus & Aifantis, 1991), in which 𝐴𝐴 𝐴𝐴0𝛾𝛾 is known as 
the plastic multiplier and 𝐴𝐴 𝒔̂𝒔 coincides with the derivative of the magnitude of shear traction τ with respect to the 
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full stress tensor σ. In this case τ is to be interpreted as the non-associated plastic potential of a material that does 
not undergo anelastic volume change.

For completeness we list ordinary differential equation that governs 𝐴𝐴 𝐴𝐴𝐴 , the momentum balance equation:

𝑣𝑣0
̇⃗𝑣𝑣 − 𝑔𝑔 = 𝜌𝜌−1∇ ⋅ 𝝈𝝈.� (9)

Here 𝐴𝐴 𝐴𝐴𝐴 is the acceleration due to gravity and 𝐴𝐴 𝐴𝐴 the mass density. Gravity may be ignored in the remainder of this 
work at no loss of generality and the inertial term 𝐴𝐴 ̇⃗𝑣𝑣 may be ignored at some loss of generality under the assump-
tion of static momentum balance.

2.4.  Plasticity and Coordinate Invariance

For a spontaneously developing fault zone the shear and normal stress cannot be defined in relation to a known 
plane. Plasticity models avoid this problem through the use of stress tensor invariants and scalar parame-
ters. The Mohr-Coulomb plasticity model generates anelastic shear strain parallel to the Schmidt tensor 

𝐴𝐴 𝒔̂𝒔 =
1

2

(

𝑛̂𝑛 𝑛 𝑡𝑡 + 𝑡𝑡 𝑡𝑡𝑡𝑡
)

 , in which 𝐴𝐴 𝑡𝑡 makes an angle ϕ = tan −1f with respect to the largest principal stress axis 𝐴𝐴 𝐴𝐴𝐴1 , 
and 𝐴𝐴 𝑡𝑡 and 𝐴𝐴 𝐴𝐴𝐴 form an orthogonal triad of vectors together with the intermediate principal stress axis 𝐴𝐴 𝐴𝐴𝐴2 . In other 
words, anelastic shear strain occurs in a plane perpendicular to 𝐴𝐴 𝐴𝐴𝐴2 . The corresponding cohesionless yield criterion 
is written as

1

2
(𝜎𝜎1 − 𝜎𝜎3) = −sin(𝜙𝜙)

1

2
(𝜎𝜎1 + 𝜎𝜎3) ,� (10)

with 𝐴𝐴 𝐴𝐴1 and 𝐴𝐴 𝐴𝐴3 the magnitudes of the largest and smallest principal stresses 𝐴𝐴 𝐴𝐴𝐴1 and 𝐴𝐴 𝐴𝐴𝐴3 . The quantity 𝐴𝐴 −
1

2
(𝜎𝜎1 + 𝜎𝜎3) = 𝜎𝜎𝑚𝑚 

is called the mean stress and 𝐴𝐴
1

2
(𝜎𝜎1 − 𝜎𝜎3) = 𝜎𝜎𝑑𝑑 the effective deviatoric stress. We note that the angle of a shear 

band that is generated does not need to be parallel to the direction of shear strain (Kaus, 2010; Le Pourhiet, 2013; 
Marone et  al.,  1992; Vardoulakis,  1980; Vermeer,  1990), and moreover that a local change in friction is not 
expected to immediately alter the macroscopic fault angle (e.g., Preuss et al., 2019).

In the Mohr-Coulomb model, the friction coefficient 𝐴𝐴 𝐴𝐴 = tan(𝜙𝜙) of a yielding or even of a non-yielding material 
may be expressed from Equation 10 as a function of the stress tensor 𝐴𝐴 𝝈𝝈 as

𝑓𝑓 (𝝈𝝈) = 𝜎𝜎d(𝝈𝝈)
[

𝜎𝜎m(𝝈𝝈)
2 − 𝜎𝜎d(𝝈𝝈)

2
]−

1
2 .� (11)

Herrendörfer et al.  (2018) used the Drucker-Prager model (Drucker & Prager, 1952) as a simple and smooth 
approximation to Mohr-Coulomb plasticity. The model is defined in terms of the straightforwardly computable 
invariants

1.	 �pressure 𝐴𝐴 𝐴𝐴 = −
1

3
tr 𝝈𝝈 , and

2.	 �effective shear stress 𝐴𝐴 𝐴𝐴e proportional to the Frobenius norm of the deviatoric stress tensor �∶=� + �� , with 𝐴𝐴 𝜹𝜹 
the Kronecker delta:

�e∶=
‖�‖
√

2
=
√

1
2

tr (�T ⋅ �).� (12)

In this model the existing definition of the Schmidt tensor 𝐴𝐴 𝒔̂𝒔 is no longer applicable because the unit vectors 𝐴𝐴 𝑡𝑡 and 
𝐴𝐴 𝐴𝐴𝐴 are not known a priori, and are not even uniquely constrained a posteriori. Keeping in line with plasticity theory, 
𝐴𝐴 𝒔̂𝒔 is redefined as the stress derivative of the non-associated plastic potential 𝐴𝐴 𝐴𝐴e :

�̂∶= ��e
��

= �
�e
.�

This definition still satisfies the criterion set out in the preceding section that 𝐴𝐴 ‖𝒔̂𝒔‖ = 1∕
√

2 .

We calibrate the Drucker-Prager model to the Mohr-Coulomb model around a reference stress state 𝐴𝐴 𝝈𝝈0 of simple 
shear combined with isotropic compression, which encompasses all stress states possible in 2D plane strain and 
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may be considered the most relevant stress state even in 3D tectonic settings. 
Let 𝐴𝐴 𝐴𝐴𝐴0 be given in ordered principal stress space by

�⃗0∶= −�0

⎡

⎢

⎢

⎢

⎢

⎣

1

1

1

⎤

⎥

⎥

⎥

⎥

⎦

+ �e,0

⎡

⎢

⎢

⎢

⎢

⎣

+1

0

−1

⎤

⎥

⎥

⎥

⎥

⎦

.�

At 𝐴𝐴 𝐴𝐴𝐴 = ⃗𝜎𝜎0 , Mohr-Coulomb and Drucker-Prager measures of effective shear 
and normal stress coincide (up to a sign) and thus the Drucker-Prager model 
may be written as

𝜏𝜏e(𝝈𝝈) = sin(𝜙𝜙) 𝑝𝑝(𝝈𝝈).� (13)

Away from 𝐴𝐴 𝐴𝐴𝐴0 (and toward a uniaxial stress state) the Drucker-Prager yield 
surface becomes an increasingly worse approximation to the Mohr-Cou-
lomb yield surface (Figure 2). Higher-order approximations like the Willam-
Warnke yield envelope (Ulm et al., 1999) may be considered too. The yield 
surfaces discussed in this section serve as part of a general model proposi-
tion—in the one-dimensional numerical experiments considered in this work 
only the two effective stresses of Amonton's friction law are defined.

Similar to the Mohr-Coulomb model (Equation 11), the friction coefficient 
𝐴𝐴 𝐴𝐴 = tan(𝜙𝜙) of the Drucker-Prager model may also be expressed from Equa-

tion 13) as a function of the stress tensor 𝐴𝐴 𝝈𝝈 as

𝑓𝑓 (𝝈𝝈) = 𝜏𝜏e(𝝈𝝈)
[

𝑝𝑝(𝝈𝝈)2 − 𝜏𝜏e(𝝈𝝈)
2
]−

1
2 .� (14)

In both the Mohr-Coulomb model and the Drucker-Prager model, the friction 
coefficient becomes ill-posed whenever the effective shear stresses 𝐴𝐴 𝐴𝐴d or 𝐴𝐴 𝐴𝐴e 

exceed the effective normal stresses 𝐴𝐴 𝐴𝐴𝑚𝑚 or 𝐴𝐴 𝐴𝐴 . We have found a practical solution to be to add a constant value to 
the effective normal stresses, which for steady-state friction behaves as a cohesive strength.

Despite adopting a plasticity framework to enforce the frictional yield constraint we emphasise that the result-
ing model is still best regarded as “frictional viscous” rather than frictional plastic because it lacks a distinct 
boundary between yielding and non-yielding states in space and time—the yield constraint (an equality, not an 
inequality) is enforced everywhere and anytime, and at any stress.

3.  Continuum Evolution Law
Our goal is to find a continuum state evolution law that produces nearly the same history of loading and sliding 
as the original formulation of Dieterich and Ruina on a discrete fault. Like 𝐴𝐴 𝐴𝐴 (𝑡𝑡) is a “global” measure of 𝐴𝐴 𝐴𝐴(𝑡𝑡𝑡 𝑡𝑡) 
over a fictitious fault transect T, we introduce a local variable 𝐴𝐴 𝐴𝐴(𝑡𝑡𝑡 𝑡𝑡) of which 𝐴𝐴 Θ(𝑡𝑡) is a global measure. We target 
continuum friction and evolution laws expressed in terms of 𝐴𝐴 𝐴𝐴 and 𝐴𝐴 𝐴𝐴 of the form

𝑓𝑓 = 𝑓𝑓0 + 𝑎𝑎 log 𝛾𝛾 + 𝑏𝑏 log 𝜃𝜃𝜃� (15)

𝜃̇𝜃 = 𝑟𝑟0 (𝑐𝑐2 − 𝑐𝑐1(𝛾𝛾) 𝜃𝜃) ,� (16)

with 𝐴𝐴  a nonlocal interaction operator that will be further elaborated in Section 3.3 and 𝐴𝐴 𝐴𝐴1 and 𝐴𝐴 𝐴𝐴2 additional 
coefficients that are required to calibrate Equations 15 and 16 to their respective interfacial equivalent. The local 
friction and evolution laws (Equations 15 and 16) retain the structure of their interfacial counterparts (Equations 1 
and 2) and generalize the continuum formulations of Sleep (1997) and Herrendörfer et al. (2018). We will revisit 
this connection in Section 5.4 of the Discussion. The targeted form of the continuum equations does not come out 
of the blue. In coming sections we hope to make clear how it arises.

Figure 2.  Comparison of Mohr-Coulomb (thick yellow lines) and Drucker-
Prager yield envelopes (thin blue lines) at increments of pressure. The field of 
view is the octahedral plane of principal stress space. Projections of principal 
stress axes are indicated with arrows, and projections of planes of simple 
shear are indicated with dashed lines. A friction coefficient of 0.3 was used to 
generate this figure.
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3.1.  Analytical Framework

By

1.	 �reorganizing the rate and state friction law (Equation 1) into a definition of Θ(𝐴𝐴 𝐴𝐴  , 𝐴𝐴 𝐴𝐴 ),
2.	 �differentiating Equation 1 with respect to time and reorganizing it into a definition of 𝐴𝐴 𝑉̇𝑉 (𝑡𝑡) , and
3.	 �substituting the definition of 𝐴𝐴 Θ(𝑉𝑉 𝑉 𝑉𝑉 ) and the definition of 𝐴𝐴 Θ̇ that follows from the aging law (Equation 2) into 

the definition of 𝐴𝐴 𝑉̇𝑉 (𝑡𝑡) , we arrive at the ordinary differential equation

𝑎𝑎 𝑉̇𝑉 = 𝑏𝑏 𝑏𝑏0
[

𝑉𝑉 2 − 𝑉𝑉 Θ(𝑉𝑉 𝑉 𝑉𝑉 )−1
]

+ 𝑉𝑉 ̇𝑓𝑓𝑓 � (17a)

Θ(� , � )−1∶=�
�
� exp (− [� − �0] ∕�)� (17b)

in which the friction coefficient 𝐴𝐴 𝐴𝐴 = 𝑓𝑓
(

𝝈𝝈; 𝑡𝑡𝑡 𝑡𝑡𝑡
)

 is treated as a property of—rather than a constraint on—the stress 
tensor 𝐴𝐴 𝝈𝝈 .

By applying the same procedure to the proposed continuum friction and aging laws (Equations 15 and 16) we 
obtain the analogous ODE for 𝐴𝐴 𝐴𝐴 :

𝑎𝑎 𝑎𝑎𝑎 = 𝑏𝑏 𝑏𝑏0
[

𝑐𝑐1𝛾𝛾(𝛾𝛾) − 𝑐𝑐2𝛾𝛾 𝛾𝛾(𝛾𝛾𝛾 𝛾𝛾 )
−1
]

+ 𝛾𝛾 ̇𝑓𝑓𝑓 � (18a)

�(�, � )−1∶= �
�
� exp (− [� − �0] ∕�) ,� (18b)

in which 𝐴𝐴 𝐴𝐴 = 𝑓𝑓 (𝝈𝝈) is given by the yield criterion (Equation 14) and 𝐴𝐴 ̇𝑓𝑓 = ̇𝑓𝑓 (𝝈𝝈, 𝝈̇𝝈) is expressible using the same 
yield criterion and the elastic constitutive Equation 8.

Equations 17a, 17b, 18a and 18b are useful in mathematical and numerical analysis of the problem because they 
eliminate a variable and an algebraic constraint, and at the same time provide an ideal reference frame for estab-
lishing, and if necessary influencing, the ability of Equations 18a and 18b to reproduce the predictions made by 
Equations 17a and 17b in the sense of the integral relation (Equation 7).

In the following derivation we will assume that the field of effective friction �
(

�⃗
)

, �⃗ ∈ Ω in the neighborhood 
of a point 𝐴𝐴 𝐴𝐴𝐴𝑓𝑓 on the fault is the same whether it is generated by a hard or a soft discontinuity. This assumption 
ties into the principal assumption set out in Section 2.2, which is revisited in Discussion Section 5.5. We will 
also assume that 𝐴𝐴 (□(𝑡𝑡)◊(𝑥𝑥𝑥…)) = □(𝑡𝑡)(◊(𝑥𝑥𝑥…)) . This assumption is satisfied in Section 3.3. Combining 
Equations 17a, 17b, 18a and 18b, Equations 6 and 7 leads to the following useful relation that describes the evolu-
tion of the anelastic shear strain rate distribution over time:

𝜑̇𝜑 ∝ 𝑉𝑉 [𝜆𝜆0 𝑐𝑐1 𝜑𝜑(𝜑𝜑) − 𝜑𝜑] − Θ(𝑉𝑉 𝑉 𝑉𝑉 )−1
[

𝜆𝜆
𝑎𝑎

𝑏𝑏

0
𝑐𝑐2 𝜑𝜑

1+
𝑎𝑎

𝑏𝑏 − 𝜑𝜑

]

.� (19)

This differential equation tells us several things. Most importantly, for 𝐴𝐴 𝐴𝐴 to remain in accordance with 𝐴𝐴 𝐴𝐴  through 
the integral relation (Equation 7) over the transect T, the same integral of the left hand side of Equation 19 must be 
zero. This requirement can only be met at arbitrary 𝐴𝐴 (𝑉𝑉 𝑉 𝑉𝑉 ) if both the term multiplied by 𝐴𝐴 𝐴𝐴  and the term multiplied 
by 𝐴𝐴 Θ(𝑉𝑉 𝑉 𝑉𝑉 )−1 integrate to zero over T. This in turn cannot in general be guaranteed unless

�1∶=1(�)∶= �−1
0

[

∫ �(�)(�)(�) d�
]−1

,� (20a)

�2∶=2(�)∶= �
− �

�
0

[

∫ �(�)1+
�
� d�

]−1

.� (20b)

We consider it undesirable for coefficients to depend in a time-dependent way on integrals of the modeled quan-
tities and therefore will be restricting our attention to specific regimes of interest during which the values of the 
coefficients 𝐴𝐴 𝐴𝐴1,2 can be predicted analytically. We then employ those predicted values as model-specific constants 
in time and space. We accept that this incurs a potential error whenever the state of the model is outside the 
selected regime, and will critically evaluate this error using numerical models in Section 4.
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Assuming the coefficients 𝐴𝐴 𝐴𝐴1,2 have been chosen appropriately and for simplicity that 𝐴𝐴 (𝜑𝜑) = 𝜑𝜑 , two additional 
observations can be made on the basis of Equation 19:

1.	 �The term that is multiplied by 𝐴𝐴 𝐴𝐴  promotes localization if 𝐴𝐴 (𝜑𝜑) = 𝜑𝜑 because 𝐴𝐴 𝐴𝐴2 is a narrower distribution than 
𝐴𝐴 𝐴𝐴 (Figure 3).

2.	 �The opposite (delocalization; Figure 3) holds true for the term that is multiplied by 𝐴𝐴 Θ(𝑉𝑉 𝑉 𝑉𝑉 )−1 on account of 
the corresponding minus sign and the requirement that 𝐴𝐴 𝐴𝐴𝐴 𝐴𝐴 𝐴 0 .

This localizing and delocalizing behavior is of great interest and will be treated in detail in the following sections.

In the sections that follow we will assume to be operating on the fault-perpendicular transect T and will denote 
with the scalar coordinate 𝐴𝐴 𝐴𝐴 the distance with respect to the fault core, that is, 𝐴𝐴 𝐴𝐴 = 𝑛̂𝑛

(

𝑥⃗𝑥
)

⋅

[

𝑥⃗𝑥 − 𝑥⃗𝑥𝑓𝑓

(

𝑥⃗𝑥
)]

 . This 
setting is in line with our assumption set out in Section 2.2 that across-fault variations in anelastic strain rate are 
more compact than its along-fault variations.

3.2.  Runaway Sliding and Localization

Under rate-weakening conditions 𝐴𝐴 𝐴𝐴 𝐴 𝐴𝐴 , earthquakes occur as superexponential solutions to Equations  17a 
and 17b. Prior to inertial damping the seismic slip rate 𝐴𝐴 𝐴𝐴  behaves as

𝑉̇𝑉 ∝ 𝑉𝑉 2.�

This ODE has the solution

𝑉𝑉 (𝑡𝑡) = 𝑉𝑉 (0)

(

1 −
𝑡𝑡

𝑡𝑡∗

)−1

,� (21)

in which 𝐴𝐴 𝐴𝐴∗ ∝ 𝑉𝑉 (0)
−1 is the time of the (hypothetical) singularity.

Assuming 𝐴𝐴 (□) = □ , the same behavior occurs in Equations 18a and 18b in the limit

𝛾̇𝛾 ∝ 𝑐𝑐1𝛾𝛾
2,� (22)

which is similarly solved by

𝛾𝛾(𝑡𝑡𝑡 𝑡𝑡) = 𝛾𝛾(0,𝑥𝑥 )

(

1 −
𝑡𝑡

𝑡𝑡∗(𝑥𝑥)

)−1

,�

Figure 3.  Influence of the different terms in Equation 19 on the time derivative 𝐴𝐴 𝐴𝐴𝐴 under the assumption that 𝐴𝐴 (𝜑𝜑) = 𝜑𝜑 . The 
first term (blue) can be seen to promote localization, while the second term (orange) favors the opposite. Also shown in this 
figure in green is the delocalizing influence of the nonlinear Laplacian term 𝐴𝐴 𝐴𝐴(𝑥𝑥)𝜑𝜑′′(𝑥𝑥) , which is introduced in Sections 3.3 
and 3.4. The input function 𝐴𝐴 𝐴𝐴 follows a cosine-squared distribution.
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in which 𝐴𝐴 𝐴𝐴∗(𝑥𝑥) ∝ (𝑐𝑐1𝛾𝛾(0, 𝑥𝑥))
−1 .

We can make the following qualitative observations:

1.	 �small spatial variations in initial conditions 𝐴𝐴 𝐴𝐴(0, 𝑥𝑥) can be amplified to infinity due to the fact that points with 
larger initial conditions on 𝐴𝐴 𝐴𝐴 are closer to the strain rate asymptote at 𝐴𝐴 𝐴𝐴 = 𝑡𝑡∗(𝑥𝑥) than points with smaller initial 
conditions on 𝐴𝐴 𝐴𝐴 , and

2.	 �𝐴𝐴 𝐴𝐴(𝑡𝑡𝑡 𝑡𝑡) and 𝐴𝐴 𝐴𝐴 (𝑡𝑡) do not generally satisfy the integral relation Equation 7 for all time 𝐴𝐴 𝐴𝐴 ∈ [0, 𝑡𝑡∗) .

Noting that this regime of runaway sliding corresponds in Equation 19 to the limit

𝜑̇𝜑 ∝ 𝑉𝑉 [𝜆𝜆0 𝑐𝑐1 𝜑𝜑(𝜑𝜑) − 𝜑𝜑] ,�

we can further illustrate the observations made above by choosing the class of solutions (Appendix A)

𝑉𝑉 (𝑡𝑡) ∝

(

1 −
𝑡𝑡

𝑡𝑡∗

)𝑚𝑚−1−1

,� (23a)

�(�, �;�)∶=
[

�(�)�1(�)
(

1 +
|

|

|

|

2�
�(�)

|

|

|

|

�)]−1

, � ∈ ℝ ≥ 2� (23b)

𝑙𝑙(𝑡𝑡) ∝ 𝑉𝑉 (𝑡𝑡)(1−𝑚𝑚)
−1

,� (23c)

�0�(�, �;�)∶= �0� (�)�(�, �;�),� (23d)

�1 = �1(�)∶=
�
�
csc �

�
,� (23e)

in which the family of strain rate distributions 𝐴𝐴 𝐴𝐴(𝑡𝑡𝑡 𝑡𝑡;𝑚𝑚) generated by the exponent 𝐴𝐴 𝐴𝐴 ∈ ℝ ≥ 2 (Figure 4c) are of 
generalized Cauchy type and evolve in accordance with a time-variable characteristic width 𝐴𝐴 𝐴𝐴(𝑡𝑡) (Figure 4d). We 
emphasize that, though illustrative, this class of solutions is by no means unique because Equations 18a and 18b 
contains no constraint on the spatial distribution of strain rate. Nevertheless, we note the following:

Figure 4.  Asymptotic solutions during earthquake nucleation. (a) Value of the dimensionless coefficient 𝐴𝐴 𝐴𝐴1(𝑚𝑚) versus 
distribution exponent 𝐴𝐴 𝐴𝐴 (see main text) represented on a reciprocal axis that ranges between 2 and 𝐴𝐴 ∞ . The thick line 
acts also as a color bar approximately indicating the value of 𝐴𝐴 𝐴𝐴 at which the individual lines in the remaining figures 
are plotted. (b) Dimensionless slip rate 𝐴𝐴 𝐴𝐴  versus dimensionless time 𝐴𝐴 𝐴𝐴∕𝑡𝑡∗ to the slip rate asymptote for different values 

𝐴𝐴 𝐴𝐴 ∈
{

21.0, 21.5, 22.0 …
}

 . (c) Nondimensionalized distributions 𝐴𝐴 𝐴𝐴(𝑥𝑥∕𝑙𝑙(𝑡𝑡);𝑚𝑚)∕𝜑𝜑(0;𝑚𝑚) versus dimensionless coordinate 𝐴𝐴 𝐴𝐴∕𝑙𝑙(𝑡𝑡) . 
(d) Dynamic dimensionless length scale 𝐴𝐴 𝐴𝐴(𝑡𝑡∕𝑡𝑡∗)∕𝑙𝑙0 versus dimensionless time 𝐴𝐴 𝐴𝐴∕𝑡𝑡∗ .
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1.	 �In the limit 𝐴𝐴 𝐴𝐴 → ∞ , the distribution 𝐴𝐴 𝐴𝐴(𝑡𝑡𝑡 𝑡𝑡;𝑚𝑚 → ∞) reduces to a uniform 
distribution on the constant interval 𝐴𝐴 𝐴𝐴 ∈ [−𝑙𝑙(0)∕2,+𝑙𝑙(0)∕2] . The param-
eter 𝐴𝐴 𝐴𝐴1(𝑚𝑚 → ∞) = 1 (Figure 4a) and the solution (Equation 23a) reduces 
to the interfacial solution (Equation 21). However this limit also requires 
infinite mesh resolution or alternatively the definition of two mesh 
discontinuities, which defeats our intent.

2.	 �In the other end-member case where 𝐴𝐴 𝐴𝐴 = 2 , the distribution 𝐴𝐴 𝐴𝐴(𝑡𝑡𝑡 𝑡𝑡;𝑚𝑚 = 2) 
is known as the Cauchy distribution, and its characteristic width 

𝐴𝐴 𝐴𝐴(𝑡𝑡) ∝ 𝑉𝑉 (𝑡𝑡)−1 for a given initial condition 𝐴𝐴 𝐴𝐴(0) = 𝑙𝑙0 . The parameter 𝐴𝐴 𝐴𝐴1 is 
chosen in such a way that the distribution 𝐴𝐴 𝐴𝐴(𝑡𝑡𝑡 𝑡𝑡;𝑚𝑚) integrates to one 
and the time of the singularity matches the prediction of the interfacial 
model. However, the trajectory of 𝐴𝐴 𝐴𝐴  toward the asymptote is unavoidably 
different (Figure 4b).

We therefore come to the qualitative conclusion that for initially smooth 
and numerically resolvable strain rate distributions, orders-of-magnitude 

increases of slip rate readily correspond to orders-of-magnitude increase of strain rate locality, placing insur-
mountable demands on mesh resolution. If left unconstrained, this process culminates in finite time to an infinite 
slip rate concentrated in an infinitesimally thin region of space – a plane.

3.3.  Nonlocal Equivalent Strain Rate

In order to counter this tendency toward complete localization to a plane we introduce the nonlocal interaction 
operator 𝐴𝐴  , which mollifies its operand by means of convolution with the symmetric distribution 𝐴𝐴 𝐴𝐴(𝑥𝑥) :

(�)(�, �)∶=∫
supp(�)

�(�)�(�, � − �)d�.� (24)

We note that 𝐴𝐴 (𝛾𝛾)(𝑡𝑡𝑡 𝑡𝑡) still satisfies the relation (7) given that the distribution m integrates to unity over its 
domain.

Evaluation of 𝐴𝐴 (𝛾𝛾) requires the evaluation of the integral of 𝐴𝐴 𝐴𝐴 over the support of 𝐴𝐴 𝐴𝐴(𝜉𝜉) and therefore lacks the 
mathematical (as opposed to physical) locality that is desirable for continuum models. We follow Peerlings 
et al. (1996) in constructing and truncating a Taylor series linearization of Equation 24. We find that a mollifier 

𝐴𝐴 𝐴𝐴(𝑥𝑥) =
1

2𝜆𝜆0
exp

(

−
|

|

|

𝑥𝑥

𝜆𝜆0

|

|

|

)

 (Figure 5) leads to series coefficients that are even powers of the length scale 𝐴𝐴 𝐴𝐴0 :

(𝛾𝛾)(𝑡𝑡𝑡 𝑡𝑡) =

∞
∑

𝑛𝑛=0

𝜆𝜆2𝑛𝑛
0
𝜕𝜕2𝑛𝑛𝑥𝑥 𝛾𝛾�

This infinite sum can be rolled up into a recursive or implicit definition of 𝐴𝐴  = im

−1
im (�̄) ∶= �̄ − �2

0�
2
��̄,� (25)

which is to be solved for the auxiliary variable 𝐴𝐴 𝐴𝐴𝐴 = im(𝛾𝛾) . Alternatively, the terms beyond n = 1 can be dropped, 
leading to the explicit definition of 𝐴𝐴  = ex

ex(�)∶= � + �2
0�

2
��.� (26)

We note that any truncation of the Taylor series into a linear combination of even derivatives of 𝐴𝐴 𝐴𝐴 adheres to the 
integral property expressed in Equation 7, even if these truncations lose correspondence to a concrete mollifier. 
The implicit definition (Equation 25) has numerically advantageous properties (Peerlings et al., 1996), but requires 
the potentially costly solution of an elliptic PDE. For this reason, we will use the explicit definition (Equation 26) 
in this work and discuss the implicit definition (Equation 25) as an option for future implementations.

Figure 5.  Plot of the mollifier 𝐴𝐴 𝐴𝐴(𝑥𝑥) =
1

2𝜆𝜆
exp

(

−
|

|

|

𝑥𝑥

𝜆𝜆

|

|

|

)

 .
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We generalize the second partial derivatives 𝐴𝐴 𝐴𝐴2𝑥𝑥 with respect to the 𝐴𝐴 𝐴𝐴 coordinate that appear in Equations  25 
and 26 to Laplacians 𝐴𝐴 ∇2 in 3D, again assuming that variations of strain rate across the fault are much bigger than 
variations along it.

A convolution over slip history 𝐴𝐴 𝐴𝐴(𝑡𝑡) with a kernel 𝐴𝐴 𝐴𝐴(𝑑𝑑) ∝ exp − 𝑑𝑑∕𝑑𝑑𝑐𝑐 , which is identical to the kernel discussed 
above, was also employed by Ruina (1980, Equations 15, 16a and 17a) and Ruina (1983, Equations 13a and 13b) 
as a “generator” of evolution laws. There, it represented the “fading memory” of slip history on the fault. Here, we 
have consistently extended that notion with a nonlocal interaction of deformation that fades with distance away 
from a point in the shear band. Although not primarily intended to have physical meaning in this work, we note 
that the Laplacian of effective strain rate plays a role in granular physics (e.g., Bouzid et al., 2013, 2015). There, 
the length scale 𝐴𝐴 𝐴𝐴0 is proportional to the grain size (Bouzid et al., 2013, 2015; Mühlhaus & Vardoulakis, 1987; 
Rice, 2006, and references in the latter).

3.4.  Non-Locality as a Localization Limiter

We repeat the analysis of Section 3.2, but now use the explicit nonlocal operator 𝐴𝐴 ex in

𝛾̇𝛾 ∝ 𝑐𝑐1𝛾𝛾ex(𝛾𝛾)�

and

𝜑̇𝜑 ∝ 𝑉𝑉 [𝜆𝜆0 𝑐𝑐1 𝜑𝜑ex(𝜑𝜑) − 𝜑𝜑] .� (27)

As shown in Appendix C, we find that it is solved by

𝑉𝑉 (𝑡𝑡) ∝

(

1 −
𝑡𝑡

𝑡𝑡∗

)−1

,� (28a)

𝜑𝜑(𝑥𝑥)∶=

⎧

⎪

⎨

⎪

⎩

1

𝜋𝜋 𝜋𝜋0

cos2
(

1

2

𝑥𝑥

𝜆𝜆0

)

∀ 𝑥𝑥 ∈ [−𝜋𝜋𝜋𝜋0,+𝜋𝜋𝜋𝜋0]

0 ∀ 𝑥𝑥 ∉ [−𝜋𝜋𝜋𝜋0,+𝜋𝜋𝜋𝜋0]

,� (28b)

�0�(�, �)∶= �0� (�)�(�),� (28c)

�1∶= 2�,� (28d)

and observe that

1.	 �The trajectory of 𝐴𝐴 𝐴𝐴  toward its asymptote can be made to exactly match the prediction (Equation 21) of the 
interfacial rate and state friction formulation Equations 17a and 17b by choosing 𝐴𝐴 𝐴𝐴1 = 2𝜋𝜋 .

2.	 �The cosine-squared distribution with prescribed size 𝐴𝐴 𝐴𝐴0 is an attractive steady state during the process of 
earthquake nucleation. Further localization will not spontaneously occur. We interpret this distribution as 
striking a balance between the localizing tendency of “𝐴𝐴 𝐴𝐴2 − 𝜑𝜑 ” and the delocalizing tendency of “ 𝐴𝐴 𝐴𝐴∇2𝜑𝜑 − 𝜑𝜑 ” 
(Equation 19 and Figure 3).

The implicit nonlocal operator 𝐴𝐴 im in the same context does not have analytical solutions that simultaneously 
satisfy 𝐴𝐴 𝑉̇𝑉 ∝ 𝑉𝑉 2 and 𝐴𝐴 𝐴𝐴𝐴 = 0 with non-degenerate distribution 𝐴𝐴 𝐴𝐴 = 𝜑𝜑(𝑥𝑥∕𝜆𝜆0) .

3.5.  Steady-State Friction and Deformation

As mentioned in Section 1.1, an important property of the state evolution law is the steady state 𝐴𝐴 Θ𝑉𝑉 = 1 . We wish 
to retain this steady state in the continuum equivalent (Equation 16) of the state evolution law, ideally at a steady 
strain rate distribution 𝐴𝐴 𝐴𝐴(𝑥𝑥) , cf. Equation 19. We are thus interested in a steady-state solution to

𝜑̇𝜑 ∝ 𝜆𝜆0 𝑐𝑐1 𝜑𝜑ex(𝜑𝜑) − 𝜆𝜆
𝑎𝑎

𝑏𝑏

0
𝑐𝑐2 𝜑𝜑

1+
𝑎𝑎

𝑏𝑏 ,� (29)
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 which exists as long as a, b > 0 (standard requirements) and a < b (a net 
weakening fault). As detailed in Appendix B, this solution is given by

𝜑𝜑ss(𝑥𝑥) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝜑𝜑0

[

cos

(

1

2

𝑥𝑥

𝜆𝜆1

)]2

[

1−
𝑎𝑎

𝑏𝑏

]−1

∀ 𝑥𝑥 ∈ [−𝜋𝜋𝜋𝜋1,+𝜋𝜋𝜋𝜋1]

0 ∀ 𝑥𝑥 ∉ [−𝜋𝜋𝜋𝜋1,+𝜋𝜋𝜋𝜋1]

� (30a)

�1∶= �0

[

1 − �
�

]−1
.� (30b)

Faults that are net strengthening or neutral (a > b) only possess a uniform 
steady state strain rate distribution that is bounded by the (fictitious) walls of 
the gouge layer (Sections 2.2 and 5.5).

The coefficients 𝐴𝐴 𝐴𝐴1 and 𝐴𝐴 𝐴𝐴2 , and the newly introduced 𝐴𝐴 𝐴𝐴0 , are given by

𝑐𝑐1 =
1

2
𝜋𝜋−

1
2

Γ

(

1 + 2
[

1 −
𝑎𝑎

𝑏𝑏

]−1
)

Γ

(

1

2
+ 2

[

1 −
𝑎𝑎

𝑏𝑏

]−1
) [𝜆𝜆1𝜑𝜑0]

−2� (31a)

𝑐𝑐2 =
1

2
𝜋𝜋−

1
2

Γ

(

2
[

1 −
𝑎𝑎

𝑏𝑏

]−1
)

Γ

(

1

2

[

3 +
𝑎𝑎

𝑏𝑏

] [

1 −
𝑎𝑎

𝑏𝑏

]−1
) [𝜆𝜆1𝜑𝜑0]

−1−
𝑎𝑎

𝑏𝑏� (31b)

𝜑𝜑0 =
1

2
𝜋𝜋−

1
2

Γ

(

1 +
[

1 −
𝑎𝑎

𝑏𝑏

]−1
)

Γ

(

1

2
+
[

1 −
𝑎𝑎

𝑏𝑏

]−1
)𝜆𝜆−1

1
,� (31c)

with 𝐴𝐴 Γ the gamma function that has the property 𝐴𝐴 Γ(𝑛𝑛) = (𝑛𝑛 − 1)!∀𝑛𝑛 ∈ ℕ
+ . The coefficients 𝐴𝐴 𝐴𝐴1 and 𝐴𝐴 𝐴𝐴2 are plotted 

as functions of a/b in Figure 7. The solutions (Equation 30a) are plotted in Figure 6, in which we can see that 
steady-state anelastic strain rate distributions have finite width and are therefore numerically resolvable as long 
as the aforementioned requirements on a, b, and a/b are met.

3.6.  Damping

Finite time blow-up of the solution (Section 3.5) under quasi-static loading conditions is understood to be the 
consequence of the model's inability to radiate or dissipate liberated potential strain energy away from the fault. It 
appears impossible to directly counteract this problem by implementing inertia with absorbing boundary condi-
tions in the 1D models we present here, due to the resulting model's tendency to quickly establish a global 
steady state at an unphysically high strain rate. Therefore, inspired by the radiation damping approximation of 
Rice (1993) (see also Ben-Zion & Rice, 1995; Lapusta et al., 2000; Rice & Ben-Zion, 1996; Thomas et al., 2014) 
and the Kelvin-Voigt visco-plastic regularization of Needleman (1988) (see also de Borst & Duretz, 2020; Duretz 
et al., 2019, 2020, 2021; Peirce et al., 1983; Stathas & Stefanou, 2022; F. Wu & Freund, 1984), we add a linear 
viscous damping term 𝐴𝐴 𝐴𝐴𝐴𝐴 in a parallel configuration to the continuum friction law:

𝑓𝑓 = 𝑓𝑓0 + 𝑎𝑎 log 𝛾𝛾 + 𝑏𝑏 log 𝜃𝜃 + 𝜂𝜂𝜂𝜂𝜂� (32)

Informally, the action of this term may be understood to truncate the anelastic shear strain rate, which then 
causes the distribution of said strain to widen under continued loading. We formalize this claim by repeating the 
derivation in Section 3.1 of the anelastic shear strain rate ODE (Equations 18a and 18b), now incorporating the 

Figure 6.  Steady-state distributions 𝐴𝐴 𝐴𝐴 (cf. Equation 30a) of strain rate at 
various a/b versus distance x with respect to the fault core. The curve plotted 
for a/b = 0 also corresponds to the most extreme strain rate localization at any 
value of a/b (see main text).
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damping  term in Equation 32. We arrive at the following result, written in 
terms of the newly introduced auxiliary field 𝐴𝐴 𝐴𝐴 :

� �̇ (�, �) = � �0
(

�1 ex ◦ � ◦ � (�, �) − �2 �(�, � )−1
)

+ ̇� (�),� (33a)

�(�, � )−1∶= (� ◦ � (�, �))
�
� exp

(

−1
�
[� − �0 − � � ◦ � (�, �)]

)

,� (33b)

�(� )∶= �
�
�0

(�
�
exp�

)

,� (33c)

with the principal branch 𝐴𝐴 𝐴𝐴0(◊) of the Lambert W function, which is an 
implicit transcendental function that is defined to be the solution to the equa-
tion 𝐴𝐴 𝐴𝐴0 exp  𝐴𝐴 𝐴𝐴0 = ◊ . While we acknowledge that the use of implicit func-
tions in physical descriptions is not ideal, from a practical standpoint there is 
little problem because reliable and fast algorithms for computing the common 
Lambert W function are included in many programming languages (Barry, 
Barry, & Culligan-Hensley, 1995; Barry, Culligan-Hensley, & Barry, 1995; 
Fritsch et al., 1973; Johansson, 2020).

As indicated in Figure 8, the function 𝐴𝐴 𝐴𝐴(𝜁𝜁 ) is approximately linear at high 𝐴𝐴 𝐴𝐴 (and correspondingly high 𝐴𝐴 𝐴𝐴 ). This 
means that in this limit, Equation 33 simplifies to

� �̇(�, �) = � �0
(

�1 ex ◦ �(�, �) − �2 �(�, � )−1
)

+ ̇� (�),� (34a)

�(�, � )−1∶= exp
(

−1
�
[� − �0 − � �]

)

,� (34b)

We can now compare reaction terms of Equations 18 and 34. Ignoring spatial derivatives and the temporal derivative 
𝐴𝐴 ̇𝑓𝑓 of friction in both, the reaction term of Equation 18) that is active at low strain rate looks like 𝐴𝐴 𝐴𝐴𝐴 ∝ 𝛾𝛾2 − 𝛼𝛼(𝑓𝑓 )𝛾𝛾1+

𝑎𝑎

𝑏𝑏 
while the reaction term of Equation 34 that is active at high strain rate looks like 𝐴𝐴 𝐴𝐴𝐴 ∝ 𝛾𝛾 − 𝛼𝛼(𝑓𝑓 )exp

(

𝜂𝜂

𝑏𝑏
𝛾𝛾

)

 . The 
former is a convex function of 𝐴𝐴 𝐴𝐴 , the latter is a concave function of 𝐴𝐴 𝐴𝐴 . We can thus see that the same conditions 
(large 𝐴𝐴 𝐴𝐴 , small 𝐴𝐴 𝐴𝐴(𝑓𝑓 ) ) that readily trigger runaway sliding in Equation 18) also introduce a stable steady state at 
high 𝐴𝐴 𝐴𝐴 in Equation 34 and therefore also in Equation 33). We note that this quality of having a stable steady state 
at non-zero 𝐴𝐴 𝐴𝐴 means that Equation 33 can be classified as a reaction-diffusion equation of generalized Fisher or 
Kolmogorov-Petrovsky-Piskunov (KPP) type (Fisher, 1937; Kolmogorov et al., 1937). This type of equation is 
known to exhibit outward propagating (strain rate) fronts, and consequently does not admit a steady strain rate 
distribution. This markedly limits the validity of the analytical values derived for c1,2 during the coseismic phase. 
We will revisit this issue in detail throughout the results section.

In the interfacial representation of a fault in a homogeneous half-space, the 
shear traction 𝐴𝐴 𝐴𝐴(𝑡𝑡𝑡 𝑡𝑡) at a time 𝐴𝐴 𝐴𝐴 and location 𝐴𝐴 𝐴𝐴 along the fault may be decom-
posed into

𝑓𝑓 (𝑡𝑡𝑡 𝑡𝑡)𝜎𝜎 = 𝜏𝜏(𝑡𝑡𝑡 𝑡𝑡) = 𝜏𝜏0(𝑡𝑡𝑡 𝑡𝑡) + 𝜏𝜏d(𝑡𝑡𝑡 𝑡𝑡) − 𝜂𝜂∗𝑉𝑉 (𝑡𝑡𝑡 𝑡𝑡),�

where 𝐴𝐴 𝐴𝐴0(𝑡𝑡𝑡 𝑡𝑡) is the loading stress, 𝐴𝐴 𝐴𝐴d(𝑡𝑡𝑡 𝑡𝑡) is the convolution that expresses the 
dynamic stress transferred to the point z at time t by slip at all points within 
the causality cone around 𝐴𝐴 (𝑡𝑡𝑡 𝑡𝑡) (Cochard & Madariaga, 1994, 1996; Lapusta 
et al., 2000; Rice, 1993). The term 𝐴𝐴 𝐴𝐴∗𝑉𝑉  exists to compensate for the removal 
of a singularity in aforementioned convolution, and this sets the viscosity 

𝐴𝐴 𝐴𝐴∗ =
1

2

𝜇𝜇

𝑐𝑐
 equal to half the material's shear impedance, with 𝐴𝐴 𝐴𝐴𝑠𝑠 =

√

𝜇𝜇∕𝜌𝜌 the 
shear wave speed and in turn 𝐴𝐴 𝐴𝐴 the shear modulus and 𝐴𝐴 𝐴𝐴 the mass density. 
In the quasi-dynamic or radiation damping approximation (Rice, 1993), the 
dynamic stress transfer term 𝐴𝐴 𝐴𝐴d(𝑡𝑡𝑡 𝑡𝑡) is replaced by an easier to compute static 
stress transfer term 𝐴𝐴 𝐴𝐴s(𝑡𝑡𝑡 𝑡𝑡) , but the damping term 𝐴𝐴 𝐴𝐴∗𝑉𝑉  is retained. Here we take 
the traction 𝐴𝐴 𝐴𝐴0 + 𝜏𝜏s to be the one produced by our static momentum balance 

Figure 7.  The coefficients 𝐴𝐴 𝐴𝐴1

(

𝑎𝑎

𝑏𝑏

)

 and 𝐴𝐴 𝐴𝐴2

(

𝑎𝑎

𝑏𝑏

)

 , given by Equations 31a and 31b, 
are plotted versus the acceptable range of 𝐴𝐴

𝑎𝑎

𝑏𝑏
 .

Figure 8.  The function 𝐴𝐴 𝐴𝐴(𝜁𝜁 ) defined in Equation 33c plotted on a logarithmic 
scale in the top left diagonal portion of the figure and on a linear scale in the 
opposing portion, highlighting the exponential behavior of 𝐴𝐴 𝐴𝐴(𝜁𝜁 ) at low 𝐴𝐴 𝐴𝐴 and 
the linear behavior at high 𝐴𝐴 𝐴𝐴 .
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Equation 9 and elastic constitutive Equation 8, and implicitly move over the damping term to the right-hand side 
of the equation. Calibration of Equation 32) to the result gives our non-dimensional damping viscosity  as

𝜂𝜂 = 𝑐𝑐3
1

2

𝜇𝜇

𝜎𝜎

𝑣𝑣0

𝑐𝑐𝑠𝑠
,�

with 𝐴𝐴 𝐴𝐴3 ∼ 1 an additional dimensionless calibration constant that is chosen somewhat arbitrarily to be equal to 𝐴𝐴 𝐴𝐴1 , 
which seems to give maximum macroscopic slip rates that are similar to those produced by the interfacial friction 
law with radiation damping.

4.  Numerical Models
Analytical predictions made in preceding sections are complemented here with numerical simulation results that 
better illustrate the complex time-dependent behavior of the system of equations, and allow us to establish the 
consequences of approximations and other model choices made in the process of formulating a local equivalent 
continuum rate and state friction law. As before we restrict the scope to 1D models across the shear band.

4.1.  Equations

On the one-dimensional line 𝐴𝐴 𝐴𝐴∈ [−𝐿𝐿∕2, +𝐿𝐿∕2] that deforms under simple shear, analogous to the transect T 
defined in Figure 1, we model the compact Equations 33a and 33b together with the one-dimensional static momen-
tum balance equation 𝐴𝐴 𝐴𝐴𝐴𝐴∕𝜕𝜕𝜕𝜕 = 0 cf. Equation 9, elastic constitutive equation 𝐴𝐴 𝐴𝐴𝐴(𝑡𝑡𝑡 𝑡𝑡) = 𝜇𝜇

[

𝜕𝜕𝜕𝜕(𝑡𝑡𝑡 𝑡𝑡)∕𝜕𝜕𝜕𝜕 − 2𝛾𝛾0𝛾𝛾(𝑡𝑡𝑡 𝑡𝑡)
]

 
cf. Equation 8 (with 𝐴𝐴 𝐴𝐴 the shear modulus as before), yield equality 𝐴𝐴 𝐴𝐴(𝑡𝑡) = 𝑓𝑓 (𝑡𝑡)𝜎𝜎 , and finally the boundary condi-
tions 𝐴𝐴 𝐴𝐴(𝑡𝑡𝑡 𝑡𝑡 = ∓𝐿𝐿∕2) = ∓𝑉𝑉𝑝𝑝∕2 combined into the single ODE

̇� (�) =
�
�

[

��

�
−

(� ◦ � )
�

]

,� (33d)

with 𝐴𝐴 𝐴𝐴𝑝𝑝 the “plate” driving velocity that is applied antisymmetrically on both ends of the domain. This equation 
uses Equation 7 that relates slip velocity to the integral (from 𝐴𝐴 − 𝐿𝐿∕2 to 𝐴𝐴 + 𝐿𝐿∕2 ) of anelastic shear strain rate 𝐴𝐴 𝐴𝐴 , as 
well as Equation 33c for the relation between 𝐴𝐴 𝐴𝐴 and the auxiliary field 𝐴𝐴 𝐴𝐴 .

The system is closed with natural boundary conditions 𝐴𝐴 𝐴𝐴𝐴𝐴∕𝜕𝜕𝜕𝜕 = 0 on 𝐴𝐴 𝐴𝐴(𝑡𝑡𝑡 𝑡𝑡 = ∓𝐿𝐿∕2) , and initial conditions 
𝐴𝐴 𝐴𝐴 (𝑡𝑡 = 0) = 𝑓𝑓0 + Δ𝑓𝑓 and 𝐴𝐴 𝐴𝐴(𝑡𝑡 = 0, 𝑥𝑥) ∝𝜑𝜑ss𝑥𝑥) + 𝜖𝜖 , with 𝐴𝐴 𝐴𝐴ss(𝑥𝑥) deriving from the analytical prediction Equation 30a 

and 𝐴𝐴 𝐴𝐴 a necessary but small homogeneous background value of anelastic shear strain rate. As long as this value 
is small enough 𝐴𝐴 (𝜖𝜖 𝜖𝜖𝜖𝑝𝑝∕𝐿𝐿𝐿𝐿𝐿0∕𝐿𝐿) and the "tails” of the strain rate distribution can be ignored, the required 
computational domain size may be based on the length scale 𝐴𝐴 𝐴𝐴0 and therefore cover only a potentially small frac-
tion of the line 𝐴𝐴 [ −𝐿𝐿∕2, +𝐿𝐿∕2] , greatly reducing the computational cost.

The solution procedure is outlined in Appendix D.

4.2.  Continuum Velocity Stepping Friction Experiments

Velocity stepping laboratory experiments form the foundation on which rate and state friction was proposed 
(Dieterich,  1978). We compare numerical velocity stepping experiments of a traditional rate and state fric-
tion-governed interface with our proposed continuum equivalent under the same conditions. We impose a driving 
velocity that follows a smooth square wave function with respect to sliding distance d:

log10 (𝑉𝑉𝑝𝑝(𝑑𝑑)∕𝑣𝑣0) =
2

𝜋𝜋
tan−1

(

−
1

𝜈𝜈
cos

(

𝜋𝜋 𝜋𝜋

𝑛𝑛 𝑛𝑛𝑐𝑐

))

,� (36)

with 𝐴𝐴 𝐴𝐴 = 20 the amount of slip weakening distances 𝐴𝐴 𝐴𝐴𝑐𝑐 between velocity steps, and 𝐴𝐴 𝐴𝐴 = 10−3 a parameter that 
controls the smoothness of the smooth square wave, with small numbers giving the squarest result (see Figure 9a). 
Some smoothness is important to maintain numerically stable results. The low and high driving velocities are 

𝐴𝐴 10−1𝑣𝑣0 and 𝐴𝐴 10
+1
𝑣𝑣0 respectively. Other model parameters are given in Table 1. Inertial effects may be ignored (both 

in the original lab experiments and in our simulations) due to the low driving velocity. Thus, the quasi-radiation 
damping viscosity 𝐴𝐴 𝐴𝐴 is set to zero and its effects not discussed here. In the limit 𝐴𝐴 𝐴𝐴 → 0

+ , Equation 33c) simply 
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reduces to 𝐴𝐴 𝐴𝐴(𝜁𝜁 ) = exp 𝜁𝜁 or equivalently 𝐴𝐴 𝐴𝐴 (𝛾𝛾) = ln 𝛾𝛾 , which reduces Equations 33a and 33b back to Equations 18a 
and 18b.

Because the domain size L is very small and the system (Equations 33a–33d) therefore stiff, the friction tends to 
a stable steady state after being perturbed by a velocity step rather than developing a limit cycle. This also means 
that 𝐴𝐴 (𝛾𝛾) ≈ 𝑉𝑉𝑝𝑝(𝑑𝑑) . In fact, 𝐴𝐴 (𝛾𝛾) and 𝐴𝐴 𝐴𝐴𝑝𝑝(𝑑𝑑) are so close that their difference would not register in Figure 9a.

In the following, we use the terms time dependence and slip dependence interchangeably but note that the rate of 
change of either is not constant from the perspective of the other. A slip-centric presentation of velocity-stepping 
results is commonplace in the earlier cited literature.

In Figure 9b (and its detailed view 9e) we explore the similarities and differences in slip dependence of the fric-
tion coefficient f between the interfacial and continuum velocity stepping experiments. Based on Equation 19, 
we expect that a velocity step perturbs not just the magnitude of anelastic shear strain, but also its distribution 
(Figure 9d) and therefore the theoretical value of the dimensionless coefficients 𝐴𝐴 𝐴𝐴1,2 (Section 3.3; Equations 20a 

Figure 9.  Results of the numerical velocity stepping experiments: (a) dimensionless sliding velocity V closely tracking a smooth square wave signal (Equation 36); 
(b) frictional response of the interfacial reference model (thick yellow line) and continuum model (dark blue line) with for reference the theoretical steady-state friction 

𝐴𝐴 𝐴𝐴ss(𝑉𝑉 ) (black line); (c) measured (solid lines; cf. Equations 20a and 20b) versus used (dashed lines; cf. Equations 31a and 31b) values of the dimensionless coefficients 
𝐴𝐴 𝐴𝐴1,2 ; (d) distribution 𝐴𝐴 𝐴𝐴 = 𝛾𝛾∕𝑉𝑉  of anelastic shear strain rate with darker blue colors reflecting very low values and bright yellow colors reflecting high values, and 

contours distributed evenly on a linear scale. Reflecting the ultimate slip dependence (rather than direct time dependence) of the rate and state friction laws, curves 
in panels (a–d) are plotted against sliding distance d (measured in critical slip distances 𝐴𝐴 𝐴𝐴𝑐𝑐 ) on the vertical axis. Panel (e) shows an enhanced view of the evolution of 
the instantaneous friction coefficient toward the steady-state value with slip distance d, simultaneously showing a positive and negative step for both the interface and 
continuum models. Panel (f) displays the same, but artificially increases the critical slip weakening distance of the interfacial friction law by 20%.
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and 20b; Figure 9c, solid lines) away from steady state. Since these coeffi-
cients are actually set to their constant steady-state predictions (Section 3.5; 
Equations 31a and 31b; dashed lines in Figure 9c), we expect some differ-
ences in time or slip dependence to occur. Notably, a positive velocity step 
leads to a temporary localization of anelastic deformation and a correspond-
ing decrease in the theoretical values of 𝐴𝐴 𝐴𝐴1,2 with respect to steady state. This 
leads to an overestimation of corresponding terms in the right-hand-side of 
Equation 33a and a faster decay toward the steady-state friction coefficient 
(Figures 9b and 9e) of the continuum model with respect to the interfacial 
model. A negative velocity step causes temporary delocalization (Figure 9d) 
and under-estimation of terms involving 𝐴𝐴 𝐴𝐴1,2 in Equation 33a, but does not 
lead to any noticeable difference in friction coefficient evolution toward the 
steady state between the two models (Figures 9b and 9e). We conclude that 
those terms involving 𝐴𝐴 𝐴𝐴1,2 are negligible in this situation.

In Figures 9c and 9d it can also be seen that the distribution of anelastic shear 
strain rate tends more slowly to a steady state than the friction coefficient 
itself, and moreover that this decay is slower after a positive velocity step 
than after a negative one. In fact, the 40 𝐴𝐴 𝐴𝐴𝑐𝑐 wavelength we use for the input 
signal (Equation 36) is too small to enable a somewhat complete evolution 
toward steady-state of the anelastic strain rate distribution during the high-ve-
locity regime, but we have taken care that this does not meaningfully impact 
the results during the subsequent low-velocity regime.

Most of the difference between the interfacial and continuum velocity step-
ping results disappears if the critical slip weakening distance 𝐴𝐴 𝐴𝐴𝑐𝑐 is seen as 
an additional calibration parameter. Continuing the analogy to the classical 
experimental setup, when we regard the continuum formulation proposed 
here to be the “generator” of experimental data, and the result of the exist-

ing interfacial rate and state friction and aging laws as a data fitting curve, we observe a critical slip weakening 
distance 𝐴𝐴 𝐴𝐴𝑐𝑐 that is about 20% larger than the value that was used to generate the data. The result is plotted in 
Figure 9f. There it can be seen that the discrepancies remaining after the calibration of 𝐴𝐴 𝐴𝐴𝑐𝑐 are small compared to 
the expected noise level of experimental results.

4.3.  Continuum Spring-Slider Experiments

Whereas velocity stepping experiments are useful for studying the way in which friction can be attracted to a 
steady state, permanently out-of-equilibrium “limit cycle” behavior is more interesting in the study of earthquake 
dynamics. We achieve this behavior by increasing the size of the domain and the distance of the boundary condi-
tions by many orders of magnitude (L = 80 km) with respect to the velocity stepping experiments. Thereby, we 
greatly reduce the effective stiffness of the medium as can be seen in Equation 33d. This is analogous to perform-
ing the so-called spring-slider experiment in which a mass is dragged over a surface by a spring that is tensed at a 
constant rate to give an educational example of the apparent stick-slip behavior of seismogenic faults. Our goal in 
performing this experiment is to determine the degree to which the here proposed continuum friction laws match 
the predictions made by Dieterich and Ruina's interfacial laws and to describe the transient behavior of anelastic 
strain rate in the added dimension. Damping plays an essential role in these experiments to close the limit cycle 
that otherwise extends to 𝐴𝐴 𝐴𝐴 → ∞ (Section 3.6). As discussed in the same section, our implementation of damp-
ing as a linear bulk viscosity precludes a steady-state anelastic strain rate distribution at high slip velocity, a fact 
that directly contradicts one of our precepts (Section 3.1). Therefore we anticipate a larger discrepancy between 
interface and continuum models here than was observed during the velocity stepping experiments.

Figure 10 depicts the evolution of quantities of interest over the course of multiple orbits of the solution as it 
converges to the limit cycle. The first important observation is that the continuum model still appears to exhibit 
spontaneous limit cycle behavior. Due to the appropriately chosen initial condition, the wind-up period is short 
and there is little variability between successive revolutions. As predicted (Section 3.5), the nucleation phase is 
marked by runaway amplitude increase of a quasi-steady strain rate distribution (panel b). As before, we measure 

Parameter Value Unit

a 2 × 10 −2 1

b 3 × 10 −2 1

dc 10 –5 m

v0 10 –6 m s −1

ρ 10 +3 kg m −3

μ 10 +10 Pa

cs 3.162…10 +3 m s −1

η 1.581…10 −6 1

σ 10 +6 Pa

dc 5.00 × 10 −4 m

λ0 ∼1.4 × 10 −4 m

c1 1.531… a 1

c2 1.276… a 1

r0 v0/dc s −1

ν 10 –3 1

n 20 1

Note. Some rate and state parameter values are roughly based on Erickson 
et al. (2020).
 aUsing Equations 31a and 31b with stated values of a and b.

Table 1 
Parameter Values Used in the Velocity Stepping Experiment
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the dynamic value of the coefficients 𝐴𝐴 𝐴𝐴1,2 from the strain rate distribution following Equations 20a and 20b, and 
compare to the analytically derived steady-state values Equations 31a and 31b. In line with analytical predictions 
this phase is also accompanied by measured values of 𝐴𝐴 𝐴𝐴1,2 (panel c) that are slightly lower than the constant values 
that are prescribed (dashed lines in panel c). The opposite situation occurs throughout the remainder of each 
cycle where anelastic strain is more widely distributed. We can attribute this directly to the effect of damping at 
high strain rate, which exerts a delocalizing influence. Figure 11 provides a more intuitive view of the short-lived 
delocalizing behavior of a strain pulse using linear rather than logarithmic scales. We emphasize that the ultimate 
extent of coseismic delocalization compared to the length scale 𝐴𝐴 𝐴𝐴0 is dependent on model and material parame-
ters, among which the effective stiffness of the medium.

Large peaks in the measured values of 𝐴𝐴 𝐴𝐴1,2 shown in panel c of Figure 10 occur during the post- and interseismic 
phase, where anelastic shear strain rate is broadly and quite uniformly distributed. The values that are actually 

Figure 10.  Evolution of the continuum seismic cycle simulation demonstrated by a succession of six events plotted against time step count on the horizontal axis, with 
a seventh event stretched by a factor four in order to better show some features of an individual event. The end of each event is punctuated by a slip velocity minimum 
and numbered 1–7 on the horizontal axes. Each revolution around the limit cycle takes 83.00 years and 107,500 time steps to complete. Panel (a) time step size 𝐴𝐴 𝐴𝑡𝑡 
(thin dark line; left axis; logarithmic scale) and slip velocity V (thick bright line, right axis; logarithmic scale). The former serves to aid the interpretation of the time-
dependent progression of each event while the latter gives a sense of magnitude to the color scale of panel (b). Axes are chosen so that together these curves express 
the imperfect reciprocal relation between time step and slip velocity. Panel (b) logarithm of dimensionless anelastic shear strain rate versus signed distance x measured 
in number of length scales 𝐴𝐴 𝐴𝐴0 away from the shear zone center. Bright yellow colors indicate high strain rate; dark blue colors indicate low strain rate. Contours are 
drawn at equal intervals in log space. No explicit color scale is given because the magnitude of anelastic shear strain rate 𝐴𝐴 𝐴𝐴 is tied to the value of 𝐴𝐴 𝐴𝐴0 in order to produce a 
length-scale independent history of sliding velocity V (panel a). Panel (c) measured (solid lines; cf. Equations 20a and 20b) versus used (dashed lines; cf. Equations 31a 
and 31b) values of the dimensionless parameters 𝐴𝐴 𝐴𝐴1,2 .
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used (dashed lines) are way too small here, however, terms that do not involve 
these coefficients dominate the time-dependent behavior in this regime and 
the discrepancy's consequences are limited. This is largely confirmed in 
Figure 12, which tabulates the evolving scalar properties of a limit cycle of 
the interfacial and continuum models of rate and state friction. In particular, 
the duration of the limit cycle (first column, panels (a–c), time in years on the 
horizontal axis) is very similar even though the timing of the event in relation 
to its enclosing slip velocity minima is somewhat different.

Markedly different are the coseismic aspects of the limit cycle. Panel e of 
the middle column and panels (h–j) of the right column of Figure 12 clearly 
show this. The continuum model has a faster stress drop (panel h, 𝐴𝐴 𝐴𝐴 ′ ∝𝑓𝑓 ) and 
a more symmetric slip rate response with time compared to the interfacial 
model. The limit cycle depicted in linear phase space 𝐴𝐴 (𝑈𝑈 ′, 𝑉𝑉 ) in Figure 12e 
shows a skewed triangular trajectory of the interfacial model and a more 
parabolic trajectory for the continuum model. It appears that the amount 
of stress drop that happens before peak slip rate in the interfacial model is 
small—about 10% of the total stress drop. At the same point in the continuum 
model the stress drop is already about one third of the total. The same limit 
cycle shown in Figure 12f in log-linear phase space 𝐴𝐴 (𝑈𝑈 ′, log10𝑉𝑉 ) allows us 

to see that there are subtle differences between the limit cycles of the interfacial and continuum models over the 
whole range of slip velocities.

A further result of practical interest is the difference in adaptively chosen time step between the interfacial and 
continuum models. Figure 10a shows an approximate inverse relation between the time step of continuum model 
to the aggregate slip velocity 𝐴𝐴 𝐴𝐴0𝑉𝑉  , which is unsurprising seeing how 𝐴𝐴 𝐴𝐴𝑐𝑐∕[𝑣𝑣0𝑉𝑉 (𝑡𝑡)] gives a sensible local time scale 
for both interfacial and continuum rate and state friction models. The approximate inverse relation breaks down 
at large time scales where the corresponding time steps are truncated to a fixed value of 0.1 yr, and at large slip 
velocity and small time step, where the time scale of the continuum model becomes dominated by large spatial 
gradients and is generally much smaller than that of the interfacial model (Figures 12d, 12g, 12k). From these 
same plots it can be seen that, just like stress begins to drop in significant advance of an event, so too does the 
time step of the continuum model.

Finally, we remark that spatial resolution tests indicate that the quality of the solution is only influenced by the 
ratio of cell size 𝐴𝐴 𝐴𝑥𝑥 to 𝐴𝐴 𝐴𝐴0 , with acceptable results achieved when 𝐴𝐴 𝐴𝑥𝑥∕𝜆𝜆0 ≥ 10 . For the results presented here we 
have used 𝐴𝐴 𝐴𝑥𝑥∕𝜆𝜆0 = 20 . Changing 𝐴𝐴 𝐴𝐴0 in proportion to 𝐴𝐴 𝐴𝑥𝑥 does nothing except to cause a wider or narrower but 
equally well resolved strain distribution and a virtually identical limit cycle.

5.  Discussion
So far we have argued for a visco-elastic continuum rheology that resembles both the mathematical presentation 
as well as the resulting behavior of traditional interfacial rate and state friction as described by Dieterich and 
Ruina in their respective seminal publications. Before addressing this work in the context of a much broader body 
of existing research and reflecting on critical assumptions made in this work and its extension toward the future, 
we briefly touch upon some alternate branches of our proposed theory that have been left out so far for the sake 
of clarity.

5.1.  A Primitive Reformulation

In contrast to traditional models of plasticity, the continuum rate and state friction laws presented here possess 
a continuous time dependence that makes the anelastic shear strain rate 𝐴𝐴 𝐴𝐴 a predictable quantity rather than one 
that is to be solved by a constrained optimization algorithm (e.g., Duretz et al., 2018; Simo & Taylor, 1985). This 
is apparent from the ODE Equations 18a and 18b for 𝐴𝐴 𝐴𝐴 , but is hidden in the Dieterich-Ruina form (Equations 15 
and 16) of the continuum rate and state friction rheology. However, Equations 18a and 18b lacks the simplicity 
and elegance of the Dieterich-Ruina system and is difficult to interpret as the resultant of physical phenomena. 
By defining a set of primitive variables 𝐴𝐴 𝐴𝐴 and 𝐴𝐴 𝐴𝐴 as

Figure 11.  Focus on the last event of Figure 10, here visualized in panel a 
by strain rate on a linear color and contour scale and in panel b by slip rate V, 
both versus a linear time scale in seconds.
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�̇ = ���

�̇ = ����∕�exp (− [� (�) − �0] ∕�) ,
� (37)

with the respective reference rates 𝐴𝐴 𝐴𝐴𝜅𝜅 = 𝑟𝑟0𝑐𝑐1 and 𝐴𝐴 𝐴𝐴𝜓𝜓 = 𝑟𝑟0𝑐𝑐2 , we are able to write a more expressive formulation of 
Equations 18a and 18b as

Figure 12.  Panels (a–g) behavior of the interfacial (bright yellow lines) and continuum (dark blue lines) models for a full limit cycle. Panels (h–k) focus on the 100 s 
around an event. From left to right, horizontal axes are: time t in years, slip deficit U′ in meters (linearly related to shear stress τ and friction coefficient f), and time t in 
seconds. Vertical axes from top to bottom are slip deficit U′ in meters, slip velocity V in meters per second on a linear scale, the same on a logarithmic scale, and finally 
the time step size ht in seconds on a logarithmic scale. Where limit cycles are shown (middle column, panels e–g), the cycle sense is indicated with small arrows.
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𝜅̇𝜅 = 𝑟𝑟𝜅𝜅𝛾𝛾 = 𝑟𝑟𝜅𝜅(𝜓̇𝜓∕𝑟𝑟𝜓𝜓 )
𝑏𝑏

𝑎𝑎 exp ([𝑓𝑓 (𝝈𝝈) − 𝑓𝑓0] ∕𝑎𝑎)� (38)

𝜓̇𝜓 = 𝑟𝑟𝜓𝜓exp (ex(𝜅𝜅) − 𝜓𝜓) ,� (39)

that still closes the momentum balance Equation 9 and elasto-plastic constitutive Equation 8 without algebraic 
constraints and thus without requiring a constrained optimization algorithm. Equation 39 can optionally accom-
modate damping using the Lambert W function analogous to the way it was discussed in Section 3.6.

We recognize 𝐴𝐴 𝐴𝐴(𝑡𝑡𝑡 𝑡𝑡) as a dimensionless measure of accumulated anelastic shear strain and therefore assign to 𝐴𝐴 𝐴𝐴 
the meaning of a “virtual” or “unrealized” strain. In spite of the conceptual appeal of Equations 38 and 39, it can 
be difficult to choose appropriate initial conditions for 𝐴𝐴 𝐴𝐴 .

5.2.  Quadratic Diffusion

Instead of the mollified term 𝐴𝐴 𝐴𝐴(𝛾𝛾) that was introduced in Equation 16 and used throughout the remainder of 
this work, we could have chosen to use 𝐴𝐴 

(

𝛾𝛾2
)

 :

𝑎𝑎 𝑎𝑎𝑎 = 𝑏𝑏 𝑏𝑏0
[

𝑐𝑐1
(

𝛾𝛾2
)

− 𝑐𝑐2𝛾𝛾 𝛾𝛾(𝛾𝛾𝛾 𝛾𝛾 )
−1
]

+ 𝛾𝛾 ̇𝑓𝑓 𝑓� (40)

and the definition of 𝐴𝐴 𝐴𝐴1 is adapted to the new way of mollifying according to the same principles as laid out in 
Section 3.

This choice has advantages and disadvantages. A major disadvantage is that it does not seem to allow a return 
from Equation 40 to the more elegant Dieterich-Ruina form (Equations 15 and 16), nor to the compact form 
(Equations 38–39) proposed in the preceding section. A clear advantage is that, taken together with the explicit 
nonlocal operator 𝐴𝐴 ex , Equation 40 produces a degenerate reaction-diffusion equation of generalized Fisher or 
KPP type (Fisher, 1937; Kolmogorov et al., 1937) that remains well-posed at and around 𝐴𝐴 𝐴𝐴 = 0 . This leads to 
shear zone solutions that can propagate into perfectly intact rock without taking recourse to an arbitrary small 
initial condition on 𝐴𝐴 𝐴𝐴 . Furthermore, under quadratic diffusion, the function 𝐴𝐴 𝐴𝐴(𝜁𝜁 ) used in the ODE form (Equa-
tions 33a–33d) in Section 3.6 becomes algebraic instead of transcendentally implicit.

We have reproduced all results presented in Section 4 with this quadratic diffusion term and zero background 
anelastic strain rate too, and observe numerically smoother and better resolved shear fronts during the coseismic 
delocalization phase. These fronts also travel faster and further than in the linear diffusion case leading to a larger 
discrepancy between measured and used values of the coefficients 𝐴𝐴 𝐴𝐴1,2 and consequently larger deviations of the 
limit cycle with respect to that of the interfacial rate and state friction model. The generalized Fisher-KPP type 
equation has merited a large body of theoretical research (e.g., Broadbridge & Bradshaw-Hajek, 2016; Gilding & 
Kersner, 2005; Y. Li & Wu, 2008; Malaguti & Ruggerini, 2010; Petrovskii & Li, 2003, 2006; Sánchez-Garduño 
& Maini, 1994, 1995, 1997; Sherratt & Marchant, 1996; Y. Wu et al., 2006) and therefore some of the above 
mentioned empirical findings may be given a theoretical underpinning in future work.

5.3.  Relation to Regularized Damage or Plasticity Models

As shown in Section 4.3 there are circumstances under which the transient viscous rheology proposed in this 
work promotes a spontaneous organization of periods and regions of negligible anelastic strain rate and those of 
significant anelastic strain rate. Even though a critical yield stress seems to be an emergent rather than an inherent 
property of the system of equations and initial and boundary conditions, it is tempting to think of this rheology 
as a smooth plasticity model.

We have shown (Section 3.5) that our model requires regularization by a nonlocal strain rate measure to avoid 
spurious mesh dependence. Non-locality in one form or another has been applied to combat ill-posedness 
in for example, Bažant et  al.  (1984); Triantafyllidis and Aifantis  (1986); Schreyer and Chen  (1986); Pijaudi-
er-Cabot and Bažant (1987); de Borst and Mühlhaus (1992); Peerlings et al. (1996); Jirásek (1998); Bažant and 
Jirásek (2002); Engelen et al. (2003); Jirásek and Rolshoven (2009a, 2009b); Burghardt et al. (2012); Lyakhovsky 
et al. (2011); Lyakhovsky and Ben-Zion (2014a, 2014b); Lyakhovsky et al. (2016); Kurzon et al. (2019, 2020); 
Kiefer et al. (2018); Abdallah et al. (2020).
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The comprehensive nonlocal damage-breakage rheology of Lyakhovsky et  al.  (2011, 2016); Lyakhovsky and 
Ben-Zion (2014a, 2014b), firmly rooted in thermodynamic theory and well-calibrated to match observations, is 
one of few damage theories developed to cover the full process of earthquake generation and healing (Kurzon 
et al., 2019, 2020; Lyakhovsky et al., 2016). As in our model, the nonlocality in theirs is of Gradient type, but 
differs subtly in that it acts on the damage parameter rather than on the anelastic shear strain rate. Another 
example is the Godunov-Peshkov-Romenski model (S. Godunov & Romenskii, 1972; S. K. Godunov & Romen-
skii, 2003; Resnyansky et al., 2003; Romenskii, 2007; Romenski et al., 2020), which was first used in Gabriel 
et al. (2021) to simulate dynamic rupture and off-fault damage generation. This model differs from our model and 
the aforementioned damage-breakage rheology in a fundamental way in that shear bands are produced by damage 
waves described by hyperbolic equations rather than parabolic equations of reaction-diffusion type.

Our model differs from phase-field models of fracture in some respects. We have used the distribution 𝐴𝐴 𝐴𝐴 of 
anelastic shear strain rate as an analytical tool during the derivation of the continuum rheology proposed in this 
work. While this distribution could be renormalized to form a phase field 𝐴𝐴 𝐴𝐴 ∈ (0, 1) , the necessary inclusion of a 
damping viscosity in Section 3.6 causes temporal variations in the anelastic shear strain rate distribution that tran-
scend the modeled distributions, and make renormalization to a phase field possible at best as a post-processing 
step in a simulation. We recognize that the inclusion of a damping viscosity constitutes the use of a "double-well 
potential’ in phase field terminology, which multiple authors have commented on critically in this context (e.g., 
Kuhn et al., 2015; J.-Y. Wu, 2017).

Our linear viscous damping appears as a regularization technique in some plasticity models (de Borst & 
Duretz, 2020; Duretz et al., 2020, 2021, 2019; Needleman, 1988; Peirce et al., 1983; Stathas & Stefanou, 2022; F. 
Wu & Freund, 1984). In these models, the Kelvin-Voigt arrangement of yield strength and Newtonian viscosity 
truncates the steady-state anelastic strain rate that may be achieved, forcing a shear zone to have a finite width in 
order to slide at a certain macroscopic rate. In our model, the same viscosity also introduces an effective upper 
bound on anelastic strain rate attained during the limit cycle and causes subsequent delocalization, but we must 
still rely on the gradient regularization to combat the unbounded localization that would otherwise happen even 
at low strain rate. A detailed analysis of the efficacy of this viscous regularization in dynamical problems is made 
in Stathas and Stefanou (2022).

5.4.  Relation to Other Transient Continuum Rheologies

The framework here proposed can be seen as a generalization of the work of Herrendörfer et al. (2018); Preuss 
et al. (2019, 2020), who made the purely local substitution 𝐴𝐴 𝐴𝐴0𝑉𝑉 → ℎ𝑥𝑥𝛾𝛾0𝛾𝛾 and used a Drucker-Prager elastoplastic 
model similar to the one set out in Section 2.4. Setting 𝐴𝐴 𝐴𝐴0, 𝜂𝜂 = 0 and assuming that strain rate fully localizes into a 
discrete Dirac function sampled every 𝐴𝐴 𝐴𝑥𝑥 , we find that the coefficients 𝐴𝐴 𝐴𝐴1 and 𝐴𝐴 𝐴𝐴2 become 𝐴𝐴 𝐴𝑥𝑥∕𝑑𝑑𝑐𝑐 and 1 respectively, 
substitution of which into Equation 16 yields Herrendörfer's version of the aging law. Their model was first 
applied along a predefined staggered grid line in Herrendörfer et al. (2018), obeying the discrete Dirac distribu-
tion of anelastic shear strain automatically and effectively yielding a numerical method analogous to the stress 
glut method of Andrews (1999). Herrendörfer's model was subsequently applied in an unconstrained evolving 
continuum model in Preuss et al. (2019, 2020), but notwithstanding measures put in place that acknowledge the 
changing distribution of shear strain rate within a shear zone, their model ultimately lacks regularizations that 
remove mesh dependence. In the chapters titled “Localization of Deformation” and “Relationship of Localization 
to Instability” of his PhD thesis, Ruina (1980) gives a thoughtful take on aspects of the localization behavior of a 
strain rate formulation of rate and state friction (without spatial regularization), which is in some aspects in line 
with findings reported in this work, and complementary in others.

As noted in Section 1.2 of the Introduction, a variety of continuum theories have been developed to explain 
the general rate- and state-like behavior of deformation in faults and shear zones (e.g., Alevizos et al., 2014; 
Barbot,  2019; Braeck & Podladchikov,  2007; Chen & Spiers,  2016; Daub & Carlson,  2008,  2009; Daub 
et  al.,  2008,  2010; Elbanna & Carlson,  2014; John et  al.,  2009; Kurzon et  al.,  2019,  2020; Lyakhovsky & 
Ben-Zion, 2014a, 2014b; Lyakhovsky et al., 2011, 2016; Niemeijer & Spiers, 2007; Poulet et al., 2014; Pozzi 
et al., 2021; Rattez, Stefanou, & Sulem, 2018; Rattez, Stefanou, Sulem, Veveakis, & Poulet, 2018; Roubíček, 2014; 
Rozel et al., 2011; Sleep, 1997; Thielmann, 2018; Thielmann et al., 2015; Van den Ende et al., 2018; Veveakis 
et al., 2014). We note again that an internal length scale in these models typically arises from the inclusion of a 
diffusion process (of e.g., temperature, pore pressure) but that may not always be adjusted to meet the constraints 
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imposed by scale and computational power without changing the outcome of the model. In our proposed formu-
lation an artificial diffusion process acts directly on the anelastic shear strain rate, resulting in a robust and 
controllable internal length scale.

In this last respect our work is preceded by nearly 25 years by Sleep (1997). In this work Sleep combined and 
extended earlier works (Chester, 1994, 1995; Linker & Dieterich, 1992; Segall & Rice, 1995; Sleep, 1995) in 
which rate and state friction was interpreted as the product of crack generation and healing, associated rheological 
weakening, and dissipative heating. This physical reasoning resulted in a model that contains only quantities that 
are either directly measurable or can be modeled by independent methods. This contrasts with our purely mathe-
matical argumentation that serves to retain close correspondence to the original phenomenological description of 
rate and state dependent sliding on a frictional interface. Sleep (1997) neglects the fluxes and associated spatial 
gradients of the pore fluid but does include heat diffusion, which they note does however not play a significant 
role at the scale of their numerical experiments. Instead, resembling our approach, they impose an artificial 
length scale and forced strain distribution by explicit mollification of the anelastic shear strain rate with a Gauss-
ian kernel. This leads to an aging law (Equation 53 in Sleep (1997)) that is structurally identical to our result 
Equation 16. Like us, they find that strain localization can only occur when 𝐴𝐴 𝐴𝐴 𝐴 𝐴𝐴 , and that a rate-strengthening 
effect that activates at high strain rate leads to strain delocalization. With respect to Sleep's valuable contribution, 
in  this work we provide a more complete argumentation for this type of spatial regularization and analysis of the 
resulting patterns of strain localization and delocalization over the seismic cycle.

5.5.  Assumptions and Future Work

We proposed our model in a very general three-dimensional continuum mechanics framework, but for simplicity 
have considered only a small fault neighborhood in which in-plane variations of fault properties can be neglected 
(Section 2.2) so that the model becomes effectively one-dimensional. This same assumption was also taken in the 
numerical models that we have used in our analysis. The assumption is clearly violated around fault branches, at 
fault kinks or on rough faults, and near the fault or rupture tip. We note however that rate and state friction was 
proposed based on laboratory studies that also neglect these geometrical complexities. Although rate and state 
faults with branches and kinks are still largely non-standard in present-day numerical modeling studies, plenty 
of attention has been given to the critical nucleation patch and the structure of the cohesive zone near the rupture 
tip (e.g., Cocco & Bizzarri, 2002; Cocco et al., 2004; Day et al., 2005; Lapusta & Liu, 2009; Putelat et al., 2017; 
Rice, 1993; Rubin & Ampuero, 2005; Viesca, 2016a, 2016b). Given our main assumption, these features can 
only be accurately reproduced with our continuum formulation in higher-dimensional numerical models if the 
regularization length scale 𝐴𝐴 𝐴𝐴0 is significantly smaller than the length scales associated with the critical nucleation 
patch and the cohesive zone. In turn the cell size must be sufficient to resolve 𝐴𝐴 𝐴𝐴0 , and so we expect to need a grid 
resolution that is significantly higher than that of existing methods to simulate rate and state frictional interfaces. 
We have also seen that the diffusion process is associated with a smaller time scale, and thus, stricter time step 
constraints than the interfacial model. We note that both spatial and temporal resolution requirements already 
place challenging constraints on simulations of seismic and aseismic slip sequences (Erickson et al., 2020; Jiang 
et al., 2022).

It seems prudent to first make a more detailed assessment of the computational demands and the techniques 
that may be required to meet the resolution requirements (e.g., adaptive mesh refinement, local adaptive time 
stepping). In the process of constructing higher-dimensional models one may first concentrate on the friendliest 
regions of parameter space, for example those that promote stable sliding, or undamped runaway localization as 
in Viesca (2016a, 2016b, 2020).

The temporal patterns of localization and delocalization that occur in our model yield testable predictions that 
tie in to a recent surge in interest in similar patterns observed in the lab and in nature (e.g., Ben-Zion & Zalia-
pin, 2020; McBeck, Aiken, et al., 2020; McBeck, Ben-Zion, & Renard, 2020; McBeck et al., 2018, 2021). It could 
be the scope of future research to reinterpret anelastic strain rate in our model as a measure of the activity of a 
statistical distribution of cracks of various properties and compare to aforementioned lab and field observations. 
In this context, the delocalization that is in our models induced by a rate-limiting Kelvin viscosity is reminis-
cent of the growth of off-fault fracture networks during dynamic rupture (e.g., Gabriel et al., 2021; K. Okubo 
et al., 2019; Templeton & Rice, 2008).
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We have assumed an infinite gauge layer and observed that materials that are rate-strengthening at steady state 
(a  >  b) can only feature delocalization of strain. This appears inconsistent with the widespread observation 
of faults and fault gauges that are more or less stable (e.g., Bedford et al., 2021; Carpenter et al., 2012; Coble 
et al., 2014; Ikari et al., 2011). A possible explanation is that a gauge layer is initially formed by a set of strain-sof-
tening processes, subsequently chemically, petrologically, texturally or geometrically matured over time to 
become rate-strengthening, but generally weaker than host rock. The gauge layer walls may then act as a barrier 
to further delocalization. While this situation could be simulated in our approach by varying the frictional proper-
ties accordingly, the consistent way to model the long term evolution of faults likely requires at least two internal 
state variables. The damage-breakage rheology of Lyakhovsky and Ben-Zion (2014a, 2014b) has this feature.

In this work, we have restricted ourselves to classical Dieterich-Ruina rate and state friction with aging law. 
In Section  1.2, we have hinted at a sizable number of physical interpretations of the phenomenological rate 
and state friction problem. This concerns notably the behavior of weakening and the interpretation given to the 
“state” variable. At the same time, a number of alternative phenomenological evolution laws have been proposed, 
among which the slip law (Dieterich, 1979a). It would be worthwhile to investigate the possibility of applying the 
mathematical techniques developed here to a wider range of friction and evolution laws, especially those involv-
ing multiple states, such as for example temperature, pore pressure, or grain size. However, this might not be 
straightforward because we have relied heavily on analytical solutions to calibrate the interfacial and continuum 
descriptions of friction, and finding these solutions is frequently a time-consuming task with uncertain prospects 
for success.

6.  Conclusions
In this work, we have carefully constructed a coordinate-invariant and mesh-independent transient visco-elas-
tic continuum rheology that behaves in a way that is consistent with rate and state friction on an interface. We 
have shown that inclusion of a diffusion-like spatial regularization ensures a limit to strain localization and thus 
guarantees mesh convergence. In a simplified 1D fault transect, important metrics of the seismic cycle—such as 
slip rate and friction—are independent of the diffusion length scale associated with the regularization. However, 
throughout this work we have assumed the regularization length scale to be small compared to the length scales 
associated with other features of interest, such as fault curvature or along-strike variations of slip rate and stress. 
Therefore, going forward, high-resolution 2D or 3D numerical models are required to apply this model to the 
study of the seismogenic behavior of emerging and evolving fault zone networks. Our continuum rheology resem-
bles a reaction-diffusion equation for anelastic strain rate. Processes described by such equations are ubiquitous in 
nature, and it is tempting to compare temporal patterns of localization and delocalization produced by our model 
with natural observations.

Appendix A:  Strain Localization in the Runaway Slip Regime
In this appendix, we derive a generic family of solutions to the runaway slip regime discussed in Section 3.2. We 
consider the ODE

𝛾̇𝛾(𝑡𝑡𝑡 𝑡𝑡) = 𝛾𝛾(𝑡𝑡𝑡 𝑡𝑡)
2
,� (A1)

in which 𝐴𝐴 𝐴𝐴 and 𝐴𝐴 𝐴𝐴 are taken to be non-dimensionalized in such a way that the rate constant equals one and is thus 
dropped. We emphasize that since no derivatives with respect to 𝐴𝐴 𝐴𝐴 are included, the ultimate collective behavior 
of 𝐴𝐴 𝐴𝐴(𝑡𝑡𝑡 𝑡𝑡) is not uniquely defined. Even so, our Ansatz is a product-wise decomposition of the solution into a 
purely time-dependent term 𝐴𝐴 Γ and a self-similar contribution 𝐴𝐴 𝐴𝐴 :

𝛾𝛾(𝑡𝑡𝑡 𝑡𝑡) =∶ Γ(𝑡𝑡)𝑔𝑔

(

𝑥𝑥

𝑙𝑙(𝑡𝑡)

)

, 𝑔𝑔(0) = 1.� (A2)

We then take the time derivative of the Ansatz (Equation A2) and equate the result to Equation A1, yielding

𝛾̇𝛾(𝑡𝑡𝑡 𝑡𝑡) = 𝛾𝛾(𝑡𝑡𝑡 𝑡𝑡)2 = Γ̇(𝑡𝑡)𝑔𝑔

(

𝑥𝑥

𝑙𝑙(𝑡𝑡)

)

− Γ(𝑡𝑡)
𝑙̇𝑙(𝑡𝑡)

𝑙𝑙(𝑡𝑡)

𝑥𝑥

𝑙𝑙(𝑡𝑡)
𝑔𝑔′

(

𝑥𝑥

𝑙𝑙(𝑡𝑡)

)

= Γ(𝑡𝑡)2𝑔𝑔

(

𝑥𝑥

𝑙𝑙(𝑡𝑡)

)2

.� (A3)

 21699356, 2022, 6, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2021JB

023511 by C
ochrane G

erm
any, W

iley O
nline L

ibrary on [10/10/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



Journal of Geophysical Research: Solid Earth

PRANGER ET AL.

10.1029/2021JB023511

25 of 33

At 𝐴𝐴 𝐴𝐴 = 0 , we have:

Γ̇(𝑡𝑡) = Γ(𝑡𝑡)2.� (A4)

The solution to Equation A4 is

Γ(𝑡𝑡) = Γ0(1 − Γ0𝑡𝑡)
−1
, Γ0 = Γ(𝑡𝑡 = 0).� (A5)

When we substitute this solution into Equation A3, we get

𝑙̇𝑙(𝑡𝑡)

𝑙𝑙(𝑡𝑡)

𝑥𝑥

𝑙𝑙(𝑡𝑡)
𝑔𝑔′

(

𝑥𝑥

𝑙𝑙(𝑡𝑡)

)

= −Γ(𝑡𝑡)

[

𝑔𝑔

(

𝑥𝑥

𝑙𝑙(𝑡𝑡)

)2

− 𝑔𝑔

(

𝑥𝑥

𝑙𝑙(𝑡𝑡)

)

]

.� (A6)

If we now take the additional Ansatz that

𝑥𝑥

𝑙𝑙(𝑡𝑡)
𝑔𝑔′

(

𝑥𝑥

𝑙𝑙(𝑡𝑡)

)

= 𝑚𝑚

[

𝑔𝑔

(

𝑥𝑥

𝑙𝑙(𝑡𝑡)

)2

− 𝑔𝑔

(

𝑥𝑥

𝑙𝑙(𝑡𝑡)

)

]

, 𝑚𝑚 ∈ ℝ ≥ 2� (A7)

then we obtain

𝑔𝑔(𝑡𝑡𝑡 𝑡𝑡) =

(

1 + 2
|

|

|

|

𝑥𝑥

𝑙𝑙(𝑡𝑡)

|

|

|

|

𝑚𝑚
)−1

,� (A8)

and

𝑙𝑙(𝑡𝑡) = 𝑙𝑙0(1 − 𝑙𝑙0𝑡𝑡)
1
𝑚𝑚 , 𝑙𝑙0 = 𝑙𝑙(𝑡𝑡 = 0),� (A9)

The function 𝐴𝐴 𝐴𝐴(𝑡𝑡𝑡 𝑡𝑡∕𝑙𝑙(𝑡𝑡)) integrates to

Λ(𝑡𝑡)∶=

+∞

∫
−∞

𝑔𝑔

(

𝑡𝑡𝑡
𝜉𝜉

𝑙𝑙(𝑡𝑡)

)

d𝜉𝜉 = 𝑙𝑙(𝑡𝑡)
𝜋𝜋

𝑚𝑚
csc

𝜋𝜋

𝑚𝑚
,� (A10)

and thus the distribution 𝐴𝐴 𝐴𝐴(𝑡𝑡𝑡 𝑡𝑡) corresponding to 𝐴𝐴 𝐴𝐴(𝑡𝑡𝑡 𝑡𝑡∕𝑙𝑙(𝑡𝑡)) is given by

𝜑𝜑(𝑡𝑡𝑡 𝑡𝑡) = Λ(𝑡𝑡)−1
(

1 + 2
|

|

|

|

𝑥𝑥

𝑙𝑙(𝑡𝑡)

|

|

|

|

𝑚𝑚
)−1

,� (A11)

Finally, we use Equations 7 and A11 to write Equations A5, A8, and A9 in terms of 𝐴𝐴 𝐴𝐴 (𝑡𝑡) , and obtain:

� (�) ∝
(

1 − �
�∗

)�−1−1

,

�(�) ∝ � (�)(1−�)
−1
.

� (A12a)

Appendix B:  Derivation of the Steady-State Strain Rate Distribution
Here we derive the steady-state solution presented in Section 3.4 to the time-dependent PDE

𝜑̇𝜑 ∝ 𝜆𝜆0 𝑐𝑐1 𝜑𝜑ex(𝜑𝜑) − 𝜆𝜆
𝑎𝑎

𝑏𝑏

0
𝑐𝑐2 𝜑𝜑

1+
𝑎𝑎

𝑏𝑏 ,� (B1)

subject to 𝐴𝐴 𝐴𝐴𝐴 𝐴𝐴 𝐴 0 and 𝐴𝐴 𝐴𝐴 𝐴 𝐴𝐴 , with 𝐴𝐴 ex given by Equation 26 and the coefficients 𝐴𝐴 𝐴𝐴1 and 𝐴𝐴 𝐴𝐴2 measured from the 
sought solution 𝐴𝐴 𝐴𝐴(∞, 𝑥𝑥) by means of Equations 20a and 20b. We summarize the PDE that is to be solved as

𝜑𝜑2 + 𝜑𝜑𝜑𝜑2
0
𝜕𝜕2𝑥𝑥𝜑𝜑 − 𝑐𝑐 𝑐𝑐

1+
𝑎𝑎

𝑏𝑏 = 0,� (B2)

with c a parameter to be determined later. Dividing the whole equation by 𝐴𝐴 𝐴𝐴 , and making the substitution 
𝐴𝐴 𝐴𝐴0 →

[

1 −
𝑎𝑎

𝑏𝑏

]

𝜆𝜆1 , Equation B2 becomes
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𝜑𝜑 +
[

1 −
𝑎𝑎

𝑏𝑏

]2

𝜆𝜆2
1
𝜕𝜕2𝑥𝑥𝜑𝜑 − 𝜉𝜉 𝜉𝜉

𝑎𝑎

𝑏𝑏 = 0.� (B3)

We now introduce 𝐴𝐴 𝐴𝐴 (𝜑𝜑) =
[

1 −
𝑎𝑎

𝑏𝑏

]

𝜆𝜆1𝜕𝜕𝑥𝑥𝜑𝜑(𝑥𝑥) , which allows us to write

[

1 −
𝑎𝑎

𝑏𝑏

]2

𝜆𝜆2
1
𝜕𝜕2𝑥𝑥𝜑𝜑 =

[

1 −
𝑎𝑎

𝑏𝑏

]

𝜆𝜆1𝜕𝜕𝑥𝑥𝑓𝑓 (𝜑𝜑) =
[

1 −
𝑎𝑎

𝑏𝑏

]

𝜆𝜆1𝑓𝑓
′(𝜑𝜑)𝜕𝜕𝑥𝑥𝜑𝜑 = 𝑓𝑓 ′(𝜑𝜑)𝑓𝑓 (𝜑𝜑).� (B4)

Applying this reasoning to Equation B3 and reorganizing slightly gives

𝑓𝑓 ′(𝜑𝜑)𝑓𝑓 (𝜑𝜑) = 𝑐𝑐 𝑐𝑐
𝑎𝑎

𝑏𝑏 − 𝜑𝜑𝜑� (B5)

We now integrate Equation B5 by parts as follows:

𝜑𝜑

∫
0

𝑓𝑓 ′(𝜀𝜀)𝑓𝑓 (𝜀𝜀)d𝜀𝜀 =
1

2

(

𝑓𝑓 (𝜑𝜑)2 − 𝑓𝑓 (0)2
)

= 𝑐𝑐

𝜑𝜑

∫
0

𝜀𝜀
𝑎𝑎

𝑏𝑏 d𝜀𝜀 −

𝜑𝜑

∫
0

𝜀𝜀 d𝜀𝜀 = 𝑐𝑐

[

1 +
𝑎𝑎

𝑏𝑏

]−1

𝜑𝜑
1+

𝑎𝑎

𝑏𝑏 − 2−1𝜑𝜑2.� (B6)

We arbitrarily take the distribution 𝐴𝐴 𝐴𝐴(∞, 𝑥𝑥) to be symmetric around 𝐴𝐴 𝐴𝐴 = 0 , where it reaches its maximum value 
𝐴𝐴 𝐴𝐴0 = 𝜑𝜑(∞, 0) . At this point, as well as at the extremities of the distribution where 𝐴𝐴 𝐴𝐴 = 0 , we set the gradient, that 

is, 𝐴𝐴 𝐴𝐴 (𝜑𝜑) , to zero. This eliminates the term 𝐴𝐴 𝐴𝐴 (0)
2 in Equation B6 and constrains the free parameter 𝐴𝐴 𝐴𝐴 to

𝑐𝑐 =
1

2

[

1 +
𝑎𝑎

𝑏𝑏

]

𝜑𝜑
1−

𝑎𝑎

𝑏𝑏

0
.� (B7)

We now multiply both sides of Equation B6 by 2 and take the square root to obtain

𝑓𝑓 (𝜑𝜑) =

√

𝜑𝜑
1−

𝑎𝑎

𝑏𝑏

0
𝜑𝜑

1+
𝑎𝑎

𝑏𝑏 − 𝜑𝜑2.� (B8)

Applying the inverse function theorem to 𝐴𝐴 𝐴𝐴 (𝜑𝜑)−1 =
([

1 −
𝑎𝑎

𝑏𝑏

]

𝜆𝜆−1
1
𝜑𝜑′(𝑥𝑥)

)−1

=
([

1 −
𝑎𝑎

𝑏𝑏

]

𝜆𝜆1

)−1

𝑥𝑥′(𝜑𝜑) , we obtain 
from Equation B8

𝑥𝑥′(𝜑𝜑)

𝜆𝜆1

=
[

1 −
𝑎𝑎

𝑏𝑏

] (

𝜑𝜑
1−

𝑎𝑎

𝑏𝑏

0
𝜑𝜑

1+
𝑎𝑎

𝑏𝑏 − 𝜑𝜑2
)−

1
2

.� (B9)

We seek to integrate this relation once more over the region 𝐴𝐴 𝐴𝐴 ∈ [0, 𝜑𝜑) to obtain a solution for 𝐴𝐴 𝐴𝐴(𝜑𝜑) . The integral 
of the right hand side of Equation B8 can be reverse-engineered from the known derivatives

cos−1′(𝑓𝑓 ) = −
(

1 − 𝑓𝑓 2
)−

1
2 .�

and 𝐴𝐴 𝐴𝐴𝑓𝑓𝑓𝑓
𝛼𝛼 = 𝛼𝛼𝛼𝛼𝛼𝛼−1 , noting also that 𝐴𝐴 𝐴𝐴∕𝜑𝜑0 ≤ 1 , to give

[

1 −
𝑎𝑎

𝑏𝑏

] (

𝜑𝜑
1−

𝑎𝑎

𝑏𝑏

0
𝜑𝜑

1+
𝑎𝑎

𝑏𝑏 − 𝜑𝜑2
)−

1
2

= 𝜕𝜕𝜑𝜑

⎡

⎢

⎢

⎣

−2 cos−1
⎛

⎜

⎜

⎝

[

𝜑𝜑

𝜑𝜑0

]
1
2

[

1−
𝑎𝑎

𝑏𝑏

]

⎞

⎟

⎟

⎠

⎤

⎥

⎥

⎦

.� (B10)

This yields

𝑥𝑥(𝜑𝜑)

𝜆𝜆1

−
𝑥𝑥(0)

𝜆𝜆1

= −2 cos−1
⎛

⎜

⎜

⎝

[

𝜑𝜑

𝜑𝜑0

]
1
2

[

1−
𝑎𝑎

𝑏𝑏

]

⎞

⎟

⎟

⎠

+ 𝜋𝜋𝜋� (B11)

Setting 𝐴𝐴
𝑥𝑥(0)

𝜆𝜆1
= −𝜋𝜋 and inverting for 𝐴𝐴 𝐴𝐴(∞, 𝑥𝑥) gives

𝜑𝜑(∞, 𝑥𝑥) = 𝜑𝜑0 cos

(

1

2

𝑥𝑥

𝜆𝜆1

)2
[

1−
𝑎𝑎

𝑏𝑏

]−1

.� (B12)

It is possible and in fact desirable to isolate a single strain pulse in the range 𝐴𝐴 𝐴𝐴 ∈ [−𝜋𝜋𝜋𝜋1,+𝜋𝜋𝜋𝜋1] :
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𝜑𝜑(∞, 𝑥𝑥) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝜑𝜑0 cos

(

1

2

𝑥𝑥

𝜆𝜆1

)2

[

1−
𝑎𝑎

𝑏𝑏

]−1

∀ 𝑥𝑥 ∈ [−𝜋𝜋𝜋𝜋1,+𝜋𝜋𝜋𝜋1]

0 ∀ 𝑥𝑥 ∉ [−𝜋𝜋𝜋𝜋1,+𝜋𝜋𝜋𝜋1] .

� (B13)

Finally, we determine the coefficient 𝐴𝐴 𝐴𝐴0 that ensures that the distribution 𝐴𝐴 𝐴𝐴 integrates to one over its domain, and 
the coefficients 𝐴𝐴 𝐴𝐴1 and 𝐴𝐴 𝐴𝐴2 following the expressions Equations 20a and 20b. Definite integrals of Equation B13) 
are evaluated using Wolfram Mathematica (Wolfram Research, Inc., 2017), and we find

𝜑𝜑0 =
1

2
𝜋𝜋−

1
2

Γ

(

1 +
[

1 −
𝑎𝑎

𝑏𝑏

]−1
)

Γ

(

1

2
+
[

1 −
𝑎𝑎

𝑏𝑏

]−1
)𝜆𝜆−1

1� (B14a)
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1

2
𝜋𝜋−

1
2

Γ

(

1 + 2
[

1 −
𝑎𝑎

𝑏𝑏

]−1
)

Γ

(

1

2
+ 2

[

1 −
𝑎𝑎

𝑏𝑏

]−1
) [𝜆𝜆1𝜑𝜑0]

−2� (B14b)

𝑐𝑐2 =
1

2
𝜋𝜋−

1
2

Γ

(

2
[

1 −
𝑎𝑎

𝑏𝑏

]−1
)

Γ

(

1

2

[

3 +
𝑎𝑎

𝑏𝑏

] [

1 −
𝑎𝑎

𝑏𝑏

]−1
) [𝜆𝜆1𝜑𝜑0]

−1−
𝑎𝑎

𝑏𝑏 .� (B14c)

We have verified that Equation B13 is a solution to Equation B2 given Equation B7 using automated symbolic 
manipulation in Wolfram Mathematica.

Appendix C:  Derivation of the Runaway Strain Rate Distribution
We simply note that the time-dependent PDE

𝜑̇𝜑 ∝ 𝑉𝑉 [𝜆𝜆0 𝑐𝑐1 𝜑𝜑ex(𝜑𝜑) − 𝜑𝜑]� (C1)

to which a steady-state solution is sought in Section 3.5, closely relates to Equation B1 if in that equation the 
substitution 𝐴𝐴

𝑎𝑎

𝑏𝑏
→ 0 is made. Making the same substitution in the result of Appendix B, we obtain:

𝜑𝜑(∞, 𝑥𝑥) =

⎧

⎪

⎨

⎪

⎩

1

𝜋𝜋𝜋𝜋
cos

(

1

2

𝑥𝑥

𝜆𝜆0

)2

∀ 𝑥𝑥 ∈ [−𝜋𝜋𝜋𝜋0,+𝜋𝜋𝜋𝜋0]

0 ∀ 𝑥𝑥 ∉ [−𝜋𝜋𝜋𝜋0,+𝜋𝜋𝜋𝜋0] .

� (C2)

Appendix D:  Numerical Solution Procedure
We discretize the Laplacian using a standard second-order accurate central difference stencil, with natural bound-
ary conditions of the same accuracy implemented by staggering the fields with respect to the physical domain 
walls. The problem size is halved by exploiting symmetry across the shear zone. Integrals are evaluated using a 
midpoint rule. This gives the discrete system

̇̃� = �
(

�̃ , �̃
)

̇̃� = h
(

�̃ , �̃
)

,
�

where tildes indicate approximate space-discrete quantities and numerical arrays are indicated in bold face. We 
form a symbolic rules for computing the Jacobian matrix J of this system of non-linear space-discrete equations,
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�
(

�̃ , �̃
)

=
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∇�̃ �
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�̃ , �̃
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∇�̃ �
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�̃ , �̃
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�̃ , �̃
)
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�̃ , �̃
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⎤

⎥

⎥

⎦

,�

with the upper left block a dense N × N matrix with a dominant sparse band structure (N being the problem size), 
the lower right block a 1 × 1 empty matrix, and the off-diagonal blocks densely populated vectors of compatible 
shape. The system is then linearized as

d

⎡

⎢

⎢

⎣

̇̃
𝜻𝜻

̇̃𝑓𝑓

⎤

⎥

⎥

⎦

= 𝐉𝐉
(

𝜻̃𝜻 , 𝑓𝑓
)

d

⎡

⎢

⎢

⎣

𝜻̃𝜻

𝑓𝑓

⎤

⎥

⎥

⎦

�

and the smallest time scale 𝐴𝐴 𝐴𝐴𝑡𝑡

(

𝜻̃𝜻 , 𝑓𝑓
)

 to be resolved is computed as the reciprocal of the largest eigenvalue of 
the Jacobian matrix J. The actual time step 𝐴𝐴 Δ𝑡𝑡 is computed as some fixed fraction of 𝐴𝐴 𝐴𝐴𝑡𝑡 , optionally bounded by 
a maximum value and/or maximum growth rate to prevent time step overestimation as the time scale increases. 
The equations are discretized in time with forward and backward Euler schemes, both first-order accurate, respec-
tively as

⎡

⎢

⎢

⎣

𝜻̃𝜻

𝑘𝑘+1
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⎥
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� (D1)
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= 𝟎𝟎.� (D2)

Our algorithm makes an explicit-in-time prediction using Equation D1 and evaluates the 𝐴𝐴 𝐴𝐴2 norm of the implicit-
in-time residual 𝐴𝐴 𝐴𝐴 . It includes the possibility to perform Newton-Raphson iterations using the Jacobian J to keep 
the residual bounded, although we find it to be more efficient to experimentally set the dimensionless time step 

𝐴𝐴 Δ𝑡𝑡∕𝑆𝑆𝑡𝑡 sufficiently small (e.g., 0.1) to never cause tolerances to be violated. This value is then taken to correspond 
to a stable time step size of the explicit problem.

Data Availability Statement
All codes and algorithms to generate and visualize the results discussed in this work can be found as Wolf-
ram Mathematica (Wolfram Research, Inc., 2017) notebooks in the Supporting Information. We depend on the 
MIT-licenced “Scientific Colour Maps” package (Crameri, 2021) for distortion-free representation of the model 
results—also for readers with color vision deficiencies (Crameri et al., 2020).
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