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Abstract

To help with the visualization of high dimensional data, dimension reduction tech-
niques have become essential. Two such techniques that have gained a lot of popu-
larity in the last years are t-Distributed Neighbor Embedding (t-SNE) and Uniform
Manifold Approximation and Projection (UMAP).

In this thesis we examined these two algorithms, first theoretically describing and
comparing them and then analyzing their performance and the influence of certain
parameters. We ran t-SNE and UMAP with different parameter settings on six
datasets and calculated three quality measures for each outcome. We then analyzed
these results through linear models and compared them with different plots.

Most of the parameters we examined in this thesis influenced the quality of the
embedding. For some parameters one setting was clearly superior, while other pa-
rameters were more of a trade-off between different quality measures. In our analy-
sis, t-SNE performed a bit better than UMAP regarding all three quality measures,
which is surprising, since UMAP is often regarded to better preserve the global
structure of the data (Becht et al., 2018).
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Chapter 1

Introduction

Dimensionality reduction is an important task in the field of data analysis and vi-
sualization, as it creates a low dimensional representation of high dimensional data,
enabling one to understand and analyze complex datasets more easily. Two pop-
ular algorithms for dimensionality reduction are t-Distributed Stochastic Neighbor
Embedding (t-SNE) by van der Maaten and Hinton (2008) and Uniform Manifold
Approximation and Projection (UMAP) by McInnes et al. (2018), which have been
shown to be effective and produce visually appealing results across many domains,
such as art (Vermeulen et al., 2021), music (Philippe Hamel and Douglas Eck, 2010),
finance (Greengard et al., 2020) and biology (Kobak and Berens, 2019).

However, contrary to other well known dimension reduction techniques, such as
Principal Component Analysis (PCA), t-SNE and UMAP have a number of user-
defined hyperparameters that influence the result. Many of these parameters are
unfortunately not very intuitive, so for people who are unfamiliar with them, it
can be hard to understand what each parameter does and how different parameter
settings will affect the outcome, which makes selecting the values a challenging task.

The main goal of this thesis is to investigate which parameters affect the quality of
the outcome the most, if there are certain settings that always produce good results
and whether one of these two techniques is generally superior. To achieve this, a
number of parameter setting combinations will be applied to different datasets and
the quality of each output will be assessed via multiple quality measures.

The structure of this thesis will be the following: The second chapter will be a
description and comparison of the algorithms, strengths, weaknesses and hyperpa-
rameters of UMAP and t-SNE. In the third chapter, the methods used to examine
the influence of the parameters will be explained, with the results being presented
in the fourth chapter and discussed in the fifth.
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Chapter 2

Background

2.1 t-SNE

The dimension reduction technique t-SNE (t-Distributed Stochastic Neighbor Em-
bedding) by van der Maaten and Hinton (2008) is a variation of the Stochastic
Neighbor Embedding (SNE) technique by Hinton and Roweis (2002). The main dif-
ferences between SNE and t-SNE are in the cost function: To make the optimization
easier, t-SNE uses a symmetric version of the SNE cost function that has simpler
gradients and, instead of the Gaussian used by SNE, t-SNE uses a t-distribution to
calculate the similarities in the low dimensional space (van der Maaten and Hinton,
2008).

2.1.1 Algorithm

This description of the t-SNE algorithm is based on van der Maaten and Hinton
(2008) and, for better comparability with the UMAP algorithm, McInnes et al.
(2018).

High Dimensional Similarities

The t-SNE algorithm starts by computing pairwise similarities in the high dimen-
sional input space X. First, for every pair of datapoints, xj and xi, a Gaussian
similarity with respect to the Euclidean distance between the two points is calcu-
lated:

vj|i = exp(−∥xi − xj∥2/2σ2
i )

where σ2
i is the variance parameter of the underlying Gaussian distribution (McInnes

et al., 2018).
After that, these similarities are normalized and converted into conditional proba-
bilities:

pj|i =
vj|i∑
k ̸=i vk|i

=
exp(−∥xi − xj∥2/2σ2

i )∑
k ̸=i exp(−∥xi − xk∥2/2σ2

i )

which can be interpreted as the conditional probability that ”xi would pick xj as its
neighbor if neighbors were picked in proportion to their probability density under
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2.1. T-SNE

a Gaussian centered at xi”(van der Maaten and Hinton, 2008). It follows that for
points, which are close together in X, the value of pj|i will be relatively high and
for points that are far from each other, it will be extremely low. Since only pairwise
similarities are of interest to us, the value of pi|i is set to 0 (van der Maaten and
Hinton, 2008).

In order to calculate pj|i, the value of σi is needed. Depending on the density of
the data around xi, different values for σi are appropriate. The denser the region
surrounding xi, the lower σi should be. The exact value of σi, which produces a prob-
ability distribution, Pi, over the other datapoints, is chosen through a binary search
for a Pi with a certain perplexity. The perplexity is a user-defined hyperparameter:

Perp(Pi) = 2H(Pi)

with H(Pi) being the Shannon entropy, a measure of average information of a vari-
able, of Pi measured in bits (meaning the base of the logarithm is 2):

H(Pi) = −
∑
j

pj|i log2 pj|i

The typical values for the perplexity range from 5 to 50 and it can be interpreted
as ”a smooth measure of the effective number of neighbors” (van der Maaten and
Hinton, 2008).

The next step is to symmetrize and further normalize the similarities to get a joint
probability distribution P . These similarities are given by:

pij =
pi|j + pj|i

2n

to ensure that
∑

j pij >
1
2n
, ∀xi ∈ X, so that each datapoint contributes significantly

to the cost function, which will be discussed later (van der Maaten and Hinton, 2008).

To speed up the process, these high dimensional similarities are often not calculated
on the original data. Instead, a Principal Component Analysis is used, to reduce
the number of dimensions (van der Maaten and Hinton, 2008).

Initialization

The initialization of the low dimensional space is done randomly. The points are
sampled from the Gaussian N (0, 10−4I) (van der Maaten and Hinton, 2008).

Low Dimensional Similarities

Next, we have to calculate the pairwise similarities in the low dimensional space Y .
Instead of a Gaussian like in the high dimensional space, a t-distribution with one
degree of freedom is used on the squared Euclidean distance (van der Maaten and
Hinton, 2008).

As the first step we calculate wij:

wij = (1 + ∥yi − yj∥2)−1

3
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which is then normalized to get the low dimensional similarities qij:

qij =
wij∑
k ̸=l wkl

=
(1 + ∥yi − yj∥2)−1∑
k ̸=l(1 + ∥yk − yl∥2)−1

Like in the high dimensional case, the value of qii is set to 0 (van der Maaten and
Hinton, 2008).

Optimization

To measure how faithful the low dimensional similarities qij represent the high di-
mensional similarities pij, t-SNE uses the Kullback-Leibler divergence between the
high dimensional probability distribution P and the low dimensional probability
distribution Q (van der Maaten and Hinton, 2008).

Therefore, the cost function is given by:

C = KL(P ||Q) =
∑
i ̸=j

pij log
pij
qij

,

which can be arranged into constant and non-constant contributions:

C =
∑
i ̸=j

pij log pij − pij log qij

It is optimized via gradient descent. Gradient descent is an algorithm to minimize a
function f(x), x ∈ Rd, that takes the following steps (Konečný and Richtárik, 2013):

1. Compute the gradient f ′(x) of the function

2. Pick (random) initial values x1

3. Update parameter values: xk+1 = xk − hf ′(xk) with h being the user-defined
learning rate

4. Repeat step 3 until the gradient is almost zero or for a user-defined number of
times

The gradient with respect to yi is given by:

δC

δyi
= 4

∑
j

(pij − qij)(yi − yj)(1 + ∥yi − yj∥2)−1.

The gradient can be interpreted as a set of springs between yi and every other
datapoint in the low dimensional space. These ”springs” repel other points if the
modeled low dimensional distance is too small and attract them if it is too big (van
der Maaten and Hinton, 2008).

A relatively large momentum term is added to the gradient for a faster optimization
and to avoid poor local minima. This updated gradient is given by:

Y(t) = Y(t−1) + η
δC

δY
+ α(t)(Y(t−1) − Y(t−2)),

4



2.1. T-SNE

where Y(t) is the solution of the t-th iteration, η the learning rate and α(t) the mo-
mentum at iteration t. The values used by van der Maaten and Hinton (2008) are
the following: α(t) = 0.5 for t < 250 and α(t) = 0.8 for t ≥ 250, T = 1000, with T
being the number of iterations and η = 100. t-SNE uses the adaptive learning rate
scheme by Jacobs (1988), which means that the learning rate is updated after every
iteration (van der Maaten and Hinton, 2008).

A way to further improve the optimization is called ”early exaggeration”, where the
pij’s are multiplied by an exaggeration factor at the beginning of the optimization,
which changes the cost function to the following:

C =
∑
i ̸=j

exageration factor · pij log
exageration factor · pij

qij

This leads to widely separated but tight clusters, because the model is now encour-
aged to model the big pij’s with big qij’s, but the qij’s still only add up to 1 (van der
Maaten and Hinton, 2008). An exaggeration factor of 4 for the first 50 iterations
was chosen by van der Maaten and Hinton (2008).

2.1.2 Hyperparameters

In this thesis we used the FIt-SNE implementation by Linderman et al. (2019),which
is a faster approximation of the standard t-SNE algorithm. It has a number of
user-defined hyperparameters that influence the outcome, which will be covered
in this section. The focus lies on the three main parameters used by Kobak and
Linderman (2021) to improve the quality of the output. A short description of the
other parameters can be found in the Appendix A.

Initialization

This parameter determines the initial placement of the points in the low dimensional
embedding. If set to ”pca”, the first k principal components will be used for initial-
ization, with k being the number of dimensions of the embedding. The alternatives
are ”random”, for a random initialization or to provide an array for a custom ini-
tialization. According to Kobak and Linderman (2021), a PCA initialization helps
to better preserve the global structure of the data. The default setting is ”pca”.

Perplexity

Perplexity is a measure for information. In t-SNE, the perplexity is used to set
the number of effective nearest neighbors. Smaller values will preserve the local
structure better, while larger values help to better preserve the global structure.
According to van der Maaten and Hinton (2008), the typical values range from
5 to 50. For large data sets Kobak and Berens (2019) suggest using a multi-scale
approach, where multiple perplexity values are used simultaneously to preserve both
local and global structure. This is done by calculating the pj|i’s for all perplexity
values and averaging them. Whenever n/100 ≫ 30 they recommend a perplexity
combination of 30 and n/100. The default value is 30.
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2.2. UMAP

Learning rate

The learning rate determines the step size at each iteration of the gradient descent
used during the optimization. A high learning rate converges faster but might
skip minima because the step size is too big, while a low learning rate might
take too long to converge or get stuck in a suboptimal local minimum (Buduma
and Locascio, 2017). The default value is ”auto”, which sets the learning rate to
n/exaggeration factor, or to 200 if n/exaggeration factor < 200.

2.1.3 Strengths and Weaknesses

Compared to other dimension reduction techniques, like the PCA, t-SNE excels at
data visualization, specifically of the local structure of high dimensional data. This
focus on retaining the local structure is especially helpful if the data lies on or near
a non-linear manifold, in which case a linear dimension reduction technique that
focuses more on retaining the global structure of the data would not be able to
produce a good visualization that accurately represents the non-linear structure of
the data (van der Maaten and Hinton, 2008).

However, visualization is the only intended use for t-SNE. In many other uses for
dimensionality reduction, the interpretability of the dimensions of the embedding
space is of great importance but not given for t-SNE. Also, because of the behavior
of the t-distribution in high dimensional spaces, the local structure of the data might
not be preserved well if t-SNE is used for a more general dimensionality reduction
to d > 3 dimensions (van der Maaten and Hinton, 2008).
Because of the non-convexity of the t-SNE cost function, the constructed solution is
only a local optimum and it depends on several user-defined hyperparameters. The
solution will also be different each time t-SNE is run on the same dataset, since the
initialization is done randomly (van der Maaten and Hinton, 2008).
Since the t-SNE algorithm mainly utilizes the local structure of the data, it is suscep-
tible to the curse of dimensionality. The local linearity assumption that is implicitly
made by the usage of the Euclidean distance may be violated in data sets with a
high intrinsic dimensionality, which can cause t-SNE to be less successful (van der
Maaten and Hinton, 2008).
Lastly, the focus on accurately representing the local structure comes at the cost of
retaining the global structure. t-SNE does reveal some global structure, but if that
is of primary interest, then t-SNE may not be the best suited technique for the task
(van der Maaten and Hinton, 2008).

2.2 UMAP

UMAP (Uniform Manifold Approximation and Projection) is a dimension reduction
technique by McInnes et al. (2018). It has theoretical foundations based in Rieman-
nian geometry and algebraic topology, which won’t be covered here but can be found
in (McInnes et al., 2018). Instead of the typical description as a graph based algo-
rithm, a version using the same similarity notation as the t-SNE algorithm based on
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(McInnes et al., 2018, Appendix C) will be presented here. This is done for easier
comparability later.

2.2.1 Algorithm

High Dimensional Similarities

The first step in calculating the high dimensional similarities is to compute the k
nearest neighbors of every datapoint xi under a metric d, which is usually, but not
necessarily, the Euclidean distance (McInnes et al., 2018).

To define the high dimensional similarities we need to specify two parameters, ρi
and σi. For each xi, ρi is given by:

ρi = min{d(xi, xij)|1 ≤ j ≤ k, d(xi, xij) > 0},

and we set σi such that:

k∑
j=1

exp

(−max(0, d(xi, xij)− ρi)

σi

)
= log2(k).

Now we can calculate the high dimensional similarities vj|i between every xi and its
k nearest neighbors with:

vj|i = exp

(
−d(xi, xj)− ρi

σi

)
,

and set vj|i = 0 for all other xj. ρi ensures that every point has at least one other
point with a high dimensional similarity of one, which helps with the representation
on very high dimensional data. σi is a normalization factor, which depends on the
density of the region surrounding xi (McInnes et al., 2018).

The last step is to symmetrize the similarities via the fuzzy set union using the
probabilistic t-conorm:

vij = (vj|i + vi|j)− vj|ivi|j

Fuzzy sets are a generalization of classical sets, where the elements have degrees of
membership valued in the real unit interval [0, 1]. A fuzzy union or t-conorm, the
terms can be used interchangeably, is one of many different possible generalizations
of the classical set union (Klir and Yuan, 1995).

Initialization

UMAP uses Spectral Embedding (Laplacian Eigenmaps), a graph based dimension
reduction algorithm, for the initialization. The following brief description of the
algorithm is based on (Belkin and Niyogi, 2003).

Given k points x1, ..., xk ∈ Rl, there are three main steps:

7



2.2. UMAP

1. Constructing the adjacency graph: ”Close” vertices are connected by an
edge. Determining which points are close can be done via a n nearest neighbor
approach, where each vertex is connected to its n nearest neighbors based on
the squared Euclidean distance, or a ϵ-neighborhood approach, where vertices
are connected if the squared Euclidean distance is less than ϵ.

2. Choosing the weights: There are, again, two possible ways to do this. The
simple way is to set Wij = 1, if the vertices i and j are connected by an edge,

and Wij = 0 if not. The other way is to set Wij = exp
(

∥xi−xj∥2
t

)
for connected

vertices, where the parameter t ∈ R needs to be chosen.

3. Obtaining the Eigenmaps: The next step is to solve the generalized eigen-
vector problem:

Lf = λDf

with Dii =
∑

j Wji and L = D −W . L is called the Laplacian matrix.

Let f0, ..., fk−1 be the eigenvectors to this problem, in ascending order accord-
ing to their eigenvalues. The eigenvector f0 corresponding to the eigenvalue 0 is
left out and the next m eigenvectors are used for obtaining the m-dimensional
representations y1, ..., yk:

yi = (f1(i), ..., fm(i))

Low Dimensional Similarities

UMAP uses a modified t-distribution to calculate the low dimensional similarities,
which are given by:

wij = (1 + a∥yi − yj∥2b)−1,

with a and b being positive user-defined values. The default values are a ≈ 1.929
and b ≈ 0.7915 (McInnes et al., 2018).

Optimization

UMAP uses the cross entropy as a cost function, to measure how well the low
dimensional similarities wij represent the high dimensional similarities vij. It is
given by:

C =
∑
i ̸=j

vij log

(
vij
wij

)
+ (1− vij) log

(
1− vij
1− wij

)
,

which can be arranged into constant (containing only vij) and non-constant (con-
taining wij) contributions:

C =
∑
i ̸=j

vij log vij + (1− vij) log(1− vij)− vij logwij − (1− vij) log(1− wij).

8



2.2. UMAP

The cost function is optimized (minimized) via stochastic gradient descent (SGD)
(McInnes et al., 2018). Generally, the difference between SGD and regular gradi-
ent descent is that SGD, instead of using the whole data set every time, randomly
chooses a data point at every iteration of the parameter update to compute the gra-
dient. This reduces the amount of computations and thus the run time dramatically
(Konečný and Richtárik, 2013).

To be more precise, the way it works specifically for UMAP is that points in the low
dimensional space are moved one at a time. When a point is selected to be moved
it is attracted by one of its high dimensional neighbors and repulsed by a sampling
of other points (McInnes et al., 2018).

2.2.2 Hyperparameters

In this thesis the ”umap” package by Konopka (2022) will be used. It has a number
of user-defined hyperparameters, which will be described below. The focus is on
three main parameters, which will be covered in this section. A short description of
the other parameters can be found in the Appendix A

Initialization

The ”init” parameter determines the initial placement of the points in the low dimen-
sional embedding. If set to ”spectral”, Spectral Embedding is used. Alternatively,
it is also possible to choose ”random”, for a random initialization, or to provide a
matrix with coordinates for the initialization. The default setting is ”spectral”.

Number of nearest neighbors

This parameter sets the number of nearest neighbors to consider when calculating
the high dimensional similarities. It is comparable to the perplexity from t-SNE and
can be seen as a trade-off between retaining the local and global structure of the
data (McInnes et al., 2018). The default value is 15.

Minimum distance

This parameter controls how tightly the points in the low dimensional embedding
can be packed together. It influences, together with the ”spread” parameter, the
calculation of the a and b values used to alter the t-distribution when calculating
the low dimensional similarities. Low values will result in clumpier embeddings,
which can be useful for clustering. Higher values will force the points to spread out
more and can help prevent overplotting issues (McInnes et al., 2018). Overplotting
describes a problem where multiple data points with similar or identical values
overlap, making the individual observations non-distinguishable (Dang et al., 2010).
The default value is 0.1.

2.2.3 Strengths and Weaknesses

Similarly to t-SNE, UMAP is mostly used for visualization of (very) high dimensional
data and focuses on retaining the local structure of the data, which is especially use-
ful if the data lies on a non-linear manifold (McInnes et al., 2018; van der Maaten
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and Hinton, 2008).
Also, in contrast to t-SNE, all decisions regarding the UMAP algorithm are based on
mathematical theory, instead of being derived through experimentation (McInnes
et al., 2018).

Although it is sometimes used for other tasks than visualization, UMAP has the
same interpretability problem as t-SNE. The dimensions of the embedding often
need to be interpretable, in which case a linear dimension reduction technique such
as PCA is more suitable (McInnes et al., 2018).
As with t-SNE, the non-convex optimization problem of UMAP means that a solu-
tion is only a local optimum. Also, because of the probabilistic component from the
SGD, the solution may be different every time UMAP is run on the same data set
(McInnes et al., 2018).
Another weakness UMAP shares with t-SNE is the retention of the global structure.
Although UMAP is often said to retain the global structure better than t-SNE,
mostly due to the Spectral Embedding used for the initialization, its focus is still
more on accurately representing local structure. Therefore, if the preservation of the
global structure of the data is the primary concern, other techniques may be better
suited (McInnes et al., 2018; Kobak and Linderman, 2021).
Lastly, one has to be careful when using UMAP on small datasets. The UMAP
algorithm makes some approximations to improve the computational efficiency,
which can result in suboptimal embeddings for datasets with less than 500 sam-
ples (McInnes et al., 2018).

2.3 Comparison

In this section we will compare the two techniques. The first part will be a theo-
retical comparison of the two algorithms and the second part will be an empirical
comparison, where the current state of research will be presented.

2.3.1 Theoretical Comparison

In this part, the theoretical differences and similarities between t-SNE and UMAP
in the four steps of the algorithms will be discussed.

High Dimensional Similarities

UMAP, unlike t-SNE, only calculates the high dimensional similarities between each
point and its k nearest neighbors instead of all the points, which avoids some un-
necessary computations.

To calculate the high dimensional similarities vj|i, t-SNE uses a Gaussian with re-
spect to the Euclidean distance between xi and xj. UMAP does not use a Gaussian
and the metric used can be freely chosen. σi, a normalizing factor based on the den-
sity around xi, is used in both algorithms and although it is calculated differently
it fulfills a similar function (McInnes et al., 2018).

10
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After calculating vj|i, t-SNE first normalizes the similarities before symmetrizing
them, while UMAP symmetrizes them right away.

Initialization

In t-SNE, the initialization is done randomly, whereas UMAP uses spectral embed-
ding. According to McInnes et al. (2018), this is a major factor that helps UMAP
better retain the global structure of the data.

Low Dimensional Similarities

To calculate the low dimensional similarities wij, t-SNE uses a t-distribution with
one degree of freedom on the squared Euclidean distances. UMAP uses a slightly
different formula with hyperparameters a and b to modify the t-distribution. Again,
t-SNE normalizes the similarities while UMAP does not.

Optimization

The two algorithms optimize different cost functions. t-SNE uses the Kullback-
Leibler divergence between the high dimensional and the low dimensional probabil-
ity distribution and UMAP uses the cross entropy.

The way the cost functions are optimized is also different. t-SNE uses regular gradi-
ent descent, while UMAP utilizes stochastic gradient descent, a faster approximation
of the gradient descent algorithm. In the low dimensional space, t-SNE moves every
point at every iteration, whilst UMAP moves one point at a time.

2.3.2 Empirical Comparison

In the UMAP publication paper, McInnes et al. (2018) compared their new al-
gorithm with a number of other dimension reduction techniques, including t-SNE.
They came to the conclusion that, while UMAP and t-SNE retain the local structure
equally well, UMAP has several advantages, including the retention of the global
structure, the stability under sub-sampling and the run-time. These results make
UMAP seem like the clearly superior alternative, but should be regarded with cau-
tion, as the supposed superiority of new algorithms over their existing competitors is
often over-optimistic, due to the authors being (intentionally or not) biased towards
their own algorithm (Ullmann et al., 2022; Buchka et al., 2021). It is therefore im-
portant to also look at other, more neutral comparisons, which, in this case, often
come to the same conclusions. For example, Becht et al. (2018) claim that UMAP
is faster, better reproducible and preserves the global structure better than t-SNE,
with Yang et al. (2021) and Wu et al. (2019) coming to similar conclusions.

However, the FIt-SNE implementation by Linderman et al. (2019) solves the run-
time deficits of t-SNE, as both Becht et al. (2018) and Kobak and Linderman (2021)
agree that it is at least as fast as UMAP. Additionally, Kobak and Linderman (2021)
come to the conclusion that UMAP’s superiority in terms of reproducibility and
preserving the global structure stems only from the initialization. They showed
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that when t-SNE is run with an informed initialization, a PCA initialization in this
case, it performed as well as UMAP.

12



Chapter 3

Methods

The aim of this thesis is to examine which parameters affect the quality of the output
from t-SNE and UMAP the most, how they affect it and whether one algorithm
generally performs better than the other. This Chapter will provide an overview of
the methods used to test these questions.

3.1 Parameters

The main idea is to select the most important parameters, choose a few reasonable
settings for each parameter and run UMAP/t-SNE for every combination. Unfor-
tunately, due to long computing times, it was necessary to keep the number of
total combinations relatively small. For this reason, only three parameters with at
most four different settings were selected for each technique. Every other parameter
not presented in this section was left at the default setting except max iter from t-
SNE, which was set to 1000, following the recommendations from Kobak and Berens
(2019).

3.1.1 t-SNE

Initialization: According to Kobak and Linderman (2021), an informed initializa-
tion is the main reason why UMAP is supposedly better able to preserve the global
structure of the data than standard t-SNE. To test this, and also to see how the
initialization affects other quality measures as well, the two settings used are ”pca”
and ”random”.

Perplexity: For large datasets, Kobak and Berens (2019) suggest using a perplexity
combination of 30 and n/100 to best preserve both the local and global structure.
To test the trade-off in preserving the local or global structure the values of 30,
n/100, and the combination of both were selected.

Learning rate: Kobak and Berens (2019) recommend using n/exaggeration factor.
To test the influence this might have, the standard value of 200 and n/exaggeration factor
= n/12 were selected.
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3.2. DATA SETS

3.1.2 UMAP

Initialization: To test whether the supposedly superior preservation is due to an
informed initialization, the standard spectral embedding and a random initialization
were selected.

Number of nearest neighbors: The default value is 15. There seem to be no
recommendations what values to use depending on the size of the dataset. To see
how different settings affect the outcome, the values 5, 15, 40 and 100 were selected.

Minimum distance: Again, there seems to be no guideline what settings to use, so
the values 0.02, 0.1 (default value) and 0.5 were selected to see how different values
affect the result.

3.2 Data Sets

All the combinations of parameter settings for both t-SNE and UMAP were com-
puted for multiple datasets, which are described below:

MNIST: This dataset contains 70000 images of handwritten digits with 28× 28 =
784 pixels. The first 784 columns are the grayscale values of each pixel, ranging from
0 to 255, and the last column is a label indicating which digit is depicted (Deng,
2012).

F-MNIST: This dataset is very similar to MNIST, as it is intended to be a direct
replacement. It contains 70000 grayscale images of fashion items with 28×28 pixels.
Again, the grayscale value of each pixel, ranging from 0 to 255, is a column and a
label column assigns each image to one of ten classes (Xiao et al., 2017).

Statlog (Shuttle): This is a NASA dataset that contains various data about space
shuttles. It has 58000 points with 9 numeric attributes and a label column assigning
each point to one of 7 classes (Dua and Graff, 2017).

COIL-20: This dataset contains 1440 grayscale images of 20 objects in 72 slightly
rotated poses spanning 360 degrees. The value of each of the 128 × 128 = 16384
pixels, ranging from 0 to 1, is a column and a label column indicates which of the
20 objects is depicted. (Nene et al., 1996a)

COIL-100: This dataset is similar to COIL-20. It contains 7200 128×128 pixel im-
ages of 100 objects in 72 poses. These are color images so the first 16384 ·3 = 49152
columns are the pixel values from the red, green and blue channels, ranging from 0 to
1. The last column is a label indicating which object is depicted (Nene et al., 1996b).

Olivetti-Faces: This dataset contains 400 images of 40 persons faces in ten different
poses with 64 × 64 = 4096 pixels. The first 4096 columns are the grayscale values
of each pixel, ranging from 0 to 255, and the last column is a label indicating the
person (Melville, 2022).
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3.3 Quality Measures

To numerically assess the different aspects of quality of the outcomes, quality mea-
sures are needed. In this thesis, we used the same measures as recommended by
Kobak and Berens (2019).

k-nearest neighbors (KNN): For every point the k-nearest neighbors are com-
puted in the high dimensional original data and the low dimensional embedding.
Then, the fraction of points that are neighbors in both spaces is calculated. This is
done for every point and then averaged over the whole dataset. As recommended
by Kobak and Berens (2019), we set k = 10. This is a measure for the preservation
of the local or microscopic structure.

k-nearest classes (KNC): For every class the mean is calculated in the high and
low dimensional space. Then, the fraction of the k-nearest class means that are the
same in the high and low dimensional space is computed for every class and then
averaged over all classes. As done by Kobak and Berens (2019), we set k to 25% of
the total number of classes for each dataset. This is a measure for the preservation
of the mesoscopic structure.

Correlation between pairwise distances (CPD): 1000 points are sampled ran-
domly. Then, the spearman correlation between the pairwise distances in the high
dimensional and low dimensional space is computed. This is done 10 times and then
averaged. It is a measure for the preservation of the global or macroscopic structure.

3.4 Analysis

3.4.1 Linear Models

To analyze the influence of the parameters on the quality of the outcome, we used
linear models on the data generated by running t-SNE/UMAP with all the parame-
ter combinations mentioned above on all datasets and calculating the three quality
measures. We computed a linear model for each quality measure where it was the
dependent variable and the parameter settings and dataset used in each instance
were the independent variables. For t-SNE, such a model looks like this:

quality measurei = β0 + β1initialization randomi + β2perplexity combinedi

+ β3perplexity n/100i + β4learning rate n/12i
+ β5dataset coil-20i + β6dataset f-mnisti
+ β7dataset olivettii + β8dataset mnisti + β9dataset shuttlei

and for UMAP like this:

quality measurei = β0 + β1initialization randomi + β2n neighbors 5i
+ β3n neighbors 40i + β4n neighbors 100i + β5min dist 0.02i
+ β6min dist 0.5i + β7dataset coil-20i + β8dataset f-mnisti
+ β9dataset olivettii + β10dataset mnisti + β11dataset shuttlei

for each of the three quality measures.
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Since some parameter settings are dependent on the size of the dataset, it makes
sense to divide the datasets into ”big” and ”small” ones and analyze them sepa-
rately. This was done by categorizing all datasets with n/100 > 30 as big and the
rest as small, with n/100 being one setting for the perplexity value and 30 being the
default value. In addition to the models given above, we computed similar models
using only the big or small datasets respectively.

The parameters were coded as factors, with the default setting as the reference cat-
egory. For the datasets, COIL-100 was used as the reference category, except when
using only the small datasets, where COIL-20 was used.

For each of the different models, an analysis of variance (ANOVA) was used to
calculate how much each variable contributes to the total variance.

3.4.2 Density Plots

To compare the overall performance we used overlayed density plots of t-SNE and
UMAP for each quality measure, with a vertical line denoting the average for each
technique. To create these plots we used the ”geom density” function with default
settings from the ”ggplot2” package by Wickham (2016).

3.4.3 Box Plots

For a more accurate comparison of the two techniques we used box plots. For each
quality measure we constructed a graphic with box plots for t-SNE and UMAP for
every dataset. A star in every box plot marks the value obtained using the default
parameter settings.

3.4.4 Scatter Plots

Since t-SNE and UMAP are primarily used for visualization, it is important to
examine the visualizations they produce. As an overview, we created a scatter plot
of the best and worst embedding from t-SNE and UMAP for each dataset.
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Chapter 4

Results

In this chapter, the analysis results will be presented, starting with the microscopic
or local structure.

4.1 Local Structure

In this section, we will examine how well the different embeddings were able to retain
the local structure of the data, as measured by the KNN. First, with the help of the
linear models describe above, we will analyze how the different parameter settings
influenced the retention of the local structure. Then, we will compare the results of
the KNN values via density and box plots.

Linear Models

For the sake of brevity, we will only show some of the linear models here. The rest
can be found in the Appendix A.

It has to be noted that the models, due to the artificial data generation process,
may not meet the assumptions for linear regression, so the p-values should only be
interpreted with great caution. That applies for all the linear models covered in this
or other sections. The diagnostic plots for all models can be found in the Appendix
A.

t-SNE

Since some parameters depend on the size of the dataset it makes more sense to fo-
cus on the models using either only the big or small datasets, instead of the models
containing all datasets.

Table 4.1 shows the variance decomposition for all the t-SNE models with KNN
as the dependent variable. It shows clearly that the initialization had no effect
on the retention of the local structure. The variance explained by the perplexity
is relatively small and the variance explained by the learning rate is even smaller.
By far the largest part of the variance can be explained by the dataset, with values
over 90% for all three models. The residual part of the variance was relatively small.
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4.1. LOCAL STRUCTURE

Source
KNN

all big small
initialization 0.00 0.00 0.02
perplexity 1.95 4.53 0.32

learning rate 1.06 2.32 0.02
dataset 93.62 91.17 99.36
residual 3.38 1.98 0.28

Table 4.1: Variance decomposition (percent values) for the t-SNE KNN models

KNN - big datasets
Coefficient Estimate P-Value
Intercept 0.809 < 2 · 10−16

initializationrandom 0.000 0.986
perplexitycombined −0.032 0.029
perplexityn/100 −0.128 2.18 · 10−11

learning raten/12 0.078 3.12 · 10−8

datasetF-MNIST −0.580 < 2 · 10−16

datasetMNIST −0.572 < 2 · 10−16

datasetshuttle −0.235 < 2 · 10−16

Table 4.2: Estimates of the coefficients and p-values of the linear model for t-SNE
with KNN as the dependent variable using only the big datasets

Table 4.2 shows the coefficient estimates and p-vales of the linear model for the local
structure using only the big datasets. Especially the effect of the perplexity setting
is of interest here. A perplexity of n/100 and a combined perplexity both influenced
the retention of the local structure negatively, with the n/100 setting having a much
stronger negative effect A learning rate of n/12 helped to better retain the local
structure of the data.

KNN - small datasets
Coefficient Estimate P-Value
Intercept 0.807 < 2 · 10−16

initializationrandom −0.003 0.320
perplexitycombined −0.006 0.117
perplexityn/100 0.011 0.012

learning raten/12 0.004 0.246

datasetOlivetti −0.247 < 2 · 10−16

Table 4.3: Estimates of the coefficients and p-values of the linear model for t-SNE
with KNN as the dependent variable using only the small datasets

Table 4.3 shows the results from the model using only the small datasets, where
n/100 < 30. One could reasonably assume the perplexity settings to have the
opposite effect of the KNN model for big datasets. The perplexity however, as well
as all other parameters, have almost no effect in this model.
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4.1. LOCAL STRUCTURE

UMAP

Since, in contrast to the t-SNE models, the parameter settings do not depend on the
size of the dataset, we will focus on the models using all datasets when examining
the specific coefficient estimates.

Source
KNN

all big small
initialization 0.05 0.04 0.32
n neighbors 5.57 5.28 38.83
min dist 0.97 1.68 1.62
dataset 89.71 87.40 54.21
residual 3.70 5.59 5.03

Table 4.4: Variance decomposition (percent values) for the UMAP KNN models

Table 4.4 shows the variance decomposition for all UMAP models with KNN as the
dependent variable. Similarly to the t-SNE models, by far the largest part of the
variance in most models is explained by the dataset. As expected, the initializa-
tion did not influence the retention of the local structure. The number of neighbors
had a small to medium sized effect on the KNN, except in the model with the small
datasets, where the number of neighbors explained a big part of the variance. Again,
the datasets explained most of the variance, although it was much less in the model
with the small datasets.

KNN - all datasets
Coefficient Estimate P-Value
Intercept 0.595 < 2 · 10−16

initializationrandom −0.009 0.201
n neighbors100 −0.127 < 2 · 10−16

n neighbors40 −0.077 2.40 · 10−11

n neighbors5 −0.007 0.543
min dist0.02 0.003 0.723
min dist0.5 −0.045 2.61 · 10−6

datasetCOIL-20 0.123 < 2 · 10−16

datasetF-MNIST −0.422 < 2 · 10−16

datasetOlivetti −0.029 0.026
datasetMNIST −0.434 < 2 · 10−16

datasetshuttle −0.110 3.48 · 10−14

Table 4.5: Estimates of the coefficients and p-values of the linear model for UMAP
with KNN as the dependent variable using all datasets

Table 4.5 shows the coefficient estimates and p-vales of the UMAP model for the
local structure. The number of neighbors setting of 100 had a relatively big negative
influence on the retention of the local structure. The effect of considering 40 nearest
neighbors was still negative, but not as big. Lowering the setting even more to a
value of 5, compared to the reference category of 15, had almost no effect. The
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minimum distance setting of 0.5 had a small negative influence on the retention of
the local structure compared to the other two settings of 0.02 and 0.1.

Plots

Next, we will compare the performance of t-SNE and UMAP regarding the retention
of the local structure of the data with the help of different plots.

Figure 4.1: Density plot of the KNN values for t-SNE and UMAP

Figure 4.1 shows the KNN density plots for t-SNE and UMAP. Both distributions
are multimodal, which is likely due to the fact that the values are heavily influenced
by the different datasets, as seen in the linear models shown above. Generally, t-SNE
was able to retain the local structure better than UMAP. The mean KNN value is
notably higher, and it is clear to see that the t-SNE density is higher for especially
large and lower for very small KNN values. The UMAP density curve also flattens
noticeably sooner, so the largest KNN values are only reached by t-SNE embeddings.
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Figure 4.2: Box plots of the KNN values for every dataset for t-SNE and UMAP

Figure 4.2 shows the box plots of the KNN values of the t-SNE and UMAP embed-
dings for each dataset, with a star marking the value from the embedding where the
default settings were used. The median of the t-SNE embeddings is higher than the
UMAP median in every dataset. The maximum value obtained by t-SNE is also
larger than the best UMAP value in all datasets. The size of the boxes varies mas-
sively between the different datasets. In two datasets, COIL-100 and COIL-20, the
plots do not overlap, meaning that no matter what parameter settings were used,
the t-SNE embeddings were always superior regarding the KNN. In five of the six
datasets, the t-SNE embeddings using the default settings achieved a better KNN
value than the UMAP default embeddings. All things considered, it can be said
that in our analysis, t-SNE was better able to retain the local structure of the data
as measured by the KNN.

4.2 Mesoscopic Structure

In this section, we will examine the retention of the mesoscopic structure of the data,
as measured by the KNC, beginning with the linear models and then comparing the
performance of t-SNE and UMAP with different plots.

Linear Models

As in the last section, we will not show all the models here. All the models not
shown in the main part of this thesis can be found in the Appendix A.

t-SNE

For t-SNE, we will examine the models using only the big or only the small datasets.

21



4.2. MESOSCOPIC STRUCTURE

Source
KNC

all big small
initialization 5.04 6.96 1.26
perplexity 2.08 4.98 36.63

learning rate 0.11 0.12 0.08
dataset 67.52 70.03 41.07
residual 25.25 17.91 20.96

Table 4.6: Variance decomposition (percent values) for the t-SNE KNC models

Table 4.1 shows the variance decomposition for all the t-SNE models with KNC as
the dependent variable. The initialization had a small to medium sized effect on the
retention of the mesoscopic structure. The influence of the perplexity is relatively
small for the models containing all or only the big datasets, but much larger for the
model containing only the small datasets. The learning rate did not influence the
retention of the mesoscopic structure, explaining less than 1% of the variance in all
three models. As with the KNN, the datasets also explained a lot of the variance of
the KNC. The residual part of the variance was also relatively big.

KNC - big datasets
Coefficient Estimate P-Value
Intercept 0.614 < 2 · 10−16

initializationrandom −0.086 3.16 · 10−4

perplexitycombined 0.077 0.006
perplexityn/100 0.077 0.007

learning raten/12 −0.011 0.602

datasetF-MNIST 0.186 4.08 · 10−7

datasetMNIST 0.072 0.024
datasetshuttle −0.188 3.22 · 10−7

Table 4.7: Estimates of the coefficients and p-values of the linear model for t-SNE
with KNC as the dependent variable using only the big datasets

As we can see in Table 4.7, a PCA initialization helped to better retain the meso-
scopic structure of the data. A perplexity of n/100 and a combined perplexity both
had a positive effect on the retention of the mesoscopic structure for the big datasets.
The learning rate did not have any noteworthy influence.

Table 4.8 shows the results from the t-SNE model for the small datasets with KNC
as the dependent variable. Surprisingly, the initialization had a much smaller effect
in this model than in the KNC model for the big datasets. A PCA initialization still
had a positive effect on the retention of the mesoscopic structure, but it is relatively
small. A combined perplexity had almost no effect, while a perplexity of n/100
negatively influenced the KNC. Again, the learning rate had almost no effect.
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KNC - small datasets
Coefficient Estimate P-Value
Intercept 0.744 < 2 · 10−16

initializationrandom −0.016 0.313
perplexitycombined −0.008 0.677
perplexityn/100 −0.097 8.22 · 10−5

learning raten/12 0.004 0.793

datasetOlivetti −0.093 1.28 · 10−5

Table 4.8: Estimates of the coefficients and p-values of the linear model for t-SNE
with KNC as the dependent variable using only the small datasets

UMAP

Source
KNC

all big small
initialization 12.50 16.45 5.56
n neighbors 13.57 4.28 64.41
min dist 0.05 0.02 0.16
dataset 37.18 47.08 5.34
residual 36.71 32.17 24.53

Table 4.9: Variance decomposition (percent values) for the UMAP KNC models

Table 4.9 shows the variance decomposition of all UMAP models with KNC as the
dependent variable. The initialization had a relatively big influence on the retention
of the mesoscopic structure for the models containing all and only the big datasets,
and a much smaller influence for the model containing only the small datasets. The
proportion of the variance explained by the number of neighbors parameter varies
greatly between the models, ranging from about 4% for the model with only big
datasets to 64% for the model with only the small datasets. The datasets explain a
big proportion of the total variance except for the model containing only the small
datasets. The residual part of the variance was also very big for all models.

As shown in Table 4.10, using spectral embedding as initialization positively influ-
enced the retention of the mesoscopic structure. The number of nearest neighbors
parameter also had a big effect on the KNC. A setting of 100 neighbors had the
biggest positive effect, 40 had a smaller positive effect and the setting of 5 nearest
neighbors had a negative effect on the retention of the mesoscopic structure. The
minimum distance parameter had almost no influence.
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KNC
Coefficient Estimate P-Value
Intercept 0.488 < 2 · 10−16

initializationrandom −0.124 5.37 · 10−10

n neighbors100 0.108 6.49 · 10−5

n neighbors40 0.088 0.001
n neighbors5 −0.051 0.053
min dist0.02 −0.006 0.781
min dist0.5 0.003 0.891

datasetCOIL-20 0.089 0.007
datasetF-MNIST 0.263 2.24 · 10−13

datasetOlivetti 0.159 2.28 · 10−6

datasetMNIST 0.161 1.69 · 10−6

datasetshuttle −0.059 0.068

Table 4.10: Estimates of the coefficients and p-values of the linear model for UMAP
with KNC as the dependent variable using all datasets

Plots

Figure 4.3: Density plot of the KNC values for t-SNE and UMAP

Figure 4.3 shows the KNC density plots. Again, the two distributions are multi-
modal. Both curves cover approximately the same area, so there is no range of high
KNC values that only one method was able to achieve. However, the t-SNE density
is much higher than the UMAP density for the bigger KNC values and lower for
the small values. The mean KNC value for all t-SNE embeddings is higher than the
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mean for UMAP. Considering all of this, it can be said that t-SNE generally per-
formed better than UMAP regarding the preservation of the mesoscopic structure.

Figure 4.4: Box plots of the KNC values for every dataset for t-SNE and UMAP

Figure 4.4 shows the KNC box plots. In three of the six datasets, the t-SNE median
is higher, in two datasets, the t-SNE and UMAP median are the same and only
in the Olivetti Faces dataset, the UMAP median is higher. The maximum value,
however, is achieved by UMAP embeddings in five datasets, while COIL-100 is the
only dataset, where the best KNC value stems from a t-SNE embedding. The plots
overlap for all datasets. Using the default settings, t-SNE performed better in four
datasets and UMAP in two. In contrast to the density plots, in this graphic, neither
t-SNE nor UMAP are shown to clearly better retain the mesoscopic structure.

4.3 Global Structure

In this section we will examine the retention of the global, or macroscopic structure
of the data, measured by the CPD.

Linear Models

Again, for the sake of brevity, we will not discuss all linear models here. The models
not shown in this section can be found in the Appendix A.
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t-SNE

Source
CPD

all big small
initialization 4.88 6.61 2.37
perplexity 9.31 27.46 69.98

learning rate 0.23 0.04 2.38
dataset 45.15 47.01 10.16
residual 40.43 18.88 15.12

Table 4.11: Variance decomposition (percent values) for the t-SNE CPD models

Table 4.11 shows the variance decomposition for all the t-SNE models with CPD as
the dependent variable. The initialization had a small to medium sized influence on
the retention of the global structure. The effect of the perplexity is bigger and varies
massively between the models. The learning rate explained a small amount of the
variance in the model using only the small datasets and had almost no effect in the
other models. Compared to the other models, the datasets explained surprisingly
little of the variance of the model using only the small datasets. The residual part
of the variance was relatively big for all models, especially for the model using all
datasets.

CPD - big datasets
Coefficient Estimate P-Value
Intercept 0.364 5.22 · 10−16

initializationrandom −0.074 5.74 · 10−4

perplexitycombined 0.157 8.80 · 10−8

perplexityn/100 0.161 5.12 · 10−8

learning raten/12 0.006 0.772

datasetF-MNIST 0.197 1.48 · 10−8

datasetMNIST −0.064 0.028
datasetshuttle 0.093 0.002

Table 4.12: Estimates of the coefficients and p-values of the linear model for t-SNE
with CPD as the dependent variable using only the big datasets

As we can see in Table 4.12, a PCA initialization positively influenced the retention
of the global structure. The perplexity also had a big influence, with the ”com-
bined” and the ”n/100” setting having a similar positive effect on the CPD for
the big datasets. The learning rate did not influence the preservation of the global
structure.

The coefficient estimates for the CPD model using only the small datasets are shown
in Table 4.13. Compared to a random initialization, a PCA initialization had a small
positive influence on the retention of the global structure. As expected, a small per-
plexity of n/100 negatively influenced the preservation of the global structure, while
a combined perplexity had a much smaller negative effect. A learning rate of n/12
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had a small positive effect in the CPD.

CPD - small datasets
Coefficient Estimate P-Value
Intercept 0.594 < 2 · 10−16

initializationrandom −0.026 0.111
perplexitycombined −0.023 0.245
perplexityn/100 −0.158 1.14 · 10−7

learning raten/12 0.026 0.110

datasetOlivetti 0.053 0.003

Table 4.13: Estimates of the coefficients and p-values of the linear model for t-SNE
with CPD as the dependent variable using only the small datasets

UMAP

Source
CPD

all big small
initialization 10.64 20.05 2.41
n neighbors 11.73 4.40 36.64
min dist 0.26 0.21 0.47
dataset 54.19 54.99 48.65
residual 23.18 20.35 11.83

Table 4.14: Variance decomposition (percent values) for the UMAP CPD models

Table 4.14 shows the variance decomposition for all UMAP models with CPD as the
dependent variable. The influence of the initialization on the retention of the global
structure of the data varies greatly, explaining only about 2% of the variance in the
model using only the small datasets, while explaining about 20% in the model using
the big datasets. The number of nearest neighbors parameter had a big effect on
the CPD in the model containing only the small datasets, but only a small effect
in the model using only the big datasets. The datasets explained about half of the
variance in all models and the residual part of the variance was also relatively big
in all models.

As shown in Table 4.15, an informed initialization had a big positive influence on
the retention of the global structure. The number of nearest neighbors parameter
also had a big influence. The more neighbors were considered, the better the global
structure of the data was preserved. The minimum distance parameter had almost
no effect.
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CPD
Coefficient Estimate P-Value
Intercept 0.167 7.78 · 10−8

initializationrandom −0.132 1.79 · 10−12

n neighbors100 0.153 2.40 · 10−9

n neighbors40 0.095 1.15 · 10−4

n neighbors5 −0.015 0.536
min dist0.02 −0.007 0.732
min dist0.5 0.017 0.409

datasetCOIL-20 0.125 3.99 · 10−5

datasetF-MNIST 0.327 < 2 · 10−16

datasetOlivetti 0.441 < 2 · 10−16

datasetMNIST 0.142 3.49 · 10−6

datasetshuttle 0.313 < 2 · 10−16

Table 4.15: Estimates of the coefficients and p-values of the linear model for UMAP
with CPD as the dependent variable using all datasets

Plots

Figure 4.5: Density plot of the CPD values for t-SNE and UMAP

Figure 4.5 shows the CPD density plots for t-SNE and UMAP. The mean CPD value
of the t-SNE embeddings is higher than the UMAP mean and the t-SNE density
is generally higher for big and lower for small CPD values. However, it has to be
mentioned that the UMAP density is a bit higher for the biggest CPD values. All
things considered, it can still be said that t-SNE was generally able to better pre-
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serve the global structure of the data.

Figure 4.6: Box plots of the CPD values for every dataset for t-SNE and UMAP

Figure 4.6 shows the CPD box plots. In five datasets, the median CPD value is
higher for the t-SNE embeddings, with the Olivetti Faces dataset being the only
exception where the UMAP median is higher. The maximum value in four out of
the six datasets comes from a t-SNE embedding. The Shuttle dataset was the only
one where the UMAP default settings performed better than the t-SNE defaults.
In the other five datasets the t-SNE embeddings using default settings had better
CPD scores. Overall, t-SNE performed better in our analysis regarding the CPD
measure, meaning it was better able to retain the global structure of the data.

4.4 Scatter Plots

For the sake of brevity, we will only examine the plots from the MNIST and COIL-
20 dataset in this section. The plots for the other datasets can be found in the
Appendix A.
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4.4.1 MNIST

Figure 4.7: Scatter plots of the t-SNE/UMAP embedings of the MNIST dataset
with the best and worst KNN values

Figure 4.7 shows the visualizations of the best and worst MNIST embeddings from
t-SNE and UMAP regarding the retention of the local structure. In all four plots,
the different digits form clusters, as indicated by the color of the points. In both
t-SNE plots, the clusters are relatively large and close together, with little space
in between. In the best t-SNE plot, with a smaller perplexity, there are ten clear
clusters, one for every digit. The partition of clusters is not as perfect in the worst
t-SNE plot, where sometimes multiple different clusters for the same digit exist.
The best UMAP plot has small dense clusters with much more space between the
clusters compared to the t-SNE plots. The number of nearest neighbors setting of
5 explains the focus an the local structure and good KNN result but also leads to
multiple separated clusters for some digits. Unsurprisingly, the worst UMAP embed-
ding regarding the KNN used a number of neighbors setting of 100, focusing more
on the global structure. This plot resembles the t-SNE plots more with ten bigger
clusters that are closer together, which is most likely due to the high min dist setting.
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Figure 4.8: Scatter plots of the t-SNE/UMAP embedings of the MNIST dataset
with the best and worst KNC values

Figure 4.9: Scatter plots of the t-SNE/UMAP embedings of the MNIST dataset
with the best and worst CPD values
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Figure 4.8 shows the best and worst embeddings regarding the retention of the meso-
scopic structure. The t-SNE plots look fairly similar, with big clusters that are close
together. There is one cluster for every digit in the plot with the worst KNC, while
the best plot is not as clean, with one digit being split across two clusters. The
settings that lead to the best and worst KNC values are not surprising but seem to
have little effect on the visuals.
The best UMAP plot has small dense clusters, which are mostly clearly separated
but some stick closer together. There are only ten clusters, one for every digit. The
worst UMAP embedding used a number of nearest neighbors setting of 5, which
again lead to some digits being divided into multiple small clusters.

Figure 4.9 shows the MNIST embeddings with the best and worst retention of the
global structure. The worst t-SNE embedding is the same as for the KNC. For
some digits, the best t-SNE plot has multiple clusters. There are also more regions
between the clusters, where many colorful points representing different digits are
located. Otherwise it has the same characteristics as all t-SNE plots, with mostly
bigger clusters that are relatively close together.
The plot of the best UMAP embedding looks similar to the best UMAP plot re-
garding the KNC, with some clusters sticking together and some being very isolated.
The UMAP embedding with the worst CPD is the same as the one with the best
KNN.

4.4.2 COIL-20

Figure 4.10: Scatter plots of the t-SNE/UMAP embedings of the COIL-20 dataset
with the best and worst KNN values
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Figure 4.10 shows the scatter plots of the best and worst embeddings of the COIL-
20 dataset regarding the preservation of the local structure. The twenty different
objects are marked by color and form mostly well separated clusters in the shape
of rings or lines. Both t-SNE plots look extremely similar, with one bigger cluster
where the points from three different objects form a big semi-circle and otherwise
well separated clusters.
In the best UMAP embedding, the different ring-clusters are arranged like a grid
and only in the bottom left corner multiple clusters share a space and overlap. The
worst UMAP embedding looks noticeably different from all other plots. The points
are all close together and most clusters do not have the distinct ring shape seen in
the other plots.

Figure 4.11: Scatter plots of the t-SNE/UMAP embedings of the COIL-20 dataset
with the best and worst KNC values

Figure 4.11 shows the scatter plots for the mesoscopic structure. Again, both t-SNE
plots look extremely alike and show essentially the same characteristics as both KNN
plots shown in Figure 4.10.
In the best UMAP embedding, most clusters clump together in the upper left corner
of the plot. Many clusters have the line or semi-circle shape seen in the other COIL-
20 plots, but no clusters appear in the ring shape that is also typical for this dataset.
The plot of the worst UMAP embedding looks more fractured than the other plots.
The clusters take the typical line and ring shape and most are well separated, but
many objects are split into multiple small clusters.
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Figure 4.12: Scatter plots of the t-SNE/UMAP embedings of the COIL-20 dataset
with the best and worst CPD values

Figure 4.12 shows the best and worst COIL-20 embeddings regarding the retention
of the global structure. The worst t-SNE embedding was the best regarding the
KNN. The plot of the best t-SNE embedding looks a lot like all the other t-SNE
plots for the COIL-20 dataset, with the well separated ring and line clusters and the
same semi-circle where three clusters clump together.
The best UMAP embedding regarding the CPD is also the worst in terms of the
KNN, which we have already discussed earlier. The worst CPD plot looks similar
to the worst KNC plot, with many small clusters in the typical line or ring shape.
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Chapter 5

Discussion

In this thesis we examined the two dimension reduction techniques t-SNE and
UMAP, especially focusing on the effects of different parameter settings on three
quality measures across multiple datasets as well as comparing the overall perfor-
mance of the two methods.

For both t-SNE and UMAP an informed initialization (PCA for t-SNE and Spectral
Embedding for UMAP) helped to better retain the mesoscopic and global structure
(higher KNC and CPD values), while not affecting the retention of the local struc-
ture (no effect on the KNN). The other two t-SNE parameters we examined were
the perplexity and the learning rate. In the big datasets, a large perplexity value
of n/100 helped to better retain the global structure of the data at the cost of the
local structure. A combined perplexity of 30 and n/100 had almost the same bene-
fits as the n/100 setting with a much smaller negative influence on the retention of
the local structure. For the small datasets, a reduction in the perplexity to n/100
only had a very small positive effect on the preservation of the local structure but
worsened the retention of the mesoscopic and global structure by a large amount.
A combined perplexity had no effect on the retention of the local structure. The
learning rate only had very small to no effects most of the time except for the big
datasets, where a larger learning rate of n/12 positively influenced the retention of
the local structure. Overall, a PCA initialization is always preferable to a random
initialization, while the optimal setting of the perplexity depends on whether the
retention of the local or global structure is of more importance. A perplexity com-
bination of 30 and n/100, as recommended by Kobak and Linderman (2021), seems
like a good middle ground. Since the setting of the learning rate had almost no
effect most of the time, it is not possible to give a recommendation.

Similar to the perplexity value from t-SNE, the number of nearest neighbors UMAP
parameter is a trade-off, where higher values better capture the global structure at
the cost of the local structure. There is no comparable setting to the combined per-
plexity that helps to better retain the global structure without sacrificing too much
of the local structure. The minimum distance parameter had almost no effect on the
quality measures except that a very large value negatively influenced the retention
of the local structure. Again, an informed initialization only has advantages over
a random initialization, so the spectral embedding initialization should always be
used. A recommendation for the optimal number of neighbors is not possible, as it
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depends strongly on whether the focus is more on the local or global structure of
the data. Although it had almost no effect on the quality measures, the minimum
distance parameter is still important, since it has a big influence on the resulting vi-
sualizations. It is not possible to recommend one value here, but it could be helpful
to run UMAP multiple times with different minimum distance settings to see which
one looks best in a given case.

The density plots show that t-SNE generally performed better than UMAP for all
three quality measures in our analysis. This is especially interesting, since it was
claimed by Becht et al. (2018) that UMAP generally outperforms t-SNE in terms
of preserving the global structure of the data. The box plots give a more detailed
overview and show that the performances varied greatly between the datasets. The
plots overlap for most datasets and quality measures, which means that whether
t-SNE or UMAP performed better depended on the parameter settings used. This
also shows how easy it would be to make one method look much better or worse
than it actually is by selecting specific parameter settings and datasets, which can
be problematic, since new methods are often presented over-optimistically (Ullmann
et al., 2022). That is why neutral comparison studies are essential for an objective
assessment and comparison of different methods (Boulesteix et al., 2013). This the-
sis was an attempt at such a neutral comparison study, but it has to be noted that
the observed superiority of t-SNE in this thesis does not mean that it is better in
general, especially since we used t-SNE parameter settings that were already shown
to produce good results by Kobak and Berens (2019), while there were no specific
recommendations for UMAP settings.

Both t-SNE and UMAP were able to produce good visualizations where the points
belonging to the same group formed clear clusters. While all t-SNE scatter plots for
the same dataset looked very similar, the UMAP visualizations varied a lot more
depending on the parameter settings used.

This thesis also has some limitations. As we already mentioned, the artificial data
generation process means that the model assumptions for linear regression are not
met. Another limitation was computing power. Due to relatively long comput-
ing times it was not possible to include more parameters, parameter settings and
datasets in this thesis. It could be interesting to explore these things more deeply
in the future.
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Appendix A

A.1 Linear Models

t-SNE

KNN
Coefficient Estimate P-Value
Intercept 0.805 < 2 · 10−16

initializationrandom −0.001 0.936
perplexitycombined −0.023 0.107
perplexityn/100 −0.082 2.48 · 10−7

learning raten/12 0.051 4.35 · 10−5

datasetCOIL-20 0.010 0.635
datasetF-MNIST −0.580 < 2 · 10−16

datasetOlivetti −0.238 < 2 · 10−16

datasetMNIST −0.572 < 2 · 10−16

datasetshuttle −0.235 < 2 · 10−16

Table A.1: Estimates of the coefficients and p-values of the linear model for t-SNE
with KNN as the dependent variable using all datasets

KNC
Coefficient Estimate P-Value
Intercept 0.630 < 2 · 10−16

initializationrandom −0.063 0.001
perplexitycombined 0.049 0.029
perplexityn/100 0.019 0.393

learning raten/12 −0.009 0.614

datasetCOIL-20 0.082 0.010
datasetF-MNIST 0.186 9.73 · 10−8

datasetOlivetti −0.011 0.713
datasetMNIST 0.072 0.023
datasetshuttle −0.188 7.31 · 10−8

Table A.2: Estimates of the coefficients and p-values of the linear model for t-SNE
with KNC as the dependent variable using all datasets
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CPD
Coefficient Estimate P-Value
Intercept 0.408 < 2 · 10−16

initializationrandom −0.058 0.008
perplexitycombined 0.097 3.68 · 10−4

perplexityn/100 0.055 0.038

learning raten/12 0.012 0.558

datasetCOIL-20 0.098 0.010
datasetF-MNIST 0.197 1.14 · 10−6

datasetOlivetti 0.151 1.09 · 10−4

datasetMNIST −0.064 0.087
datasetshuttle 0.093 0.014

Table A.3: Estimates of the coefficients and p-values of the linear model for t-SNE
with CPD as the dependent variable using all datasets

UMAP

KNN - big datasets
Coefficient Estimate P-Value
Intercept 0.593 < 2 · 10−16

initializationrandom −0.009 0.411
n neighbors100 −0.115 1.41 · 10−11

n neighbors40 −0.071 5.61 · 10−6

n neighbors5 −0.009 0.533
min dist0.02 0.004 0.741
min dist0.5 −0.054 5.91 · 10−5

datasetF-MNIST −0.422 < 2 · 10−16

datasetMNIST −0.434 < 2 · 10−16

datasetshuttle −0.110 5.92 · 10−11

Table A.4: Estimates of the coefficients and p-values of the linear model for UMAP
with KNN as the dependent variable using only the big datasets
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KNC - big datasets
Coefficient Estimate P-Value
Intercept 0.511 < 2 · 10−16

initializationrandom −0.151 2.81 · 10−9

n neighbors100 0.057 0.080
n neighbors40 0.071 0.030
n neighbors5 −0.022 0.506
min dist0.02 −0.004 0.874
min dist0.5 0.002 0.931

datasetF-MNIST 0.263 2.56 · 10−12

datasetMNIST 0.161 2.91 · 10−6

datasetshuttle −0.059 0.069

Table A.5: Estimates of the coefficients and p-values of the linear model for UMAP
with KNC as the dependent variable using only the big datasets

CPD - big datasets
Coefficient Estimate P-Value
Intercept 0.196 4.66 · 10−10

initializationrandom −0.162 1.88 · 10−14

n neighbors100 0.098 1.85 · 10−4

n neighbors40 0.071 0.006
n neighbors5 0.026 0.309
min dist0.02 −0.011 0.611
min dist0.5 0.009 0.674

datasetF-MNIST 0.327 < 2 · 10−16

datasetMNIST 0.142 1.70 · 10−7

datasetshuttle 0.313 < 2 · 10−16

Table A.6: Estimates of the coefficients and p-values of the linear model for UMAP
with CPD as the dependent variable using only the big datasets

KNN - small daatasets
Coefficient Estimate P-Value
Intercept 0.722 < 2 · 10−16

initializationrandom −0.012 0.120
n neighbors100 −0.153 < 2 · 10−16

n neighbors40 −0.089 1.32 · 10−10

n neighbors5 −0.001 0.928
min dist0.02 0.001 0.883
min dist0.5 −0.027 0.004
datasetOlivetti −0.152 < 2 · 10−16

Table A.7: Estimates of the coefficients and p-values of the linear model for UMAP
with KNN as the dependent variable using only the small datasets
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KNC - small daatasets
Coefficient Estimate P-Value
Intercept 0.532 < 2 · 10−16

initializationrandom −0.072 0.005
n neighbors100 0.211 1.89 · 10−7

n neighbors40 0.121 0.001
n neighbors5 −0.111 0.002
min dist0.02 −0.010 0.729
min dist0.5 0.005 0.877
datasetOlivetti 0.070 0.005

Table A.8: Estimates of the coefficients and p-values of the linear model for UMAP
with KNC as the dependent variable using only the small datasets

CPD - small daatasets
Coefficient Estimate P-Value
Intercept 0.233 5.31 · 10−8

initializationrandom −0.071 0.007
n neighbors100 0.265 2.81 · 10−9

n neighbors40 −0.143 1.92 · 10−4

n neighbors5 −0.096 0.009
min dist0.02 0.001 0.981
min dist0.5 0.033 0.277
datasetOlivetti 0.317 9.29 · 10−16

Table A.9: Estimates of the coefficients and p-values of the linear model for UMAP
with CPD as the dependent variable using only the small datasets
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A.2 Diagnostic Plots

Figure A.1: Diagnostic plots of the linear model for t-SNE with KNN as the depen-
dent variable using all datasets

Figure A.2: Diagnostic plots of the linear model for t-SNE with KNC as the depen-
dent variable using all datasets
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Figure A.3: Diagnostic plots of the linear model for t-SNE with CPD as the depen-
dent variable using all datasets

Figure A.4: Diagnostic plots of the linear model for t-SNE with KNN as the depen-
dent variable using only the big datasets
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Figure A.5: Diagnostic plots of the linear model for t-SNE with KNC as the depen-
dent variable using only the big datasets

Figure A.6: Diagnostic plots of the linear model for t-SNE with CPD as the depen-
dent variable using only the big datasets
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Figure A.7: Diagnostic plots of the linear model for t-SNE with KNN as the depen-
dent variable using only the small datasets

Figure A.8: Diagnostic plots of the linear model for t-SNE with KNC as the depen-
dent variable using only the small datasets
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Figure A.9: Diagnostic plots of the linear model for t-SNE with CPD as the depen-
dent variable using only the small datasets

Figure A.10: Diagnostic plots of the linear model for UMAP with KNN as the
dependent variable using all datasets
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Figure A.11: Diagnostic plots of the linear model for UMAP with KNC as the
dependent variable using all datasets

Figure A.12: Diagnostic plots of the linear model for UMAP with CPD as the
dependent variable using all datasets
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Figure A.13: Diagnostic plots of the linear model for UMAP with KNN as the
dependent variable using only the big datasets

Figure A.14: Diagnostic plots of the linear model for UMAP with KNC as the
dependent variable using only the big datasets
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Figure A.15: Diagnostic plots of the linear model for UMAP with CPD as the
dependent variable using only the big datasets

Figure A.16: Diagnostic plots of the linear model for UMAP with KNN as the
dependent variable using only the small datasets
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Figure A.17: Diagnostic plots of the linear model for UMAP with KNC as the
dependent variable using only the small datasets

Figure A.18: Diagnostic plots of the linear model for UMAP with CPD as the
dependent variable using only the small datasets
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A.3 Scatter Plots

F-MNIST

Figure A.19: Scatter plots of the t-SNE/UMAP embedings of the F-MNIST dataset
with the best and worst KNN values

Figure A.20: Scatter plots of the t-SNE/UMAP embedings of the F-MNIST dataset
with the best and worst KNC values
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Figure A.21: Scatter plots of the t-SNE/UMAP embedings of the F-MNIST dataset
with the best and worst CPD values

Olivetti Faces

Figure A.22: Scatter plots of the t-SNE/UMAP embedings of the Olivetti Faces
dataset with the best and worst KNN values
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Figure A.23: Scatter plots of the t-SNE/UMAP embedings of the Olivetti Faces
dataset with the best and worst KNC values

Figure A.24: Scatter plots of the t-SNE/UMAP embedings of the Olivetti Faces
dataset with the best and worst CPD values
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Shuttle

Figure A.25: Scatter plots of the t-SNE/UMAP embedings of the Shuttle dataset
with the best and worst KNN values

Figure A.26: Scatter plots of the t-SNE/UMAP embedings of the Shuttle dataset
with the best and worst KNC values
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Figure A.27: Scatter plots of the t-SNE/UMAP embedings of the Shuttle dataset
with the best and worst CPD values

COIL-100

Figure A.28: Scatter plots of the t-SNE/UMAP embedings of the COIL-100 dataset
with the best and worst KNN values
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Figure A.29: Scatter plots of the t-SNE/UMAP embedings of the COIL-100 dataset
with the best and worst KNC values

Figure A.30: Scatter plots of the t-SNE/UMAP embedings of the COIL-100 dataset
with the best and worst CPD values
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A.4 Parameters

t-SNE

dims: Dimensionality of the output space. Default: 2.
theta: If set to 0 regular t-SNE will be used. If non-zero, either FIt-SNE or Barnes
Hut will be used. If Barnes Hut is used, theta determines the accuracy of the ap-
proximation. Default: 0.5.
max iter: Number of iterations to run. Default: 750.
fft not bh: Determines whether to use FIt-SNE or Barnes Hut approximation if
theta is nonzero. Default: ”True” for FIt-SNE.
ann not vptree: Determines whether to use vp-trees (as in Barnes Hut) or ap-
proximate nearest neighbors. Default: ”True” for approximate nearest neighbors.
exaggeration factor: Coefficient used for early exaggeration. Must be > 1. De-
fault: 12.
no momentum during exag: If set to ”True”, no momentum is used during ex-
aggeration. Default: ”False”.
stop early exag iter: When to stop early exaggeration. Default: 250.
start late exag iter: When to begin late exaggeration. ”auto” means that, unless
late exag coeff> 0, late exaggeration is not used. If that is the case, start late exag iter
is set to stop early exag iter. Default: ”auto”.
late exag coeff: Coefficient used for late exaggeration. If set to -1 late exaggera-
tion is not used. Default: -1.
max step norm: Maximum distance that a point can move on one iteration. If
set to -1 this is deactivated. Default: 5.
nterms: Number of interpolation points per sub-interval if FIt-SNE is used. De-
fault: 3.
intervals per integer: See min num intervals.
min num intervals: let maxloc = ⌈max(max(X))⌉ and minloc = ⌊min(min(X))⌋.
The number of intervals in each dimension is either min num intervals or ⌈(maxloc−
minloc)/intervals per integer⌉, depending on which is larger. min num intervals and
intervals per integer must both be integers > 0. Defaults: min num intervals=50
and intervals per integer = 1.
sigma: Fixed sigma value to use when perplexity==-1. Set to -1 for none. Default:
-1.
K: Number of nearest neighbors to get when using a fixed sigma value. Set to -30
to use none. Default: -30.
load affinities: If set to 1, input similarities are loaded from a file and not com-
puted. If set to 2, input similarities are saved into a file. If set to 0, affinities are
neither saved nor loaded. Default: NULL.
perplexity list: Perplexity combination that will be used if perplexity==0. De-
fault: NULL.
df: Degrees of freedom of the t-distribution. Default: 1.0.

UMAP

n components: Dimensionality of the output space. Default: 2.
metric: Metric used to calculate distances between the datapoints. Available set-
tings are: ”euclidean”, ”manhattan”, ”cosine”, ”pearson”, ”pearson2” or a custom
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metric given as a function. Default: ”euclidean”.
n epochs: Number of training epochs to use during the optimization. Default:
200.
input: ”data” or ”dist”. Controls whether input is treated as a data matrix or
distance matrix. Default: ”data”.
set op ratio mix ratio: Used during the construction of a fuzzy simplicial graph.
Range: [0, 1]. Default: 1.
local connectivity: Used during the construction of fuzzy simplicial sets. Default:
1.
bandwidth: Used during the construction of fuzzy simplicial sets. Default: 1.
alpha: Initial value of the learning rate used in the layout optimization. Default:
1.
gamma: Influences, together with alpha, the learning rate. Default: 1.
negative sample rate: Number of non-neighbor points used per point and itera-
tion during the optimization. Default: 5.
spread: Influences, together with the min dist parameter, the calculation of the a
and b values. Default: 1.
a: Manually sets the a value. Default: NA.
b: Manually sets the b value. Default: NA.
random state: Seed used for random number generation during umap(). Default:
NA.
transform state: Seed used for random number generation during predict(). De-
fault: NA.
knn: Possibility to provide precomputed nearest neighbors. Default: NA.
knn repeats: Determines how often to restart the knn search. Default: 1.
verbose: Determines whether or not to show progress. Default: ”False”.
umap learn args: Arguments to the python package ”umap-learn”. Default: NA.
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