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Abstract

This thesis delves into the analytical frameworks and statistical models that have been

employed in the studies investigating the factors influencing CO2 emissions. The elec-

tronic databases Web of Science, SCOPUS, and ResearchGate were used to identify

citation records to discuss this topic. Subsequently, 30 journal articles met the selection

criteria and were retained for discussion. A detailed literature review was conducted

to understand the multifaceted factors influencing CO2 emissions, with particular em-

phasis on socio-economic, energy-related and policy-related aspects. Varied modelling

approaches were identified in these studies, but the Autoregressive Distributive Lagged

Model, Di↵erence-in-Di↵erences Model and Panel Quantile Regression Model were the

main models used by authors. By investigating various statistical methods used in the

selected studies, a well-rounded understanding of how determinants of CO2 emissions

are identified and quantified is provided.
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1 Introduction

Global climate change, driven mainly by anthropogenic carbon dioxide (CO2) emis-

sions, has become a critical issue nowadays. As CO2 continues to accumulate in the

atmosphere, causing substantial shifts in global weather patterns, rising sea levels, and

increased frequency of extreme weather events. To combat these terrible consequences,

countries worldwide are taking initiatives to reduce CO2 emissions, including measures

like promoting renewable energy, fostering technology innovation and implementing

policy regulations. Therefore, it is imperative to understand the various factors con-

tributing to CO2 emissions to mitigate their impacts e↵ectively.

Researchers worldwide have dedicated their e↵orts to identifying and analyzing main

driving factors of CO2 emissions, many of which have relied on the Environmental

Kuznets Curve (EKC) as a theoretical framework. The EKC proposes an inverted-U

relationship between environmental degradation (in this case, CO2 emissions) and per

capita income, suggesting that economic development initially leads to increased CO2

emissions, but as a certain income threshold is attained, further development mitigates

the emissions. While the EKC o↵ers valuable perspectives into the relationship be-

tween income and emissions, it doesn’t encompass all of the crucial factors influencing

CO2 emissions. Consequently, recent empirical studies have extended this framework

involving socio-economic, demographic, and energy-related factors, among others.

Several studies have incorporated variables such as population size, energy consump-

tion patterns and technological advancements, into their research frameworks based on

various research contexts. These factors are multifaceted and complex, making their

relationships with CO2 emissions challenging to quantify. To handle this complexity,

various statistical models have been employed in the studies, providing crucial insights

into the relationship between variables in the system.

In this thesis, it is aimed to discuss and analyze the statistical models applied

in the existing research evaluating the factors a↵ecting CO2 emissions. I’ll explore

the strengths and limitations of each method, along with their unique features and

applicability. In addition, the findings drawn from these methods will be presented,

contributing to a comprehensive understanding of the determinants of CO2 emissions.

The outline of this thesis is as follows: Section 2 presents a literature review relating

to the focus and statistical models. Section 3 describes the main statistical methods

employed to evaluate the factors influencing CO2 emissions, illustrating their applica-

tion in selected studies. Section 4 explores alternative estimation methods for analyzing

the influencing factors. Section 5 discusses the statistical methods described above. A

summary and outlook in section 6 conclude the thesis.
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2 Literature Review

2.1 Criteria for Selection of Papers

This thesis aims to provide the most relevant insights into the factors a↵ecting CO2

emissions and the statistical models employed in this research domain. The papers are

sourced primarily from electronic databases Web of Science, SCOPUS, and Research-

Gate, using the search terms: “CO2”, “Carbon emissions” combined with “statistical

analysis”, “modelling”, or “statistical model” to ensure relevance to the research do-

main. Throughout the process of literature selection, well-defined exclusion criteria

were followed.

Firstly, only studies employing statistical methods to assess CO2 emissions were

selected, priority was given to studies published after 2020, as they provide the most

recent work and up-to-date insights into this evolving field. It is essential to reflect

the current state of research and the latest methods used in the study. I also limited

the search to indexed journal articles written in English to maintain consistency in

interpretation.

Besides, the geographical focus is considered, with priority given to studies con-

ducted in regions with high CO2 emissions, including China, the US, Europe, etc.

These regions, known as major CO2 emitters, provide the most critical case studies

for understanding the determinants of CO2 emissions. The selected literature for this

thesis mainly includes research conducted in these key regions.

It is also important to note that CO2 emissions are a crucial component of carbon

emissions. Carbon emissions can also include the emissions of other greenhouse gases

such as methane, fluorocarbons, and nitrogen oxides, among others. However, due to

the prevalence and importance of CO2 as a greenhouse gas, discussions on carbon emis-

sions often specifically focus on CO2 emissions. Consequently, studies analyzing carbon

emissions are also included. On the other hand, papers examining the factors influ-

encing carbon e�ciency are not included in this thesis, as each paper might calculate

the e�ciency di↵erently, the varying methods make it challenging to ensure consistency

and could complicate the analysis.

By adhering to these criteria, this thesis identifies 30 relevant journal articles that

provide a current investigation of the factors contributing to CO2 emissions, as well as

the statistical methods employed in their research.

2.2 Summary of the Reviewed Papers

The 30 journal articles selected in this thesis can be found in Table 1, the key informa-

tion and research content of each paper is clearly shown in this table.
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A
uthors, 

Y
ear 
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Tim
e Span 
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M

ain M
ethods 

M
ain Findings 

A
zim

i and 
B

ian, 2023 
C

hina 
2006-2017 

C
arbon neutraility 

policy 

Panel-corrected 
standard errors, 
Feasible generalized 
least squares  

C
arbon neutrality policy has a significant negative 

im
pact on per capita C

O
2  em

issions. Im
proving 

energy efficiency and renew
able energy pow

er 
generation can reduce C

O
2  em

issions. 

S. W
en and 

H
. Liu, 2022 

C
hina 

2003–2017 
Low

-carbon city 
pilot policy 

Tim
e-varying 

D
ifference-in-

D
ifferences m

odel  

The im
plem

entation of Low
-carbon city pilot policy 

led to a significant decrease in energy intensity and 
carbon em

ission intensity of the pilot cities.  

X
. Liu et al., 

2022 
C

hina 
2005-2016 

Low
-carbon city 

pilot policy 

Tim
e-varying 

D
ifference-in-

D
ifferences m

odel  

The Low
-carbon city pilot policy has effectively 

prom
oted the reduction of C

O
2  em

issions; Energy 
structure, industrial structure, and innovation level 
have a significant im

pact on the effect of low
-carbon 

city pilot policies.  

Q
. Y

irong, 
2022 

C
hina, U

SA
, 

India, R
ussia, 

and Japan 
1990-2019 

Environm
ental 

policy stringency  
N

on-linear panel 
A

R
D

L m
odel 

A
n increase in environm

ental policy stringency 
im

proves the environm
ental quality by reducing C

O
2  

em
issions in the long run.  

L.A
.A

ttílio 
et al., 2023 

U
.S., U

.K
., 

Japan, and 
the Eurozone 

1990-2018 
M

onetary policy 
G

lobal V
ector A

uto-
regressive, V

ariance 
decom

positions 

M
onetary policy does not seem

 to reduce short-run 
em

issions in the U
.K

., or long-run em
issions in the 

Eurozone, but it has a strong effect in Japan. 

A
. X

u, W
. 

W
ang and Y

. 
Zhu, 2023 

C
hina 

2009-2018 
Sm

art city pilot 
policy  

Tim
e-varying 

D
ifference-in-

D
ifferences m

odel, 
M

ediating effect 
m

odel 

Sm
art city pilot policy can curb C

O
2  em

issions by 
strengthening the intensity of environm

ental 
regulation and prom

oting green technological 
innovation. M

ediating effect of resource allocation 
efficiency only w

orks in low
-carbon industries, not 

high-carbon industries. 
 

Table 1: Summary of the findings of recent empirical studies
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A
uthors, 

Y
ear 

R
egions(s) 

Tim
e Span 

Focus 
M

ain M
ethods 

M
ain Findings 

Y
. K

EH
O

, 
2020 

45 countries 
1980-2011 

Socio-econom
ic 

factors 

M
ean-based regression 

m
ethods, Panel 

quantile regression 

Energy consum
ption and financial developm

ent 
increase C

O
2  em

issions, Industrialization increases 
C

O
2  em

issions especially in countries w
ith higher 

level of C
O

2 .  

A
.O

. 
A

cheam
pong 

et al. ,2020 
83 countries 

1980–2015 
Financial 
developm

ent 

Instrum
ental variable 

G
eneralized M

ethod of 
M

om
ent  

For standalone financial econom
ies, the overall 

financial m
arket developm

ent and its sub-indicators 
have no direct im

pact on carbon em
issions. 

O
.K

. 
Essandoh et 
al., 2020 

52 countries  
1991- 2014 

International trade 
and foreign direct 
investm

ent 

Panel pooled m
ean 

group-A
R

D
L m

odel, 
G

ranger causality  

For developed countries, there exists a negative long-
run relationship betw

een C
O

2  em
issions and trade. 

For developing countries, foreign direct investm
ent 

inflow
s exhibit a positive long-run relationship w

ith 
C

O
2  em

issions. 

M
. K

. A
nser 

et al., 2020 
8 countries in 
South A

sian 
1994-2013 

H
um

an and 
econom

ic factors  
Fixed effect regression 
m

odel 
Population grow

th has increased energy use and 
contributed to carbon em

issions. 

A
. A

w
an, 

K
.R

. A
bbasi, 

S. R
ej et al., 

2022 

10 em
erging 

countries 
1996-2015 

Foreign direct 
investm

ent 

M
M

Q
R

, Fixed 
effects-O

LS m
odel 

w
ith robust D

riscoll- 
K

raay standard errors 

Foreign direct investm
ent’s effect on C

O
2 em

issions 
is significant and positive at 0.05th-0.50th quantiles, 
it becom

es insignificant at higher quantile levels. 
U

rbanization enhances w
hile renew

able energy 
m

itigates C
O

2  em
issions at all quantile levels. 

M
. Shahbaz 

et al., 2020 
C

hina 
1984-2018 

Investm
ent in 

energy sector 
B

ootstrapping A
R

D
L 

Public-private partnerships investm
ent in energy 

increased C
O

2  em
issions. Exports are positively 

linked w
ith C

O
2  em

issions.  

D
. X

u et al., 
2022 

G
7-C

ountries 
1986-2019 

Financial 
developm

ent, 
R

enew
able 

Energy  

N
on-linear A

R
D

L,   
Tw

o-stage least 
squares  

A
n increase in Finance developm

ent can decrease 
carbon em

issions. R
enew

able energy exerts a 
negative and significant effect on C

O
2  em

ission.  
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A
uthors, 

Y
ear 

R
egions(s) 

Tim
e Span 

Focus 
M

ain M
ethods 

M
ain Findings 

G
.N

. Ike et 
al., 2020 

15 oil-
producing 
countries 

1980–2010 
Fossil fuel energy 
production 

M
M

Q
R

 w
ith fixed 

effects, M
odified 

O
rdinary Least 

Squares  

Electricity production increase C
O

2  em
issions w

hile 
trade condenses C

O
2  em

issions across all the 
quantiles. Im

pacts of oil production and electricity 
production on C

O
2 em

issions are positive.  

Q
. Jing et 

al.,  
C

hina 
2010–2019 

Public 
Transportation 
developm

ent 

Tw
o-w

ay fixed-effect 
m

odel, M
ediating-

effect m
odel 

Public transport developm
ent level and C

O
2  

em
issions are negatively correlated, show

ing an 
“Inverted U

-shaped” curve relationship. Energy 
consum

ption is the transm
ission path of the carbon 

em
issions reduction effect of public transport 

developm
ent level. 

C
.-W

. Su et 
al., 2020 

U
SA

 
1990-2017 

International trade 
and 
Technological 
Innovation  

A
utoregressive 

D
istributive Lagged 

Exports and consum
ption-based carbon em

issions are 
negatively associated, and technological innovation 
helps reducing the adverse effect of C

O
2  grow

th.  

R
. W

u et al., 
2021 

18 developed 
countries 

2005-2016 
R

enew
able 

Energy 

Tw
o-w

ay fixed effects 
m

odels, G
ranger 

causality 

The transition from
 fossil fuels to renew

able energy 
and variations in energy intensity and fossil C

O
2  

intensity w
ere the prim

ary factors contributed to the 
decrease in C

O
2  em

issions. 

A
. A

zam
 et 

al., 2021 

10 leading 
C

O
2  em

itter 
countries 

2000-2016 

R
enew

able 
Energy, 
Technology 
Innovation 

G
ranger causality, 

Pooled regression, 
Fixed effect m

odel 

R
enew

able energy, Inform
ation and com

m
unication 

technologies-trade contribute to elim
inating C

O
2 

em
issions. Innovation and green energy elim

inate the 
C

O
2 em

issions. 
M

.M
. 

R
ahm

an, K
. 

A
lam

 and E. 
V

elayutham
, 

2022 

22 developed 
countries 

1990-2018 
R

enew
able 

energy, Export 
quality 

N
on-linear A

R
D

L, 
Pooled m

ean group 
estim

ation 

R
enew

able energy and export quality are found as 
contributory factors for the reduction of C

O
2 

em
issions. B

idirectional causality is found betw
een 

renew
able energy and C

O
2 em

issions. 
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A
uthors, 

Y
ear 

R
egions(s) 

Tim
e Span 

Focus 
M

ain M
ethods 

M
ain Findings 

I. K
han et 

al., 2021 
U

SA
 

1971-2016 

Energy 
consum

ption, 
Population 
grow

th  

G
eneralized M

ethod of 
M

om
ents, G

eneralized 
linear m

odel, R
obust 

least-squares, G
ranger 

causality 

B
idirectional causality runs betw

een natural 
resources and C

O
2  em

issions. N
egative relationships 

betw
een renew

able energy and C
O

2 em
issions. N

on-
renew

able energy consum
ption, population grow

th 
have a positive relationship w

ith C
O
2  em

issions. 

Z. W
ang, Y

. 
Zhu, 2020 

C
hina 

2001-2017 
R

enew
able 

Energy  
Panel ordinary least 
squares m

odel 

R
enew

able energy technology innovation could 
control carbon em

issions, w
hile fossil energy 

technology innovation m
ight boost carbon em

issions.  

C
.W

. Su, F. 
Liu, P. 
Stefea et al., 
2023 

U
SA

 
2010-2021 

Technological 
Innovation 

R
olling-w

indow
 

causality test, G
ranger 

causality  

Technological innovation has positive and negative 
influences in m

itigating greenhouse gas em
issions. 

The negative im
pact confirm

s that Technological 
innovation is a dom

inant factor in m
itigating carbon 

em
issions. 

C
. C

heng et 
al., 2021 

35 O
EC

D
 

countries 
1996-2015 

Technological 
Innovation 

Panel quantile 
regression w

ith non-
additive fixed effects 

Technological innovation directly reduces C
O
2  

em
issions through R

esearch and D
evelopm

ent 
investm

ent and education expenditure; Technological 
innovation can offset the positive im

pacts of 
econom

ic grow
th on C

O
2  em

issions by reducing 
energy intensity. 

B
. W

ang et 
al., 2022 

C
hina 

2007-2017 
H

igh-quality 
energy 
developm

ent  

System
 G

eneralized 
M

ethod of M
om

ents 

The overall effect of H
igh-quality energy 

developm
ent on C

O
2  em

issions is negative, it not 
only curbs C

O
2  em

issions directly, but also m
itigates 

C
O
2  em

issions indirectly by reducing total energy 
consum

ption. 
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A
uthors, 

Y
ear 

R
egions(s) 

Tim
e Span 

Focus 
M

ain M
ethods 

M
ain Findings 

Y
. Chen, C

.-
C

. Lee, 2020 
96 countries 

1996-2018 
Technological 
Innovation 

G
eneralized N

esting 
Spatial m

odel, Tw
o-

w
ay fixed effect m

odel 

Technological innovation has no significant 
m

itigation effect on C
O

2  em
issions globally, but 

Technological innovation in high-incom
e, high-

technology, and high-C
O

2  countries can 
significantly reduce C

O
2 in neighboring countries 

H
. Jeon, 

2022 
48 U

.S. states 
1997–2017 

R
enew

able 
Energy 

Panel fixed-effects, 
Tw

o-step G
eneralised 

M
ethod of M

om
ents, 

M
M

Q
R

 w
ith fixed 

effects 

R
enew

able energy consum
ption, electricity prices, 

and prim
ary energy prices have negative im

pact on 
C

O
2  em

issions w
hereas H

eating D
egree D

ays have 
a positive im

pact on C
O

2  em
issions. 

C
.K

. Lau et 
al., 2023 

36 O
EC

D
 

countries 
1970-2021 

G
reen quality of 

energy m
ix  

System
 G

eneralized 
M

ethod of M
om

ents, 
Feasible generalized 
least squares 

Per capita incom
e, institutional quality, and 

technology increase C
O

2  em
issions. The G

reen 
quality of energy m

ix is negatively related to the 
level of C

O
2  em

issions.   

C
hen et al., 

2022 
C

hina 
2011-2017 

A
rtificial 

Intelligence  
Tw

o-w
ay fixed effects 

m
odel 

A
rtificial Intelligence has a significant inhibitory 

effect on carbon em
issions; A

rtificial Intelligence 
reduces carbon em

issions through optim
izing 

industrial structure, enhancing inform
ation 

infrastructure. 

J. Liu et al., 
2022 

C
hina 

2005-2016 
A

rtificial 
Intelligence 

Feasible generalized 
least squares 

A
rtificial Intelligence significantly reduces carbon 

em
issions. 

W
ang et al., 

2023 
C

hina  
2008-2019 

Industrial R
obots  

Fixed-effects m
odel, 

M
oderating effect 

m
odel  

A
lthough using industrial robots reduces carbon 

em
issions, it also leads to an energy rebound effect.  
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In general, retained studies involve multiple developed and developing countries as

well as global-level analysis. A survey of the literature reveals a shared focus across most

studies on socio-economic, demographic, and energy-related aspects. These appear to

be the predominant factors of interest in current research regarding CO2 emissions.

Besides these critical research areas, it is worth noting that many studies also explore

the role of policy-related factors in determining carbon emissions.

Economic development and rapid urbanization are critical processes boosting fossil

fuel consumption, and consequently, CO2 emissions worldwide (Debone et al., 2021).

Therefore, it is essential to account for the influence of socio-economic factors, including

international trade, foreign direct investment, and population size, when investigating

the determinants of carbon emissions. At the same time, with the rapid advancement

of technology, the impacts of emerging technologies such as renewable energy develop-

ment and artificial intelligence have been incorporated by scholars into the analytical

framework for CO2 emissions, integrating sustainable manufacturing into environmental

governance.

2.3 Comments and Evaluation of Strategies

2.3.1 Strategy Overview

Current research investigating factors influencing CO2 emissions mainly employs panel

data analysis. This allows the consideration of data that includes both cross-sectional

and time-series aspects, providing a more detailed regional examination of their rela-

tionships. Di↵erent statistical methods were found in the selected papers. Granger

causality, Panel quantile regression models, Two-way fixed-e↵ect model, Autoregres-

sive Distributed Lag (ARDL) model, and Di↵erence-in-di↵erences model are the main

modelling approaches used by the authors. The most common estimation approaches

used by researchers include Feasible Generalized Least Squares (FGLS), Generalized

Method of Moments (GMM) and Method of Moment Quantile-Regression (MMQR).

Meanwhile, a majority of the investigated studies employ the Stochastic Impacts by

Regression on Population, A✏uence and Technology (STIRPAT) model. This environ-

mental impact assessment model serves as an analytical framework for their investiga-

tions. The STIRPAT model can comprehensively consider the impact of social, eco-

nomic, and technological driving factors on CO2 emissions (Su and Lee, 2020). Hence,

it has been widely used in the research of influencing factors of CO2 emissions. This

detailed model will be further reviewed in section 3.

In the review of the studies, it is observed that the ARDL is the most frequently

employed modelling approach. The ARDL, NARDL (Nonlinear Autoregressive Dis-

tributed Lag), and BARDL (Bootstrap Autoregressive Distributed Lag) models are all

8



variants of the Autoregressive Distributed Lag model, which is widely used in statistical

time series analysis.

ARDL is a general specification taking into account the lag structure. (Ghouse and

Khan, 2018). Pesaran and Shin (1995) revealed that asymptotically valid inference on

short-run and long-run parameters could be made by employing ordinary least square

estimations of the ARDL model. The ARDL model can handle variables that are

stationary, nonstationary, or a mixture of both, making the model particularly suitable

for modelling complex economic and social phenomena in which the e↵ects may not be

immediate but rather distributed over time.

A NARDL model is an extension of the ARDL model that allows for asymmetric

e↵ects of changes in the explanatory variables. This means that increases and decreases

in the explanatory variables might a↵ect the dependent variable di↵erently. Jareño et

al. (2020) state that the NARDL approach has some advantages over other estimation

techniques. The NARDL approach is not inclined to omit lag bias, and is suitable

irrespective of the stationary properties of the variables. This approach simultane-

ously produces estimates of short and long-run nonlinearities through the positive and

negative partial sum of the decomposition of the regression.

Rahman et al. (2022) explored the asymmetrical influence of changes in techno-

logical innovation, specifically research and development (R&D), on carbon emissions.

They employed the NARDL model to examine the asymmetrical linkage between the

selected variables in the studied countries. The study indicates that negative shocks to

technological innovation (declines in R&D expenditure) have a significant and positive

long-term e↵ect on carbon emissions. However, the influence of positive technological

innovation shocks (increases in R&D expenditure) presents an insignificantly negative

association with carbon emissions.

The BARDL model is another extension of the ARDL model. This method employs

bootstrap resampling, a statistical technique that can be used to estimate the sampling

distribution of an estimator by resampling with a replacement from the original sample.

The bootstrap approach can improve the accuracy of hypothesis tests and confidence

intervals in small samples. The BARDL bounds testing approach works better than the

traditional ARDL model, as this approach considers the joint F-test on all lagged level

variables, t-test on the lagged level of dependent variable and the regressors, which will

help with respect to cointegration equilibrium between the sample variables (McNown

et al., 2018). This methodology has a main advantage in addressing the problem of

weak size and power properties encountered in the traditional ARDL method.

Shahbaz et al. (2020) applied the BARDL cointegration technique and identified the

presence of five cointegrating vectors between carbon emissions and their determinants,

suggesting a long-run cointegration relationship between these variables. The presence
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of cointegration between the variables led researchers to examine the long-run and short-

run e↵ects of influencing factors on carbon emissions. They found that public-private

partnerships investment in energy sector has a positive and significant e↵ect on carbon

emissions, and the relationship between technological innovations and carbon emissions

is negative and significant.

In summary, based on the ARDL model, these models are used to examine the

relationship between variables over time, and di↵er in their specific capabilities and

applications. The ARDL model is the most basic, the NARDL model includes the

capacity to handle asymmetric e↵ects, and the BARDL model uses bootstrap methods

to improve accuracy in small samples.

Pedroni’s Fully Modified Ordinary Least Squares (FMOLS) model, the Dynamic Or-

dinary Least Squares (DOLS) estimator, and the Fixed E↵ects Ordinary Least Squares

(FE-OLS) technique are the prominent estimation methods used in the selected studies.

For example, Yirong (2022) found that an increase in environmental policy stringency

reduces CO2 emissions in the long run with the use of panel ARDL and NARDL meth-

ods, and the results were confirmed using FMOLS and DOLS.

The central reasons for concern in estimating dynamic cointegrated panels as high-

lighted by Pedroni (2004) are heterogeneity issues with di↵erences in means between

cross-sections and di↵erences in cross-sectional adjustment to the cointegrating equi-

librium. Pedroni’s Fully Modified Ordinary Least Squares (FMOLS) model includes

individual-specific intercepts and allows for heterogeneous serial correlation properties

of the error processes across individual members of the panel, and thus, deals with these

issues accordingly.

The DOLS estimator is another extension of OLS to the panel data setting based on

the results of Monte Carlo simulations and was found to be unbiased compared to both

OLS and the FMOLS estimators in finite samples. The DOLS estimator also accounts

for possible endogeneity of the regressors through the augmentation of lead and lagged

di↵erences to suppress the endogenous feedback (Kao and Chiang, 2001). In addition,

the FE-OLS technique is augmented with Driscoll and Kraay standard errors, which

are robust to general forms of cross-sectional dependence and autocorrelation up to a

certain lag. Apart from the above estimators, other estimation techniques employed in

the selected studies will be discussed in detail in Section 4.
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2.3.2 Diagnostic Test

Before conducting regression analysis, researchers perform a series of tests on the data

to ensure reliable results. An essential step in this process, particularly when dealing

with time series analysis, is the stationarity test. The presence of a stochastic trend

in a variable set can give rise to misleading and spurious regression results. As such,

it is important to validate the stationarity of a series through unit root tests. The

augmented Dicky-Fuller (ADF) test, the principle of which is to verify the existence of

unit roots in time series data, is one of the most generally employed unit root tests.

If the result shows that the time series has a unit root, then the data needs to be

di↵erentiated to make it stationary, avoiding the pseudo-regression of the variables.

When all data is non-stationary at the same level and tends to stabilize after the first

di↵erence, a cointegration analysis will be applied to verify that the time series shows

long-term cointegration. The cointegration tests, including Pedroni, IPS and Kao test,

are performed to show long-term connections between non-stationary sequences. These

tests will be described in detail in section 3.1.

Cross-sectional Dependence (CD) tests are used to confirm cross-sectional depen-

dence within the panel data. Cross-sectional panel dependence may arise when, for

instance, countries respond to common shocks or spatial di↵usion processes are present

(such as shocks from the financial crisis). If cross-sectional dependence is present, these

results, at least, are in the ine�ciency of the estimators and invalid inference when

using standard estimation techniques (Ali, 2017). Investigating the presence of cross-

sectional dependency is crucial in panel data sets, as regions being studied may share

similar economic and institutional attributes that can cause cross-sectional dependency.

Panel data models have two main structures: Fixed E↵ects Models (FEM) and

Random E↵ects Models (REM). The Hausman test (Hausman, 1978) is commonly used

in the investigated studies to select the most appropriate model for the data structure.

The null hypothesis is that the preferred model is REM, while the alternative is that

the preferred model is FEM.

The recurring preference for the FEM (Wang et al., 2023; Azam et al., 2021 etc.),

as supported by the Hausman test, can be attributed to its ability to control for time-

invariant unobserved individual characteristics. This trait of the FEM is especially

beneficial in the context of panel studies, where unobserved region-specific character-

istics can significantly influence CO2 emissions. By accounting for such unobserved

heterogeneity, the FEM can provide more accurate and reliable results than the REM,

assuming that individual e↵ects are uncorrelated with the explanatory variables.

In order to ensure the robustness of their results, researchers often employ various

robustness checks and methods. Robustness checks are typically used to assess the

sensitivity and robustness of a model to outliers, model assumption violations, and
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other confounders that may occur in the data.

A common approach to check the robustness in the selected papers is Placebo test,

which is essential to determine if the observed e↵ect in the primary analysis is not

due to chance or spurious correlation. To conduct the process, the primary analysis

must be reproduced by substituting the key variable of interest with another variable

known as the ”placebo”. This placebo variable should be irrelevant or unrelated to the

model and is expected to have no impact on the outcome. It could be a variable from

a control group that was not exposed to the treatment, or a variable that represents

a period before the actual treatment occurred. For instance, in a study (Xu et al.,

2023) assessing the carbon reduction e↵ect of Smart City Pilot Programs (SCPP), the

authors identified “false smart cities” randomly as the treatment group and set the

policy implementation time at random. Then they estimated the coe�cients using

these new treatment and control groups, e↵ectively completing a Placebo test. This

process was repeated 500 times to establish a distribution of estimated coe�cients,

which confirmed the reliability of the baseline results. The results of the placebo test

reveal that, the coe�cient estimates show an approximate normal distribution trend

with a mean value close to 0, which is significantly di↵erent from the coe�cient of

SCPP in the baseline regression. The above analysis fully illustrates that the negative

e↵ect of the SCPP on the CO2 emissions of industrial firms is robust (Xu et al., 2023).

Endogeneity tests are employed to assess whether an explanatory variable in a re-

gression model is correlated with the error term, thus violating the fundamental as-

sumption of regression analysis. Durbin-Wu-Hausman test is one common test for

endogeneity. Durbin-Wu-Hausman test compares the results of an OLS regression with

those of an instrumental variable regression, where the instrumental variable (IV) is

correlated with the endogenous explanatory variable but not with the error term. The

test suggests that endogeneity is present if the coe�cients are significantly di↵erent

(Greene and William, 2012).

Endogeneity can arise due to simultaneity (e.g., economic growth can lead to in-

creased CO2 emissions due to increased industrial activity, simultaneously, higher CO2

emissions can impact economic growth due to health-related costs), omitted variables

(e.g., if a study only includes economic growth and omits technology advances in the

model, the coe�cient on economic growth could be biased as it might also be capturing

the e↵ect of technological progress), or measurement error (Johnston, 1972). Appar-

ently, endogeneity is often unavoidable in studies investigating factors impacting CO2

emissions. For instance, Liu et al. (2022) recognized that the relationship between

Artificial Intelligence (AI) application and CO2 emissions could be mutually influenc-

ing, the authors considered AI as potentially endogenous. In response, they introduced

a lagged version of AI as an IV in the empirical model, using the Two-Stage Least

12



Squares method to estimate parameters. The validity and strength of this IV were

tested through several statistical measures. The Anderson Canonical Correlation La-

grange Multiplier statistic rejected the null hypothesis that the IV is not identifiable.

The Cragg-Donald Wald F statistic rejected the weak IV hypothesis, indicating that

the IV is strongly correlated with the endogenous predictor. The Anderson-Rubin Wald

test further confirmed the correlation between the IV and AI (Liu et al., 2022).

Moreover, alternative models for further robustness checks are applied in the se-

lected papers. For instance, Su et al. (2020) adopted ARDL to analyze the relationship

between carbon emissions and trade, GDP and technological innovation, and subse-

quently implemented dynamic ordinary least squares (DOLS) to check the robustness

of the results. Wang et al. (2022) also conducted a robustness test by substituting

the CO2 emission variable with per capita CO2 emissions and then reestimated the

parameters applying the FGLS, and SYS-GMM techniques simultaneously.

These di↵erent robustness checks and methodologies not only provide a solid founda-

tion for the research but also significantly enhance the validity of the results. Overall,

the analyzed methods could be considered e�cient in investigating the relationships

between the studied variables.
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3 Main Strategies

3.1 Time Series Methods

Dealing with a time series with unit roots is essential because many statistical techniques

assume stationarity. Thus, the stationarity of a series must be tested through unit root

tests before constructing the statistical model to avoid misleading regression results.

Once it is determined that individual series are non-stationary, cointegration tests can

be applied to investigate the long-term relationships among non-stationary series. After

extensive empirical tests, the Granger causality tests further o↵er insights into the

direction of influence among variables.

3.1.1 Unit Root Test

In the context of time series analysis, stationarity is a critical concept. A stationary time

series has properties that do not depend on the time at which the series is observed.

This implies that the mean, variance, and autocorrelation structures do not change

over time. Stationarity can be divided into two types: strictly stationary and weakly

stationary. A time series {yt} is weakly stationary if for all t:

µ(t) = E(yt) = µ, and

�(t+ h, t) = Cov(yt+h, yt) = E[(yt+h � µ(t))(yt � µ(t))] = �(h).

This means that the time series {yt} moves in a similar way as the “shifted” time

series {yt+h} for all h. A process is called strictly stationary if the joint distribution of

{y1, . . . , yk} is identical to that of {y1+t, . . . , yk+t} (Wohlrabe, 2023). Strict stationarity

implies that the process always maintains an invariant distribution function. All strictly

stationary processes satisfy the property of weak stationarity, but the converse is not

valid. In practice, strict-sense stationarity is too restrictive for many applications.

Therefore, the concept of weak stationarity is usually applied. In general, the term

“stationarity” is used to refer to the weak form of stationarity.

A unit root test is used to determine whether a time series is non-stationary and

possesses a unit root. A unit root implies that the series is non-stationary and exhibits

a stochastic trend. Consider the AR(1) case without drift,

yt = ⇢yt�1 + ✏t, ✏t
iid⇠ N(0, �2), �2 < 1 (1)

to test for the presence of a unit root is to test the hypothesis

H0 : ⇢ = 1 and H0 : ⇢ < 1.

The test is formulated such that the presence of unit root is the null hypothesis. A

major di�culty arises from the fact that, under the null hypothesis, the OLS estimate
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of ⇢ is not normally distributed, consequently, the t–statistic is not described by a

t–distribution.

Dickey and Fuller (1979) investigated this problem after subtracting yt�1 from both

sides of Eq.(1), yielding

�yt = (⇢� 1)yt�1 + ✏t (2)

so that the test is

H0 : ⇢� 1 = 0 and H1 : ⇢� 1 < 0

Dickey and Fuller used Monte-Carlo simulations to generate the critical values for the

non-standard t-distribution arising under the null. This test procedure is called the

Dickey-Fuller (DF) test. Dickey and Fuller considered a more general model

�yt = f(t) + (⇢� 1)yt�1 + ✏t

where f(t) is a deterministic function of time, it turns out that the critical value varies

with the choice of f(t). The deterministic trend specification assumes stationary de-

viations ✏t around a deterministic trend (t). They provide critical values for the three

cases:

f(t) =

8
>><

>>:

0 Case 1: random walk

c Case 2: random walk with drift

c0 + c1t Case 3: random walk with deterministic trend

If, in Case 2, there is a unit root, i.e., yt = c+ yt�1+ ✏t, the constant c acts like a linear

trend. In each period, the level of yt shifts, on average, by the amount c. A process of

this nature is said to have a stochastic trend and to be di↵erence stationary. In Case

3 with a unit root, i.e., yt = c0 + c1t+ yt�1 + ✏t, we refer to a deterministic trend; and

the process becomes trend stationary after di↵erencing.

A problem with the AR(1)-based unit-root test is that the ✏̂t obtained from Eq.(2)

tend to be autocorrelated. To circumvent this, one can add su�ciently many lagged

�yt�is on the right-hand side of Eq.(2)until the residuals appear to be white noise. If

the unit-root test described above is based on the OLS-estimated coe�cient of yt�1 in

�yt = f(t) + (⇢� 1)yt�1 +
p�1X

i=1

↵i�yt�i + ✏t

this refers to the augmented Dickey-Fuller (ADF) test. By including lags of order p, the

ADF formulation allows higher-order autoregressive processes (Imam, 2016). The unit

root test is then carried out under the null hypothesis ⇢� 1 = 0 against the alternative

hypothesis of ⇢ � 1 < 0. The test statistic is t = (⇢̂ � 1)/�̂⇢, where �̂⇢ is the standard
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error of ⇢̂. The ADF test, which is the most widely used unit-root test, relies on the

same critical values as the DF test (Wohlrabe, 2023). If the calculated test statistic

is significantly less than the critical value, then the null hypothesis is rejected, and no

unit root is present.

While the ADF test is robust and commonly used, it is important to note that it

primarily analyzes single time series data. When handling panel data, the panel unit

root tests could be more suitable, such as the Im-Pesaran-Shin (IPS) test proposed by

Im, Pesaran and Shin (2003).

The IPS test evaluates the t-test for unit roots in heterogeneous panels and has the

added advantage of allowing for cross-sectional dependence. Consider a sample of N

cross sections (regions or countries) observed over T time periods. We suppose that the

stochastic process yi,t, is generated by the first-order autoregressive process:

yi,t = ⇢iyi,t�1 + �zi,t + ✏i,t, i = 1, . . . , N ; t = 1, . . . , T

also can be expressed as: �yi,t = �iyi,t�1 + ↵i + �it+ ✏i,t,

where �i = ⇢i � 1, zi,t is the exogenous term that exists in a constant form with fixed

e↵ects and time trends, ✏i,t is the error term. And assume that there are n independent

individuals in the panel data series.

First, an ADF statistic ti =
⇢̂i�1

�̂⇢i
is constructed for each independent individual.

Then, ti of these individuals are averaged to calculate t̄ = 1

n

P
n

i=1
ti.

Thus, deriving the ADF statistic for the panel data:

Zt̄ =
t̄� E(t̄)q

V ar(t̄)

n

d�! N(0, 1).

H0 : �1 = �2 = · · · = �N = 0

H1 : �i < 0, i = 1, . . . , N ; �j < 0, j = 1, . . . , N

That is, we consider that under the alternative hypothesis, a part of the individual time

series in the panel data is stationary, while the remaining part of the individual time

series is non-stationary.

Overall, the IPS test proposes a standardized t̄-bar test statistic based on the ADF

statistics averaged across the groups. Under a general setting, this statistic is shown to

converge in probability to a standard normal variate sequentially (Barbieri, 2005).

3.1.2 Cointegration Test

Non-stationary data, as is often the case in many socio-economic variables, can be

transformed into a stationary sequence to permit further analysis. Integrated processes

represent a class of non-stationary time series that can be made stationary through
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di↵erencing. A time series is said to be integrated of order ’d’ (denoted as I(d)) if it

must be di↵erenced ’d’ times to become stationary. The number of di↵erences required

to achieve stationarity represents the order of integration (Harris and Sollis, 2003).

For example, if a time series is non-stationary and one di↵erencing step is required

to make it stationary, we denote this series as I(1) - integrated of order one. In the

multivariate case, there may exist a linear combination of non-stationary time series,

which is stationary without taking di↵erences. This property is called cointegration.

Cointegration theory holds that although some economic variables are non-stationary,

their linear combination may be a stationary sequence. Engle and Granger (1987) were

the first to formalize this concept: The components of a (k ⇥ 1) vector Xt are said

to be cointegrated of order (d, b), denoted by CI(d, b), if each component individually

taken is I(d), and a vector � = (�1, . . . , �k) 6= 0 exists such that the linear combination

Zt := �>Xt is I(d� b).

The linear combination is called a cointegration relation and the vector � is called a

cointegration vector. Cointegration means that two or more time series are connected

and form a long-term equilibrium represented by the linear combination �>Xt. Al-

though the individual components may contain stochastic trends, they move closely

together over time and show only short-term deviations from their equilibrium (Harris

and Sollis, 2003).

The cointegration test is a statistical method used to determine the long-term equi-

librium relationship between two or more non-stationary time series variables. It helps

to identify whether there is a stable long-term relationship among the variables, despite

them individually exhibiting non-stationary behavior. One popular cointegration test

is the Engle-Granger two-step method. It is used to test the null hypothesis of no

cointegration between two time series.

Assume that xt and yt are non-stationary time series and both are integrated of

order one. The first step of the testing procedure is to estimate the long-run equilibrium

relationship in terms of ordinary least squares (OLS) regression:

yt = ↵0 + ↵1xt + ut,

where ↵1 is the coe�cient of cointegration and ut is an error term. Note that the OLS

regression estimation results are reliable only when both time series are cointegrated.

In this case, the OLS estimator of ↵1 is considered super-consistent, meaning that

it converges to the true parameter much faster than in the standard case with I(0)

variables. If no cointegration is present, this technique leads to the problem of spurious

regression and can produce misleading results. The estimated cointegrating regression

yields the residual series ût = yt � ↵̂0 � ↵̂1xt.

In the second step of the testing procedure, a unit root test is applied to the residuals

ût to determine whether they are stationary or not. For this purpose, an ADF test is
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usually performed on the following model:

�ût =  ⇤ût�1 +
p�1X

j=1

 i�ût�j + "t

where "t is assumed to be white noise, with univariate unit root test

H0 :  ⇤ = 1 and H1 : �1 <  ⇤ < 1.

If the null hypothesis of non-stationarity of the residuals ût can be rejected, then they

can be considered stationary, which in turn means that the investigated time series xt

and yt are cointegrated.

Given the potential limitations of the Engle-Granger test, particularly when dealing

with more complex scenarios involving more than two time series and multiple coin-

tegration relationships, researchers often turn to panel cointegration tests such as the

Kao panel cointegration test. Assuming a panel data model:

yi,t = ↵i + �xi,t + "i,t, i = 1, . . . , N ; t = 1, . . . , T

Kao (1999) proposed a panel cointegration test generalized from the Augmented Dickey-

Fuller test, and the test model is as follows:

"̂i,t = ⇢"̂i,t�1 �
pX

j=1

'�"̂i,t�j + vi,t

Based on the Engle-Granger two-step method, if H0 : ⇢ = 1 can be rejected, there is a

long-term relationship between the variables.

Currently, the Kao test is the most widely used panel cointegration test (Lin and

Xu, 2018). Many investigated papers used the Kao test to examine whether there is a

cointegration relationship between the variables in their studies.

3.1.3 Granger Causality

If the results of the cointegration test show that two time series are cointegrated, the

Granger causality analysis (Granger, 1980) could be applied to investigate the causal

relationship between these variables. Granger causality is based on linear regression

and its time series must be stationary, otherwise, spurious regression problems may

occur (He and Maekawa, 2001).

Granger causality test is a method used to test whether one variable X is the cause

of a change in another variable. If variable X helps predict variable Y , the relationship

is defined as Granger causality. This test can only be applied to the test of a time series
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data model with stationarity. The procedure for testing whetherX is the Granger cause

of a change in Y is as follows:

Let Yt and Xt be stationary time series. To test the null hypothesis that Xt does not

Granger-cause Yt, first, find the appropriate lagged values Yt�i to include in a univariate

autoregression of Y :

Yt = ↵0 +
pX

i=1

↵iYt�i + ✏t (restricted regression)

Next, the autoregression is augmented by including lagged values of X:

Yt = ↵0 +
pX

i=1

↵iYt�i +
qX

i=1

�iXt�i + ✏t (unrestricted regression)

where ↵0 denotes the constant term, p and q are the longest lag length of the variables

Yt and Xt, respectively, which can usually be assumed to be somewhat larger, and ✏t is

the white noise. The residual sum of squares of the two regression models, RSSU and

RSSr, were then used to construct the F-statistic:

F =
RSSr�RSSU

q

RSSU
n�p�q�1

⇠ F (q, n� p� q � 1)

where n is the sample size. If F > F↵(q, n� p� q� 1), then �1, . . . , �q are significantly

di↵erent from zero, and the null hypothesis that Xt does not Granger-cause Yt must be

rejected. Otherwise, the null hypothesis is accepted if and only if no lagged values of

X are retained in the regression.

Dumitrescu and Hurlin panel causality test is an extension of the Granger causality

test that adapted for the context of panel data. The test accounts for cross-sectional

independence and is applicable to large panel data situations (both N and T are large).

The following model detects the causality in panel data:

Yi,t = ↵i +
JX

j=1

�J
i
Yi,t�J +

JX

j=1

�J

i
Xi,t�J + ✏i,t

where Xi,t�J and Yi,t�J denote the observations of two stationary variables for the indi-

vidual i in period t. j shows the lag length, �J
i
represents the autoregressive parameter,

while �J

i
is the regression coe�cient that varies within the groups. It is assumed that

the lag order J is the same for all individuals in a balanced panel. This test is a

fixed type of test that yields a fixed coe�cient model. It allows for heterogeneity and

maintains a normal distribution.
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The null hypothesis of no causal relationship and the alternative hypothesis for

testing a causal relationship are as follows:

H0 : �i = 0, 8i = 1, . . . , N

H1 : �i = 0, 8i = 1, . . . , N1;

�i 6= 0, 8i = N1 + 1, N1 + 2, . . . , N

where N1 is unknown but satisfies the condition 0  N1/N < 1. The ratio N1/N is

necessarily less than one since, if N1 = N , there is no causality for any of the individuals

in the panel, which is equivalent to the null hypothesis. Conversely, when N1 = 0, there

is causality for all the individuals in the panel. (Dumitrescu and Hurlin, 2012)

In general, the Granger causality is widely used to confirm the e↵ect of each variable

on the others, e↵ectively exposing whether a uni-directional or bi-directional relation-

ship exists among the variables in the studies.

3.1.4 Application in Selected Studies

The study conducted by Xu et al. (2022) analyzed the nonlinear e↵ects of financial

development (FD), renewable energy (REC), and human capital (HC) on CO2 emissions

across G7 countries, which include Canada, France, Germany, Italy, Japan, the United

Kingdom, and the United States. The researchers initiated the study by examining the

stationarity of all the variables using unit root tests.

Table 2: ADF and PP unit root test for time series data (Xu et al., 2022)

Note: ADF and PP represent Augmented Dickey-Fuller, Phillips, and Perron. FD: Financial
Development, REC: Renewable Energy, HC: Human Capital.

Table 2 demonstrates that CO2, FD, REC, and HC are stationary at either level

I(0) or the first di↵erence I(1), and the results from the ADF and PP unit root tests are

consistent with each other. I(0) means the variable is stationary at its original level,

whereas I(1) means it is stationary at the first di↵erence level.
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Similarly, Table 3 shows the results of the second-generation (CIPS and CADF) unit

root test. CIPS and CADF represent Cross-sectional Augmented Im-Pesaran-Shin and

Cross-sectional Augmented Dicky-fuller Statistic.

Table 3: CIPS and CADF unit root test for panel data (Xu et al., 2022)

Note: FD: Financial Development, REC: Renewable Energy, HC: Human Capital. Moreover,
***, ** and * indicate the level of significance at 1%, 5%, and 10%.

It can be observed from Table 3 that variables CO2, REC, and HC have significant

CADF and CIPS test statistics at the original level, indicating that these variables are

stationary without any di↵erencing. Consider the variable ”FD”, in the CIPS test, it

has a t-value of -3.078 at the original level, which is significant at the 5% significance

level, indicating that the ”FD” data is stationary at its original level, hence it is I(0).

However, in the CADF test, ”FD” has a t-value of -2.987 at the original level, which is

not significant, but its t-value at the first di↵erence level is -2.342, which is significant

at the 1% significance level, suggesting that the ”FD” data becomes stationary after

first di↵erencing, hence it is I(1). Results confirm that all the variables are stationary

at the level and the first di↵erence. This is a desirable property for further analysis.

To confirm the long-run relationship among CO2 emission, FD, REC, and HC, this

study employs the bound test with the optimal lag order. The basic idea behind

the bound test is to test the joint significance of the lagged levels’ coe�cients in an

unrestricted equilibrium correction model, when the calculated F-statistic is above the

upper bound value, the null hypothesis of no cointegration can be rejected, indicating

the presence of a long-run relationship between the variables. The results are displayed

in Table 4,

Table 4 reveals the existence of the long-run relationship between CO2 emissions, FD,

REC, and HC, as all G7 countries reject the null hypothesis of no long-run cointegration

at 1%. For example, for Canada, the F-statistics value is 3.39, which is significant

at 1%, suggesting that the cointegration exists. The F-statistics value is above the

I(0) bound at all significance levels and also above the I(1) bound at the 10% level,

providing evidence of cointegration. The last column shows the chosen ARDL model

for each country and the numbers in parentheses represent the lag order selected for
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Table 4: Bound test for asymmetric cointegration (Xu et al., 2022)

the variables in the model.

The Dumitrescu-Hurlin Granger causality test is employed as the final test before

regression analysis to estimate the panel causality e↵ect between CO2, FD, REC, and

HC. The estimated results are presented in Table 5.

Table 5: Dumitrescu-Hurlin (D-H) panel causality test (Xu et al., 2022)

Note: ! represent unidirectional causality; FD: Financial Development, REC: Renewable
Energy, HC: Human Capital.

Table 5 presents diverse findings from the causality tests. In the case of financial de-

velopment and CO2, a unidirectional causal relation running from financial development

to CO2 emission is observed. This reveals that a change in financial development sig-

nificantly a↵ects CO2 emission levels in G7 countries. Similarly, a unidirectional causal

relationship exists from renewable energy to CO2, revealing the impact of renewable

energy on CO2.
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3.2 Regression Analysis

After determining the characteristics of the data through a series of time series tests,

the regression model can be implemented. Several modelling approaches are used to

specify the functional form of the relationship between variables. Panel data models are

commonly employed due to their ability to control for both individual-specific and time-

specific e↵ects. Various techniques exist that are suitable for di↵erent research scenarios.

In this section, the application of the Two-Way Fixed E↵ect model, Di↵erence-in-

di↵erences model, and the Panel Quantile Regression model in the context of CO2

emissions studies is explored.

3.2.1 Two-Way Fixed-E↵ect Model

In panel data analysis, we often observe data for multiple individuals or entities over

several time periods. In order to consider both the time period fixed e↵ect and the

individual fixed e↵ect, a Two-Way Fixed E↵ect Model (2FE) was constructed based

on the general panel data model. Two-way fixed e↵ects refer to a statistical modelling

technique that incorporates fixed e↵ects for both the individual (cross-sectional) units

and the time periods.

Suppose we have a panel data set of N individuals and T time periods. Let Xi,t

and Yi,t represent the variables for individual i at time t, respectively. We consider the

following two-way linear fixed e↵ects regression model,

Yi,t = ↵i + �t + �Xi,t + "i,t

for i = 1, 2, . . . , N and t = 1, 2, . . . , T where ↵i represents the individual fixed e↵ects

and �t represents the time fixed e↵ects (lmai and kim, 2020).

Including individual fixed e↵ects ↵i allows researchers to control for unobserved

individual-level heterogeneity that remains constant over time. Similarly, the inclusion

of time fixed e↵ects �t helps capture time-specific factors that a↵ect all individuals

equally, such as macroeconomic shocks or policy changes.

By incorporating both individual and time-fixed e↵ects, the two-way fixed e↵ects

model provides a robust approach to mitigate omitted variable bias and account for

unobserved heterogeneity in panel data analysis. It allows researchers to analyze the

e↵ects of variables of interest while controlling for individual and time-specific factors

that may confound the relationship.
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3.2.1.1 Application in Selected Studies

Specifically, Chen et al. (2022) investigates the impact of artificial intelligence on

carbon emissions using the two-way fixed e↵ects model. The specific regression equation

is constructed as follows:

CEi,t = ↵ + �AIi,t + �Xi,t + ui + �t + ✏i,t

where CEi,t denotes the carbon emission intensity (represents the amount of total CO2

emissions per unit of GDP) of city i in year t; AIi,t measures the artificial intelligence

(AI) development level; Xi,t is a set of control variables including fixed asset investment,

financial development level, urbanization ratio, and government intervention; ui and �t
denote the area fixed e↵ect and time fixed e↵ect; ✏i,t is the error term. The coe�cient

� represents the net e↵ect of the level of AI development on carbon emissions. A

significant negative � indicates a reduction in carbon emissions due to improved AI

development. The results of the two-way fixed e↵ects model are shown in Table 6.

Table 6: Results of two-way fixed e↵ects model in China (Chen et al., 2022)

Note: ln ETR: Exposure to robot, fin: Financial development, invest : Fixed asset investment,
urban: Urbanization Ratio, expenditure: government intervention.

Column (1) displays the regression results with the level of AI development as the

single explanatory variable, whereas column (2) displays the results of regression with

the incorporation of control variables. As observed in Table 6, each 1% improvement

in AI development results in a 0.0027% decrease in carbon emissions. The estimated

coe�cients become smaller when control variables are included but remain significant.
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This demonstrates that the development of artificial intelligence has a significant e↵ect

on reducing carbon emissions.

3.2.2 Di↵erence-in-Di↵erences Model

The Di↵erence-in-Di↵erences (DID) method is one of the most popular methods in the

social sciences for estimating causal e↵ects in non-experimental settings (Roth et al.,

2022), as it allows for the control of pre-existing di↵erences in the objects of study.

DID estimates the causal e↵ect of an intervention by comparing the average change

over time in the outcome variable for the treatment group with the average change for

the control group. This helps in isolating factors that might influence the empirical

results.

Assume that there are i 2 {1, . . . , n} individuals, and t 2 {1, . . . , T} time periods.

We aim to evaluate the impact of a treatment on an outcome Yi,t over a population

of individuals. Two groups are indexed by treatment status 0 and 1, where Yi,t(0)

indicates individuals who do not receive treatment, i.e., the control group, and Yi,t(1)

indicates individuals who do receive treatment, i.e., the treatment group.

The key assumption is that the treatment is independent of time t, observed covari-

ates Ui, and the identity of the observation Xi,t. Assume that time and linear e↵ects

are constant:

E[Yi,t(0)|Ui, Xi,t, t] = �0 + U 0
i
� +X 0

i,t
�.

Then assume that the causal e↵ect is constant and has a linear functional form:

E[Yi,t(1)|Ui, Xi,t, t] = E[Yi,t(0)|Ui, Xi,t, t] + ⌧.

This implies: E[Yi,t|Ui, Xi,t, t, Di,t] = ↵i + �t + ⌧Di,t + U 0
i
� +X 0

i,t
�. (Lechner, 2010)

A typical DID estimator is based on a regression model with fixed e↵ect terms for

individual (e.g., city) and year:

Yi,t = ↵i + �t + ⌧Di,t +X 0
i,t
� + ✏i,t,

where Di,t is a dummy variable for whether the individuals received the treatment in

year t, ↵i is the city-related fixed e↵ect, which controls all the city-related factors that

do not change with time, and �t is the time-related fixed e↵ect, which controls all the

time-related factors that do not change with city changes. This research focuses on

the positive and negative direction of coe�cient ⌧ and its significance. If the estimated

value ⌧̂ is di↵erent from zero, it suggests that the treatment’s e↵ect is significant.
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3.2.2.1 Application in Selected Studies

The standard DID model requires individuals to be impacted by the treatment at

the same point in time. However, this is not always the case, such as with the phased

implementation of the Low-carbon city pilot policy in 2010, 2012, and 2017. In this

case, a time-varying DID model is more applicable.

In some investigated studies exploring the impact of policies on CO2 (Wen and Liu,

2022; Liu et al., 2022), the time-varying DID model analysis are employed to compare

the di↵erences in carbon emissions between pilot and non-pilot cities before and after

policy implementation. This requires that the parallel trend assumption is met – that is,

carbon emissions in the treatment and control groups follow a similar trend before the

start of the Policy. In other words, if the low-carbon city pilot policy is not implemented,

the variation trend of carbon emission in pilot cities and non-pilot cities should be the

same. Consequently, parallel trend test and dynamic e↵ect analysis are required to be

performed, namely:

Yi,t = �0 +
min{t,0}X

l=t�p

�i,tD
l

i,t
+ �1 ⇥ Controli,t + ✓i + µt + ✏i,t

in which Dl

i,t
is the dummy variable. Provided that the year when city i became a

low-carbon city pilot is p, then set l = t� p. When l is negative, if the studied year t is

smaller than the year when the policy is implemented, then we set Dl

i,t
= 1; otherwise,

we set Dl

i,t
= 0. When l is non-negative, if t is larger than the year when the policy is

implemented, then we set Dl

i,t
= 1; otherwise, we set Dl

i,t
= 0.

In the study from Liu et al. (2022), considering China’s low-carbon city pilot was

launched in 2010, and the sample data for this study were selected from 2006 to 2017,

covering the four years before and seven years after the implementation, therefore the

parallel trend test would be:

Yi,t = �0 +
7X

l=�4

�itD
l

it
+ �1 ⇥ Controli,t + ✓i + µt + ✏i,t

The estimated coe�cient �it indicates the di↵erences in carbon emissions between the

experimental group and the control group in the year after the implementation of the

policy. If the trend of �it is relatively flat while l is negative, it is proven that the

parallel trend hypothesis is true. On the contrary, it indicates that the two groups

have significant di↵erences before the implementation of the policy and the parallel

trend hypothesis is false. Figure 1 shows the estimation results of �it under the 95%

confidence intervals for the indexes of carbon emissions.

26



Figure 1: Dynamic e↵ect of low-carbon city pilot policy on carbon emissions in China
(Liu et al., 2022)

�it was not significant in the first four years after the implementation of the emis-

sion trading policy. In other words, before the pilot implementation, there was little

di↵erence between the treatment group and the control group, so the hypothesis of the

parallel trend was established. Besides, �it showed a decreasing trend year by year, and

the carbon emission decreased significantly from the fifth year. This shows that the

e↵ect of the low-carbon city pilot policy needs time to accumulate.

The main reason is probably that enterprises mainly improve environmental e�ciency

by new technology development and industrial structure adjustment, which need a large

investment and a long time to complete. Therefore, there is a lag in the policy e↵ect

of the emission trading system.

The parallel trends assumption cannot be directly tested for the period after the

treatment is implemented, as we do not observe the counterfactual outcome for the

treated group. Therefore, we can only test it for the pre-treatment period and assume

that it holds for the post-treatment period as well. This method helps mitigate potential

biases in the estimated treatment e↵ect that could be due to permanent di↵erences

between those who receive the intervention and those who do not, or due to trends over

time.

Overall, time-varying DID provides a flexible framework for estimating causal e↵ects

that can vary over time, allowing researchers to capture the dynamic nature of treatment

e↵ects in observational studies.
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3.2.3 Panel Quantile Regression Model

The data of investigated variables are probably characterized by high kurtosis, thick

tails, and heteroscedasticity, therefore, it is worth analyzing the entire data distribution

instead of just the mean level. This is more informative because the way in which factors

a↵ect CO2 could be di↵erent in high-pollution and low-pollution economies.

Panel Qantile Regression models (PQR) allow the researchers to account for un-

observed heterogeneity and heterogeneous covariates e↵ects, while the availability of

panel data potentially allows the researcher to include fixed e↵ects to control for some

unobserved covariates (Canay, 2011). A simplified panel quantile regression model can

be formulated as follows:

Yit = Xit✓⌧ + ✏it, i = 1, . . . , N, t = 1, . . . , T

where ✓⌧ are the k ⇥ 1 regression coe�cients at the ⌧ -th quantile of the dependent

variable:

P (Yit  Xit✓⌧ + ✏it|Xit) = ⌧

In contrast to OLS, which is based on minimizing the sum of squared residuals, the

⌧ -th quantile regression estimator of ✓ minimizes a weighted sum of absolute errors:

min
✓

2

4
X

(Yit�Xit✓⌧ )

⌧ |Yit �Xit✓⌧ |+
X

(YitXit✓⌧ )

(1� ⌧)|Yit �Xit✓⌧ |

3

5

The weighting scheme with ⌧ and 1 � ⌧ is based on the Check Loss Function, which

is designed to penalize deviations of predictions from the true values. Loss function

is integral to the calculation of quantile regression estimator, it provides a mechanism

to apply di↵erent weights to the residuals. These weights signify that underestimation

(Yit � Xit✓⌧ ), for the given quantile ⌧ , are given ⌧ times as weight in the overall loss

function. In the symmetric case of absolute value loss, it is well known to yield the

median. When the loss is linear and asymmetric, we prefer a point estimate more likely

to leave us on the flatter of the two branches of marginal loss (Koenker and Machado,

1999). Hence, for higher quantiles (larger ⌧), the underestimations are given more

weight. Compared to OLS regression, quantile regression minimizes the ⌧ -weighted

sum of absolute residuals, thus providing a more robust estimation in the presence of

outliers.

In addition, quantile regression is less restrictive than the OLS approach as it al-

lows the slope coe�cient to vary across the quantiles of the dependent variable. This

makes PQR particularly useful when dealing with heterogeneous e↵ects or when the
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distribution of the dependent variable is skewed or contains outliers.

3.2.3.1 Application in Selected Studies

The investigated studies (Cheng et al., 2021; Jeon, 2022; Keho, 2020) utilize panel

quantile regression to estimate their models, as this method o↵ers a systematic strategy

for examining how the driven factors influence CO2 emissions in countries across the

entire conditional distribution of CO2 emissions. For instance, Keho (2020) has modeled

in his study:

Q(CO2it|⌦it) = ✓0 + ✓1Eit + ✓2yit + ✓3y
2

it
+ ✓4Indit + ✓5Fit + ✓6Tit + ✓7Uit + ✏it

where Q(CO2it|⌦it) is the conditional quantile of CO2 emissions and ⌦t contains the

available information known at time t for country i. As for the independent variables:

E is per capita energy consumption, y indicates per capita real GDP, y2 is the square of

per capita real GDP, Ind is an industrial value added as a share of GDP, F is financial

development indicator, T is trade openness, and U is urbanization rate. Figure 2 shows

Part of the results.

Figure 2: The parameter estimates of quantile and OLS regressions and their confidence
intervals across 45 countries (Keho, 2020)

Note: The x-axis represents the conditional quantile of CO2 emissions. The horizontal dashed
line represents the OLS estimates. The two dotted lines depict the 95 percent confidence
intervals for the OLS estimates. The solid line represents the quantile regression estimates;
and the shaded grey area plots the 95 percent confidence band for the quantile regression
estimates.

The regression results suggest some important di↵erences across di↵erent quantiles

in the conditional distribution of CO2 emissions. The impact of the industrial sector is

positive and larger at the top tail of the distribution, suggesting that industrialization

increases pollution, especially in countries with higher pollution levels. Financial deep-

ening, measured as bank credit to the private sector, contributes to increase CO2, and

its impact is larger in countries with lower CO2 emissions.
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With respect to trade openness, the e↵ect is negative and shows a U-shaped relation

with quantiles, suggesting that openness to trade reduces CO2 with a larger reducing

e↵ect in countries in the middle part of the pollution distribution. The impact of trade

is not significant at the top tail of the emission distribution (i.e., 0.80 quantile and

higher), this suggests that in regions with high level of CO2, the trade openness has no

significant impact on CO2 emissions.

3.3 Specific Framework - STIRPAT

After exploring various regression models used for investigating the determinants of

CO2 emissions, one might wonder how to select the most relevant factors in the mod-

els that precisely reflect the complexities of carbon emissions. To address this issue,

STIRPAT (Stochastic Impacts by Regression on Population, A✏uence, and Technol-

ogy) model has been widely employed as a theoretical framework for examining the

potential determinants of CO2 emissions.

The IPAT model considers environmental impacts resulting from three drivers: popu-

lation, a✏uence, and technology. The IPAT model could be expressed as I = P⇥A⇥T ,

where I denotes the human impact on the environment, P stands for population size,

A represents average a✏uence, and T is technological level. Taking CO2 emissions as

an example, the equation will be:

CE = POP ⇥ GDP

POP
⇥ CE

GDP

where CE stands for the total CO2 emissions level, denoted as CE; P represents the

population, denoted as POP; A stands for GDP per capita, denoted as GDP/POP; and

T is carbon intensity which is calculated by CO2 emissions per unit of GDP, denoted

as CE/GDP. The IPAT framework was subsequently improved by way of the ImPACT

model, which decomposes CO2 emissions per unit of GDP (T ) into energy consumption

per unit of GDP (C) and CO2 emissions per unit of consumption (T ) (Su et al., 2020).

However, the ImPACT and IPAT models remain extremely limited in their appli-

cation because they do not allow the influencing factors to change non-monotonically

and non-proportionally. For example, the ”Environmental Kuznets Hypothesis” points

out that the link between environmental quality and per capita income is not a lin-

ear, monotonous relationship, but rather in the form of an inverted U-shaped curve

(Grossman and Krueger, 1995). For addressing this issue, Dietz and Wa (1994) de-

veloped the IPAT identity into a stochastic form to create the STIRPAT model. This

stochastic model has been popularly applied to examine the influence of driving forces
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on environmental changes. The STIRPAT model can be written as:

Ii = a · P b

i
· Ac

i
· T d

i
· ei (3)

where a denotes the model’s constant coe�cient; b, c, and d stand for the estimated

parameters, and e stands for the error term; when the values of a, b, c, d, e are all equal

to 1, the STIRPAT model will change to the IPAT identity. After taking logarithm,

Eq.(3) can be transformed into:

ln(Ii) = ln(a) + b ln(Pi) + ln(Ai) + ln(Ti) + ln(ei)

Overall, IPAT/STIRPAT is a coordinated research program dedicated to under-

standing the dynamic coupling between human systems and the ecosystems on which

they depend. The STIRPAT model not only allows each coe�cient as a parameter to

estimate, but also allows the proper decomposition of each factor, which means new

influencing factors can be added to the STIRPAT model framework according to the

characteristics of each study.

3.3.1 Application in Selected Studies

Wu et al. (2021) extended the STIRPAT theoretical model to meet the design require-

ments regarding previous literature. The first extension was made in acknowledgement

that CO2 emissions are a↵ected by fossil energy e�ciency. Fossil energy intensity (FEI)

is an expression of e�ciency that was thus considered in their model.

Secondly, renewable energy consumption share (RES) in the energy mix is consid-

ered, as increases in the renewable energy consumption share can decrease the direct

use of fossil energy, thus decreasing CO2 emissions. Third, the model also extends to

include fossil fuel CO2 intensity (FCI), which denotes the carbon content of the fos-

sil fuel mix. Fourthly, the industrial structure (IS), expressed by the share of value

added of industry (including construction) of GDP, was also included, as a decrease in

the proportion of secondary industries signals the gradual replacement of high-energy-

consuming industries by low-carbon industries and thus a gradual reduction in carbon

emissions. In addition, this study also introduced a time trend variable (TT), which

can explain exogenous changes in CO2 emissions that are not explained by other inde-

pendent variables.

Finally, since CO2 emissions have path-dependent inertial characteristics and are

subject to continuous dynamic adjustment, the emissions may experience lagged e↵ects,

making the introduction of a dynamic model lagged term (CEit�1) necessary. Taking

all of this into account, the study proposes the following dynamic panel data model:
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ln(CEit) = ln(CEit�1) + �1 ln(POPit) + �2 ln(GDPPCit) + �3FEIit

+ �4RESit + �5ISit + �6 ln(FCIit) + TTit + µi + "i

where CEit represents the total CO2 emissions of country i in year t, where i denotes the

country and t is the year; CEit�1 denotes the lagged term of CEit (the CO2 emissions

of the following year after CEit); POP stands for the population; GDPPC is GDP per

capita; FEI represents fossil energy intensity (final energy consumption / GDP); RES

stands for the share of renewable energy use (renewable energy consumption / total final

energy); IS represents the industrial structure (the value added by industry, including

construction, within GDP); FCI represents fossil CO2 intensity (CO2 / fossil energy

consumption); TT stands for time trend variable; �1-�6 are estimated parameters; µi is

unobservable individual e↵ect; and "i is a random disturbance term.

This extended STIRPAT model provides a comprehensive framework to dissect the

intricate relationship between CO2 emissions and a range of economic, energy, and

structural factors. The inclusion of variables such as fossil energy intensity, renewable

energy consumption share, industrial structure, and lagged variables, adds refinement

and specificity to the understanding of CO2 emissions.

Generally, emissions were dissected into several contributing factors using an ex-

tended STIRPAT model. This model allowed for an estimation of their e↵ects on CO2

emissions from both historical and prospective perspectives. Following this, various

estimation methods could then be used to determine the parameters in the model.
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4 Other Estimation Methods

4.1 Feasible Generalized Least Squares

Ordinary least squares is a technique for estimating unknown parameters in a linear

regression model. OLS yields the maximum likelihood in a vector �, assuming the

parameters have equal variance and are uncorrelated, in a noise " homoscedastic:

y = X� + ", " ⇠ N(0, �2I)

where the response values are placed in a vector y = (y1, . . . , yn)>, and the predictor

values are placed in the design matrix X = (x1, . . . , xn)>, where xi = (1, xi2, . . . , xit)

is a vector of the ith individual at time t (including a constant), and the error term

" = ("1, . . . , "n)>.

Generalized least squares (GLS) proposed by Aitken (1935) allows this approach to

be generalized to give the maximum likelihood estimate � when the model assumes

the conditional variance of the error term given X is a known nonsingular covariance

matrix ⌦:

E["|X] = 0, Cov["|X] = ⌦, Cov("">) = �2⌦

Typically, this leads to the treatment that presents as follows:

y = X� + ⌘, ⌘ ⇠ N(0, �2⌦)

In an ideal situation, if we precisely know the form of the covariance matrix of the error

term, we can employ the GLS method to attain more e�cient and unbiased estimation

results (Baltagi, 2008).

⌦ =

0

B@
w11 w12 · · · w1n

...
...

. . .
...

wn1 wn2 · · · wnn

1

CA

Since ⌦ is a real symmetric matrix, it can be decomposed as ⌦ = DD>. By left

multiplying both sides of y = X� + ⌘ by D�1, we have:

D�1y = D�1X� +D�1⌘,

Y ⇤ = X⇤� + ⌘⇤

Cov(⌘⇤⌘⇤>) = E(⌘⇤⌘⇤>) = E(D�1⌘⌘>D�>)

= D�1E(⌘⌘>)D�> = D�1�2⌦D�> = �2D�1DD>D�> = �2I

where Y ⇤, X⇤ and ⌘⇤ are the transformed vectors. Therefore, the least squares method
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can be used to obtain the estimator:

�̂ =
�
X⇤>X⇤��1

X⇤>Y ⇤ =
�
X>D�>D�1X

��1

X>D�>D�1y =
�
X>⌦�1X

��1

X>⌦�1y

GLS is equivalent to applying OLS to a linearly transformed data version. The GLS

estimator is unbiased, consistent, e�cient, and asymptotically normal with E[�̂|X] = �

and Cov[�̂|X] =
�
X>⌦�1X

��1
.

However, in practical applications, we often do not know the exact form of the

covariance matrix of the error term. One can obtain a consistent estimate of ⌦, denoted

as ⌦̂, using an implementable version of GLS known as the Feasible Generalized Least

Squares (FGLS) estimator.

FGLS is a two-step process. First, it uses OLS or other methods to preliminarily

estimate the covariance structure of the error term ûj = (y �X�̂OLS)j. For simplicity,

consider the model for heteroscedastic and not-autocorrelated errors. Assume that the

variance-covariance matrix ⌦ of the error vector is diagonal, or equivalently that errors

from distinct observations are uncorrelated. Then each diagonal entry may be estimated

by the fitted residuals ûj, so ⌦̂OLS may be constructed by ⌦̂OLS = diag(�̂2

1
, �̂2

2
, . . . , �̂2

n
).

Then, estimate �̂FGLS using ⌦̂OLS:

�̂FGLS =
⇣
X>

⇣
⌦̂�1

OLS

⌘
X
⌘�1

X>
⇣
⌦̂�1

OLS

⌘
y,

along with its covariance matrix ⌃̂FGLS = �̂2

FGLS

⇣
X>

⇣
⌦̂�1

OLS

⌘
X
⌘�1

, where

�̂2

FGLS
=

y>

⌦̂�1

OLS
� ⌦̂�1

OLS
X

⇣
X>⌦̂�1

OLS
X
⌘�1

X>⌦̂�1

OLS

�
y

T � p
.

This process can be iterated. The first iteration is given by

û2

FGLS1
= Y �X�̂FGLS1,

⌦̂FGLS1 = diag(�̂2

FGLS1,1
, �̂2

FGLS1,2
, . . . , �̂2

FGLS1,n
),

�̂FGLS2 =
⇣
X>

⇣
⌦̂�1

FGLS1

⌘
X
⌘�1

X>
⇣
⌦̂�1

FGLS1

⌘
y.

This estimation can be iterated to convergence. (Greene, 2003)

In summary, FGLS is an extension or a practical improvement of the GLS method.

It allows us to employ the GLS method for more e�cient parameter estimation in

the absence of precise knowledge about the covariance structure of the error term.

However, the FGLS estimator is not always consistent. One case in which FGLS might
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be inconsistent is if there are individual specific fixed e↵ects (Hansen, 2007). This

is because the FGLS method attempts to transform the model based on an estimated

covariance matrix of the errors such that the transformed errors become uncorrelated. If

the errors are not independent and their correlation structure is unknown, the estimate

of the error covariance matrix used to perform this transformation may be incorrect,

leading to an inappropriate transformation and subsequently to biased and ine�cient

estimates.

In such cases, it is recommended to use Weighted Least Squares (WLS). WLS is a

variant of OLS that weights the observations di↵erently based on the heteroscedasticity

of the errors. Observations with a higher variance have less weight than observations

with a smaller variance (Fahrmeir et al., 2013). The basic idea is that observations with

larger variances are considered less reliable. WLS directly accounts for heteroscedastic-

ity in the model, this can make it a more robust method in certain circumstances, such

as when the errors are heteroscedastic and the fixed e↵ects are present.

4.1.1 Application in Selected Papers

Azimi and Bian (2023) examined the nexus between carbon neutral policies and CO2

emissions using the FGLS. They took a comprehensive approach in assessing the carbon

neutral policy, examining it from both source control and sink increase perspectives.

Source control refers to the process of managing and limiting the production of carbon

dioxide at its origin. Sink increase, on the other hand, pertains to the enhancement

and expansion of carbon sinks, which are systems that absorb and store carbon dioxide

from the atmosphere. The analytical model is as follows:

ln (CO2it) = ↵0 + ↵1 ln (R&Dit) + ↵2 ln (GREENit) + ↵3 ln (EEit) + ↵4 ln (REPGit)

+ ↵5 ln (GDPit) + ↵6 ln
�
GDP2

it

�
+ ↵7 ln (URBit) + "it

where the subscript it refers to the region i and the year t. Variable definitions:

CO2 : Per capita CO2 emissions

R&D : CCUS (carbon capture, utilisation, and storage) development measured by

R&D (Research and development) investment per unit of GDP

GREEN : Green space development measured by the green-covered area in cities

EE : Energy e�ciency measured by industrial output value per unit of energy

consumption
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REPG : Renewable energy power generation rate measured by the percentage

of power generation from renewable sources

GDP : Gross domestic product per capita

URB : Percentage of urban population from the total population

The carbon neutrality policy includes R&D and GREEN as a sink increase per-

spective and EE and REPG as a source control perspective. Each of these variables

represents dynamic processes that can change over time, leading to potential auto-

correlation and heteroscedasticity. FGLS used to address these issues by estimating a

feasible version of the variance-covariance matrix of the errors. To explore the long-term

relationships among the variables, the authors ran the FGLS estimators. Applying the

FGLS estimator

�̂FGLS =
⇣
XT

⇣
⌦̂�1

OLS

⌘
X
⌘�1

XT

⇣
⌦̂�1

OLS

⌘
y

Where: y = (lnCO2
>
it
)

X = (1, lnR&Dit, lnGREENit, ln EEit, lnREPGit, lnGDPit, lnGDP2

it
, lnURBit)

� = (↵0,↵1,↵2,↵3,↵4,↵5,↵6,↵7)

⌦̂OLS: Estimated covariance matrix obtained from the OLS residuals.

The result �̂FGLS is the FGLS estimate of the parameters �. The estimation results

are shown in Table 7.

Table 7: Estimation results using FGLS in China (Azimi and Bian, 2023)
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Note: R&D: Research and development investment per unit of GDP, GREEN : Green-covered
area in cities, EE : Industrial output value per unit of energy consumption, REPG : Percentage
of power generation from renewable sources, GDP : GDP per capita, GDP 2: Square of GDP
per capita, URB : Percentage of urban population from the total population

The FGLS results imply that for each 1% increase in green space development, energy

e�ciency, and renewable energy power generation, there corresponds to a respective

decrease in per capita CO2 emissions by 0.779%, 0.400%, and 0.461%. Conversely,

investment in research and development per unit of GDP, as well as a rise in the urban

population percentage, are linked to a significant increase in per capita CO2 emissions.

The positive coe�cient on GDP and the negative coe�cient on GDP squared suggest

the presence of an Environmental Kuznets Curve. This indicates a turning point of

GDP after which increases in GDP start to reduce CO2 emissions, and a reduction

e↵ect exists on CO2 as GDP continues to grow.

In general, the variables representing carbon neutrality policy significantly contribute

to reducing carbon emissions, with the exceptions being ln R&D, GDP, and URB. The

results reveal that an improvement in energy e�ciency and renewable energy power

generation decreases the per capita CO2 emissions from the source control perspective.

From the sink increase perspective, only green space development a↵ects CO2 emissions

reduction; the development of carbon capture, utilization, and storage (R&D) appears

not to have a significant e↵ect.

4.2 Generalized Method of Moments

The Generalized Method of Moments (GMM) is used for estimating statistical model

parameters. It was developed by Lars Peter Hansen and Robert Hodrick (Hansen, 1982)

as an extension of the Method of Moments.

Assume that the population distribution has an unknown mean µ and variance equal

to 1. In this case, the moment condition states that E(xi) = µ. If {xi : i = 1, 2, . . . , n}
is a distribution of independent and identically distributed samples, the sample average

x̄ = 1

n

P
n

i=1
xi is the sample analogue to the population mean E(xi). By using this

analogy principle, the method of moments (MM) estimator for E(xi) = µ is simply

given by x̄ = 1

n

P
n

i=1
xi = µ̂n.

Basically, it is to calculate the first moment, then replace it with the sample analogue

and solve the equation for the unknown parameter. The case we consider is simply that

the number of moment conditions q is equal to the number of unknown parameters p.

Assuming functionally independent moment equations, the resulting system of equa-

tions provided by the moment conditions can be solved to obtain the MM estimator.
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If q < p, there is insu�cient information, and the model is not identified. In the case

of p < q, the model is overidentified, and in most cases, it is not possible to solve the

system of equations. However, estimation can still proceed in this situation with GMM

(Hansen, 1982).

Suppose there is an observed sample {xi : i = 1, 2, . . . , T} from which we want to

estimate an unknown parameter vector ✓ 2 ⇥ ✓ Rp with true value ✓0. Let f(xi, ✓) be

a continuous and continuously di↵erentiable Rp ! Rq function of ✓, and let m(✓0) ⌘
E(f(xi, ✓0)) = 0 be a set of q moment conditions. The basic idea behind GMM is to

replace the theoretical expected value with its empirical analog, the sample average:

m̂(✓) ⌘ 1

T

P
T

t=1
f(xi, ✓0), and then minimize the norm of this expression with respect

to ✓:

km̂(✓)k2
W

= m̂(✓)>Ŵ (✓)m̂(✓),

where W is a positive-definite weighting matrix. In practice, the weighting matrix W is

calculated from the available data and will be denoted as Ŵ . Then, the GMM estimator

is given by:

✓̂ = argmin✓2⇥

⇣
1

T

P
T

t=1
f(xi, ✓0)

⌘>
Ŵ

⇣
1

T

P
T

t=1
f(xi, ✓0)

⌘

The GMM estimator exploits information from the general form of population mo-

ment conditions. When the number of moment conditions equals the number of un-

known parameters, then GMM and MM are equivalent. When q < p, the GMM

estimator is the value of ✓ closest to solving the sample moment conditions.

The GMM approach is particularly useful when dealing with models that have more

parameters than identifying equations, or when the assumptions of classical estimation

techniques such as ordinary least squares are violated. It provides a flexible frame-

work for estimating parameters by matching sample moments with their population

counterparts.

4.2.1 Application in Selected Papers

To obtain the long-run coe�cients, some investigated studies (Wang et al., 2022; Lau

et al., 2023; Khan et al., 2021) use the system-generalized method of moments (SYS-

GMM) type system dynamic panel data estimation proposed by Blundell and Bond

(1998). It is an extension of GMM technique that captures significant autoregressive

parameters and a relatively large ratio of the variance of the panel-level e↵ects to the

variance of idiosyncratic error terms.

Through the system-generalized method of moments method, Wang et al. (2022)

empirically examined the potential carbon-reduction e↵ect of China’s high-quality en-

ergy development (HED). To ensure the accuracy of the regression, several control

variables are incorporated into the model, including energy e�ciency (EE), economic
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development (GDP), urbanization (Urb), and trade openness (Tra). Natural logarithm

transformations are applied to the data to mitigate the e↵ects of data fluctuation and

heteroscedasticity. Additionally, due to the potential lagged impact of CO2 emissions,

a lagged term for CO2 emissions is incorporated into the empirical model. Thus, the

empirical model is represented as follows:

ln(CO2it) = ↵0 + ↵1 ln(CO2(i,t�1)) + ↵2 ln(HEDit) + ↵3 ln(EEit) + ↵4 ln(Urbit)

+ ↵5 ln(Trait) + ↵6 ln(GDPit) + "it (4)

where ↵1 � ↵6 are the estimated parameters. To improve the dynamic explanatory

ability of the estimation model, this study introduces the lag term of the explained

variable as the explanatory variable of the regression model. However, including a lag

term in the model leads to an endogeneity issue, because the lagged dependent variable

is also correlated with the error term.

To address the endogeneity problem, Arellano and Bond (1991) developed the ”dif-

ferential GMM method (DIF-GMM)”, which employs instrumental variables and the

corresponding moment conditions. Although the DIF-GMM method uses a lag term

to reduce the impact of endogeneity, this method may encounter a serious problem of

weak instrumental variables under limited sample conditions. Based on DIF-GMM,

SYS-GMM combines the estimation of the original level model with the di↵erence con-

version model simultaneously, e↵ectively mitigating the problem of weak instrumen-

tal variables. This robustness makes SYS-GMM particularly suitable for estimating

Eq((4)). This study also lists the results of OLS and FGLS for comparative analysis

to highlight the accuracy and e↵ectiveness of the SYS-GMM technique. The results of

the three estimation methods are shown in Table 8.

The significant coe�cient of the lagged dependent variable ln
�
CO2(i,t�1)

�
in the

model suggests that past levels of CO2 emissions have a significant impact on the

current level of emissions, validating the dynamic nature of the model. Unlike OLS

and FGLS, which are static panel data estimators and do not directly address the

lagged nature of variables, SYS-GMM dynamically accommodates such characteristics,

enhancing the model’s reliability. The Sargan test, which checks the validity of overi-

dentifying restrictions in the SYS-GMM, shows a high p-value (0.9443), indicating that

this model passes the test and the instruments used are valid.
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Table 8: Results of the impact of HED on CO2 in China (Wang et al., 2022)

Note: HED : High-Quality Energy Development, EE : Energy E�ciency, GDP : Economic
Development, Urb: Urbanization, Tra:Trade Openness. The values of t- and z-statistics are
included in parentheses of static and dynamic panel estimation, respectively.

The results of the three estimation methods show that the impacts of the variables on

CO2 emissions are basically in line with the researcher’s expectations, with an exception

being trade openness. In this regard, the negative coe�cient of trade openness under

the SYS-GMM estimation is in line with the researcher’s expectations, thereby further

illustrating the e�cacy of the SYS-GMM.

The key explanatory variable, High-Quality Energy Development, is negative at the

1% significance level. In particular, every 1% increase in the HED can reduce CO2

emissions by 0.032%, illustrating the potential of the HED strategy to promote e↵ective

carbon emission reduction in China. In addition, energy e�ciency, trade openness, and

urbanization also display a negative relationship with CO2, indicating their potential

to reduce CO2 emissions.
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4.3 Method of Moment Quantile-Regression

The Method Moments Quantile Regression (MMQR) extends the Quantile Regression

Model by considering the conditional moments of the dependent variable. This method

provides a more detailed picture of the distributional e↵ects of the explanatory variables.

The MMQR approach particularly makes it possible to capture the conditional het-

erogeneous covariance e↵ects of the influences of CO2 emissions by considering the

individual e↵ects, which a↵ect the whole distribution, rather than just shifting means

as in the other panel quantile regression approaches (Ike et al., 2020). In other words,

this method estimates conditional quantile e↵ects through known location and scale

functions, both of these estimates identified by conditional expectations of appropri-

ately defined variables (Machado and Santos Silva, 2019).

The location-scale model is a class of statistical models that postulates the relation-

ship between the cumulative distribution function of the dependent variable and the

independent variables in terms of location (i.e., mean or median) and scale (i.e., vari-

ance or standard deviation). The estimation of the conditional quantiles QY (⌧ |X) for

a model of the location-scale variant takes the following form:

Yit = ↵i +X 0
it
� + �(�i + Z 0

it
�)Uit (5)

where ↵i + X 0
it
� represents the location while �(�i + Z 0

it
�) represents the scale. The

probability, P{�(�i + Z 0
it
�) > 0} = 1, (↵, �0, �, �0) are parameters to be estimated.

(↵i, �i), i = 1, . . . , n, capture the individual i fixed e↵ects, and Zit is a k-vector of

identified components of Xit which are di↵erentiable transformations with element l

given by: Zl = Zl(X), l = 1, . . . , k.

Xit is independently and identically distributed for any fixed i and is independent

across time t. Uit is an unobserved random variable, which is independently and iden-

tically distributed across individuals i and through time t. Uit is also orthogonal to Xit

and normalized to satisfy the moment conditions:

E(Uit) = 0, E(|Uit|) = 1. (6)

E(Uit) = 0 ensures that Uit does not introduce bias to the overall model predictions.

E(|Uit|) = 1 is related to the normalization of Uit, scaling its magnitude to a standard-

ized unit across the entire dataset. In the case where �(·) is the identity function and

Z = X, Eq. (5) implies that:

QY (⌧ |Xit) = (↵i + �iq(⌧)) +X 0
it
� + Z 0

it
�q(⌧)
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where q(⌧) = F�1

U
(⌧), and thus P (U < q(⌧)) = ⌧ . QY (⌧ |Xit) indicates the quantile

distribution of the dependent variable Yit (e.g., natural logarithm of CO2 emissions)

which is conditional on the location of independent variable Xit. The scalar coe�cient

↵i(⌧) ⌘ ↵i + �iq(⌧) is indicative of the quantile-⌧ fixed e↵ect for individual i, or the

distributional e↵ect at ⌧ . The individual e↵ect does not denote an intercept shift, unlike

the usual least-squares fixed e↵ects. They are time-invariant parameters whose hetero-

geneous impacts are allowed to di↵er across the quantiles of the conditional distribution

of the endogenous variable Y .

Consider now the MMQR estimator implied by moment conditions:

E[RX] = 0,

E[R] = 0,

E[(|R|� �(� + Z 0�))D�

�
] = 0,

E[(|R|� �(� + Z 0�))D�

�
] = 0,

E[I(R  q(⌧)�(� + Z 0�))� ⌧ ] = 0,

where R = Y � (↵ + X 0�) = �(� + Z 0�)U , D�

�
= @�(�+Z

0
�)

@�
, and D�

�
= @�(�+Z

0
�)

@�
. For

this model, the moment conditions have a convenient triangular structure with respect

to the model parameters that allows the GMM estimator to be calculated sequentially

(Machado and Silva, 2019):

1. Regress (Yit � 1

T

P
t
Yit) on (Xit � 1

T

P
t
Xit) by least squares to obtain �̂;

2. Estimate ↵̂i =
1

T

P
t
(Yit �X 0

it
�̂) and obtain the residuals R̂it = Yit � ↵̂i �X 0

it
�̂;

3. Regress (|R̂it|� 1

T

P
t
|R̂it|) on (Zit � 1

T

P
t
Zit) by least squares to obtain �̂;

4. Estimate �̂i =
1

T

P
t
(|R̂it|� Z 0

it
�̂);

5. Estimate q(⌧) by q̂, the solution to minq

P
i

P
t
⇢⌧ (R̂it � (�̂i + Z 0

it
�̂)q), where

⇢⌧ (A) = (⌧ � 1)I{A  0}+ ⌧I{A > 0} is the check-function.

To summarize, the provided equations and steps outline the estimation process for

the MMQR estimator. Overall, the MMQR estimator o↵ers a framework for investi-

gating the quantile-⌧ fixed e↵ect and distributional e↵ects of the dependent variable,

given the independent variables’ locations. By considering the moment conditions and

implementing the sequential estimation steps, the model provides insights into the het-

erogeneous impacts across quantiles of the conditional distribution of the endogenous

variable Y .
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4.3.1 Application in Selected Papers

Jeon (2022) examined the linkages between energy-related CO2 emissions, economic

growth, and renewable energy consumption for the 48 U.S. states over the period 1997–

2017 by employing the MMQR with fixed e↵ects. The following dynamic panel model

is suggested:

lnCO2it = �0 + �1 ln CO2i,t�1 + �2 lnGDPit + �3 lnGDP2

it
+ �4S REit

+ �5 lnHDDit + �6 ln CDDit + �7 ln E PRICEit

+ ⇢i + "it

where the subscripts i and t denote the state and time periods, respectively. CO2it

is per capita energy-related CO2 emissions, CO2i,t�1 is the lagged dependent variable;

GDP denotes per capita real gross domestic product by state; S RE denotes share

of renewable energy in total energy consumption; HDD denotes heating degree days;

CDD denotes cooling degree days; E PRICE denotes electricity price; F PRICE denotes

primary energy price; ⇢i denotes time-invariant state-specific fixed e↵ect; "it denotes

error term.

The MMQR approach particularly makes it possible to capture the conditional het-

erogeneous covariance e↵ects of the influences of CO2 emissions by considering the in-

dividual e↵ects, which a↵ect the whole distribution. The estimation of the conditional

quantiles of CO2 emissions QCO2(⌧ |X), for a location-scale model takes the following

form:

CO2it = ↵i +X 0
it
⇢+ (�i + Z 0

it
�)Uit

where the probability P{(�i + Z 0
it
�) > 0} = 1. The parameters (↵i, �i), i = 1, . . . , 48,

capture the individual state fixed e↵ects. Xit is independently and identically dis-

tributed for any fixed state i and independent across time t. ⇢ represents a vector of

estimated parameters, which vary on di↵erent quantile ⌧ of CO2. Uit is an unobserved

random variable and independently and identically distributed across the individual

state i at time t. And Uit is statistically independent of Xit and normalized to meet

the moment conditions stated in (6).

QlnCO2it
(⌧ |Xit) = (↵i + �iq(⌧)) + ⇢1 lnGDPit + ⇢2 lnGDP2

it
+ ⇢3SREit

+ ⇢4 lnHDDit + ⇢5 ln CDDit + ⇢6 ln E PRICEit + ⇢7 ln F PRICEit + "it

whereQlnCO2it
(⌧ |Xit) represents the quantile distribution of the dependent variable CO2

(natural logarithm of energy-related CO2 emissions per capita) which is conditional

on the location of independent variable Xit. Scalar coe�cient ↵i(⌧) ⌘ ↵i + �iq(⌧)
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is the quantile-⌧ fixed e↵ect for state i, or the distributional e↵ect at ⌧ . Unlike the

usual fixed e↵ects, the distributional e↵ect indicates the heterogeneous impacts of time-

invariant characteristics, which allows capturing di↵erent e↵ects on di↵erent states of

the conditional distribution of CO2. q(⌧) indicates the ⌧ -th sample quantile which

satisfies the condition
R

1

0
q(⌧)d⌧ = 0, which implies that ↵i can be interpreted as the

average e↵ect for state i. Fig 3 shows the estimation results of MMQR with fixed

e↵ects.

Figure 3: Change in the fixed-e↵ect MMQR coe�cients across 48 U.S. states (Jeon,
2022)

Note: GDP: Per capita real gross domestic product by state, S RE: Share of renewable energy
in total energy consumption (%), HDD: A unit of measure to relate the day’s temperature to
the energy demand of heating at a residence or place of business, CDD: A unit of measure
to relate the day’s temperature to the energy demand of cooling at a residence or place
of business, E PRICE: Average electricity price, F PRICE: Average primary energy price.
Y-axes explains the coe�cients of explanatory variables (GDP, GDP 2, S RE, HDD, CDD,
E PRICE, F PRICE) and X-axes portrays the quantiles of the dependent variable (CO2). The
solid line in each panel shows the point MMQR estimation results at di↵erent CO2 quantiles;
the shaded bands depict the corresponding 95% confidence intervals.

Figure 3 presents the parameter estimates from the MMQR model, illustrating that the

impacts of GDP, renewable energy consumption, and all other explanatory variables
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on per capita energy-related CO2 emissions are heterogeneous at di↵erent quantiles.

Specifically, the e↵ect of per capita GDP is positively significant and heterogeneous for

per capita energy-related CO2 emissions across all quantiles. This result supports that

economic growth, which is often accompanied by increased energy consumption, and

thus generates CO2 emissions. The results indicate that a 1% rise in per capita GDP

stimulates per capita energy-related CO2 emissions by 8.064%–8.604%. The positive

e↵ects of increases in GDP on CO2 emissions gradually decreased from lower to higher

quantiles.

Another finding is that renewable energy consumption (S RE) has a negative e↵ect

on CO2 emissions throughout the conditional distribution, a 1% increase in the share

of renewable energy leads to a reduction in emissions by 0.515%–0.601%. This implies

that investments in renewable energy stimulate technological innovation and facilitate

access to clean technologies which contribute to emission reduction. This mitigation

e↵ect is stronger at the higher quantiles, potentially due to the fact that states with

higher energy-related CO2 are more dependent on fossil fuels than states with lower

CO2. As a result, the high-CO2 states experience a more pronounced marginal e↵ect

from renewable energy consumption on emission reduction. This pattern highlights the

critical role of renewable energy in reducing CO2 emissions, especially in the case of

high CO2.

Moreover, the results illustrate that an increase in heating degree days (HDD) tends

to generate more CO2 emissions at all quantiles, while the e↵ect of electricity price

(E PRICE) on CO2 is negative across all quantiles. These e↵ects could be attributed

to the positive correlation between residential energy consumption and hotter days, and

negative correlation between residential energy demand and electricity price. Notably,

results reveal that both heating degree days and electricity price exert a more pro-

nounced impact at the lower quantiles, implying that residential energy consumption

may account for a larger share of total energy consumption in states with lower CO2

emissions.

Furthermore, the primary energy prices (F PRICE) negatively influence on CO2

emissions. The mitigating e↵ects of energy prices are stronger at the higher quantiles.

This pattern could arise from the varying sectoral energy demands across states. In

particular, the industrial or electric power sectors may be the main drivers of energy

consumption in high-emission states, rather than the residential sector.

In general, employing the MMQR estimation technique allows researchers to produce

relatively robust results by considering the e↵ects of outliers and reducing the potential

covariates and heterogeneity.
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5 Discussion

Due to the diversity of modelling approaches and the heterogeneity of the analyzed data

and results, a meta-analysis could not be performed. Therefore, this thesis consists of

the statistical methods and their application in the selected studies. Each method has

its strengths, but the selection should be in accordance with the properties of the data

and the specific research subject.

The first thing to note is that time series data have specific characteristics that can

a↵ect the quality of the subsequent analysis. Specifically, non-stationary data often

exhibit trends over time, which could lead to spurious regression where there appears

to be a relationship between the variables that actually do not have a real causal

association. Therefore, it is essential to conduct a series of tests, such as unit root and

cointegration tests, to ensure the data are stationary and meet the preconditions for a

regression analysis. In addition, given the sequential nature of time series data, where

observations are interrelated over time, lagged terms can e↵ectively capture temporal

dynamics and dependencies. As the evolution of CO2 and its determinants over time is

crucial, lagged values of these variables are included in some models to capture dynamic

changes.

To explore the influencing factors on CO2 emissions, the selected studies used mainly

Two-Way Fixed-E↵ect model, time-varying Di↵erence-in-di↵erences model, and Panel

Quantile Regression model with fixed e↵ects to perform the empirical analysis. The

common feature of these three models is that they all provide better control for un-

observable heterogeneity and allow for more precise inferences about the relationships

between dependent and explanatory variables by exploiting the temporal and cross-

sectional dimensions of panel data.

The 2FE model can eliminate the e↵ects of cross-sectional and time-series hetero-

geneity by simultaneously controlling for individual and temporal fixed e↵ects for each

observation. After adding the control variables that may have influences, the 2FE model

can further guarantee the accuracy and consistency of the independent variable coe�-

cients in the panel data. However, Imai and kim (2020) show that the 2FE’s ability to

adjust for the two types of unobserved confounders simultaneously hinges upon the as-

sumption of linear additive e↵ects, this means that it cannot adjust for unit-specific and

time-specific unobserved confounders nonparametrically unless certain functional-form

assumptions are made.

Additionally, the 2FE estimator assumes that the unobserved confounding factors

are uncorrelated with the treatment variable. If this assumption is violated, the 2FE

estimator may produce biased estimates of the treatment e↵ect. For instance, in a study

by Jing et al. (2022), if the relationship between AI development and carbon emissions
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is non-linear or interactive with time-varying unobserved confounding factors, the 2FE

estimator may not fully capture these e↵ects.

Compared to 2FE, the time-varying DID method provides a more flexible way to

control for time-invariant unobserved factors. It can better explain treatment e↵ects and

is well-suited for policy evaluation and treatment e↵ects estimation. Unlike common

influencing factors, the implementation of public policies is nonrandom. Thus, direct

comparison of changes in the mean value of outcome variables before and after the

implementation of policies will lead to estimation errors.

By introducing the DID method, researchers are able to better address the issue

of treatment timing variation across multiple time periods and units, and can achieve

more accurate estimates under the assumption of conditional parallel trends. The

assumption of parallel trends requires that CO2 emissions in the treatment and control

groups follow similar trends before the policy intervention. While the DID method

excellently handles time-invariant unobserved factors and treatment timing variation,

the presence of heteroskedasticity and endogeneity can still bias the results.

FGLS estimator can be used in the presence of heteroskedasticity or autocorrelation

(Greene, 2003) and provides e�cient parameter estimates under certain assumptions

about error structures. FGLS estimates the structure of the error term in advance,

and then conducts GLS estimation based on this predicted structure. Therefore, in

circumstances where the panel data presents both fixed e↵ects and a complex error

structure, the 2FE model and FGLS can be jointly applied. The 2FE model can first be

used to eliminate unobservable entity and time e↵ects that might a↵ect CO2 emissions,

after which the FGLS can be employed for e�cient parameter estimation.

However, FGLS technique also has some challenges. First, the estimation process

requires iterations and complex calculations. Second, it requires a consistent estimate of

the error covariance matrix of the model. Under FGLS, we assume a specific structure

of the error term covariance matrix, and use that structure to transform our model in

order to apply the OLS method, when fixed e↵ects are present, these assumptions might

be violated due to the individual-specific e↵ect on the error term. This means that the

FGLS may give misleading results if we have wrong assumptions about the structure

of the errors. Considering this issue, GMM, with their ability to handle complex error

structures and endogeneity problems, may be preferable.

The basic idea of GMM is to estimate model parameters by minimizing the deviation

of the moment conditions of the model. GMM, unlike OLS, FE and RE estimation, do

not require distributional assumptions, like normality, and can allow for heteroscedas-

ticity of unknown form (Greene, 2003). SYS-GMM estimation is an extension of GMM

technique for solving specific problems in panel data analysis. It utilizes a two-step esti-

mator that can correct standard errors, enabling more robust inference in the presence
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of weak instruments (Blundell and Bond, 1998). In SYS-GMM, fixed e↵ects are dif-

ferenced out so that the possible e↵ects of invariant individual characteristics (such as

the geographical location or culture of a particular country) on the dependent variable

can be eliminated. The GMM dynamic models can be one-step system GMM mod-

els and two-step GMM models with one lag or two lags. The two-step system GMM

models employ residuals of the first-step estimation to estimate the variance–covariance

matrix when there is no assumption for independency and homoscedasticity of error

terms (Salari and Javid, 2016). Thus, SYS-GMM uses the lagged levels of the variables

as instruments for their first di↵erences, which helps to tackle the endogeneity arising

from the inclusion of lagged terms (Roodman, 2009).

SYS-GMM also addresses the possible weak instrumental variables issue. An in-

strumental variable is considered weak when it lacks su�cient correlation with the

endogenous regressors it is supposed to serve as an instrument for. Consider a study

investigating the impact of GDP per capita on CO2 emission, an instrumental variable

in this case could be trade openness (the sum of exports and imports as a share of

GDP). The idea is that trade openness might a↵ect GDP per capita, as nations that

trade more may be wealthier due to higher levels of economic activity. The assumption

here is that trade openness would not directly a↵ect CO2 emissions, except through its

impact on GDP per capita. However, if the relationship between trade openness and

GDP per capita is weak, maybe because other factors like technological advancements

or government policies have a much stronger impact on GDP, then trade openness

would be a weak instrument in this context. In such cases, it would be di�cult to

e↵ectively estimate the causal impact of GDP per capita on CO2 emissions using just a

standard instrumental variable approach. Then we have a situation where the instru-

mental variable is weak. Techniques such as the SYS-GMM, which is more robust to

weak instruments, might then be more appropriate for estimating this relationship.

System GMM has an advantage in situations where there is a strong autocorrelation

in the variables or when the time series is relatively short and the cross-section is large,

because SYS-GMM utilizes both lagged di↵erences and lagged levels of the variables

as instruments, thereby increasing the number of available instruments. Thereby, SYS-

GMM allows for more instruments and can dramatically improve e�ciency (Roodman

2009). However, SYS-GMM ignores cross-sectional dependence and assumes that the

panel members have homogenous slope coe�cients. For instance, if each studied country

has specific characteristics not captured in the model that a↵ect CO2 emissions, such as

di↵erences in policies or economic development, these di↵erences can introduce bias into

the estimations. This limitation is especially pertinent given the diverse developmental

stages of the regions within the panel. To address this limitation, a panel quantile

regression technique was employed to examine the distributional and heterogeneous
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e↵ect across quantiles (Sarkodie and Strezov, 2019).

Panel Quantile Regression (PQR) approaches are typically employed when influ-

encing factors exhibit di↵erent e↵ects based on the conditional distribution of CO2

emissions. PQR techniques can provide reliable estimates in the presence of outliers,

and is the most suitable technique in cases where there is little or no relationship

between two variables’ conditional means (Binder and Coad, 2011). Moreover, the

Method of Moments Quantile Regression (MMQR) estimates the quantile regression

model by moments, this involves specifying moment conditions that capture the rela-

tionship between the exogenous variables (like policies or socio-economic factors) and

the quantiles of interest. By considering these di↵erent moments, MMQR captures

more details about the error structure, including asymmetry and heavy tails, and can

handle more complex error structures because it does not assume a specific distribution

of errors and can flexibly model various distributions by matching the moments.

The advantage of MMQR is that it allows the use of methods that are only valid

in the estimation of conditional means, while still providing information on how the

regressors a↵ect the entire conditional distribution (Machado and Santos Silva, 2019).

By estimating the model with fixed e↵ects, the MMQR allows for the identification

of the latent e↵ects of the exogenous variables across the conditional distribution of

CO2 emissions. The application of MMQR makes it possible to identify the conditional

heterogeneous covariance e↵ects of the determinants of CO2 emissions by allowing the

individual e↵ects to a↵ect the entire distribution. However, when the number of indi-

viduals greatly exceeds the length of the study period, the accuracy of the estimates

derived from MMQR can decrease dramatically (Machado and Santos Silva, 2019).

The array of statistical methods investigated in this thesis provide a diverse perspec-

tives on the complex interplay between various influencing factors and CO2 emissions.

The selection of methodods should be guided by the quality and quantity of available

data, and the plausibility of the underlying assumptions in the specific research context.

It is also crucial to carefully consider the limitations of each method, and robustness

checks should be conducted to ensure the validity of the results.

Considering the results, the magnitude and direction of the relationships between

the influencing factors and CO2 emissions appear to vary depending on the regions,

the period studied, and the specific method employed. This requires a careful and

context-specific interpretation of the results.
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6 Summary and Prospects

This thesis has reviewed 30 selected articles that applied diverse statistical models

to unravel the complex influencing factors of CO2 emissions. These studies spanned

across di↵erent countries and regions, each presenting its unique perspective based on

the selected variables, methods, and periods analyzed.

Through the systematic review and content analysis, the research focus predomi-

nantly lies in exploring socio-economic, energy-related, and policy-related factors as

critical determinants of CO2 emissions. Socio-economic factors, such as urbanization,

population growth, per capita GDP, and financial development, can either exacerbate

or mitigate CO2 emissions depending on the specific context. Energy consumption and

the source of energy significantly influence CO2 emissions. Despite variations across

individual studies, the investigated studies generally identified that the use of renew-

able energy and the transition from fossil fuels can substantially reduce these emissions.

Innovations such as AI and industrial robots can also help mitigate emissions by op-

timizing the industrial structure. Moreover, the impact of these factors can also be

influenced by the region’s specific circumstances and policies. Implementations of spe-

cific policies like low-carbon city pilot policy and smart city pilot policy can e↵ectively

reduce emissions by enhancing environmental regulations and promoting green technol-

ogy innovation.

Moreover, a number of statistical methods were identified in investigating the deter-

minants of CO2 emissions. In the main part of this thesis, the theoretical foundations

of the statistical methods used in the reviewed literature are illustrated, explaining how

these methods were applied in the respective studies.

First, a series of time series tests were conducted to understand the characteristics

of the panel data. Following this, various regression models are constructed, enabling

the use of diverse estimation methods for parameter estimation. The varied modelling

approaches encountered in this thesis indicate the flexibility and multiplicity of tools

available to researchers in this domain. Then, the results derived from these methods

are presented. Through this process, a comprehensive understanding of the factors

that influence CO2 emissions was carried out. The determination of the nexus among

parameters quantifying the factors above is crucial to provide guidelines for policymak-

ers to formulate e↵ective policies concerning, e.g., the reduction of greenhouse gases

emissions and the energy sources diversification to diminish the dependence on non-

renewable sources (Balsamo et al., 2023).

In terms of future developments, the growth of data science stimulated by intelli-

gent systems, enhances the capability to solve complex problems and enables accurate

predictions. As such, these advancements aid in the automation of analytical model
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construction, the identification of patterns, and data-driven decision making with min-

imal human intervention. These approaches are best suited to cases in which there are

nonlinear relationships between the target and response variables. This underscores the

potential of these methods in not only understanding the intricate, nonlinear relation-

ships between CO2 emissions and their key drivers like GDP and energy consumption,

but also in outperforming conventional approaches in accuracy.

Several Artificial Intelligence and Machine learning techniques such as artificial neu-

ral networks, genetic algorithms and decision trees were identified as being instrumental

in predicting and optimizing CO2 emissions in various aspects of construction. Mardani

et al. (2020) demonstrated the superiority of artificial neural network (ANN) in a study

carried out for G20 countries’ CO2 emissions. The combined method of neuro-fuzzy

inference system and ANN techniques showed highly accurate estimation compared to

multiple-linear regression for estimating CO2 emissions based on energy consumption

and economic growth, with average absolute error values of 0.065 and 0.522, respec-

tively.

With the innovation of approaches and the expansion of computational capabilities,

there is great potential for the development and application of more advanced and pre-

cise models in the future. This will contribute to providing robust, data-driven insights

to address the complex factors influencing CO2 emissions. The incorporation of these

analytical tools into fields such as the devise e↵ective strategies for reducing CO2 emis-

sions and tackling climate change, holds significant potential for notable advancements

in both academic research and practical applications.
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