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1  |  INTRODUC TION

In recent decades, technology improvements have rendered next 
generation sequencing (NGS) a robust and cost- effective technique 
of wide applicability in research fields that require large- scale DNA 
sequencing. Among the different NGS- based approaches, RNA 

sequencing (RNA- Seq) allows the generation of the so- called tran-
scriptomes de novo (i.e., without the need for a reference genome). 
Transcriptomes are applicable for several downstream applications, 
including the analysis of differential gene expression (Pita et al., 
2018), gene model prediction (Chan et al., 2017), DNA enrichment 
bait design (Quek et al., 2020), genome annotation (Holt & Yandell, 
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Abstract
The use of RNA sequencing (RNA- Seq) data and the generation of de novo transcrip-
tome assemblies have been pivotal for studies in ecology and evolution. This is es-
pecially true for nonmodel organisms, where no genome information is available. In 
such organisms, studies of differential gene expression, DNA enrichment bait design 
and phylogenetics can all be accomplished with de novo transcriptome assemblies. 
Multiple tools are available for transcriptome assembly, but no single tool can provide 
the best assembly for all data sets. Therefore, a multi- assembler approach, followed 
by a reduction step, is often sought to generate an improved representation of the 
assembly. To reduce errors in these complex analyses while at the same time attaining 
reproducibility and scalability, automated workflows have been essential in the analy-
sis of RNA- Seq data. However, most of these tools are designed for species where 
genome data are used as reference for the assembly process, limiting their use in non-
model organisms. We present TransPi, a comprehensive pipeline for de novo transcrip-
tome assembly, with minimum user input but without losing the ability of a thorough 
analysis. A combination of different model organisms, k- mer sets, read lengths and 
read quantities was used for assessing the tool. Furthermore, a total of 49 nonmodel 
organisms, spanning different phyla, were also analysed. Compared to approaches 
using single assemblers only, TransPi produces higher BUSCO completeness percent-
ages, and a concurrent significant reduction in duplication rates. TransPi is easy to 
configure and can be deployed seamlessly using Conda, Docker and Singularity.
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2011; Testa et al., 2015), detection of whole- genome duplication 
(Yang et al., 2019) and phylogenetics (Cheon et al., 2020; Lozano- 
Fernandez et al., 2019).

Various software has been developed for the generation of de 
novo transcriptome assembly. Commonly used tools include trinity 
(Grabherr et al., 2011), rnaspades (Bushmanova et al., 2019), trans- 
abyss (Robertson et al., 2010), and soapdenovo- trans (Xie et al., 2014). 
However, a recent study compared 10 assemblers with nine data sets 
(i.e., different species and samples) and demonstrated that the per-
formance of each tool varies by data set; no single tool was able to 
generate optimal assemblies for all data sets (Hölzer & Marz, 2019). 
The assembler's performance measurement was based on a combi-
nation of biological- based measures (e.g., number of Benchmarking 
Universal Single- Copy Orthologs— BUSCO), and reference- free 
measures (e.g., transrate's optimal assembly score; Smith- Unna 
et al., 2016). Therefore, combining multiple assemblers probably 
represents a valuable approach to increase the quality of refer-
ence assemblies (Lu et al., 2013). Additionally, factors such as read 
length and number also play important roles in the assembly process 
(Francis et al., 2013; Grabherr et al., 2011; Schulz et al., 2012).

Transcriptome de novo assemblies tend to produce thousands to 
hundreds of thousands of different transcripts of which a significant 
amount can be misassembled (Bushmanova et al., 2019; Schulz et al., 
2012). To reduce the complexity within a transcriptome and to iden-
tify true transcripts and isoforms, one common approach is to remove 
duplicated and misassembled sequences. Clustering methods are 
often employed for this, where similar transcripts are combined into 
groups. One of the tools commonly used for clustering transcripts is 
cdhit- est (Fu et al., 2012), which tends to keep the longest transcripts 
only. However, clustering and selecting for the longest transcripts is 
not always the best strategy (Gilbert, 2013) since they often result 
from misassemblies (i.e., not real transcripts) and may include frame-
shift errors. On the other hand, tools such as evidentialgene (Gilbert, 
2013, 2019) use a combination of clustering and classification meth-
ods (i.e., sequence features such as coding sequence [CDS] content 
and length) to generate a nonredundant consensus assembly. The 
latter approach is more accurate for the cost of longer computing 
time and higher computation demands (e.g., higher memory usage). 
Combining multiple assemblers with a thorough reduction of each 
assembly individually thus increases the complexity of the analyses.

The ideal path to optimal reference transcriptomes should, 
therefore, include the use of multiple assemblers, followed by thor-
ough filtering of each assembly individually. Generating, combining 
and filtering all resulting assemblies step by step individually (cf. 
Cerveau, & Jackson, 2016; MacManes, 2018) is impractical, of lim-
ited reproducibility and can be prone to human error. Consequently, 
the design of streamlined RNA- Seq analysis pipelines has gained 
popularity in recent years. However, most of these pipelines require 
a reference genome for the transcriptome assembly (i.e., reference- 
guided assembly) and are, consequently, not suitable for de novo ap-
proaches (Cornwell et al., 2018; D’Antonio et al., 2015; Kohen et al., 
2019; Martin et al., 2010; Wang, 2018; Zhang & Jonassen, 2020). 
This represents a major limitation for transcriptomics in nonmodel 
organisms, where genome reference data are usually lacking.

To address these shortcomings, we developed TransPi, a com-
prehensive Transcriptome ANalysiS Pipeline, for de novo transcrip-
tome assembly. TransPi is implemented using the scientific workflow 
manager nextflow (Di Tommaso et al., 2017), which provides a 
user- friendly environment, easy deployment, scalability and repro-
ducibility. TransPi performs all steps of standard RNA- Seq analysis 
workflows, from raw read quality control up to annotation against 
multiple databases (e.g., SwissProt, PFAM). To reduce possible bi-
ases, duplication and misassemblies, TransPi utilizes various assem-
blers and k- mers (i.e., k length sequences used for the assembly) to 
generate an over- assembled transcriptome that is then reduced to 
a nonredundant consensus transcriptome with the software eviden-
tialgene (Gilbert, 2013, 2019). Here we show that, when compared 
to approaches using single assemblers only, TransPi produces higher 
BUSCO completeness percentages, and a concurrently significant 
reduction in duplication rates (i.e., higher single- copy genes). Higher 
BUSCO scores in the complete and single- copy categories indicate a 
less erroneous consensus assembly (Simão et al., 2015; Waterhouse 
et al., 2011).

In sum, TransPi provides a useful resource for the generation 
of de novo transcriptome assemblies, with minimum user input but 
without losing the ability of a thorough analysis. TransPi and all doc-
umentation is available at https://github.com/palmu c/Trans Pi.git.

2  |  METHODS

2.1  |  Pipeline implementation and configuration

TransPi is based on the scientific workflow manager nextflow (Di 
Tommaso et al., 2017). The pipeline is easy to configure and can be 
deployed using the package management system Conda, Docker, 
Singularity or cloud environments (e.g., AWS). Real- time monitoring 
of the pipeline can be performed by using Nextflow Tower with no 
modification needed to the TransPi script. Deployment of TransPi 
in computing clusters is accomplished by the native communication 
of Nextflow with scheduling managers such as SLURM, PBS and 
Torque. TransPi can deploy hundreds of jobs depending on user con-
figurations and needs. Multiple data sets can be run in parallel given 
that enough computing resources are available. Running time of the 
pipeline is dependent on factors such as number of data sets, read 
quantity, k- mer selection, complexity of the transcriptome being as-
sembled, and user- specified additional options selected (filtration, 
signalp, etc.). TransPi consists of two major components: a precheck 
script to install dependencies, and the main script to run the assem-
blers, perform the reduction and transcriptome annotation.

2.2  |  Precheck script

TransPi integrates several programs and external databases (e.g., 
SwissProt, Boeckmann et al., 2003; PFAM, El- Gebali et al., 2018) for 
the generation and annotation of the reference transcriptome. To 
facilitate the setup of all necessary dependencies, TransPi includes 
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an installation script. This will first install, if necessary, the Conda 
package management system, all dependencies, and download and 
configure the required databases. The script is designed to recognize 
when a previous run of the script was performed, thus preventing 
the repetition of previous steps. Another advantage of the pre-
check script is that it will automatically create the configuration file 
needed by Nextflow to execute the pipeline with all the necessary 
information. As a result, the user will only have to make some minor 
changes to the file (e.g., number of allocated threads, the amount 
of working memory, scheduling manager, node names and queue) 
before running the pipeline. Essentially, the precheck has to be run 
entirely only once for the dependencies and database installation. 
Subsequent pipeline runs can be done with the same configuration 
file. Auxiliary scripts for the automated update of the databases such 
as PFAM and SwissProt are also provided.

2.3  |  Main script

A diagram of TransPi version 1.0.0 is shown in Figure 1. First, reads 
are checked for adapter presence, low- quality bases and over- 
represented sequences with fastqc version 0.11.9 (Andrews, 2010). 
Filtration of the reads (by default reads with an average phred qual-
ity >5 are kept, see MacManes, 2014) and trimming of adapters (if 
present) is performed with fastp version 0.20.1 (Chen et al., 2018). 
Optionally, removal of rRNA is performed with sortmerna version 
4.2.0 (Kopylova et al., 2012). Filtered reads are subsequently nor-
malized before being assembled (Grabherr et al., 2011). The assem-
bly step combines five different assemblers and uses multiple k- mer 
lengths. The assemblers used by TransPi are rnaspades version 3.14.0 
(Bushmanova et al., 2019), trans- abyss version 2.0.1 (Robertson et al., 
2010), soapdenovotrans version 1.03 (Xie et al., 2014), trinity version 
2.9.1 (Grabherr et al., 2011) and velvet version 1.2.12/oases version 
0.2.09 (Schulz et al., 2012; Zerbino & Birney, 2008). All assemblers, 
but trinity, will use the k- mer list to produce individual assemblies 
per k- mer. After the assembly stage is performed, the combined 
transcriptomes (i.e., all assemblers and k- mers) are reduced with evi-
dentialgene v2019.05.14 (Gilbert, 2013, 2019). Briefly, evidentialgene 
will merge perfect duplicates, cluster protein sequences and per-
form local similarities searches between the transcripts using blast 
version 2.2.31 (Altschul et al., 1997) (for more details see Gilbert, 
2019).

Next, TransPi uses the nonredundant reference transcriptome to 
run several downstream analyses commonly applied to de novo tran-
scriptomes projects: (i) rnaquast version 2.0.1 for quality assessment 
(Bushmanova et al., 2016), (ii) bowtie2 version 2.3.5.1 to map the 
reads against the transcriptome (Langmead & Salzberg, 2012), (iii) 
busco (Simão et al., 2015; versions 3 and 4) to quantitatively assess 
the completeness in terms of expected universal single copy gene 
content, (iv) transdecoder version 5.5.0 (https://trans decod er.github.
io) to identify open reading frames (ORFs), with the option to per-
form homology searches of all ORFs to known proteins via blast, in 
order to retain ORFs that may have functional significance but do 

not pass the coding likelihood scores, and (v) trinotate version 3.2.0 
(Bryant et al., 2017) to provide automatic functional annotation.

By using diamond version 0.9.30 (Buchfink et al., 2015), the 
similarity searches of the transcripts used for the annotation step 
against the SwissProt and UniProt databases (chosen by the user) 
are accelerated. rnammer version 1.2 (Lagesen et al., 2007), tmhmm 
version 2.0 (Krogh et al., 2001) and signalp 4.1 (Petersen et al., 2011) 
are used to search for rRNA, signal peptide proteins and transmem-
brane domain prediction, respectively. Protein domain searches are 
performed with hmmer version 3.3 (Finn et al., 2011) against the lat-
est version of the PFAM database. All this information is combined 
into an annotation report which includes: (i) information on Gene 
Ontology (GO); (ii) evolutionary genealogy of genes: Non- supervised 
Orthologous Groups (eggNOG), and (iii) Kyoto Encyclopedia of 
Genes and Genomes (KEGG). It also contains the similarity search 
against SwissProt and the user- specified UniProt database. TransPi 
will also produce a custom Hypertext Markup Language (HTML) re-
port that summarizes the steps and provides interactive plots for 
straightforward exploration of the data. Plots from the interactive 
report can also be saved in SVG format. Other plots are also saved 
automatically (PDF and SVG) in the results directory generated by 
the pipeline. Altogether, TransPi provides the user with the ability 
to assess and evaluate the final assembly and to compare it to other 
commonly used methods for reference transcriptome generation 
(e.g., a trinity- only assembly).

2.4  |  K- mer selection, read length effect and 
chimera detection

To test the performance of the pipeline and the effect of k- mer se-
lection (Prjibelski et al., 2020), read quantities and read lengths, data 
sets from the model organisms Caenorhabditis elegans, Drosophila 
melanogaster and Mus musculus were used. These species were se-
lected given the vast amount of transcriptomic data available with 
various read length and quantities (Table S1). Three k- mer sets (A, B, 
C) depending on read length were designed, since the selection of 
this parameter will modify how the assembly graph is constructed 
(Table S2). For the read length test, data consisting of paired- end 
reads of 50, 75, 100 and 150 bp (Table S1) were analysed. All sta-
tistical analyses, such as ANOVA and Kruskal– Wallis test, were per-
formed in r (version 3.6.2).

To measure the percentage of chimeric transcripts and transcript 
accuracy, a similar approach to Kerkvliet et al. (2019) was used. 
First, gene sets for the model organisms C. elegans (i.e., c_elegans.
PRJNA13758.WS279.mRNA_transcripts.fa from Wormbase), D. 
melanogaster (i.e., Dmel- all- transcript- r6.39.fasta from Flybase) and 
M. musculus (i.e., GCF_000001635.27_GRCm39_rna_from_genomic.
fna from NCBI) were downloaded. Then a blastn search was per-
formed using the transcriptomes from TransPi and trinity against 
each corresponding gene set. Parameters used were as specified 
by Kerkvliet et al. (2019) (perc_identity.90 - evalue.001). blastn out-
put was filtered using a minimum length of 300 bp for each match. 
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Nonchimeric transcripts were identified as transcripts with one 
match per gene. Transcripts with two or more matches were classi-
fied as chimeras.

2.5  |  TransPi on nonmodel organisms

Given TransPi is focused on species with no (or scarce) genome in-
formation, the pipeline was tested with multiple species from dif-
ferent phyla (Table 1). K- mer set C was applied for all assemblies of 
nonmodel organisms as this gave the best BUSCO percentages (see 
Section 3). The nonmodel organism data sets consisted of various 
read lengths ranging from 50 to 150 bp. Given trinity is by far the 
most commonly used de novo transcriptome assembly tool (by num-
ber of citations and excluding usage of some tools for genome as-
semblies), the performance of TransPi was evaluated by comparing 
the output transcriptome to the trinity assembly for each data set.

2.6  |  Additional options

Various additional options were implemented in TransPi to ob-
tain more insight into the transcriptomes being assembled. One of 
these options is filtering symbionts and/or contaminants from the 
assembly using the Parasite & Symbiont Transcriptome Separation 
software (psytrans) (https://github.com/sylva infor et/psytrans). The 
filtration step was tested with the data set of the coral Porites pu-
koensis (accession SRR8491966) using sequences of its symbiont 
Symbiodinium microadriaticum (Uniprot Taxon Identifier: 2951) and 
sequences of the order Scleractinia (Uniprot Taxon Identifier: 6125) 
as host. Another option of TransPi examines the presence and ab-
sence of BUSCO genes in all the generated assemblies and creates 
a heatmap of gene distribution. This option was tested with the 
epadomorph barnacle Octolasmis warwickii data set (SRR10527303) 
given the difference between TransPi and trinity BUSCO scores for 
the missing category (see Section 3).

F I G U R E  1  TransPi version 1.0.0 flowchart showing the various steps and analyses it can perform. For simplicity, this diagram does not 
show all the connections between the processes. Also, it omits other additional options such as the BUSCO distribution and transcriptome 
filtering with psytrans (see Section 2.6). ORFs, open reading frames
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TA B L E  1  Nonmodel organism data sets used in this study

Phylum Class Order Species SRA No. of reads
Length 
(bp)

Cnidaria Anthozoa Alcyonacea Pinnigorgia flava ERR3026433 30,545,400 50

Cnidaria Anthozoa Alcyonacea Sinularia cruciata ERR3026434 22,160,908 50

Cnidaria Anthozoa Alcyonacea Tubipora musica ERR3026435 23,006,724 50

Cnidaria Anthozoa Helioporacea Heliopora coerulea ERR3040053 29,000,821 50

Cnidaria Anthozoa Scleractinia Acropora palmata SRR5569439 10,476,071 75

Cnidaria Anthozoa Scleractinia Acropora pulchra SRR8601367 14,037,157 75

Cnidaria Anthozoa Scleractinia Porites pukoensis SRR8491966 16,448,725 150

Cnidaria Hydrozoa Anthoathecata Millepora alcicornis SRR4294206 24,645,545 150

Porifera Homoscleromorpha Homosclerophorida Oscarella pearsei SRR1042012 11,306,242 100

Porifera Homoscleromorpha Homosclerophorida Corticium candelabrum SRR504694 18,897,095 150

Porifera Demospongiae Spongillida Ephydatia muelleri SRR1041944 11,425,188 100

Porifera Demospongiae Spongillida Spongilla lacustris SRR1168575 5,136,881 100

Porifera Demospongiae Poecilosclerida Mycale phylophylla SRR1711043 11,408,543 100

Porifera Demospongiae Haplosclerida Haliclona tubifera SRR1793376 16,356,602 100

Porifera Demospongiae Dictyoceratida Ircinia fasciculate SRR7655554 13,420,109 100

Porifera Calcarea Leucosolenida Sycon coactum SRR504690 9,098,097 100

Mollusca Gastropoda Trochida Monodonta labio SRR1505119 10,388,770 100

Mollusca Bivalvia Pholadomyoida Lyonsia floridana SRR1560310 9,919,645 100

Mollusca Bivalvia Veneroida Mercenaria 
campechiensis

SRR1560359 11,935,267 100

Mollusca Bivalvia Trigoniida Neotrigonia margaritacea SRR1560432 11,215,767 100

Mollusca Bivalvia Veneroida Cardites antiquatus SRR1560458 11,916,756 100

Mollusca Bivalvia Veneroida Sphaerium nucleus SRR1561723 18,539,173 100

Mollusca Bivalvia Nuculoida Ennucula tenuis SRR331123 14,420,942 100

Mollusca Bivalvia Ostreoida Dimya lima SRR3350463 5,426,850 150

Rotifera Monogononta Ploima Brachionus plicatilis SRR3404576 7,403,847 150

Arthropoda Branchiopoda Diplostraca Eoleptestheria cf 
ticinensis

SRR5140141 5,471,351 150

Arthropoda Remipedia Nectiopoda Godzilliognomus 
frondosus

SRR8280777 14,086,834 75

Arthropoda Arachnida Solifugae Galeodes sp. SRR8745910 6,356,774 75

Arthropoda Hexanauplia Calanoida Neocalanus flemingeri SRR5873556 4,112,626 150

Arthropoda Hexanauplia Calanoida Calanus finmarchicus SRR4113507 10,633,606 150

Arthropoda Hexanauplia Pedunculata Octolasmis warwickii SRR10527303 15,813,391 150

Echinodermata Holothuroidea Aspidochirotida Apostichopus japonicus SRR8393254 8,289,770 150

Echinodermata Crinoidea Comatulida Florometra SRR3097584 32,710,859 100

Echinodermata Echinoidea Echinoida Paracentrotus lividus ERR1000783 6,803,316 75

Echinodermata Echinoidea Echinoida Paracentrotus lividus SRR10744002 13,583,857 75

Xenacoelomorpha — Acoela Childia submaculatum SRR3105702 6,089,955 100

Chaetognatha Sagittoidea Aphragmophora Krohnitta subtilis SRR7754744 15,954,007 100

Brachiopoda Rhynchonellata Rhynchonellida Hemithiris psittacea SRR1611556 9,221,875 100

Nemertea Enopla Bdellonemertea Malacobdella grossa SRR1611560 8,307,739 100

Nemertea Palaeonemertea — Cephalothrix linearis SRR1273789 4,869,244 75

Phoronida — — Phoronis psammophila SRR1611565 12,949,999 100

Platyhelminthes Catenulida — Catenula lemnae SRR1796434 3,028,636 100
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3  |  RESULTS

3.1  |  K- mer selection, reads length effect and 
chimera detection

K- mer tests carried out on the model organisms used here (Table S1) 
showed that differences in BUSCO percentages between k- mer sets 
(i.e., A, B, C) were not significant (Table S2). However, slightly higher 

single- copy and lower duplication BUSCO percentages were ob-
served with k- mer set C (Figure 2; Table S2; Appendices S1– S4). This 
pattern was observed in all three model organisms: Caenorhabditis el-
egans (worm), Drosophila melanogaster (fly) and Mus musculus (mouse) 
(Appendices S1 and S4). The read length test (i.e., 50, 75, 100 and 
150 bp) also showed no significant difference in complete BUSCO 
percentages in favour of TransPi (Appendices S1 and S4). However, 
it should be noted that D. melanogaster paired- end reads of 50 bp 

Phylum Class Order Species SRA No. of reads
Length 
(bp)

Onychophora Udeonychophora Euonychophora Peripatopsis capensis SRR1145776 11,638,180 100

Onychophora Udeonychophora Euonychophora Peripatoides 
novaezealandiae

SRR8745911 5,768,550 75

Gastrotricha — Macrodasyida Macrodasys sp SRR1271706 3,204,609 75

Gastrotricha — Chaetonotida Lepidodermella squamata SRR1273732 4,370,938 75

Annelida Polychaeta Phyllodocida Nephtys caeca SRR1232685 1,576,665 75

Gnathostomulida — Bursovaginoidea Gnathostomula paradoxa SRR1271607 5,954,962 75

TA B L E  1  (Continued)

F I G U R E  2  K- mer selection tests on the model organism Caenorhabditis elegans. Shown are the TransPi results for three different k- mer 
settings for read lengths of 50 bp (a), 75 bp (b), 100 bp (c), and 150 bp (d). For the k- mer test performed with Mus musculus and Drosophila 
melanogaster see Appendices S1– S4
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produced low complete BUSCO percentages for TransPi and trinity 
(complete BUSCO mean <45%). By contrast, D. melanogaster librar-
ies with paired- end reads of 75, 100 and 150 bp length showed high 
BUSCO percentages for both, TransPi and trinity, where trinity sur-
passes TransPi by 1.0% (Appendices S1– S4). A similar pattern of a 
marginal difference between TransPi and trinity (with 1.0% higher 
complete BUSCO percentage in trinity) was also observed for the C. 
elegans and M. musculus data sets (Appendices S1– S4).

The major difference between TransPi and trinity in the model 
organisms was observed in the single- copy BUSCO category. This 
difference was more significant in the D. melanogaster and M. mus-
culus data sets. For the M. musculus 150- bp reads, the difference be-
tween the single- copy BUSCO percentages was over 37% (Table S2). 
In terms of fragmented and missing BUSCO genes, TransPi scores 
were slightly higher (<1.0% of difference) than for trinity alone in 
most cases (Table S2; Appendices S1– S4). The increase of read length 
showed no clear effect on producing better BUSCO percentages on 
the majority of the model organism data sets (Appendices S1– S4). 
The same was observed for the increase of the read quantities in the 
data sets (Appendices S1– S4). Only for D. melanogaster 50- bp reads 
was an increase observed in complete BUSCO percentages when 
incrementing read quantity from 10 million to 26 million. The other 
model organism data sets did not show significant differences with 
respect to read quantities (Appendices S1– S4).

Results for the chimera detection test are presented in Table 2. 
A similar trend was observed in all model species (i.e., C. elegans, D. 
melanogaster and M. musculus). The number of non- chimeric tran-
scripts (i.e., percentage of unique blastn matches) in TransPi (i.e., 
lowest: 3.07%; highest: 39.13%) was higher than in trinity alone 
(i.e., lowest: 3.66%; highest: 38.32%). Only in one sample (i.e., M. 
musculus SRR8329326) was the percentage of nonchimeric tran-
scripts of trinity higher than TransPi. However, the trinity assembly 
had over 215,000 more transcripts than the TransPi transcriptome. 
Nevertheless, the percentage difference was only 0.59%. BUSCO 
scores followed the same pattern as explained above.

3.2  |  TransPi on nonmodel organisms

A similar trend as seen in the model organisms was observed in the 
nonmodel organism data sets (Figure 3; Table S3). However, there 
were some key differences. First, results of complete BUSCO per-
centages were higher for TransPi in 41 of the 49 data sets tested 
in the study. The mean of complete BUSCO percentages was 
79.57 ± 18.60% (median: 85%) for TransPi and 78.14 ± 19.30 (me-
dian: 84.2%) for the trinity assemblies. Of all data sets, 21 had com-
plete BUSCO percentages higher than 90% with TransPi and 17 with 
trinity (Figure 4). Eleven and 13 data sets resulted in 80%– 90% iden-
tified complete BUSCO genes with TransPi and trinity, respectively. 
However, Kruskal– Wallis tests showed no significant differences 
between TransPi and trinity (Table 3).

Second, there was a significant improvement of the percentage 
of identified complete single- copy BUSCO genes. Mean percent-
ages with TransPi and trinity were 67.57 ± 16.75% (median: 72.9%) 

and 42.03 ± 15.37% (median: 40.8%), respectively. For the single- 
copy BUSCO genes, 16 data sets obtained scores higher than 
80% with TransPi and none with trinity (Figure 4). For the range of 
70%– 80%, 11 data sets obtained scores in this range when using 
TransPi, whereas only one data set in this range was obtained 
when using trinity (Figure 4). Statistical testing (i.e., Kruskal– Wallis) 
demonstrated a significant difference for the single- copy BUSCO 
percentages between TransPi and trinity (p = 5.6e−10, Table 3). In 
the case of the nemertean worm Malacobdella grossa (accession 
SRR1611560), single- copy BUSCO genes had a substantial change 
from 20.4% for trinity to 83% with TransPi (Appendix S5). Other 
data sets with significant changes included the crinoid echino-
derm Florometra serratissima (accession SRR3097584), where the 
scores for trinity and TransPi were 41.3% and 87.3%, respectively 
(Appendix S5).

Through the reduction step performed by evidentialgene in 
TransPi, an expected substantial decrease of the duplication rate 
was observed. The means for duplicated BUSCO genes with TransPi 
and trinity were 12.0 ± 9.96% (median: 9.7%) and 36.11 ± 20.52% 
(median: 31.1%), respectively (Figures 3 and 4; Table S3). Kruskal– 
Wallis tests demonstrated a significant difference for the duplicated 
BUSCO percentages (p = 9.60e−11, Table 3). Even though differ-
ences in fragmented BUSCO percentages were not statistically sig-
nificant, these values were lower for data sets when using TransPi. 
In the case of missing BUSCO percentages, TransPi scores are higher 
than trinity (Appendix S5), although the differences were not sig-
nificant. These genes were removed during the reduction step of 
evidentialgene (see Section 4). Note that a few data sets were encoun-
tered where neither TransPi nor trinity obtained complete BUSCO 
percentages higher than 50%. These data sets are: the polychaete 
annelid Nephtys caeca (accession SRR1232685), and the bivalve mol-
luscs Mercenaria campechiensis (accession SRR1560359), Sphaerium 
nucleus (accession SRR1561723) and Cardites antiquatus (accession 
SRR1560458) (Table S3). However, the majority of the identified 
complete BUSCO genes in these sets were single- copy in the TransPi 
assemblies (Appendix S5). On the other hand, data sets such as the 
scleractinian coral Porites pukoensis (accession SRR8491966) were 
observed with complete BUSCO percentages of 99.4% with both 
TransPi and trinity (with high duplication rates in both).

As expected due to the reduction in transcripts, the total number 
of transcripts in TransPi was lower than with trinity (Appendix S6). The 
mean for TransPi transcripts was 93,351 ± 89,863 (median: 73,435) 
and for trinity transcripts 157,130 ± 142,410 (median: 109,261). The 
reduction of transcripts was also observed for the numbers of tran-
scripts larger than 500 and 1,000 bp (Figure 5). However, in terms of 
the longest transcript, the mean for TransPi was 23,684 ± 15,374 bp 
(median: 22,147 bp) and 20,668 ± 11,248 bp (median: 18,708 bp) 
for trinity (Figure 5). Mapping of sequencing reads to the assem-
bled transcripts showed lower mapping rates obtained with TransPi 
than with trinity (Figure 5; Appendices S7 and S8). The mean of the 
predicted genes by TransPi and trinity was 34,659 ± 43,987 (me-
dian: 25,280) and 52,106 ± 47,273 (median: 43,783), respectively 
(Figure 5; Appendix S6). This reduction in TransPi vs. trinity mirrors 
the reduction of duplicated BUSCO results.
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3.3  |  TransPi report

The report generated by TransPi is interactive (i.e., an HTML file is 
generated) and can be viewed with standard web browsers (Appendix 
S9). The report allows the user to comprehensively assess the data 

by zooming in on the figures, compare data sets and see detailed 
information by selecting specific data points. The report summarizes 
all major steps performed by the pipeline, including quality filtering, 
assembly metrics, ORF numbers, annotation and KEGG pathway as-
signment using ipath3 (Darzi et al., 2018). TransPi provides the user 

TA B L E  2  Chimera test for model species C. elegans, D. melanogaster, and M. musculus

Sample blastn hits No. of transcripts % unique
busco version 4— Metazoa DB 
(n = 954)

C. elegans

trinity

SRR10407355 9,538 28,219 33.80 C:76.9% [S:65.2%, D:11.7%], 
F:2.2%, M:20.9%

SRR10407357 9,014 23,526 38.32 C:76.1% [S:65.7%, D:10.4%], 
F:2.5%, M:21.4%

SRR10407359 9,310 27,734 33.57 C:76.3% [S:65.8%, D:10.5%], 
F:2.6%, M:21.1%

TransPi

SRR10407355 8,567 23,803 35.99 C:75.7% [S:68.9%, D:6.8%], 
F:2.3%, M:22.0%

SRR10407357 8,494 21,709 39.13 C:75.5% [S:68.7%, D:6.8%], 
F:2.5%, M:22.0%

SRR10407359 8,675 24,891 34.85 C:75.5% [S:69.6%, D:5.9%], 
F:2.8%, M:21.7%

D. melanogaster

trinity

SRR7716077 4,585 36,267 12.64 C:97.2% [S:84.6%, D:12.6%], 
F:1.5%, M:1.3%

SRR7716078 4,133 31,793 13.00 C:93.6% [S:63.6%, D:30.0%], 
F:1.0%, M:5.4%

SRR7716080 4,364 31,928 13.67 C:90.1% [S:63.4%, D:26.7%], 
F:3.1%, M:6.8%

TransPi

SRR7716077 4,603 29,014 15.86 C:93.9% [S:81.0%, D:12.9%], 
F:1.3%, M:4.8%

SRR7716078 4,211 25,225 16.69 C:93.8% [S:84.1%, D:9.7%], 
F:1.5%, M:4.7%

SRR8491966 4,383 25,817 16.98 C:91.4% [S:82.9%, D:8.5%], 
F:2.2%, M:6.4%

M. musculus

trinity

SRR10560364 12,360 244,523 5.05 C:98.2% [S:53.1%, D:45.1%], 
F:0.9%, M:0.9%

SRR10560365 12,807 261,000 4.91 C:98.2% [S:48.7%, D:49.5%], 
F:0.7%, M:1.1%

SRR8329326 29,885 816,077 3.66 C:97.4% [S:36.8%, D:60.6%], 
F:1.4%, M:1.2%

TransPi

SRR10560364 8,901 165,890 5.37 C:97.2% [S:84.6%, D:12.6%], 
F:1.5%, M:1.3%

SRR10560365 10,551 198,502 5.32 C:96.5% [S:81.0%, D:15.5%], 
F:1.3%, M:2.2%

SRR8329326 18,418 600,340 3.07 C:94.4% [S:81.7%, D:12.7%], 
F:2.4%, M:3.2%
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with multiple files for further downstream analyses of the final ref-
erence transcriptome. For example, a file with all Gene Ontologies 
is created and can be directly used as input for topgo to perform 
enrichment analysis (Alexa & Rahnenfuhrer, 2016). All final and key 
intermediate files, including all plots, are stored in the user- selected 
output directory for manual inspection. Additionally, TransPi will 
save the execution report generated by Nextflow, in which the user 
can inspect how their system resources are being used in each pro-
cess (example in Appendix S10).

3.4  |  Additional TransPi options

The data set of Porites pukoensis (SRR8491966) produced a tran-
scriptome with 567,526 sequences. Despite having a high BUSCO 
completeness (i.e., 99.4%), the majority of these were duplicates 
(i.e., 61.2%) (Appendix S5). Using the filtration step of TransPi, the 
number of transcripts was reduced by over 39% (from 567,526 to 
343,832). The removed 223,694 transcripts had similarities with the 
S. microadriaticum sequences used for filtering (See Section 2.6). In 
the case of the “buscoDist” option, the Octolasmis warwickii data set 

(SRR10527303) was used and 30 genes that were missing from the 
TransPi assembly but were present in the other assemblies were 
found (Figure 6).

4  |  DISCUSSION

De novo transcriptome assemblies are used in several applications 
such as: differential gene expression (Pita et al., 2018), gene model 
prediction (Chan et al., 2017), DNA target enrichment bait design 
(Quek et al., 2020), genome annotation (Holt & Yandell, 2011; Testa 
et al., 2015), detection of whole- genome duplication (Yang et al., 
2019) and phylogenetics (Cheon et al., 2020; Lozano- Fernandez 
et al., 2019). Even though multiple softwares are currently available 
for transcriptome assembly, no single tool is able to generate opti-
mal assemblies given various data sets (Hölzer & Marz, 2019). Thus, 
combining multiple assemblies, generated with various k- mers and 
software, represents a valuable approach to increase the quality of 
reference assemblies (Lu et al., 2013). Given the complexity of such 
analyses, automated workflows are desirable, including the need for 
standardization, reproducibility and scalability.

F I G U R E  3  BUSCO results of nonmodel organisms (n 49). For a full list of analysed taxa see Table 1. (a) BUSCO percentages comparison 
for TransPi and trinity for all data sets. Comparisons of scores by read length for complete (b), single- copy (c) and duplicated (d) BUSCO 
genes. Significant differences (Kruskal– Wallis test p < .05) were obtained for (b) and (c)

Program
Complete Single-Copy Duplicated Fragmented Missing

0

10

20

30

40

50

60

70

80

90

100

Category

B
U

S
C
O

 %

ytinirTiPsnarT
0

10

20

30

40

50

60

70

80

90

100(a) (b)

ytinirTiPsnarT
0

10

20

30

40

50

60

70

80

90

100

Program

B
U

S
C
O

 %

(c)

ytinirTiPsnarT
0

10

20

30

40

50

60

70

80

90

100

Program

(d)

 17550998, 2022, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/1755-0998.13593 by C

ochrane G
erm

any, W
iley O

nline L
ibrary on [14/09/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

info:refseq/SRR8491966
info:refseq/SRR10527303


    |  2079RIVERA- VICÉNS Et Al.

The selection of assembler and k- mer list is the first step before 
performing an assembly. For the assemblers we chose the programs 
that produced better overall scores (i.e., trinity, rnaspades, trans- abyss 
and soapdenovo- trans) when compared using different data sets 

(Hölzer & Marz, 2019). velvet/oases was also included in the list of 
assemblers since this assembler performed better than the others 
when assembling long transcripts, while at the same time producing 
high BUSCO scores (Hölzer & Marz, 2019). Since the selection of 

F I G U R E  4  Histogram of number of 
data sets and BUSCO percentages in 10% 
bins. Comparison of identified complete 
(including duplicates) (a) and single- copy 
(b) BUSCO genes between TransPi and 
trinity
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TA B L E  3  Statistical tests on nonmodel organisms

Shapiro- Wilk

(p > .05)
Normally 
distributed ANOVA

Kruskal– Wallis 
(p < .05) SignificantTransPi trinity

Complete 5.09E−06 1.76E−05 No — 0.6492791 No

Single- copy 0.0001667 0.1081 No — 5.67E−10 Yes

Duplicated 2.51E−07 0.008433 No — 9.60E−11 Yes

Fragmented 0.0005825 0.002121 No — 0.1375242 No

Missing 1.81E−08 3.61E−09 No — 0.1413003 No
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the k- mers will modify the assembly graph creation, the effective-
ness of TransPi was tested using multiple k- mer lists. These tests 
included different k- mer sizes, combinations of k- mers and differ-
ent organisms (Table 1). Since TransPi relies on multiple assemblers 
and various k- mers, the effect on k- mer selection and their impact 
on the outcome of the pipeline is minimized. However, k- mer set C 
consistently resulted in moderately higher BUSCO percentages for 
single- copy genes and lower duplication levels, respectively. This k- 
mer set had a wider range of k- mer sizes (from small to long) than 
the other sets. Small k- mers tend to generate more transcripts but 
are more prone to misassemblies (Gibbons et al., 2009; Zerbino & 
Birney, 2008). By contrast, longer k- mers produce more contiguous 
assembly while decreasing transcript numbers (Robertson et al., 
2010). Thus, by combining various k- mer sizes (i.e., short and long 
k- mers), a more comprehensive representation of the transcriptome 
can be achieved (Peng et al., 2013).

In previous studies, it has been shown that using more than 
30 million read pairs does not significantly improve the quality 

of the transcriptome assembly (Francis et al., 2013; MacManes, 
2018). However, in our tests mixed results were observed when 
comparing read quantities and BUSCO scores in each organism 
respectively (Appendix S5). As previously demonstrated, assem-
bly quality and characteristics are data- dependent (Hölzer & Marz, 
2019). Consequently, to provide a profound conclusion on the ef-
fects of read quantities in de novo transcriptome assemblies, a larger 
number of data sets from a broad range of taxa, in addition to bio-
logical replicates for each taxon, are needed. Also, organisms with 
sources of contamination (e.g., of symbiotic origin, prey, parasites 
or eukaryotic overgrowth in the target tissue) may need higher 
quantities of reads. In cases of sizeable data sets or where multiple 
libraries are combined, TransPi by default performs a read normal-
ization step. This option can be skipped, although we recommend 
always performing the normalization step. A dramatic reduction in 
the computing time and resources was achieved when using the nor-
malization step with many data sets in our laboratory (e.g., coral data 
sets). Although it has been shown that 30 is more than enough for 

F I G U R E  5  rnaquast results comparing TransPi and trinity. (a) Number of transcripts >500 bp, >1,000 bp, longest transcripts and number 
of predicted genes in the transcriptome. (b) Transcript average length and N50. (c) Histograms (10% bins) of all samples and percentage of 
mapping (reads to transcriptome), BUSCO- complete and BUSCO- single (light colour trinity, dark colour TransPi). (d) Percentage of mapping 
(reads to transcriptome), BUSCO- complete and BUSCO- single by individual samples (light colour trinity, dark colour TransPi)
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the maximum coverage of reads during the normalization step (Haas 
et al., 2013), we have set the values for minimum and maximum read 
coverage to one and 100, respectively. However, since an assembly 
can vary widely depending on the organism and data sets we give 
the user the option to modify these values accordingly. The use of 
different read lengths did not yield significant differences between 
TransPi and trinity in all three model organisms (i.e., worm, fly and 
mouse) included in this study. However, the tests conducted on the 
three model organisms suggest strongly that use of longer reads 
(150 bp) should be preferred, because those generally yielded higher 
quality transcriptomes with respect to the BUSCO results.

The newly established TransPi pipeline performed well in model 
organisms (Tables S1 and S2, Appendices S1– S4). However, trinity 
performed slightly better than TransPi with respect to the “complete” 
and “fragmented” categories of the metazoa BUSCO genes set. The 
major advantage of TransPi in the model organisms, however, was 
the reduction of duplicated BUSCO genes (Figure 2). TransPi per-
formed significantly better than the trinity assembler alone on non-
model organisms (Figure 3). A high BUSCO completeness with a high 
number of single- copy BUSCO genes was obtained for the majority 
of the nonmodel data sets used here (Figures 3 and 4). In the case of 
the “fragmented” BUSCO genes category, TransPi produced lower 
scores than trinity due to the reduction step by evidentialgene. Since 

the tool relies on sequence features such as CDS content and length 
(Gilbert, 2013, 2019), fragmented CDS will be less likely to pass the 
filtration step. The results for high number of single- copy BUSCO 
genes were statistically significant and are a major difference when 
comparing with the TransPi results of model organisms. The re-
duction of transcript duplication is obviously beneficial for studies 
where the presence of duplicates would bias the interpretation of 
the results. Another major disadvantage of keeping false isoforms is 
in phylogenomic analyses. Due to the relative ease of generation and 
affordability, many phylogenomic studies analyse multigene align-
ments based on transcriptome data instead of full genome data to 
estimate phylogenies (Cheon et al., 2020; Lozano- Fernandez et al., 
2019). By using TransPi, the automation of large- scale phylogenomic 
approaches, focusing on thousands of proteins from many taxa, can 
be attained with ease in a scalable and reproducible way.

As expected, the final number of transcripts was consistently 
lower for TransPi given the reduction performed by evidentialgene 
(Figure 5). In some cases (Malacobdella grossa) the reduction of tran-
scripts was over 50% (Figure 5; Appendix S5). This explains why the 
mapping percentages for TransPi were also lower than for trinity. 
However, having reduced mapping rates (i.e., TransPi) did not affect 
the content of BUSCO genes in the transcriptomes. For example, 
in the Malacobdella grossa assembly, TransPi mapping was 65.41% 

F I G U R E  6  Heatmap of BUSCO gene presence in all assemblers with multiple k- mers that are found missing in TransPi for the data set of 
Octolasmis warwickii (SRR10527303)
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vs. 82.86% for trinity (Figure 5; Appendix S5), but the difference 
of complete BUSCO genes was only 0.30% (TransPi = 94.0%, trin-
ity = 94.30%) and 62% (TransPi = 83.0%, trinity = 20.4%) for single- 
copy BUSCOs. Thus, the reduction in mapping percentages is due 
to the reduction of redundant transcripts (including allelic variants) 
rather than missing information from the assemblies. However, this 
reduction could potentially be an issue for differential gene expres-
sion studies where gene variants (i.e., isoforms) are removed from 
the samples via the reduction of transcripts. Nevertheless, perform-
ing a reduction step before a gene expression analysis is a common 
practice (DeLeo & Bracken- Grissom, 2020; Devens et al., 2020; Guo 
et al., 2017; Kashyap et al., 2020; Perez et al., 2021). Therefore, the 
nonredundant transcriptome generated by TransPi could be utilized 
for gene expression studies (Deshpande et al., 2021). However, fur-
ther investigations are needed to support this. Currently, tests are 
being performed by our group to shed light on the effect of reduction 
algorithms (i.e., evidentialgene, cd- hit and others), in differential gene 
expression studies by employing data sets from various organisms.

The reduced mapping rates were observed throughout the non-
model organisms analysed here (Figure 5; Appendix S5). In general, 
when the mapping percentages of TransPi were over 65%, satis-
factory BUSCO content in the transcriptomes (i.e., high BUSCO 
presence and in single copies) were also observed. However, there 
were some cases where both TransPi and trinity produced equally 
low BUSCO scores, even though a relatively high mapping percent-
age was obtained (Figure 5; Appendix S7). This was the case for a 
Catenula lemnae data set (SRR1796434), where read mapping per-
centage was relatively high (74.69% and 89.37% for TransPi and 
trinity, respectively), while the BUSCO gene content (complete and 
single) was <53% (Figure 5; Appendix S7). In such cases, the assem-
blies may not be optimal and probably do not represent the com-
plete transcriptome of the organism. (Figure 5; Appendix S7).

For the missing BUSCO category, TransPi produced assemblies 
with slightly higher values in comparison to the other assemblers. 
When a BUSCO gene is missing in TransPi (i.e., removed by the ev-
identialgene step), in some cases these genes are found in the other 
individual assemblies (Figure 6). evidentialgene aims to keep the most 
valid biological transcript, discards the probably not valid transcripts 
(based on specific measures), and decreases the redundancy of the 
multiple assemblers to obtain a nonredundant consensus transcrip-
tome assembly (Gilbert, 2019). However, by doing so, some genes 
can be categorized as redundants, presumably because better can-
didates were selected. To gain more insight into cases like the one 
above, the TransPi option “buscoDist” was used with the Octolasmis 
warwickii data set. Comparing the missing genes of all generated as-
semblies and plotting the distribution of the BUSCO genes showed 
that TransPi had more missing genes that were categorized in other 
assemblers as being present (Figure 6). However, a considerable 
number of these genes were classified as duplicates by BUSCO. 
Since the BUSCO scores are indicators of the transcriptome com-
pleteness, correcting them will provide a more realistic estimation 
on the transcriptome quality of a given taxon. This TransPi option 
offers the user insight into the BUSCO gene content and transcript 

reduction by evidentialgene to help better assess the quality of the 
assemblies.

In certain cases, significant numbers of BUSCO genes were 
not retrieved by TransPi, trinity or any of the assemblers. Although 
this could be related to assembler performance, other factors have 
been shown to alter transcriptome quality (RNA degradation, li-
brary preparation, sequencing depth, etc.) (Romero et al., 2014; 
Sultan et al., 2014). In the nonmodel organisms, four of the data sets 
yielded BUSCO complete percentages <50% in TransPi and trinity 
(Appendix S5). Three of these data sets (i.e., Mercenaria campechiensis 
[SRR1560359], Sphaerium nucleus [SRR1561723], Carditesantiquatus 
[SRR1560458]) stem from the same project and the same taxonomic 
group, the molluscan class Bivalvia. Extraction of nucleic acids in 
molluscs is known to be hampered by the presence of mucopoly-
saccharides and polyphenolic proteins, which can inhibit PCR and 
lead to biases in RNA preservation and/or the extraction quantities 
and/or qualities (Gayral et al., 2011; Knutson et al., 2020; Rzepecki 
et al., 1991). Moreover, since they are filter- feeders, possible high 
rates of contamination could arise depending on the tissue extracted 
and procedure. Nevertheless, BUSCO genes that were retrieved ex-
hibited low rates of duplication, highlighting how the incorporation 
of evidentialgene into TransPi can also decrease redundancy in cases 
of low transcriptome completeness. For the fourth data set (Nephtys 
caeca [SRR1232685], a polychaete annelid), only a small number 
(1.5 million) of read pairs were deposited in INSDC databases (i.e., 
NCBI's GenBank), which helps to explain the poor results (Appendix 
S5). Deeper sequencing of these particular specimens may well 
lead to an improved transcriptome. This also might indicate that the 
quantity of reads rather than the quality of input material was the 
limiting factor for the generation of a complete transcriptome.

BUSCO gene presence is one of the main metrics, together 
with mapping and number of transcripts, to assess transcriptome 
completeness and the quality of nonmodel organisms. Thus, the 
analyses for evaluating TransPi's performance were mostly based 
on this metric. However, since model organisms have established 
gene models, a procedure similar to the Bellerophon pipeline 
(Kerkvliet et al., 2019) was used as an additional metric for evalu-
ation of TransPi. Overall, TransPi had a higher number of nonchi-
meric transcripts when compared to trinity alone (Table 2). These 
suggest that the filtration step performed by evidentialgene is able 
to reduce the number of chimeric transcripts (i.e., erroneous as-
sembled sequences) while maintaining the information of the dif-
ferent transcripts. These analyses were done in model organisms 
only and TransPi does not apply this procedure as part of its ex-
ecution. The implementation of a procedure like the Bellerophon 
pipeline (Kerkvliet et al., 2019) in our tool is hindered by multiple 
factors. First, a reference transcriptome or gene set is needed to 
calculate the chimeras. TransPi is intended to be used mainly on 
nonmodel species where the majority do not have a reference 
transcriptome. Second, the Bellerophon pipeline makes use of a 
software (i.e., transrate) which has not been recently updated. This 
creates reproducibility problems since the tool relies on old ver-
sions for some dependencies. Also, the tool does not offer a conda 
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installation or container images. However, note that one of the 
critical steps in the Bellerophon pipeline is the use of cd- hit- est 
for decreasing redundancy in the assemblies. This step is already 
incorporated in the evidentialgene software for the same purpose.

TransPi also addresses putative contamination issues that 
might affect a transcriptome by providing an additional option 
that performs filtering of “contaminants.” Data sets from organ-
isms such as corals can represent a challenge during transcriptome 
assembly and downstream analyses due to their endosymbi-
otic zooxanthellae (Shinzato et al., 2014). Thus, a filtration step 
is usually performed to remove sequences that do not belong to 
the target (host) transcriptome (Veglia et al., 2018). The filtration 
step of TransPi is a useful step in cases of known contamination 
sources. For example, in the data set of the coral Porites pukoen-
sis, both TransPi and trinity obtained high BUSCO completeness 
percentages. However, despite the reduction with evidentialgene, 
single- copy BUSCO percentages were low and the percentage 
of duplicated BUSCO genes was high in both TransPi and trinity. 
Given the strong efficiency of TransPi in removing redundancy, 
the presence of many duplicates in this data set may indicate the 
presence of algae (symbionts) transcripts and/or contamination. 
Also, it has been previously reported that other eukaryotes, par-
ticularly fungi, are commonly found in Porites pukoensis (Li et al., 
2014). This could potentially bias the outcomes and can strongly 
affect downstream analyses. Thus, using a contaminant filtration 
step, as performed by TransPi, is beneficial to generate a cleaner 
and accurate transcriptome assembly and provide the user with a 
host- only transcriptome to be further analysed. Note that psytrans 
can work with any set of proteins. Thus, it is not only for the sep-
aration of host and symbiont sequences and can be used with any 
data set chosen by the user.

In summary, TransPi offers researchers working with non-
model organisms the opportunity of a comprehensive de novo 
transcriptome analysis, requiring minimum user input but without 
losing the ability of a thorough analysis. TransPi is not intended as 
a one- stop solution for transcriptome assemblies, but rather as a 
broad start for gaining insight into the transcriptome of their non-
model organisms of interest. New users can obtain a vast amount 
of information for exploring their transcriptome, while more expe-
rienced users also have the ability to modify the various pipeline 
processing options (if necessary). All files generated by TransPi (in-
dividual assemblies, nonredundant assembly, BUSCO files, BAM 
files, etc.) are stored and are available to the user for further ex-
ploration, use in other tools (e.g., Corset -  Davidson & Oshlack, 
2014) or to keep for future reference. The interactive report cre-
ated by TransPi is key for data exploration and to help users decide 
if further processing is needed before using the generated nonre-
dundant assembly directly in several downstream analyses. These 
analyses include but are not limited to gene modelling for genome 
annotations, bait design and phylogenetic studies. Another key 
advantage of using TransPi is that it offers reproducibility of the 
results with ease, where entire experiments can be repeated with 

defined versions of all programs included in the workflow. It also 
provides a user- friendly environment, easy deployment, and scal-
ability by employing Nextflow. TransPi also has other additional 
features to help gain extra insight into the assemblies. Thus, we 
anticipate that TransPi will be a valuable tool for the generation of 
comprehensive de novo nonredundant transcriptome assemblies 
for nonmodel organisms.

ACKNOWLEDG EMENTS
Version 3 of this paper has been peer- reviewed and recommended 
by Peer Community In Genomics (https://doi.org/10.24072/ pci.
genom ics.100009). R.E.R.V., M.E. and G.W. acknowledge funding 
from the European Union's Horizon 2020 research and innovation 
programme under the Marie Skłodowska- Curie grant agreement No. 
764840 (ITN IGNITE). C.G.E. acknowledges the Advanced Human 
Capital Program of the National Commission for Scientific and 
Technological Research (CONICYT) for the Becas- Chile Scholarship 
awarded to study at LMU. C.G.E. and M.E. acknowledges funding 
by Lehre@LMU (project no.: W19_F1; Studi_forscht@GEO). G.W. 
acknowledges funding through the LMU Munich's Institutional 
Strategy LMUexcellent within the framework of the German 
Excellence Initiative. The authors gratefully acknowledge the 
Leibniz Supercomputing Centre (LRZ) as a partner of ITN IGNITE 
for providing computing time and support on its Linux- Cluster and 
Compute Cloud system. Open access funding enabled and organized 
by ProjektDEAL.

CONFLIC T OF INTERE S T
The authors declare that they have no financial conflict of interest 
with the content of this article.

AUTHOR CONTRIBUTIONS
R.E.R.V. designed the pipeline and scripts, analysed data, and wrote 
the initial draft of the manuscript. C.A.G.E. analysed data and pre-
pared tables. N.C. wrote pipeline processes and helped draft the 
manuscript. M.E. analysed data and helped draft the manuscript. 
G.W. acquired the funding, supervised the project, provided the in-
frastructure for data analysis, and helped draft the manuscript. All 
authors approved the final version of the manuscript.

DATA AVAIL ABILIT Y S TATEMENT
Source code and scripts are available online at https://github.com/
PalMu c/TransPi. Supplementary scripts and files are available at 
https://doi.org/10.5281/zenodo.5060054.

ORCID
Ramón E. Rivera- Vicéns  https://orcid.org/0000-0002-6229-3537 
Catalina A. Garcia- Escudero  https://orcid.
org/0000-0001-9704-7865 
Nicola Conci  https://orcid.org/0000-0001-5549-3197 
Michael Eitel  https://orcid.org/0000-0002-0531-0732 
Gert Wörheide  https://orcid.org/0000-0002-6380-7421 

 17550998, 2022, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/1755-0998.13593 by C

ochrane G
erm

any, W
iley O

nline L
ibrary on [14/09/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://doi.org/10.24072/pci.genomics.100009
https://doi.org/10.24072/pci.genomics.100009
https://github.com/PalMuc/TransPi
https://github.com/PalMuc/TransPi
https://doi.org/10.5281/zenodo.5060054
https://orcid.org/0000-0002-6229-3537
https://orcid.org/0000-0002-6229-3537
https://orcid.org/0000-0001-9704-7865
https://orcid.org/0000-0001-9704-7865
https://orcid.org/0000-0001-9704-7865
https://orcid.org/0000-0001-5549-3197
https://orcid.org/0000-0001-5549-3197
https://orcid.org/0000-0002-0531-0732
https://orcid.org/0000-0002-0531-0732
https://orcid.org/0000-0002-6380-7421
https://orcid.org/0000-0002-6380-7421


2084  |    RIVERA- VICÉNS Et Al.

R E FE R E N C E S
Alexa, A., & Rahnenfuhrer, J. (2016). topGO: Enrichment Analysis for Gene 

Ontology. R package version 2.32.0.
Altschul, S. F., Madden, T. L., Schäffer, A. A., Zhang, J., Zhang, Z., Miller, 

W., & Lipman, D. J. (1997). Gapped BLAST and PSI- BLAST: A 
new generation of protein database search programs. Nucleic 
Acids Research, 25(17), 3389– 3402. https://doi.org/10.1093/
nar/25.17.3389

Andrews, S. (2010). FastQC: A quality control tool for high throughput se-
quence data.

Boeckmann, B., Bairoch, A., Apweiler, R., Blatter, M. C., Estreicher, 
A., Gasteiger, E., & Pilbout, S. (2003). The SWISS- PROT protein 
knowledgebase and its supplement TrEMBL in 2003. Nucleic Acids 
Research, 31(1), 365– 370. https://doi.org/10.1093/nar/gkg095

Bryant, D. M., Johnson, K., DiTommaso, T., Tickle, T., Couger, M. B., 
Payzin- Dogru, D., Lee, T. J., Leigh, N. D., Kuo, T.- H., Davis, F. G., 
Bateman, J., Bryant, S., Guzikowski, A. R., Tsai, S. L., Coyne, S., 
Ye, W. W., Freeman, R. M., Peshkin, L., Tabin, C. J., … Whited, J. 
L. (2017). A tissue- mapped axolotl de novo transcriptome enables 
identification of limb regeneration factors. Cell Reports, 18(3), 762– 
776. https://doi.org/10.1016/j.celrep.2016.12.063

Buchfink, B., Xie, C., & Huson, D. H. (2015). Fast and sensitive protein 
alignment using DIAMOND. Nature Methods, 12(1), 59– 60. https://
doi.org/10.1038/nmeth.3176

Bushmanova, E., Antipov, D., Lapidus, A., & Prjibelski, A. D. (2019). 
rnaSPAdes: A de novo transcriptome assembler and its application 
to RNA- Seq data. GigaScience, 8(9), https://doi.org/10.1093/gigas 
cienc e/giz100

Bushmanova, E., Antipov, D., Lapidus, A., Suvorov, V., & Prjibelski, A. D. 
(2016). rnaQUAST: A quality assessment tool for de novo transcrip-
tome assemblies. Bioinformatics, 32(14), 2210– 2212. https://doi.
org/10.1093/bioin forma tics/btw218

Cerveau, N., & Jackson, D. J. (2016). Combining independent de novo 
assemblies optimizes the coding transcriptome for nonconven-
tional model eukaryotic organisms. BMC Bioinformatics, 17(1), 1– 13. 
https://doi.org/10.1186/s1285 9- 016- 1406- x

Chan, K.- L., Rosli, R., Tatarinova, T. V., Hogan, M., Firdaus- Raih, M., & 
Low, E.- T.- L. (2017). Seqping: Gene prediction pipeline for plant 
genomes using self- training gene models and transcriptomic data. 
BMC Bioinformatics, 18(S1), 1– 7. https://doi.org/10.1186/s1285 
9- 016- 1426- 6

Chen, S., Zhou, Y., Chen, Y., & Gu, J. (2018). fastp: An ultra- fast all- in- one 
FASTQ preprocessor. Bioinformatics, 34(17), i884– i890. https://doi.
org/10.1093/bioin forma tics/bty560

Cheon, S., Zhang, J., & Park, C. (2020). Is phylotranscriptomics as reliable 
as phylogenomics? Molecular Biology and Evolution, 37(12), 3672– 
3683. https://doi.org/10.1093/molbe v/msaa181

Cornwell, M. I., Vangala, M., Taing, L., Herbert, Z., Köster, J., Li, B., Sun, 
H., Li, T., Zhang, J., Qiu, X., Pun, M., Jeselsohn, R., Brown, M., Liu, X. 
S., & Long, H. W. (2018). VIPER: Visualization pipeline for RNA- seq, 
a Snakemake workflow for efficient and complete RNA- seq analy-
sis. BMC Bioinformatics, 19(1). 1– 14. https://doi.org/10.1186/s1285 
9- 018- 2139- 9

D’Antonio, M., D’Onorio De Meo, P., Pallocca, M., Picardi, E., D’Erchia, 
A. M., Calogero, R. A., Castrignanò, T., & Pesole, G. (2015). 
RAP: RNA- Seq analysis pipeline, a new cloud- based NGS 
web application. BMC Genomics, 16(Suppl 6), S3. https://doi.
org/10.1186/1471- 2164- 16- s6- s3

Darzi, Y., Letunic, I., Bork, P., & Yamada, T. (2018). iPath3.0: Interactive 
pathways explorer v3. Nucleic Acids Research, 46(W1), W510– W513. 
https://doi.org/10.1093/nar/gky299

Davidson, N. M., & Oshlack, A. (2014). Corset: Enabling differential 
gene expression analysis for de novo assembled transcriptomes. 
Genome Biology, 15(7), 1– 14. https://doi.org/10.1186/s1305 
9- 014- 0410- 6

DeLeo, D. M., & Bracken- Grissom, H. D. (2020). Illuminating the im-
pact of diel vertical migration on visual gene expression in deep- 
sea shrimp. Molecular Ecology, 29(18), 3494– 3510. https://doi.
org/10.1111/mec.15570

Deshpande, A., Rivera- Vicéns, R. E., Thakur, N. L., & Wörheide, G. 
(2021). Transcriptomic response of Cinachyrella cf. cavernosa 
sponges to spatial competition. bioRxiv, 451097. https://doi.
org/10.1101/2021.07.05.451097

Devens, H. R., Davidson, P. L., Deaker, D. J., Smith, K. E., Wray, G. A., 
& Byrne, M. (2020). Ocean acidification induces distinct tran-
scriptomic responses across life history stages of the sea urchin 
Heliocidaris erythrogramma. Molecular Ecology, 29(23), 4618– 4636. 
https://doi.org/10.1111/mec.15664

Di Tommaso, P., Chatzou, M., Floden, E. W., Barja, P. P., Palumbo, E., & 
Notredame, C. (2017). Nextflow enables reproducible computa-
tional workflows. Nature Biotechnology, 35(4), 316– 319. https://doi.
org/10.1038/nbt.3820

El- Gebali, S., Mistry, J., Bateman, A., Eddy, S. R., Luciani, A., Potter, S. C., 
Qureshi, M., Richardson, L. J., Salazar, G. A., Smart, A., Sonnhammer, 
E. L. L., Hirsh, L., Paladin, L., Piovesan, D., Tosatto, S. C. E., & Finn, 
R. D. (2018). The Pfam protein families database in 2019. Nucleic 
Acids Research, 47(D1), D427– D432. https://doi.org/10.1093/nar/
gky995

European Commission (2020). Horizon 2020 in brief: The EU framework 
programme for research & innovation.

Finn, R. D., Clements, J., & Eddy, S. R. (2011). HMMER web server: 
Interactive sequence similarity searching. Nucleic Acids Research, 
39(suppl), W29– W37. https://doi.org/10.1093/nar/gkr367

Francis, W. R., Christianson, L. M., Kiko, R., Powers, M. L., Shaner, N. 
C., & D Haddock, S. H. (2013). A comparison across non- model 
animals suggests an optimal sequencing depth for de novo tran-
scriptome assembly. BMC Genomics, 14(1), 167. https://doi.
org/10.1186/1471- 2164- 14- 167

Fu, L., Niu, B., Zhu, Z., Wu, S., & Li, W. (2012). CD- HIT: Accelerated for 
clustering the next- generation sequencing data. Bioinformatics, 
28(23), 3150– 3152. https://doi.org/10.1093/bioin forma tics/bts565

Gayral, P., Weinert, L., Chiari, Y., Tsagkogeorga, G., Ballenghien, 
M., & Galtier, N. (2011). Next- generation sequencing of tran-
scriptomes: A guide to RNA isolation in nonmodel animals. 
Molecular Ecology Resources, 11(4), 650– 661. https://doi.
org/10.1111/j.1755- 0998.2011.03010.x

Gibbons, J. G., Janson, E. M., Hittinger, C. T., Johnston, M., Abbot, P., 
& Rokas, A. (2009). Benchmarking next- generation transcriptome 
sequencing for functional and evolutionary genomics. Molecular 
Biology and Evolution, 26(12), 2731– 2744. https://doi.org/10.1093/
molbe v/msp188

Gilbert, D. (2013). Gene- omes built from mRNA- seq not genome DNA.
Gilbert, D. (2019). Longest protein, longest transcript or most expres-

sion, for accurate gene reconstruction of transcriptomes? bioRxiv, 
829184. https://doi.org/10.1101/829184

Grabherr, M. G., Haas, B. J., Yassour, M., Levin, J. Z., Thompson, D. A., 
Amit, I., Adiconis, X., Fan, L., Raychowdhury, R., Zeng, Q., Chen, 
Z., Mauceli, E., Hacohen, N., Gnirke, A., Rhind, N., di Palma, F., 
Birren, B. W., Nusbaum, C., Lindblad- Toh, K., … Regev, A. (2011). 
Full- length transcriptome assembly from RNA- Seq data without a 
reference genome. Nature Biotechnology, 29(7), 644– 652. https://
doi.org/10.1038/nbt.1883

Guo, W., Wu, H., Zhang, Z., Yang, C., Hu, L., Shi, X., Jian, S., Shi, S., & 
Huang, Y. (2017). Comparative analysis of transcriptomes in rhizo-
phoraceae provides insights into the origin and adaptive evolution 
of mangrove plants in intertidal environments. Frontiers in Plant 
Science, 8, 795. https://doi.org/10.3389/fpls.2017.00795

Haas, B. J., Papanicolaou, A., Yassour, M., Grabherr, M., Blood, P. D., 
Bowden, J., Couger, M. B., Eccles, D., Li, B. O., Lieber, M., MacManes, 
M. D., Ott, M., Orvis, J., Pochet, N., Strozzi, F., Weeks, N., Westerman, 

 17550998, 2022, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/1755-0998.13593 by C

ochrane G
erm

any, W
iley O

nline L
ibrary on [14/09/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://doi.org/10.1093/nar/25.17.3389
https://doi.org/10.1093/nar/25.17.3389
https://doi.org/10.1093/nar/gkg095
https://doi.org/10.1016/j.celrep.2016.12.063
https://doi.org/10.1038/nmeth.3176
https://doi.org/10.1038/nmeth.3176
https://doi.org/10.1093/gigascience/giz100
https://doi.org/10.1093/gigascience/giz100
https://doi.org/10.1093/bioinformatics/btw218
https://doi.org/10.1093/bioinformatics/btw218
https://doi.org/10.1186/s12859-016-1406-x
https://doi.org/10.1186/s12859-016-1426-6
https://doi.org/10.1186/s12859-016-1426-6
https://doi.org/10.1093/bioinformatics/bty560
https://doi.org/10.1093/bioinformatics/bty560
https://doi.org/10.1093/molbev/msaa181
https://doi.org/10.1186/s12859-018-2139-9
https://doi.org/10.1186/s12859-018-2139-9
https://doi.org/10.1186/1471-2164-16-s6-s3
https://doi.org/10.1186/1471-2164-16-s6-s3
https://doi.org/10.1093/nar/gky299
https://doi.org/10.1186/s13059-014-0410-6
https://doi.org/10.1186/s13059-014-0410-6
https://doi.org/10.1111/mec.15570
https://doi.org/10.1111/mec.15570
https://doi.org/10.1101/2021.07.05.451097
https://doi.org/10.1101/2021.07.05.451097
https://doi.org/10.1111/mec.15664
https://doi.org/10.1038/nbt.3820
https://doi.org/10.1038/nbt.3820
https://doi.org/10.1093/nar/gky995
https://doi.org/10.1093/nar/gky995
https://doi.org/10.1093/nar/gkr367
https://doi.org/10.1186/1471-2164-14-167
https://doi.org/10.1186/1471-2164-14-167
https://doi.org/10.1093/bioinformatics/bts565
https://doi.org/10.1111/j.1755-0998.2011.03010.x
https://doi.org/10.1111/j.1755-0998.2011.03010.x
https://doi.org/10.1093/molbev/msp188
https://doi.org/10.1093/molbev/msp188
https://doi.org/10.1101/829184
https://doi.org/10.1038/nbt.1883
https://doi.org/10.1038/nbt.1883
https://doi.org/10.3389/fpls.2017.00795


    |  2085RIVERA- VICÉNS Et Al.

R., William, T., Dewey, C. N., … Regev, A. (2013). De novo transcript 
sequence reconstruction from RNA- seq using the Trinity platform for 
reference generation and analysis. Nature Protocols, 8(8), 1494– 1512. 
https://doi.org/10.1038/nprot.2013.084

Holt, C., & Yandell, M. (2011). MAKER2: An annotation pipeline and 
genome- database management tool for second- generation ge-
nome projects. BMC Bioinformatics, 12(1), 1– 14. https://doi.
org/10.1186/1471- 2105- 12- 491

Hölzer, M., & Marz, M. (2019). De novo transcriptome assembly: A com-
prehensive cross- species comparison of short- read RNA- Seq as-
semblers. Gigascience, 8(5), 1– 16. https://doi.org/10.1093/gigas 
cienc e/giz039

Kashyap, S. P., Prasanna, H. C., Kumari, N., Mishra, P., & Singh, B. (2020). 
Understanding salt tolerance mechanism using transcriptome 
profiling and de novo assembly of wild tomato Solanum chilense. 
Scientific Reports, 10(1), 1– 20. https://doi.org/10.1038/s4159 8- 
020- 72474 - w

Kerkvliet, J., de Fouchier, A., van Wijk, M., & Groot, A. T. (2019). The 
Bellerophon pipeline, improving de novo transcriptomes and re-
moving chimeras. Ecology and Evolution, 9(18), 10513– 10521. 
https://doi.org/10.1002/ece3.5571

Knutson, V. L., Brenzinger, B., Schrödl, M., Wilson, N. G., & Giribet, G. 
(2020). Most Cephalaspidea have a shell, but transcriptomes can 
provide them with a backbone (Gastropoda: Heterobranchia). 
Molecular Phylogenetics and Evolution, 153, 106943. https://doi.
org/10.1016/j.ympev.2020.106943

Kohen, R., Barlev, J., Hornung, G., Stelzer, G., Feldmesser, E., Kogan, K., 
Safran, M., & Leshkowitz, D. (2019). UTAP: User- friendly transcrip-
tome analysis pipeline. BMC Bioinformatics, 20(1), 1– 7. https://doi.
org/10.1186/s1285 9- 019- 2728- 2

Kopylova, E., Noé, L., & Touzet, H. (2012). SortMeRNA: Fast and ac-
curate filtering of ribosomal RNAs in metatranscriptomic data. 
Bioinformatics, 28(24), 3211– 3217. https://doi.org/10.1093/bioin 
forma tics/bts611

Krogh, A., Larsson, B., von Heijne, G., & Sonnhammer, E. L. L. (2001). 
Predicting transmembrane protein topology with a hidden mar-
kov model: Application to complete genomes. Journal of Molecular 
Biology, 305(3), 567– 580. https://doi.org/10.1006/jmbi.2000.4315

Lagesen, K., Hallin, P., Rødland, E. A., Stærfeldt, H.- H., Rognes, T., & 
Ussery, D. W. (2007). RNAmmer: Consistent and rapid annotation 
of ribosomal RNA genes. Nucleic Acids Research, 35(9), 3100– 3108. 
https://doi.org/10.1093/nar/gkm160

Langmead, B., & Salzberg, S. L. (2012). Fast gapped- read alignment with 
Bowtie 2. Nature Methods, 9(4), 357. https://doi.org/10.1038/
nmeth.1923

Li, J., Zhong, M., Lei, X., Xiao, S., & Li, Z. (2014). Diversity and antibac-
terial activities of culturable fungi associated with coral Porites 
pukoensis. World Journal of Microbiology and Biotechnology, 30(10), 
2551– 2558. https://doi.org/10.1007/s1127 4- 014- 1701- 5

Lozano- Fernandez, J., Tanner, A. R., Giacomelli, M., Carton, R., Vinther, 
J., Edgecombe, G. D., & Pisani, D. (2019). Increasing species sam-
pling in chelicerate genomic- scale datasets provides support for 
monophyly of Acari and Arachnida. Nature Communications, 10(1), 
1– 8. https://doi.org/10.1038/s4146 7- 019- 10244 - 7

Lu, B. X., Zeng, Z. B., & Shi, T. L. (2013). Comparative study of de novo 
assembly and genome- guided assembly strategies for transcrip-
tome reconstruction based on RNA- Seq. Science China Life Sciences, 
56(2), 143– 155. https://doi.org/10.1007/s1142 7- 013- 4442- z

MacManes, M. D. (2014). On the optimal trimming of high- throughput 
mRNA sequence data. Frontiers in Genetics, 5, 13. https://doi.
org/10.3389/fgene.2014.00013

MacManes, M. D. (2018). The Oyster River Protocol: A multi- assembler 
and k- mer approach for de novo transcriptome assembly. PeerJ, 6, 
e5428. https://doi.org/10.7717/peerj.5428

Martin, J., Bruno, V. M., Fang, Z., Meng, X., Blow, M., Zhang, T., 
Sherlock, G., Snyder, M., & Wang, Z. (2010). Rnnotator: An 

automated de novo transcriptome assembly pipeline from 
stranded RNA- Seq reads. BMC Genomics, 11(1), 663. https://doi.
org/10.1186/1471- 2164- 11- 663

Peng, Y., Leung, H. C., Yiu, S. M., Lv, M. J., Zhu, X. G., & Chin, F. Y. (2013). 
IDBA- tran: A more robust de novo de Bruijn graph assembler for 
transcriptomes with uneven expression levels. Bioinformatics, 
29(13), i326– i334. https://doi.org/10.1093/bioin forma tics/btt219

Perez, R., de Souza Araujo, N., Defrance, M., & Aron, S. (2021). Molecular 
adaptations to heat stress in the thermophilic ant genus Cataglyphis. 
Molecular Ecology, 30(21), 5503– 5516. https://doi.org/10.1111/
mec.16134

Petersen, T. N., Brunak, S., von Heijne, G., & Nielsen, H. (2011). SignalP 
4.0: Discriminating signal peptides from transmembrane re-
gions. Nature Methods, 8(10), 785– 786. https://doi.org/10.1038/
nmeth.1701

Pita, L., Hoeppner, M. P., Ribes, M., & Hentschel, U. (2018). Differential 
expression of immune receptors in two marine sponges upon 
exposure to microbial- associated molecular patterns. Scientific 
Reports, 8(1), 1– 15. https://doi.org/10.1038/s4159 8- 018- 34330 
- w

Prjibelski, A., Antipov, D., Meleshko, D., Lapidus, A., & Korobeynikov, 
A. (2020). Using SPAdes de novo assembler. Current Protocols in 
Bioinformatics, 70(1), e102. https://doi.org/10.1002/cpbi.102

Quek, R. Z. B., Jain, S. S., Neo, M. L., Rouse, G. W., & Huang, D. (2020). 
Transcriptome- based target- enrichment baits for stony corals 
(Cnidaria: Anthozoa: Scleractinia). Molecular Ecology Resources, 
20(3), 807– 818. https://doi.org/10.1111/1755- 0998.13150

Robertson, G., Schein, J., Chiu, R., Corbett, R., Field, M., Jackman, S. D., 
Mungall, K., Lee, S., Okada, H. M., Qian, J. Q., Griffith, M., Raymond, 
A., Thiessen, N., Cezard, T., Butterfield, Y. S., Newsome, R., Chan, 
S. K., She, R., Varhol, R., … Birol, I. (2010). De novo assembly and 
analysis of RNA- seq data. Nature Methods, 7(11), 909– 912. https://
doi.org/10.1038/nmeth.1517

Romero, I. G., Pai, A. A., Tung, J., & Gilad, Y. (2014). RNA- seq: Impact of 
RNA degradation on transcript quantification. BMC Biology, 12(1), 
1– 13. https://doi.org/10.1186/1741- 7007- 12- 42

Rzepecki, L. M., Chin, S. S., Waite, J. H., & Lavin, M. F. (1991). Molecular 
diversity of marine glues: Polyphenolic proteins from five mussel 
species. Molecular Marine Biology and Biotechnology, 1(1), 78– 88.

Schulz, M. H., Zerbino, D. R., Vingron, M., & Birney, E. (2012). Oases: 
Robust de novo RNA- seq assembly across the dynamic range of 
expression levels. Bioinformatics, 28(8), 1086– 1092. https://doi.
org/10.1093/bioin forma tics/bts094

Shinzato, C., Inoue, M., & Kusakabe, M. (2014). A Snapshot of a Coral 
“Holobiont”: A transcriptome assembly of the Scleractinian coral, 
Porites, captures a wide variety of genes from both the host and 
symbiotic zooxanthellae. PLoS One, 9(1), e85182. https://doi.
org/10.1371/journ al.pone.0085182

Simão, F. A., Waterhouse, R. M., Ioannidis, P., Kriventseva, E. V., 
& Zdobnov, E. M. (2015). BUSCO: Assessing genome assem-
bly and annotation completeness with single- copy orthologs. 
Bioinformatics, 31(19), 3210– 3212. https://doi.org/10.1093/bioin 
forma tics/btv351

Smith- Unna, R., Boursnell, C., Patro, R., Hibberd, J. M., & Kelly, S. (2016). 
TransRate: Reference- free quality assessment of de novo transcrip-
tome assemblies. Genome Research, 26(8), 1134– 1144. https://doi.
org/10.1101/gr.196469.115

Sultan, M., Amstislavskiy, V., Risch, T., Schuette, M., Dökel, S., Ralser, 
M., Balzereit, D., Lehrach, H., & Yaspo, M.- L. (2014). Influence 
of RNA extraction methods and library selection schemes 
on RNA- seq data. BMC Genomics, 15(1), 675. https://doi.
org/10.1186/1471- 2164- 15- 675

Testa, A. C., Hane, J. K., Ellwood, S. R., & Oliver, R. P. (2015). 
CodingQuarry: Highly accurate hidden Markov model gene predic-
tion in fungal genomes using RNA- seq transcripts. BMC Genomics, 
16(1), 170. https://doi.org/10.1186/s1286 4- 015- 1344- 4

 17550998, 2022, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/1755-0998.13593 by C

ochrane G
erm

any, W
iley O

nline L
ibrary on [14/09/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://doi.org/10.1038/nprot.2013.084
https://doi.org/10.1186/1471-2105-12-491
https://doi.org/10.1186/1471-2105-12-491
https://doi.org/10.1093/gigascience/giz039
https://doi.org/10.1093/gigascience/giz039
https://doi.org/10.1038/s41598-020-72474-w
https://doi.org/10.1038/s41598-020-72474-w
https://doi.org/10.1002/ece3.5571
https://doi.org/10.1016/j.ympev.2020.106943
https://doi.org/10.1016/j.ympev.2020.106943
https://doi.org/10.1186/s12859-019-2728-2
https://doi.org/10.1186/s12859-019-2728-2
https://doi.org/10.1093/bioinformatics/bts611
https://doi.org/10.1093/bioinformatics/bts611
https://doi.org/10.1006/jmbi.2000.4315
https://doi.org/10.1093/nar/gkm160
https://doi.org/10.1038/nmeth.1923
https://doi.org/10.1038/nmeth.1923
https://doi.org/10.1007/s11274-014-1701-5
https://doi.org/10.1038/s41467-019-10244-7
https://doi.org/10.1007/s11427-013-4442-z
https://doi.org/10.3389/fgene.2014.00013
https://doi.org/10.3389/fgene.2014.00013
https://doi.org/10.7717/peerj.5428
https://doi.org/10.1186/1471-2164-11-663
https://doi.org/10.1186/1471-2164-11-663
https://doi.org/10.1093/bioinformatics/btt219
https://doi.org/10.1111/mec.16134
https://doi.org/10.1111/mec.16134
https://doi.org/10.1038/nmeth.1701
https://doi.org/10.1038/nmeth.1701
https://doi.org/10.1038/s41598-018-34330-w
https://doi.org/10.1038/s41598-018-34330-w
https://doi.org/10.1002/cpbi.102
https://doi.org/10.1111/1755-0998.13150
https://doi.org/10.1038/nmeth.1517
https://doi.org/10.1038/nmeth.1517
https://doi.org/10.1186/1741-7007-12-42
https://doi.org/10.1093/bioinformatics/bts094
https://doi.org/10.1093/bioinformatics/bts094
https://doi.org/10.1371/journal.pone.0085182
https://doi.org/10.1371/journal.pone.0085182
https://doi.org/10.1093/bioinformatics/btv351
https://doi.org/10.1093/bioinformatics/btv351
https://doi.org/10.1101/gr.196469.115
https://doi.org/10.1101/gr.196469.115
https://doi.org/10.1186/1471-2164-15-675
https://doi.org/10.1186/1471-2164-15-675
https://doi.org/10.1186/s12864-015-1344-4


2086  |    RIVERA- VICÉNS Et Al.

Veglia, A. J., Hammerman, N. M., Rivera- Vicéns, R. E., & Schizas, N. V. 
(2018). De novo transcriptome assembly of the coral Agaricia la-
marcki (Lamarck’s sheet coral) from mesophotic depth in southwest 
Puerto Rico. Marine Genomics, 41, 6– 11. https://doi.org/10.1016/j.
margen.2018.08.003

Wang, D. (2018). hppRNA— a Snakemake- based handy parameter- free 
pipeline for RNA- Seq analysis of numerous samples. Briefings 
in Bioinformatics, 19(4), 622– 626. https://doi.org/10.1093/bib/
bbw143

Waterhouse, R. M., Zdobnov, E. M., & Kriventseva, E. V. (2011). 
Correlating traits of gene retention, sequence divergence, du-
plicability and essentiality in vertebrates, arthropods, and fungi. 
Genome Biology and Evolution, 3, 75– 86. https://doi.org/10.1093/
gbe/evq083

Xie, Y., Wu, G., Tang, J., Luo, R., Patterson, J., Liu, S., Huang, W., He, G., 
Gu, S., Li, S., Zhou, X., Lam, T.- W., Li, Y., Xu, X., Wong, G.- K.- S., & 
Wang, J. (2014). SOAPdenovo- Trans: De novo transcriptome assem-
bly with short RNA- Seq reads. Bioinformatics, 30(12), 1660– 1666. 
https://doi.org/10.1093/bioin forma tics/btu077

Yang, Y., Li, Y., Chen, Q., Sun, Y., & Lu, Z. (2019). WGDdetector: A pipe-
line for detecting whole genome duplication events using the ge-
nome or transcriptome annotations. BMC Bioinformatics, 20(1), 1– 6. 
https://doi.org/10.1186/s1285 9- 019- 2670- 3

Zerbino, D. R., & Birney, E. (2008). Velvet: Algorithms for de novo short 
read assembly using de Bruijn graphs. Genome Research, 18(5), 821– 
829. https://doi.org/10.1101/gr.074492.107

Zhang, X., & Jonassen, I. (2020). RASflow: An RNA- Seq analysis work-
flow with Snakemake. BMC Bioinformatics, 21(1), 1– 9. https://doi.
org/10.1186/s1285 9- 020- 3433- x

SUPPORTING INFORMATION
Additional supporting information may be found in the online 
version of the article at the publisher’s website.

How to cite this article: Rivera- Vicéns, R. E., Garcia- Escudero, 
C. A., Conci, N., Eitel, M., & Wörheide, G. (2022). TransPi— a 
comprehensive TRanscriptome ANalysiS PIpeline for de novo 
transcriptome assembly. Molecular Ecology Resources, 22, 
2070– 2086. https://doi.org/10.1111/1755- 0998.13593

 17550998, 2022, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/1755-0998.13593 by C

ochrane G
erm

any, W
iley O

nline L
ibrary on [14/09/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://doi.org/10.1016/j.margen.2018.08.003
https://doi.org/10.1016/j.margen.2018.08.003
https://doi.org/10.1093/bib/bbw143
https://doi.org/10.1093/bib/bbw143
https://doi.org/10.1093/gbe/evq083
https://doi.org/10.1093/gbe/evq083
https://doi.org/10.1093/bioinformatics/btu077
https://doi.org/10.1186/s12859-019-2670-3
https://doi.org/10.1101/gr.074492.107
https://doi.org/10.1186/s12859-020-3433-x
https://doi.org/10.1186/s12859-020-3433-x
https://doi.org/10.1111/1755-0998.13593

	TransPi—a comprehensive TRanscriptome ANalysiS PIpeline for de novo transcriptome assembly
	Abstract
	1|INTRODUCTION
	2|METHODS
	2.1|Pipeline implementation and configuration
	2.2|Precheck script
	2.3|Main script
	2.4|K-mer selection, read length effect and chimera detection
	2.5|TransPi on nonmodel organisms
	2.6|Additional options

	3|RESULTS
	3.1|K-mer selection, reads length effect and chimera detection
	3.2|TransPi on nonmodel organisms
	3.3|TransPi report
	3.4|Additional TransPi options

	4|DISCUSSION
	ACKNOWLEDGEMENTS
	CONFLICT OF INTEREST
	AUTHOR CONTRIBUTIONS
	DATA AVAILABILITY STATEMENT

	REFERENCES


