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Universal scaling for the permeability of random packs of overlapping and nonoverlapping particles
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Constraining fluid permeability in porous media is central to a wide range of theoretical, industrial, and natural
processes. In this Letter, we validate a scaling for fluid permeability in random and lattice packs of spheres and
show that the permeability of packs of both hard and overlapping spheres of any sphere size or size distribution
collapse to a universal curve across all porosity φ in the range of φc < φ < 1, where φc is the percolation
threshold. We use this universality to demonstrate that permeability can be predicted using percolation theory at
φc < φ � 0.30, Kozeny-Carman models at 0.30 � φ � 0.40, and dilute expansions of Stokes theory for lattice
models at φ � 0.40. This result leads us to conclude that the inverse specific surface area, rather than an effective
sphere size or pore size is a universal controlling length scale for hydraulic properties of packs of spheres. Finally,
we extend this result to predict the permeability for some packs of concave nonspherical particles.
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The hydraulic properties of porous media are controlled
by their internal microstructure [1]. In particular, the per-
meability depends on the distribution, geometry, and scale
of the internal porous channel pathways [2]. Thus, a cen-
tral goal of material research is to find simple relationships
between macroscopic properties, such as fluid permeability
and the measurable characteristics of microstructure [1–7].
To date, many different such relationships have been pro-
posed possessing variable degrees of freedom in the form
of parameters that can be adjusted in order to accurately
capture the permeability of a given system [2,5,8–12]. Yet
in one of the seemingly simplest such systems, composed
of spherical objects packed in a volume, there is no clear
framework for bringing together and comparing data across
the entire range of microstructural characteristics and sphere
size distributions. Here, we formulate and test a framework
for comparing systems of spheres for which the spheres can
and cannot overlap with one another, and systems in which
the spheres are a continuous distribution of radii.

The slow flow of viscous and incompressible fluids through
porous media is given by Darcy’s law, which relates the pres-
sure gradient ∇p driving flow with the resultant fluid filtration
velocity u via the dynamic fluid viscosity μ and the perme-
ability k of the porous medium and is [13,14]

u = − k

μ
∇p, (1)
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where k depends on the volume fraction of the pore space φ.
An area of broad interest is to find rigorous models for k(φ)
across as broad a range of φ as possible and for a wide range of
system types, thus, rendering Eq. (1) generally predictive. Al-
though a wide range of models for k(φ) have been proposed,
they are often: (1) restricted to a given microstructure type,
(2) depend on knowledge of pore network tortuosity, or (3)
have empirical adjustable parameters that must be calibrated
against experimental or numerical datasets.

Sphere packs, composed of spherical objects of radius R
or radius distribution f (R) packed in a volume, represent
a standard model system for exploring permeability scaling
laws. If we focus on the case for which the intersphere space
is the fluid phase and the sphere space is a rigid solid (gen-
erally termed the Swiss cheese model system [12,15]), then
such systems can be divided into two classes: overlapping
(or penetrable) and nonoverlapping (or hard) sphere systems
[1,10,12,15–17]. Herein, we use nonoverlapping and hard in-
terchangeably for the latter case. For packs of either hard or
overlapping spheres, the accessible range of φ is φ′ < φ < 1,
where φ′ > 0 is a lower limiting value. For packs of hard
spheres, φ′ is given by either a formal maximum packing
porosity φ′ = φm, such as is the case in regular packs on cubic
lattices [8], or a random close-packing (rcp) porosity φ′ = φrcp

as is the case for random heterogeneous packs [18,19]. By
contrast, for packs of overlapping spheres, φ′ is given by a per-
colation threshold porosity φ′ = φc. A key difference between
these two geometries—hard and overlapping spheres—is then
that k has a finite value at φ = φm or φ = φrcp, whereas k → 0
at φ = φc. This property of φ′ informs the model formulations
for k(φ) that we will explore here.

For hard spheres there exist expansions of the Stokes equa-
tions for flow past a single sphere to account for many spheres
at φ < 1 (Refs. [1,8,20]). Sangani and Acrivos [8] present
a formulation with the expansion coefficients ci up to term
i = 30 for face-centered, body-centered, and simple cubic
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lattices,

k = 2(1 − φ)

s2

[
30∑

i=0

ci

(
1 − φ

φm

)i/3
]−1

, (2)

where s is the specific surface area internal to the pack. We
note that in the original contribution, Sangani and Acrivos
[8] provide a solution for the fluid drag K , which can be
transformed to k (see Vasseur et al. [21]). Vasseur et al.
[21] show that Eq. (2) provides a reasonable description for
random packs in the dilute regime φ > φrcp. This result may
be surprising given that random packs violate the cubic ar-
rangements on which the model is founded. At intermediate
φ close to or at φrcp, Eq. (2) breaks down, and the preferred
model is the so-called Kozeny-Carman equation [2,7,9,21],

k = φ3

Cs2
, (3)

for which C is an empirical adjustable parameter, and where
Eq. (3) with C = 5 performs well against data for hard-sphere
packs at a wide range of polydispersivity [21]. By contrast, for
overlapping sphere packs it might be reasonable to assume
that an effective model would account for the percolation
threshold porosity φc below which permeability is zero via
a rescaling φ − φc (Refs. [4,5,17,22]). Martys et al. [5] pro-
posed

k = 2[1 − (φ − φc)]

s2
(φ − φc)e, (4)

where e is a percolation exponent. For overlapping spheres
close to the percolation transition (low φ), the theoreti-
cal value is e = 4.4 (Ref. [15]), close to empirical best-fit
exponents of 4.0 < e < 4.2 (Refs. [4,5]). Monodisperse over-
lapping spheres form isolated nonpercolating pore spaces at
φc = 0.0301 ± 0.0003 (Refs. [16,23,24]).

Regardless of whether the spheres in a pack can overlap
with one another or not, the models given by Eqs. (2)–(4)
all state that k ∝ s−2 and the parameter s is a function of
the sphere sizes that make up a given sphere pack such that
Eqs. (2)–(4) are specific to a given sphere pack of choice. In
order to use Eqs. (2)–(4), s must be known from the distribu-
tion of sphere sizes. In general, the specific surface area of a
pack of spheres is given by

s = 3(1 − φ)

δ
, (5a)

s = −3 φ ln(φ)

δ
, (5b)

where Eq. (5a) is for hard spheres and Eq. (5b) is for
overlapping spheres, δ = R (monodisperse) or δ = 〈R3〉/〈R2〉
(polydisperse), and where 〈Rn〉 is the nth moment of f (R).
Using Eq. (5) with δ defined for a given system, we can solve
Eqs. (2)–(4) to provide a set of three possible model classes
for k(φ).

As a final step in order to render simulation results or
experimental data comparable, regardless of s [and, therefore,
regardless of the specific choice of R or f (R)], we normalize
Eqs. (2)–(4) by a variation of the Stokes permeability ks,

ks = 2[1 − (φ − φc)]

s2
, (6)

FIG. 1. The distribution of sphere sizes used in the (a)–(e) over-
lapping sphere domains and (f)–(j) nonoverlapping sphere domains.
The discrete histograms represent the measured distributions re-
sulting from the algorithms used, whereas the continuous curves
represent the target Weibull distributions.

such that k̄ = k/ks. ks is usually given as ks = 2(1−φ)s−2,
which we note is equivalent to Eq. (6) when φc = 0. Defining
k̄, Eqs. (2)–(4) become

k̄ =
[

30∑
i=0

ci

(
1 − φ

φm

)i/3
]−1

, (7a)

k̄ = φ3

2C(1 − φ)
, (7b)

k̄ = (φ − φc)e. (7c)

where we take φc = 0 in ks for Eqs. (7a) and (7b), but φc > 0
for Eq. (7c). Equation (7) represents a set of model classes that
can be compared across overlapping and hard-sphere packs.

Here, the principal aim is to compare predictions of each
of the models given by Eq. (7) with data from packs of
spheres generated numerically. In order to generate packs
of spheres, we use two separate algorithms: (1) a molecular
dynamics simulation with sphere growth laws in order to
generate hard-sphere packs at a range of φ including φ → φrcp

(Ref. [25]), and (2) a random sphere generation algorithm to
produce overlapping sphere packs [16,26]. In each case, we
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FIG. 2. Some 3D visualizations of examples of the porous microstructures used here for (a) and (b) nonoverlapping spheres, and (c) and
(d) overlapping spheres. These domains use monodisperse spheres in (a) and (c) drawn from the radii distributions in Figs. 1(e) and 1(j)
or polydisperse spheres in (b) and (d) drawn from the radii distributions in Figs. 1(c) and 1(h). The insets: The steady state velocity vector
distribution in a pseudo 2D x-y slice through the full 3D domains showing the relative magnitude of the fluid velocity that arises from a pressure
gradient in the x direction.

control the sphere radius distribution p(R) using a Weibull
distribution. In the case of the hard-sphere packs, we assign
sphere growth rates drawn from a probability distribution
p(r) = αrα−1 exp(−rα ) for which α is a constant shape pa-
rameter. At each iteration step, this growth law is applied
so that the volume of the spheres increases between r and
r + dr, and particle-particle collisions are calculated as φrcp is
approached. That results in a final distribution p(R) for each
given φ. In the case of the overlapping sphere packs, we can
draw from a Weibull distribution directly p(R). In both cases,
domain boundaries are periodic, and the resulting distribution
of sphere radii is captured by S = 〈R〉〈R2〉/〈R3〉 where 〈Rn〉 is
the nth moment of the distribution p(R). S → 1 represents the
monodisperse limit, and low S indicates polydisperse distribu-
tions. In Fig. 1, we report the size distributions f (R) used here
together with the corresponding Weibull target distributions.

The numerical domains are binarized such that the spheres
are given as the solid phase and the intere-sphere volume is
given as the fluid phase. For each domain produced, we use
a D3Q15 lattice Boltzmann fluid flow simulation algorithm
LBflow [27,28] calibrated for predicting the permeability of
cubic packs of spheres [17,28]. This algorithm discretizes
the fluid phase into lattice fluid nodes and aliquots of fluid

mass are iteratively propagated with time t, and collisions are
resolved via the lattice Boltzmann approach. Following previ-
ous work using LBflow, we apply a pressure gradient of ∇P =
0.01 Pa m−1, a fluid viscosity of μ = 1.8205 × 10−5 Pa s,
and a fluid density ρ f = 1.2047 kg m−3. These conditions
ensure that both the Reynolds and Mach numbers of the flow
are small throughout [16,17,26] (for our simulations we find
10−13 < Re < 10−6 and 10−16 < Ma < 10−10, respectively).
The simulation is halted when the average fluid speed does
not vary by a factor of more than 10−5 twice over 50 iteration
steps.

The output of interest of the LBflow algorithm is the dis-
tribution of fluid velocity vectors at steady state. We average
these and compute an average 〈u〉 j = u jφ, where u j is the
direct average of the speed in a given direction j. In Fig. 2,
we show a two-dimensional (2D) slice of the distribution of
steady state fluid flow vectors for some example domains. 〈u〉 j

is then used as an input to Eq. (1) in place of u, to find the
permeability in a given direction k j . We repeat this procedure
for each of the three principal directions j. Finally, in order
to confirm that our volumes are representative, we apply the
approach of Matyka et al. [29] and Vasseur et al. [21] who
apply a normalization of the raw permeability values by the
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FIG. 3. The result of the simulations and scaling proposed herein cast as k/ks as a function of the reduced porosity φ − φc. For the
dilute expansion results [Eq. (7a)] and for the Kozeny-Carman result [Eq. (7b)], we take φc = 0 such that φ − φc = φ. The hard-sphere
results (squares) use φc = 0, whereas the overlapping sphere results (circles) use φc = 0.03. (a) The full data series. (b) The dilute regime at
φ − φc > 0.2. The inset: The result of the rms analysis, showing the data relative to Eq. (7a) (unfilled elongate diamonds), the data relative to
Eq. (7b) (unfilled equant diamonds), and the data relative to Eq. (7c) (filled diamonds).

square of a length scale δ and then fit for the dependence on
the domain size L using

k

δ2
= k∞ − k

(
L

δ

)−2/3

, (8)

where k∞ is the limiting representative permeability at very
large L. We use δ = 〈R3〉/〈R2〉 = 〈R〉/S as defined previously
and fit each dataset using Eq. (8) to output k∞ as the per-
meability of interest. In practice, this means that we present
k̄ = k∞/ks in the visual reporting of our results here. We
note qualitatively that at low φ, k = k∞ for most L used, and
so this correction only has a real impact on our results as
φ → 1. Finally, we use a marching cubes algorithm [30,31]
to determine s for each domain.

In Fig. 2, we show example three-dimensional (3D) render-
ings of some example domains of hard and overlapping sphere
geometries, created using AvizoTM. In addition to producing
new simulations across a wide range of φ and S, we compile
available simulation results from published sources for which
the data necessary to apply the normalization given in Eq. (6)
is available. Specifically, we use the monodisperse overlap-
ping sphere simulations and the hard cubic-lattice sphere
simulations from Vasseur and Wadsworth [16], and the poly-
disperse hard-sphere simulations from Vasseur et al. [21]. For
all overlapping sphere simulation data, we apply φc = 0.03,
approximately typical for sphere packs [16] and only weakly
dependent on sphere polydispersivity [24].

We find that across a wide range of sphere sizes, polydis-
persivity of sphere radii distributions, and across the random,
lattice, hard, and overlapping sphere-pack types, there is a
good universal collapse of the data to a single k̄(φ − φc) trend
[Fig. 3(a)]. We also find that there is apparent efficacy of
all three of the models given in Eq. (7) when taken in the
restricted range of φ − φc. To quantify these ranges, we apply

a root mean square statistic rms =
√∑

(k̄ − k̄′)2
/n, where k̄

is the measured value, k̄′ is the model value, and n is the total
number of data points at a given φ across S. We compute the
rms for each φ for each model in Eq. (7) separately, resulting
in rms(φ − φc) for each model [Fig. 3(a) inset] where the
regions of φ − φc in which the rms is lower for one model
compared with another model indicate overall efficacy of that
model for that range of porosity. This approach shows that
there appear to be three regimes: (1) a dilute regime at high φ

where Eq. (7a) or Eq. (7b) is broadly valid; (2) a concentrated
regime at low φ where Eq. (7b) or Eq. (7c) is valid; and (3) a
transitional regime at intermediate φ where Eq. (7b) is valid.
The range of φ for each of these regimes, delimited via the
rms, is approximately: (1) 0.40 � φ < 1, (2) φc < φ � 0.30,
and (3) 0.30 � φ � 0.40.

We note that the collapse to a universal curve is imperfect
across all S at φ → φc and imperfect between overlapping
and hard spheres at φ → 1. At low φ close to φc, we posit
that the imperfect collapse arises because we set φc to be
a constant value for all S, whereas in the few cases where
φc has been determined for S < 1, it has been shown to be
different from the φc value at S = 1. Specifically, Rintoul
[24] found that whereas φc = 0.0301 ± 0.0003 for S = 1,
φc = 0.0278 ± 0.0005 for a bidisperse distribution of sphere
sizes (corresponding to S = 0.83). This effect is small, but
sufficient to account for the differences observed in our data
in φ − φc space [Fig. 3(a)]. Therefore, we propose that fu-
ture work should constrain the percolation probability for
polydisperse distributions of spheres at φ → 0. Conversely,
at high φ the imperfect agreement between overlapping and
hard-sphere data is due to the implementation of the rule that
φc = 0.03 for overlapping spheres, whereas φc = 0 for hard
spheres. We note that at high φ, the meaning of φc for overlap-
ping spheres is ambiguous and that formally the packs should
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FIG. 4. The normalized specific surface area s̄ = s/δ.

be treated as hard-sphere packs with φc = 0. In Fig. 3(b) we
show this dilute case with φc = 0, demonstrating that this,
indeed, causes the data to collapse adequately. However, we
also note that there is no obvious and simple method by which
a continuum of φ for overlapping spheres can be associated
with φc > 0 at low φ and associated with φc = 0 at high φ.

We interpret the three regimes found here in the following
manner. First, in the dilute regime, it appears that the perme-
ability is broadly insensitive as to whether the spheres overlap
or not and to the details of the arrangements of the spheres;
random or lattice arranged. This appears consistent with the
observation that the specific surface area s for overlapping
and hard spheres converges at high (Fig. 4). Similarly, the
detailed arrangement of the spheres is less important when
the distance between any two spheres is large (i.e., high φ).
Second, in the concentrated regime at low φ, φ is typcially less
than the φrcp value, and so hard-sphere packs cannot access
this region. However, we note that for low S (highly polydis-
perse sphere sizes), hard-sphere packs at φrcp diverge toward
Eq. (7b) (Fig. 3), and, therefore, polydisperse packs of hard
spheres are microstructurally similar to packs of overlapping
spheres. Third, the intermediate regime appears to be valid
only for intermediate φ typically around φrcp values, which
may explain the wide use of Eq. (7b) for describing loose
packs of particles, such as sediments and soils.

Our collapse of the data across all conditions to a sin-
gle trend of k̄(φ − φc) confirms that our scaling of k via
Eq. (6) is valid and, therefore, that k ∝ s−2. This opens up
the possibility that packs of nonspherical particles may also
collapse to our universal classes [Eq. (7)] if s can be de-
termined or calculated. To test this, we first use existing

FIG. 5. Extending the models explored here to hard nonsphere and natural rough packs. (a) and (b) Some 3D visualizations of square-ended
cuboid packs from Liu et al. [32] at aspect ratio (a) r = 1 (cubes) and (b) r = 6 (prolate needles). In (a) and (b) the inset panels are equivalent
to those in Fig. 2 but for the corresponding 3D domain shown here. (c) The result of applying the scaling k/ks with φc = 0 to the permeability
data for the cuboid packs (diamonds) over a wide range of r and φ close to φrcp. The inset: the specific surface area s̄ using the measured s for
the cuboid packs, compared with s̄ = 2φ(1 + r−1) and δ = a, where a is the side length of the square cuboid end. (d) The full scaling solutions
proposed here [as in Fig. 3(a)] with the data for hard-cuboid packs (diamonds) as well as for natural sandstones (crosses) added, extending the
solution validity to nonspherical particles, to natural rough particles (sand grains throughout diagenesis), and to very low φ close to φc.
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simulations of square-end cuboids at a range of ratios of
cuboid length to cuboid breadth provided by Liu et al. [32].
We use the same numerical procedure via LBflow and the
marching cubes algorithm as described above to output k∞
and s for each φ. Using this information, we can compute k̄
and, as with our hard-sphere simulations, we take φc = 0. In
Fig. 5, we show that these data do, indeed, collapse to the
universal k̄(φ − φc) trend in just the way that our sphere-pack
data do.

As a second step in testing the efficacy of our approach for
nonspherical particle systems, we use the canonical sandstone
dataset produced by Bourbie and Zinszner [33]. These data
are for so-called “clean” sandstones (i.e., without pore-filling
clays and mineralization) over a wide range of porosity but all
produced from the same sedimentary basin environment and
so involving the same sand grains as a building block. These
data have also been used previously as a test-bed dataset for
geological permeability models [4,34]. Sandstones undergo
diagenesis, which involves the reduction of porosity below the
maximum packing porosity attributable to hard grains alone,
and as such sandstones are often in the low-permeability
range, compared with the hard-sphere and hard-cuboid nu-
merical domains used herein. We find that the sandstone
data used here straddle the porosity ranges spanned by our
overlapping and hard particle domains. To plot the data for
these sandstones using our normalization, we use a model

for the specific surface area interstitial to sand grains dur-
ing diagenesis [4], which is based on the overlapping sphere
model presented here [Eq. (5b)]. Using this, we find that these
data collapse to our normalization trend and track from the
prediction of Eq. (7a) to that of Eq. (7c), just as the data for
overlapping sphere packs do. Along with the data for packs of
hard cuboids, this represents an especially hard test of how
our scaling approaches perform for nonspherical, heteroge-
neous, and complex natural cases, extending the utility and
universality of our result. However, we note that we have not
provided a test of the efficacy of Eq. (7) in describing the
permeability of packs of arbitrary shaped particles, including
convolute shapes with high convexity.

The data that support the findings of this Letter are avail-
able from the corresponding author upon reasonable request.
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