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Abstract

Knowing the missing mechanisms, called MCAR, MAR and MNAR, in a given dataset

is central to handling missing data, minimizing biases that can arise due to missingness

and also adapt the imputation method. To detect these mechanisms a graphical repre-

sentation of these will be first theoretically introduced and tested later on in a simulation

study. It will be shown that graphical models provide a good tool for comprehending, en-

coding, and communicating assumptions about the missingness process. To improve the

traditional graphical models which assume the data to be fully observed an alternative

algorithm, named mvpc-algorithm will be introduced, based on the theory of Mohan et.

al. (19)(29) and tested. The results proved also in practice that the algorithm works bet-

ter than the traditional pc-algorithm. Nevertheless also the traditional approach yielded

satisfying results and has the big advantage that it is easy to use. Based on the detection

of the missingness mechanisms, the imputation should be adapted for MNAR variables

and validated afterwards. Whereas for MCAR/MAR variables multiple imputation with

Amelia, which is an expectation-maximization with bootstrapping algorithm that works

faster and easier but at the same time provides equally good results as various Markov

chain Monte Carlo approaches, was used. For the MNAR variables a weighted knn impu-

tation was carried out. The results in the simulation study showed that, although MNAR

imputations are biased when using traditional multiple imputation methods which include

model assumptions that are violated through this missing mechanism, the imputations

are quite similar to those of the MCAR/MAR variables when using Amelia. On the other

side the imputations suffered from changing the method to the weighted knn imputation.

Even if this algorithm should provide in theory better results it can not be recommended

to use as an alternative to Amelia based on the results of this simulation study.
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1 Introduction

There are many possibilities to analyse a dataset. Starting with an innumerable number of

exploratory data analysis tools as plotting kernel density estimations and box plots or calculat-

ing standard deviations and quantiles and moving on with an even larger amount of modelling

techniques as fitting a linear regression or training a neural model. All these procedures have

something in common: They take the available data and try to make conclusions from that

for a larger population. Thereby it is often forgotten that not only available data is containing

important information about the population but also the data which is not available, hence

missing. Ignoring this fact might lead to false interpretations.

Is it enough to analyse the available data from an questionnaire to detect if the problem of

obesity is increasing in our community? If we assume that every missing answer to the ques-

tion about your weight is due to overlooking this question the answer would be yes, assuming

that the available amount of data is still large enough to calculate reliable averages. If we

assume on the other hand that younger persons feel in general more uncomfortable to answer

questions about their weight the answer would be no since we are averaging then only over

the weights of older persons and missing these of the younger ones. If we assume that people

with obesity feel bad about their weight and therefore reject to answer this question about

their weight we should answer our question again with no.

This is only one of many examples why it is important to analyse not only the available data

but also the missing data. But how should we analyse something if this something is missing?

Answering this satisfactorily is difficult. There are different approaches which cover different

parts of the question. Splitting this general question into smaller questions is a first step to

dive into the topic of missing values.

As you may have noticed in the provided example there are three different types of missing-

ness, namely missing completely at random (MCAR), missing at random (MAR) and missing

not at random (MNAR). Understanding at the beginning of a data analysis which type of

missingness is present in the different variables is already a challenge and will be the first part

of this work. This information is not only relevant for detecting patterns in the population

which can be used to improve e.g the general well-being in a community, but also to adjust

imputation methods. This will be the second part of this work. Mohan et. al. propose to

use graphical models to detect the different missing data mechanisms (19) (29). Further they

also provide a new graphical model algorithm which considers missing values since traditional

graphical models work only with fully observed observations. Whereas they concentrated

themselves on proofing that their algorithm works in theory, this work is primarily interested

in testing the algorithm in practice which is why a simulation study stands at the core of this

work following the necessary theory.
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After having classified the missing value types with graphical models the information is used

to adapt imputation. Imputation in general is one of the most relevant topics when working

with missing data. It is not only useful and even necessary if a lot of data is missing and

nearly no statistical model can be fitted or at least cannot be fitted satisfiable due to too

few observations but it is also important to recover relations between variables which might

got lost when using only the list wise deleted data. Most imputation models assume the

missing data mechanism to be MCAR or MAR but not MNAR. For the MNAR mechanism

imputation is at least in theory very difficult due to this. Using just the traditional impu-

tation methods will yield biased results in theory which is why it seems important to find

an unbiased imputation method also for MNAR. There exist already some approaches but

most of them assume that we have further knowledge about the missingness process which

is often unrealistic. In this work we will use the knn algorithm which is an non parametric

procedure without restrictive model assumptions to impute the MNAR variables to examine

if the imputation will be indeed better than using traditional imputation methods as Amelia.

In the simulation study we will compare the results between the complete case analysis, the

knn imputation and the multiple imputation method done with Amelia.

Before we start with the presentation of the simulation study, the work will introduce you

the topic of missing data in more detail and the theoretical background of multiple imputa-

tion with Amelia and graphical models with and without incorporating the ideas of Mohan

et. al.. The simulation study was done in R, the related code can be found on https:

//github.com/Eleftheria1/Classifying-missing-values-with-graphical-models.
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2 Missing Data

Respondents declining to answer certain questions in a questionnaire, subjects dropping out

of panels, technical problems with measuring instruments and much more are scenarios which

will be well-known to scientists handling data especially in social or medical science. Datasets

received in one of these scenarios are subject to nonresponse, which means that not all in-

formation of interest has been observed, and are called missing datasets. Many statistical

methods e.g. linear regression models, however, assume the absence of missing data and

software packages often simply remove the observations with missing entries automatically if

the researcher ignores the problem of having missing data. This is called listwise deletion or

complete case analysis and is one way to handle missing data. But obviously this can yield

several problems as for example removing nearly all observations of the dataset if the missing

quote is very high and not having enough data points to fit the model anymore. Other ad-hoc

solutions to deal with this problem are the pairwise deletion method, also called available

case analysis or mean imputation where every missing data point is replaced by the mean.

Using the latter one resolves the problem of loosing many observations during the analysis

but generates heavy biases such as underestimating the variance and disturbing the relations

between variables which is why it should not be used either. A widely used method which

performs under certain assumptions far better than those mentioned is multiple imputation.

The basic idea is to generate m plausible values for each missing value to generate m com-

pleted datasets. These m datasets are then analysed as being completely observed datasets

and the m results are combined according to Rubin’s rules 2.2. Using this or other methods

to deal with the problem of missing data means that assumptions are to be made about the

process leading to nonresponse as for example what kind of missingness is present. Detecting

this is very difficult and will be one of the main topics of this work. Mohan et al. proposed to

estimate missingness graphs 3.1 to support the assumption a researcher may have in advance,

we will see later if this procedure works also in practice(19). (30) (12) (17) (10)

2.1 Types of missing values

As mentioned before we have to make assumptions about the kind of missingness we have at

hand to be able to choose the correct method for imputation and receive unbiased results. For

that we will introduce the three types of missingness defined by Rubin. To do that we have to

start with some notation. Let Y denote the (n × p) matrix containing the observations on p

variables for all n units in the sample. The missigness indicator R is defined as an (n × p) 0−1

matrix. The elements of Y and R are denoted by yij and rij , where i = 1, ..., n and j = 1, ..., p.

If yij is observed, then rij = 0, else rij = 1. Yobs is the observed data and Ymis the missing

data. Hence the hypothetically complete data is Y = (Yobs, Ymis). We are mainly interested in
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the distribution of R which may depend on Y . This relation is modelled by the missing data

model of which ψ is the parameter. This yields the general expression P (R = 1|Yobs, Ymis, ψ).

The data are said to be MCAR if P (R = 1|Yobs, Ymis, ψ) = P (R = 1|ψ). That means the

probability of being missing depends only on some parameters ψ. Furthermore we call the data

MAR if P (R = 1|Yobs, Ymis, ψ) = P (R = 1|Yobs, ψ), so the probability of being missing may

depend on observed information. Finally the data are MNAR if P (R = 1|Yobs, Ymis, ψ). In this

case the missing probability also depends on unobserved information. Multiple imputation

can handle MAR and MCAR but not MNAR which is why it is important to be able to

classify this three types of missing data. The ψ parameters on the other side are generally

unknown and it would simplify the analysis if we could ignore them. We are allowed to do

this if it is possible to determine the parameters θ for the full data Y which are of scientific

interest without knowing ψ. The joint density function f(Yobs, R|θ, ψ) is proportional to the

likelihood of θ and ψ, i.e., l(θ, ψ|Yobs, R) ∝ f(Yobs, R|θ, ψ). Little and Rubin proved that we

are able to determine θ and hence ignore the missing data mechanism for likelihood inference

if the missing data are missing at random and if the parameters θ and ψ are distinct. For

us the more important condition is the MAR requirement. Note that ignorable in that sense

does not mean that we can ignore the fact that we have missing data at hand. We have

to condition on those factors that influence the missing data rate for valid inference but the

distribution of the data Y is the same in the response and nonresponse groups. It follows that

we can model the posterior distribution P (Y |Yobs, R = 0) from the observed data and use this

model to create imputations. On the other hand we should include R itself in the imputation

model if the missingness is not ignorable since then P (Y |Yobs, R = 0) ̸= P (Y |Yobs, R = 1)

holds. Since there is no information to estimate any regression weight for R because the

corresponding data is missing, one needs assumptions external to the data to be able to

specify P (Y |Yobs, R = 1). This assumptions must be made with some prior knowledge of the

scientist. If no such knowledge exist it is nearly impossible to get unbiased imputations. (30)

(12) (17) (10)
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2.2 Multiple Imputation

In this chapter we will assume that our data is MCAR or MAR. In the next chapter 3.1 we

will then see how someone can conclude this from a missingness graph.

The main goal of multiple imputation is to find an estimate Q̂ for a quantity of scientific

interest Q that is unbiased and confidence valid. Q can be expressed as a known function

of the population data as we do for example when calculating regression coefficients and can

only be received if the entire population is observed which means that no missing values are

allowed to occur. This in turn is a very unrealistic scenario as we have discussed before and

justifies the need of an unbiased and confidence valid estimate Q̂. While the definition of

unbiasedness should be known (E(Q̂|Y ) = Q), the definition of confidence validity has to be

explained more in detail.

We call an estimate confidence valid if the average of the estimated variance-covariance matrix

of Q̂, denoted as U over all possible samples is equal or larger than the variance of Q̂ which

is caused by the sampling process. This yields the following formula:

E(U |Y ) ≥ V (Q̂|Y )

Based on that a procedure is said to be confidence valid if it holds that a statistical test with

significance level α should reject the null hypothesis in at most α% of the cases when in fact

the null hypothesis is true.

When drawing imputations for Ymis, denoted as Ẏmis one uses P (Ymis|Yobs). After that

P (Q|Yobs, Ẏmis) can be used to calculate the quantity of interest Q from the imputed data

(Yobs, Ymis). Then we repeat this two steps with new imputed data. These are substeps for

deriving the actual posterior distribution P (Q|Yobs) of Q

P (Q|Yobs) =
∫
P (Q|Yobs, Ymis) · P (Ymis|Yobs)dYmis

which we are interested in. We can see that it is equal to the average over the repeated draws

of Q. Using this it can be shown that the posterior mean of P (Q|Yobs) is equal to

E(Q|Yobs) = E(E(Q|Yobs, Ymis)|Yobs)

which is the average of the posterior means of Q over the repeatedly imputed data. From this

follows the suggestion for combining the results of repeated imputations:

Q̄ =
1

m

m∑
l=1

Q̂l

5



where Q̂l is the estimate of the lth repeated imputation and m the number of imputations.

The posterior variance of P (Q|Yobs) is the sum of the within-variance and the between-

variance:

V (Q|Yobs) = E(V (Q|Yobs, Ymis)|Yobs) + V (E(Q|Yobs, Ymis)|Yobs)

The within-variance is the average of the repeated complete-data posterior variances of Q.

The between-variance is the variance between the complete-data posterior means of Q.

If we assume an infinitely large number of imputations, then the posterior variance of Q is

T∞ = Ū∞ +B∞ where Ū∞ is the estimated within and B∞ the estimated between variance.

Taking now the fact into account that usually we do not have infinity many imputations we

have to adjust the calculation of T and its single components. The complete data variances

are calculated now as

Ū =
1

m

m∑
l=1

Ūl

where Ūl is the variance-covariance matrix of Q̂l On the other hand the standard unbiased

estimate of the variance between the m complete data estimates is given by

B =
1

1−m

m∑
l=1

(Q̂l − Q̄) · (Q̂l − Q̄)T

Note that when we want to compute now the total variance T we have to consider the fact

that Q̄ itself is estimated using finite m and thus only approximates Q̄∞. Rubin shows

that the contribution to the variance of this factor is systematic and equal to B∞
m . Since B

approximates B∞, this yields

T = Ū +B +
B

m

Vividly this means that Ū stands for the variance caused by the fact that we are taking a

sample rather than observing the entire population, B for the extra variance caused by the

fact that there are missing values in the sample and B
m for the extra simulation variance

caused by the fact that Q̄ itself is estimated for finite m. Note that the last term ensures that

confidence intervals are not too short but it also shows that the traditional choice of m = 5

may be to low and hence the effect of simulation error on the total variance to high, which is

why it is recommended to use a higher m.

We call the procedure to combine the repeated imputation results Rubin’s Rules.

After having created a theoretical foundation of how the estimate Q̂ should be correctly

calculated, we can have a closer look at the main steps in multiple imputation. For that we use

the scheme in figure 1 which can be found also in (30). As you can see combining the results of

the imputation with Rubin’s Rules belongs to the last part of the scheme, called also pooling.

But let’s start from the beginning. In the first step we start with the observed data and
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think about what multiple imputation method may be the best for our application. The mice

package for example generates multivariate imputations by Chained Equations. It is a Markov

chain Monte Carlo method, where the state space is the collection of all imputed values. This

method is based on Fully Conditional Specification, where each incomplete variable is imputed

by a separate model. When choosing this method one has to decide for each variable which

predictor variables with potential interactions should be included in the imputation model.

That means that it is advantageous to know which variables are independent and which not.

Of course one could use always all variables for the imputation but that may disturb the

model. Note also that in case of an independent variable one cannot do proper imputation.

Another technique to multiple impute data is done in the Amelia II package. Here a novel

bootstrapping approach, the EMB (expectation-maximization with bootstrapping) algorithm

is used. The advantage of Amelia is that ” it combines the comparative speed and ease-of-use

of the algorithm with the power of multiple imputation, to let you focus on your substantive

research questions rather than spending time developing complex application-specific models

for nonresponse in each new dataset ” (12). This is also the reason why we will use this

algorithm in the simulation study. We will dive deeper in the theory of this algorithm soon.

Nevertheless this procedure has also a significant disadvantage which should be mentioned.

The algorithm assumes that the complete data, thus observed and unobserved data, follow

a multivariate normal distribution. Of course one can use different transformations to force

the given data to fit better in a normal distribution but we will see later that this does not

improve the algorithm a lot. Though it has already been shown that the model works also

quite well for mixed or categorical data, which is why we will use it despite this assumption

violation.

Figure 1: Scheme of main steps in multiple imputation

After having decided which imputation method to use one creates several complete versions
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of the data by replacing the missing values by plausible data values. These plausible values

are drawn from a distribution specifically modelled for each missing entry by using the chosen

imputation method. In the figure you can see three imputed datasets. In our simulation study

we will use five. The three imputed datasets are identical for the observed data entries, but

differ in the imputed values. The magnitude of these difference reflects our uncertainty about

what value to impute.

Next we estimate the parameters of interest e.g. regression coefficients from each imputed

dataset exactly the same as we would do it when having complete data. Of course the results

of the different imputations will differ since we have different entries for the missing data

points. These differences are caused only because of the uncertainty about what value to

impute. This yields us the problem of deciding which value to keep of these m imputations.

This is done in the last step where we pool our results as discussed before. (30) (12) (17)

2.2.1 Multiple Imputation with Amelia II

Amelia II implements a new expectation-maximization with bootstrapping algorithm that

works faster and is easier to use, than various Markov chain Monte Carlo approaches, but

gives at the same time essentially the same answers. The algorithm uses the EM (expectation-

maximization) algorithm on multiple bootstrapped samples of the original incomplete data to

draw values of the complete-data parameters. After that the algorithm draws imputed values

from each set of boostrapped parameters, replacing the missing values with these draws. We

will have a deeper look at the EM algorithm in chapter 2.2.1. The package also improves

imputation models by allowing expert knowledge to incorporate Bayesian priors on individual

cell values. We will not make use of this since we assume in our simulation that we do not have

any further knowledge about the data but it is still worth mentioning it. Another advantage

of this package is that compared to other packages it virtually never crashes.

As always there is also a dark side, at least in theory. The imputation model assumes namely

that the complete (n x k) data D which is composed of the observed data Dobs and the

unobserved missing data Dmis follows a multivariate normal distribution with mean µ and

covariance matrix Σ.

D ∼ Nk(µ,Σ)

Even if this is a strong restriction in theory in practice there is evidence that the model works

also for mixed and categorical data. Moreover one can transform the data in many different

ways such that it makes the normality assumption more plausible, some of this transformations

as square root transformation are also incorporated in the package and will be used later on

in the simulation study.

Another disadvantage is that as in nearly every multiple imputation method the algorithm
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assumes the data to be MAR or MCAR but not MNAR. This is also the reason why we will

discuss knn-imputation in the next section 2.2.2 to account also for MNAR missingness.

The algorithm itself wants to take draws from the following posterior

p(θ|Dobs) ∝ p(Dobs|θ) =
∫
p(D|θ)dDmis (1)

by using the classic EM algorithm and additionally bootstrap the data for each draw to

simulate estimation uncertainty before applying the EM algorithm to find the mode of the

posterior for the bootstrapped data.

The posterior itself is obtained by taking first into account that our observed data is not only

Dobs but also the missigness matrix M which gives us information about which entries are

missing and which not. Therefore the likelihood of the observed data is p(Dobs,M |θ) and can

be written, if we assume that the data at hand is MAR, as

p(Dobs,M |θ) = p(M |Dobs) · p(Dobs|θ)

where θ = (µ,Σ) are the complete-data parameters we are interested in. Since p(M |Dobs)

does not depend on the complete data parameters, which we are looking for we can rewrite

the likelihood as

L(θ|Dobs) ∝ p(Dobs|θ).

When using the law of iterated expectation this yields

p(Dobs|θ) =
∫
p(D|θ)dDmis.

Using this likelihood and a flat prior on θ we obtain the posterior in equation 1 and the EM

algorithm can be applied on bootstrapped data to find the mode of it. (12)

Addendum: Expectation Maximization algorithm

The expectation maximization algorithm in general enables parameter estimation in proba-

bilistic models with incomplete data. It alternates between guessing a probability distribution

over completions of missing data given the current model (E-step) and then reestimating the

model parameters using these completions (M-step). Chuong B Do and Serafim Batzoglou

have generated a helpful figure in their paper What is the expectation maximization algorithm?

(5), which we will use to understand how the algorithm works.
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Figure 2: Scheme of EM algorithm (5)

As you can see we start with a coin flipping experiment in which a pair of coins A and B of

unknown biases are given. θA and θB represent the probability of A landing on head and B

landing on head, respectively. Consequentially 1− θA describes the probability of A landing

on the tail. The goal is to estimate these probabilities θ by randomly choosing one of the

two coins and performing ten independent coin tosses with the selected coin and afterwards

repeating this procedure five times. Note that the probability of choosing one of the two coins

should be equal. Parameter estimation in this setting is known as the complete data case

because we know the values of all variables and can be done e.g. with maximum likelihood

estimation, which yields the estimated parameter

θ̂A =
Number of heads using coin A

Total number of flips using coin A

if we consider that our likelihood is p(x, z, θ), where x = (x1, ..., x5) and respectively xi ∈

{0, 1..., 10} is the number of heads observed during the ith set of tosses and z = (z1, ..., z5)

and analogously zi ∈ {A,B} is the identity of the coin used during the ith set of tosses. Since

in this scenario all observations are known to us the objective function, namely the likelihood

has a single global maximum which is easily computable as we can see.

Now we assume that we do not know the identities z of the coins used for each set of tosses

but we can observe recorded head counts x. The resulting incomplete data likelihood p(x, θ)
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has now multiple local maxima and no closed form solution. Hence computing proportions of

heads for each coin is no longer possible, since the coin used for each set of tosses is unknown.

The EM algorithm solves this problem by splitting the optimization problem in a sequence

of simpler optimization problems, whose objective functions have unique global maxima that

can often be computed in closed form.

According to this we can reduce parameter estimation for this case with missing data to

maximum likelihood estimation with complete data if we are able to guess correctly which

coin was used in each of the five sets. To do that we use a iterative procedure that looks as

follows. We start with some initial parameters θ(0) = (θ
(0)
A , θ

(0)
B ), θ(t) = (θ

(t)
A , θ

(t)
B ) determine

for each of the five sets whether coin A or coin B was more plausible to have generated the

observed flips by using the current parameter estimates. Then, assume these guessed coin

assignments to be correct and apply the regular maximum likelihood estimation procedure

to get θ(t+1) like visualised in step three of the figure 2. These steps are then repeated until

the algorithm converges, i.e. the estimates do not change anymore and the local maximum is

reached (step four 2). This procedure can be improved by not choosing just the single best

assignment but by computing probabilities for each possible assignment of the missing data,

using the current parameters to include uncertainty (see step two of the figure 2). This yields a

weighted training set consisting of all possible assignments of the data and their probabilities.

With that training set a modified version of maximum likelihood estimation can be applied

and used to obtain new parameter estimates θ(t+1). (5)
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After applying the EM algorithm on the different bootstrapped datasets as visualised also

in figure 3, we have draws of the posterior of the complete-data parameters and can create

imputations by drawing values of Dmis from its distribution conditional on Dobs and the draws

of θ. (12)

Next we have to analyse each imputed dataset and combine the results according to Rubin’s

Rules 2.2.

Figure 3: Scheme of Honaker’s, King’s and Blackwell’ approach to multiple imputation with
the EMB algorithm in their paper Amelia II: A Program for Missing Data (12)
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2.2.2 Weighted knn Imputation

We have discussed already that most imputation methods assure asymptotically unbiased

results only in the MCAR and MAR scenario and are biased for MNAR data. A widely dis-

cussed method for improving imputation for MNAR variables is to include auxiliary variables

that have an relationship with the missing variable in the imputation model (20). Similarly

to that there exist also the idea of imputation stacking (2) which uses assumptions about the

not-at-random missingness to calculate weights as a function of the imputed data and these

assumptions. Afterwards one tries to correct the multiple imputation by a weighted analy-

sis. These two approaches have something in common, namely the assumption that we have

knowledge about the missingness process. If we will look at the missingness graphs 3.4 we will

see that we have used them to find out which missingness type is present. This means that

we assume we have no further knowledge about the missingness process and this yields not

being able to use these methods as they require further information about the data. Another

procedure which could be used is the not-at-random fully conditional specification (NARFCS)

procedure (28). The underlying idea is to perform a sensitivity analysis to departures from

MAR. This is performed by defining a single MNAR model with one of more unidentified

parameters, known as sensitivity parameters, allowing the distribution on specific variables

to vary between missing and observed data points. This would indeed yield good results if

this sensitivity parameters are specified correctly which is not straightforward since also here

expert knowledge is required and/ or a tipping point analysis which may or may not include

the true parameters. Thus we need another procedure to handle MNAR data.

Another idea is to look at the abilities of neural networks, since deep learning seems to be the

answer for nearly everything in the last years. Yoon, Jordon and van der Schaar (33) have

proposed to use Generative Adversarial Nets to impute missing data and have showed that

you can obtain indeed good imputations with this procedure. However Lalande and Doya

have published in their paper Numerical Data Imputation: Choose kNN over Deep Learning

(18) some results that speak for using knn instead of neural networks, since in their simulation

study the results where quit similar, sometimes even better, and knn is far less complicated

than neural networks and easier to interpret. Also Petrazzini et al. (24) showed that knn

imputation gives expecially in MNAR scenarios good imputations. Thus it seems like a good

idea to try after the principle of Occam’s razor knn imputation for MNAR data before over

complicating things with neural networks.

Before we start to speak about knn imputation it is important to note that most of the lit-

erature evaluate the goodness of the imputation based on the results of the prediction, e.g.

by comparing the RMSEs. We will focus on the imputations themselves by looking at the

empirical densities of the missing variables and the parameter estimates instead of looking at
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the overall goodness of prediction. That should in theory of course not change the evaluation

of the different imputation methods but nevertheless it should be kept in mind.

A big advantage of the knn algorithm in general is that it does not have any model assump-

tions, as the MAR assumption or the normality assumption in Amelia, which can be not

fullfilled as it is a non-parametric method and hence also called lazy model. Therefore there is

also no necessity for creating a predictive model for each attribute with missing data as done

in mice. Thus, the k-nearest neighbour can be easily adapted to work with any attribute as

class, by just modifying which attributes will be considered in the distance metric. Hence it

can predict both discrete attributes (the most frequent value among the k nearest neighbours)

and continuous attributes (the weighted mean among the k nearest neighbours).

For data imputation tasks, the knn algorithm selects the k nearest neighbours of a given

incomplete observation, and uses available data from the selected neighbours to estimate

missing values. If we have a high proportion of missing values in the data at hand the avail-

able data becomes very sparse and imputation gets bad. This is why we will change the

approach slightly and use for every variable which we do not want to impute in the current

state the Amelia imputations which we made before to have more data at hand to calculate

the distances and also the value of the missing entry. This makes it also possible to do some

kind of multiple imputation with knn since we do knn m times with the m different imputed

predictor variables from Amelia and then pool the results.

The knn imputes missing values using a weighted average of the selected neighbours. We

choose the Euclidean distance, which looks as follows in the two dimensional space

d(xi, xj) =
( p∑

s=1

(xis − xjs)2
) 1

2

where xj denotes the jth nearest neighbour of xi, and use the resulting distances as input for

the epanechnikov kernel
3

4
(1− d2) · 1(|d| ≤ 1)

to calculate the weights and furthermore also the values of the missing entry.

One can easily imagine that the resulting value for the missing variable may be biased if we

include a lot of variables which are not correlated with the missing variable or its reason for

missingness if this variables influence highly the distance. Moreover it makes the algorithm

slower without improving it. Therefore we will use only that variables for computing the near-

est neighbours which are connected with the variable itself or with the missingness indicator

variable in the graph to improve the imputation (18) (24) (1) (9). After having mentioned

the graphical models a few times we will now have a look at the theory behind this models.
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3 Graphical models

3.1 Graph theory

A graph G = (V,E) is a pair of finite sets V = V (G) and E = E(G). V is the nodes set

which corresponds here to the variables of our dataset and E are the edges between these

nodes. Each pair of nodes can have either no or one edge between them, and this in turn

can be directed either in one or in two directions or undirected. If there is an edge of any

form between two nodes u and v, they are said to be adjacent, denoted by u ∼ v. Later on

we will focus on directed graphs which are defined as graphs containing only directed edges,

drawn as arrows. Further we assume that the graph contains no self-loops, that is (u, u) /∈ E

for all u ∈ V . A graph is called complete if there is an edge between every pair of nodes.

Besides graphs also subgraphs which are derived by using only a subset of nodes A ⊂ V can

be complete. If this subset is then not contained in a larger complete subset we call it a clique.

Therefore a clique is a maximal complete subset.

Moreover we define a path of length n between u and v as a sequence of nodes u = u0, ..., un =

v such that ui−1 ∼ ui for i = 1, ..., n. A graph is said to be connected if there is a path between

every pair of nodes, respectively. A n-cycle is a path of the form u1, u2, ..., un, u1.

If additionally the nodes of the cycle are distinct, and if uj ∼ uk is true only if |j − k| = 1

or n − 1, then we call the cycle a chordless cycle. This is important because we will need

the definition of triangulated graphs later, which are defined as graphs that have no chordless

cycles of length greater or equal to four.

An acyclic graph on the other had is a graph with no cycles. For three subsets A, B, and S

of V, we say S separates A and B if all paths from A to B intersect S. (6) (11)

We can use all these definitions to build graphical models, where we focus on models under

which some conditional independence relations of the form X ⊥⊥ Y | (some other variables)

hold for all densities in the model. In this work we will assume according to common practice

multivariate normal distributions for our densities which will yield the use of graphical gaussian

models.

3.2 Conditional independence

Since we have to use conditional independence relations when working with graphical models,

it makes sense to refresh shortly our knowledge about independence in the mathematical

sense.

Two random variables XA = (Xv)v∈A and XB = (Xv)v∈B with A and B being subsets of V

are said to be independent if their joint density factorises into the product of their marginal

densities:

fXA,XB
(xA, xB) = fXA

(xA) · fXB
(xB).
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As you can see, we already foreshadow the connection to graphs, by indexing with a node

v ∈ V . If we want to reformulate the definition of independence such that we do not need to

make use of the density of XA we can look at the conditional density of XB given Xa = xa:

fXB |XA
(xB|xA) = fXB

(xB).

When turning to the concept of conditional independence we include beside the two variables

XA and XB a third variable XC . XA and XB are called conditionally independent given

XC , denoted by A ⊥⊥ B|C, if for each value xC ∈ XC , XA and XB are independent in the

conditional distribution given XC = xC . This yields:

f(xA, xB|xC) = f(xA|xC) · f(xB|xC).

An alternative characterisation of this relation can be done if we take the factorization crite-

rion into account. Then we can write the joint density as a product of two functions g(·) and

h(·), where g(·) only depends on xA and xC but not on xB and h(·) does not depend on xA:

f(xA, xB, xC) = g(xA, xC) · h(xB, xC).

(6) (11)

3.3 Directed Graphs

3.3.1 Directed Acyclic Graphs

Acyclic graphs are as already mentioned before graphs with no cycles and directed graphs

are graphs whose edges are arrows pointing to one direction. Directed acyclic graphs are

the combination of these two. In particular that means that our graph has no cycles with

the arrows pointing in the same direction all the way around. The word directed will be

of high importance in this work, since we want to analyse the reason why a variable has

missing values and which other variables could be the cause of that. The direction of the

edges namely indicates influence of a variable on another or in some cases they represent even

causal directions. Although it would be great when looking at the interpretation of these

models if the latter would hold, it must not necessarily be true, which is very important to

keep in mind.

One can show that the absence of any directed cycles is equivalent to the existence of an

ordering of the nodes v0, ..., vn such that vi → vj only if i < j. That means that arrows point

only from lower-numbered nodes to higher-numbered ones. Note that a DAG with n nodes

and no edges has n! possible orderings, whereas a complete DAG has only one, which means
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that the ordering is not always unique. If we have a given ordering, which has to be proposed

by the researcher with some prior knowledge of the data such that vi−1 is prior to vi for all

i = 1, ..., n, we can factorize the joint density of v1, ..., vn as

f(v1) · f(v2|v1) · ... · f(vn|vn−1vn−2...v1). (2)

Later we will see that in most cases the variable ordering will not be known in advance and

must be inferred from the data, which can be done only up to Markov equivalence. Under

the term Model Selection we understand exactly this procedure but we do not have to worry

about that right now.

An arrow is drawn from vi to vj where i < j, unless f(vj |vj−1vj−2...v1) does not depend on vi,

when building the DAG. Remembering the definition of conditional independence and taking

into account that now we have additionally also a ordering this means that

vi ⊥⊥ vj |{v1...vj}\{vi, vj}.

We can interpret this as conditional independence of vi and vj given all prior variables. In

contrast to that when handling undirected graphs we say that the conditional independence

relation holds given all remaining variables, as introduced in section 3.2 since we have no

ordering. But the key message that a missing edge between two nodes is equivalent to a

conditional independence relation between these two variables stays the same.

If we recall also the definition of a path and take into account that now we have edges with

directions in our graph we have to adjust slightly the definition of it by changing the undirected

sequence of nodes with a directed one, yielding the requirement ui−1 → ui for i = 1, ..., n.

With that extension we can introduce also parents and children of a node. The parents pa(v)

of a node v are those nodes u for which u → v. Similarly the children ch(u) of a node u are

those nodes v for which u→ v. Parents in the broader sense are called ancestors an(w) and

are defined as directed paths from v to w. We can apply this definitions also on sets of nodes

instead of single nodes. For a set S ⊆ V this yields e.g. pa(S) =
(⋃

v∈S pa(v)
)
\S .

We can use this new terms to rewrite the joint density from equation (2) as

∏
v∈V

f(v|pa(v)) (3)

and hence the pairwise conditional independence becomes vi ⊥⊥ vj | an({vi, vj}) and is inde-

pendent of any specific nodes ordering.

Until now we focused only on pairwise conditional independences, as a next step we want to

investigate if it is possible to extend this and deduce even stronger dependencies from a graph.

Therefore we have to introduce a new graph theoretic property, namely the d-seperation which
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represents general conditional independences in DAGs.

The main idea is to associate dependencies with connectedness in the graph. For that we can

define three rules which tell us if our path is d-connected or not. Before starting with the first

one we have to introduce colliders. A path is called a collider if it has converging arrows.

Starting now with the first rule we say that A and B are d-connected if there is an unblocked

path between them. Unblocked means that the path can be traced without traversing a pair

of arrows that collide "head-to-head". This could be visualised as follows:

u→ r → s→ t← w ← y → v

For the examples we consider for simplicity separation between two single variables, u and v

but the extension to sets of variables can be done easily when using that two sets are separated

if and only if each element in one set is separated from every element in the other. We could

assume e.g that u ∈ A and v ∈ B.

Going back to the given example we can see that t is our collider in this case which means that

the whole path is not unblocked and hence also not d-connected. If a path is not d-connected

we call it d-seperated. On the other hand we conclude from the graph that e.g the subgraph

u→ r → s→ t is indeed unblocked and also d-connected.

Including now a third set S of variables which we will condition on, and therefore its values

are assumed to be known, leads us to the second rule: u and v are d-connected, conditioned on

a set S of nodes, if there is a collider-free path between u and v that traverses no element of

S. Looking again at an example will make this definition more tangible. Now we assume that

r, y ∈ S. The main structure of the graph looks the same but the interpretation is different.

u→ r→ s→ t← w ← y→ v

While we had concluded in the first example that the subgraph u → r → s → t is d-

connected, now it is d-seperated because the r node is known. We say that S has blocked the

path u → r → s → t and hence also the path from u to v which was of interest in the first

place.

The last rule handles colliders which are part of the known set S, that we use as condition.

It states that a collider no longer blocks any path that traces it, if it is a member of S or has

a descendant in S. A descendant is the same as an ancestor but for children. If we take again

our path from the first example and extend it with assuming that now our collider t ∈ S, the

path from u to v will be d-connected by S.

u→ r → s→ t← w ← y → v
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Combining these three rules into one definition one can derive if the different paths or subpaths

of an DAG are d-seperated or not.

This d-seperation definition can be seen as an equivalent of the global Markov property for

DAGs.

If DAGs induce the same sets of conditional independence relations which will be the case

if we do not know the exact ordering of the variables they are called Markov equivalent and

are distributionally equivalent but differ in interpretation. You can see an example of Markov

equivalent graphs in Figure 4. Although they will be distributionally equivalent you can

obviously see that the interpretation is different for each graph. While in the first graph

variable Y influences X and Z, in the second graph Y still influences Z but not X. X on the

other side influences now Y . Similarly you can interpret also the third graph.

More precisely two graphs are Markov equivalent if and only if they have the same skeleton,

which is the undirected graph, and same unshielded colliders. An unshielded collider occurs

when two directed edges from non adjacent nodes meet.

Since knowing the ordering of the variables may not be a realistic scenario for our simulation

later we have to think about how to represent these equivalence classes.

Figure 4: Example of Markov equivalent graphs

One option to do this is to build completed partial directed acyclic graphs CPDAGs. These

graphs are constructed by orienting all edges whose directions are fixed in the equivalence

class and letting edges be undirected if there are two members of the equivalence class that

have arrows in opposite directions. The individual DAGs then in the equivalence classes can

be obtained by assigning any orientation to the undirected edges, provided this does not

introduce any cycles or unshielded colliders.

Independently of the method we use to represent an equivalence class the first step will be to

construct the skeleton of the graph and build on that we can add directions to edges using

the idea of e.g. CPDAGs. This is why the section 3.5.1 will introduce undirected gaussian

graphical models even if they themselves are not of interest for this work.

(21) (6) (11)
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3.3.2 Directed Gaussian graphical models

In this work we will focus on directed gaussian graphical models (DGGMs), which assume

that the data at hand follows a multivariate normal distribution. We will see later on in

the simulation study that the application of these models works also for data which is not

multivariate normal distributed but can be approximated with a normal distribution if the

sample sizes are big enough.

Even if there are also possibilities for modelling graphical models for discrete or other types of

continuous data, it is justifiable to stick with the gaussian graphical models here. The main

reason for that is the topic of model selection which will be of high importance for us since

we want to keep only a few edges which indicate indeed a high dependence condition between

our indicator variable for the missing variable and its reason for missingness. There exist

different ways for doing this model selection as e.g. step wise approaches which are based on

the AIC/BIC criterion. A problem with step wise selection procedures is that they tend to

become time consuming for problems with many variables and usually only a small part of

the relevant search space is covered during a search. Others can be found in (6). This kind

of approaches can be used also with mixed data but they tend further to prefer complicated

models with a lot of edges, which is not adequate for our purpose.

The pc-algorithm, which will be presented in the next section, on the other hand prefers simple

models with few edges and reflects often better the structure of the true model. Therefore it

is used by a lot of people in practice even if the data is presumably not normal distributed.

The normal assumption is only necessary when using the pc-algorithm if we have continuous

data at hand as we will see later. When handling discrete data as e.g binary data one can

assume also the data to be binomial distributed. The problem is that we have to stick with

one distribution assumption for all variables and cannot mix the distributions for the single

variables of the data.

This is why we will assume for all variables in the simulation study the normal distribution.

Another option would be to model two separate models one for continuous data with normal

distribution assumption and one for discrete data with binomial assumption to reduce model

violations but then we would not be able to see relations between a continuous and a discrete

variable any more which is also not desirable. Hence seemingly the best solution is to argue

with the central limit theorem and assume that all variables are normal distributed if the

dataset is big enough.

Speaking of gaussian models we have to recap first the definition of the multivariate normal

distribution. A random vector X = (X1, ..., Xp) follows a multivariate normal distribution

Np(µ,Σ) in p dimensions with mean µ ∈ Rp and positive definite covariance matrix Σ =
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Σi,ji, j ∈ (1, ..., p) if the density is given by

fX(x) = det(2πΣ)−
1
2 exp(−1

2
(x− µ)TΣ−1(x− µ))

The inverse of Σ, which exists if we assume positive definiteness, is the precision matrix and

we denote it by K. This will be the key quantity in Gaussian graphical models and has the

following form:

K =


k11 k12 · · · k1d

k21 k22 · · · k2d
...

...
. . .

...

kd1 kd2 · · · kdd


Using the precision matrix in the density of the normal distribution instead of the covariance

and defining h as Kµ we can rewrite the density as

fX(x) = (2π)−
d
2 det(K)

1
2 exp(−1

2
µTKµ+ hTx− 1

2
xTKx)

Choosing a = −d
2 log(2π) +

1
2 log det(K)− 1

2µ
TKµ we get

fX(x) = exp(a+ hTx− 1

2
xTKx)

= exp(a+
∑
u

hu xu −
1

2

∑
u

∑
v

kuv xu xv)

If the sets of the nodes A and B are separated by a set C in the graph we have kuv = 0

for u ∈ A, v ∈ B. Then we can use the factorisation criterion from chapter 3.2 to show that

by collecting appropriate terms we can write f(x) = g(xA, xC) h(xB, xC). This is the proof

that for DGGMs the global Markov property A ⊥⊥ B|C holds. Moreover you can see from

the formula that we have at most pairwise interactions between variables, which means that

we do not have higher order interactions in DGGMs and therefore the model is completely

determined by the edges of the graph.

Further it can be shown that the conditional distribution of (X1, X2) given the remaining

variables is a bivariate normal distribution with inverse covariance

Kbivariate =
1

k11k22 − k212

 k22 −k21
−k12 k11


Since we want to detect conditional (in-)dependencies between pairs of variables, more pre-

cisely between a indicator variable of our missing variable and its reason for missingness, it

seems a good idea to use the precision matrix of the bivariate distribution to calculate partial

correlations between them whereby this correlation is also invariant under change of scale.
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The partial correlation between xu and xv given all other variables is then composed of

ρuv|V \(u,v) = −kuv\
√
kuukvv (4)

We can see from the formula that kuv has to be zero if and only if xu and xv are conditionally

independent given all other variables hence we would not draw an edge between this two vari-

ables. Graphical Gaussian models are then defined by setting some elements of the precision

matrix, and therefore partial correlation, to zero.

Recall that a probability function factorises w.r.t. a DAG if it can be expressed as a product

of conditional densities of single variables given their parents as stated in equation 3. Since we

focus on DGGMs here our univariate conditional models which we need to construct models

of this type are linear regression models with gaussian errors. In particular this means that

the conditional distributions in equation 2 are linear regressions.

As we have seen in the previous chapter 3.3.1 DAGs and hence also DGGMs that are Markov

equivalent cannot be distinguished on the basis of sample distributions. This means that we

can select only equivalence classes of DGGMs with e.g. CPDAGs when we use model selection

algorithms, and not individual ones. A rare exception is the case where we know the exact

ordering of the variables like stated in equation 2.

We will introduce the pc-algorithm in section 3.5.1 which estimates the CPDAG of the true

causal structure of the data. (6) (11)

3.4 Graphical models for missing data

We have seen in section 2 that there exist three different types of missing values, namely

MCAR, MAR and MNAR. Most imputation methods as e.g multiple imputation 2.2 provide

asymptotically unbiased results only if the data is MAR or MCAR but not in the MNAR

scenario. According to this almost all available software packages implicitly assume that data

fall under this two categories. Failing these assumptions, there is no guarantee that estimates

produced by software will be less biased than those produced by simply using complete case

analysis. Consequently, it is important for the user to decide if the type of missingness

present in the data is compatible with the requirements of MCAR or MAR. Without further

knowledge it is nearly impossible to detect which type of missingness we have at hand. To

solve this problem one can use graphical models to encode assumptions about the reasons

for missingness. We call this specific kind of graphical model missingness graph or short m-

graph.

To build an m-graph we have to introduce next to our variables X of the given dataset

also auxiliary variables Rvi which represent the missingness mechanism of the variable Vi at

hand. If Rvi = 1 the value of the variable is concealed, i.e. we will see an NA entry in the
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corresponding variable, on the other hand if Rvi = 0 the true value of the variable is revealed,

i.e. the entry in the corresponding variable is the observed value vi. When looking at the

graph we then have to slightly adjust the definition of our nodes set V . We can partition it

into five categories V = Vo∪Vm∪U ∪V ⋆∪R where Vo is the set of variables that are observed

in all records and Vm is the set of variables that are missing in at least one record. Variable

X is termed as fully observed if X ∈ Vo and partially observed if X ∈ Vm. Rvi and V ⋆
i are

two variables associated with every partially observed variable, where V ⋆
i is a proxy variable

that is actually observed, and Rvi represents the status of the causal mechanism responsible

for the missingness of V ⋆
i as explained above. This yields formally:

v⋆i = f(rvi , vi) =

vi if rvi = 0

NA if rvi = 1

V ⋆ is the set of all proxy variables and R is the set of all causal mechanisms that are respon-

sible for missingness. Note that we will not explicitly show the proxy variables in the graph

for the sake of clarity. U is the set of latent variables. Usually it is assumed that no variable

in Vo ∪ Vm ∪ U is a child of an R variable. As in the traditional graphical models two nodes

X and Y can be connected by a directed edge X → Y , indicating that X is a cause of Y , or

by a bi-directed edge X ↔ Y denoting the existence of a U variable that is a parent of both

X and Y .

When working with m-graphs we have to adjust also the definition of the three types of miss-

ingness. Thereby we will replace the traditional MAR type of missigness by v-MAR. The

main distinction rests on the fact that MAR introduced by Rubin is defined in terms of con-

ditional independencies between events whereas that when speaking of v-MAR conditional

independencies are defined between variables. In the following we may use the term MAR

when speaking of v-MAR. Now we can translate the original definitions of MCAR, MAR and

MNAR in graphical terms.

Data are MCAR if Vo ∪ Vm ∪ U ⊥⊥ R holds in the m-graph. This means R is entirely

independent of both the observed and the partially observed variables. This condition can be

easily identified in an m-graph by the absence of edges between the R variables and variables

in Vo ∪ Vm. On the other hand data are v-MAR if Vm ∪ U ⊥⊥ R|Vo holds in the m-graph

which means that missingness occurs at random conditional on the fully observed variables

Vo. In graphical terms, v-MAR holds if (i) no edges exist between an R variable and any

partially observed variable and (ii) no bi-directed edge exists between an R variable and a

fully observed variable. Finally data that are not v-MAR or MCAR fall under the MNAR

category. (19) (4) (27)

You can see in in the figure below 5 that it is very easy to detect the missingness type with
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this simple rules from the m-graph. Here we assume that our variable X is the variable of

interest for which we want to check which missingness type is present. In the first graph we

can see that the RX variable has no edges at all which means that the missingness type falls

into MCAR. The second graph shows an dependence structure between the RX variable and

an fully observed variable Yo but no edge between RX and an partially observed variable,

namely X and no bi-directed edges, which means that here we can assume the missingness to

be MAR. The last graph shows an edge between the RX variable and an partially observed

variable since Ym has now also missing entries, hence this example tells us that the data of X

is MNAR.

Figure 5: Example for detecting a) MCAR, b) v-MAR and c) MNAR in a m-graph

While the classification after having obtained the m-graph is indeed quite easy, the construc-

tion of the m-graph itself is not straightforward. Of course we could apply the widely used

traditional pc-algorithm 3.5.1 to discover the causal relationships between missingness indica-

tor variables and the other variables at hand but we have to keep in mind that this algorithm

is designed for complete data and will at least theoretically not lead to unbiased results. We

will check later if this is true also in practical use in the simulation study 4.

Ruibo Tu and others have presented in their paper Causal Discovery in the Presence of Miss-

ing Data (29) an adapted pc-algorithm for missing values mvpc which solves the problem of

model violations. This algorithm will be introduced in section 3.5.2. It is important to note

that the aim of this algorithm presented in the paper was in the first place to model a better

and unbiased graph of the original variable set in contrast to the traditional pc-algorithm

but without including missingness indicator variables and detecting the type of missingness.

But before we have a deeper look at the adapted version of the pc-algorithm we have to first

understand how the traditional one works.
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3.5 Modelselection for DGGMs

3.5.1 Pc-algorithm

The pc-algorithm is an example for constraint based learning. Constraint based learning

means that one can derive constraints which every distribution generated from a given causal

structure must obey. Such constraints can be e.g. conditional independence statements which

can be derived with the help of the partial correlation matrix and some independence test as

we will see later. Constraint based learning checks for such constraints given data and thus

ideally can reverse-engineer the causal structure of the data generating mechanism. Hence

the goal of the pc-algorithm is to estimate the true causal structure of the data at hand which

can be represented as a CPDAG.

The algorithm can be divided in two main parts where the first step is to estimate the skele-

ton, thus the undirected graph. In the second step one has to orient the unshielded triples

into unshielded colliders if possible to receive in the end the CPDAG. But before we dive

deeper into the algorithm we have to introduce shortly undirected gaussian graphical models

UGGM to be able to understand how the skeleton is build. (6) (11) (14) (15)

Addendum: Undirected gaussian graphical models

The setup for UGGMs is the same as for DGGMs, presented in section 3.3.2. This means that

of course the underlying density and its parameters as well as the precision matrix K and

the correlation matrix do not change. In particular this also means that the global Markov

property holds and that the entry kuv of the precision matrix will again be zero if there is no

edge between the nodes u and v. We call the resulting graph also dependence graph since it

holds for all u, v, that if u and v are not adjacent, then u ⊥⊥ v|V \{u, v}. The only thing which

is different in UGGMs is the derivation of the joint likelihood. In the undirected case we do

not use the formula from equation 2 since this one was derived by using the ordering from the

variables which we do not have now anymore but instead we use the cliques C1, ..., Ck from

chapter 3.1 of the graph to calculate the joint density. We say that the joint density f(xV )

factorises according to the graph if for some functions gi() that depend only on x through xCi

the joint density can be written as follows:

f(xV ) =
k∏

i=1

gi(xCi)

The set of this cliques is called the generating class for the model.

Models with closed-form maximum likelihood estimates are called decomposable. A graph is

decomposable if and only if it is triangulated. Since in our case we look only at graphs which
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are acyclic they are also triangulated and hence decomposable. Therefore it seems appropriate

to search for the maximum likelihood estimates in the next step. Hence we first have to build

the likelihood and the log likelihood, respectively. To do that we denote the matrix of sums

of squares and products as W =
∑n

i=1(xi − x̄)(xi − x̄)T and the empirical covariance matrix

as S = W
n . The log-likelihood based on the sample is then

l(K,µ) =
n

2
log det(K)− n

2
tr(KS)− n

2
(x̄− µ)T (x̄− µ)

where tr(KS) =
∑

u

∑
v suv kuv. We are mainly interested in K therefore we look at the

profile likelihood of K which is

l(K, µ̂) =
n

2
log det(K)− n

2
tr(KS) (5)

since for fixed K the log likelihood is maximised for µ̂ = x̄ and hence the last term becomes

zero. The only elements suv of S that contribute to the likelihood are those for which the

corresponding elements kuv of K are not equal to zero.

If the UGGM has generating class C = {C1, ..., Ck} it can be shown that the submatrices

SCjCj , for j = 1, ..., k together with the sample mean x̄ jointly form a set of minimal sufficient

statistics. A submatrix of MAB with entries muv for u ∈ A and v ∈ B is obtained by taking

a matrix M with entries muv for u ∈ V and v ∈ V and two subsets A ⊂ V,B ⊂ V . The

maximum likelihood estimate is then derived by finding the unique solution to the system of

equations

µ̂ = x̄, Σ̂CjCj = SCjCj , j = 1, ..., k

which fulfills the restrictions on the concentration matrix. It follows that the MLE of the

covariance between any pair of variables which are neighbours in the graph is equal to the

corresponding empirical quantity i.e under the saturated model with no conditional indepen-

dence restrictions Σ̂ = S and hence also K̂ = S−1, provided S is not singular. Neighbours of

e.g. u are all nodes which are adjacent to u.

An iterative algorithm called iterative proportional scaling algorithm for computing maximum

likelihood estimates for this graphical gaussian models was proposed by Speed and Kiiveri.

We will introduce just the idea of this algorithm, for further theory see (26).

As a starting point for the precision matrix K we choose the identity matrix. Let C ∈ C be

an element in the generator class and B = N\C. The submatrix KCC of K is modified by an

increment E so as to satisfy the constraints by the likelihood equations, namely Σ̂CC = SCC

A cycle in the algorithm repeats this for each generator.
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The required increment matrix E can be found as follows: We require thatSCC ∗

∗ ∗

 =

KCC + E KCB

KBC KBB


where ∗ denotes unspecified. Standard results on the inverse of partitioned matrices gives

SCC = (KCC + E −KCBK
−1
BBKBC)

−1

Since we want to get the increment E we have to rewrite the equation as

E = S−1
CC − (KCC −KCBK

−1
BBKBC)

= S−1
CC − Σ−1

CC

so KCC is updated in each step as

KCC ← S−1
CC +KCBK

−1
BBKBC

until convergence.

The maximised value of the profile likelihood in equation 5 is n
2 log det(K̂) − nd

2 because

tr(K̂S) = tr(K̂Σ̂) = d since Σ̂ and S differ only on those entries for which kuv = 0 as we have

seen before. Thus the deviance of the model is

D = 2(l̂sat − l̂) = n log(
det(S−1)

det(K̂)
) = −n log det(SK̂)

We could use the deviance to build the likelihood test and test conditional independence

hypothesis. We will not introduce this procedure here since the pc-algorithm uses another

approach to test for conditional independences, namely based on the asymptotic normality of

Fisher’s z transformation of the partial correlation.

The sample partial correlation ρu,v|k can be calculated via regression, inversion of parts of the

covariance matrix like in equation 4 or recursively by using the following identity: for some

h ∈ k

ρu,v|k =
ρu,v|k\h − ρu,h|k\h ρv,h|k\h√
(1− ρ2u,h|k\h)(1− ρ

2
v,h|k\h)

where k is a subset of the neighbours of u excluding v of the complete undirected graph. To be
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able to test whether a partial correlation is zero or not, one can apply Fisher’s z-transformation

Z(u, v|k) = 0.5 log

(
1 + ρ̂u,v|k

1− ρ̂u,v|k

)

Using classical decision theory we can reject the null-hypothesisH0 : ρu,v|k = 0 against the two

sided alternative H1 : ρu,v|k ̸= 0 if
√
n− |k| − 3Z(u, v|k) > Φ−1(1− α

2 ) with significance level

α and cdf of the standard normal distribution Φ(·). Based on that we use the if -statement√
n− |k| − 3 Z(u, v|k) ≤ Φ−1(1 − α

2 ) to decide whether two variables are conditionally in-

dependent. We remove step by step the edges from the complete graph where we were able

to reject the null hypothesis of conditional independence wrt. the given significance level. In

order to be able to infer from conditional independence to non existence of a edge between

two nodes in a graph we have to make a further assumption, namely the Causal Faithfulness

Assumption. This assumption states, that the conditional independence relations correspond

to d-separations and vice versa. In general the probability distribution may have additional

conditional independence relations that are not entailed by d-separation applied to a graph,

but with this assumption we neglect this possibility. We will use a conservative α value of

0.01 to minimise the type 1 error. The tests we are doing are of successively increasing order.

That means that we first test marginal independences and then further relations of the form

u ⊥⊥ v|S for |S| = 1, 2, ... and so on. The pc-alogorithm takes advantage of the fact that at

any time, when an edge between u and v is tested, it is sufficient to consider sets S which

are subsets of the neighbours of u or v. This is very important to consider since we have to

avoid performing a huge number of independence tests. The skeleton becomes more and more

sparse, while edges are removed and simultaneously the cardinality of S increases, but such

sets are very few. This process yields a list of identified conditional independences, denoted as

triples (u, v, S) for which u ⊥⊥ v|S holds. The S sets are called sepsets, since they correspond

to sets which d-separate variables u and v in the unknown true graph. These sets are not of

primary interest for the skeleton but will be needed when we want to extend the skeleton to

the CPDAG in the next step. The present procedure results in the end in the skeleton of the

causal structure and therefore closes also the first step of the pc-algorithm. (14) (15) (6) (11)
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We have seen in the addendum to undirected gaussian graphical models 3.5.1 how the undi-

rected graph and hence also the skeleton is build, therefore we can move on with the second

part of the pc-algorithm, namely the extension of the skeleton to a CPDAG. We can distin-

guish in this step two substeps. First we orient the unshielded triples into unshielded colliders,

where it is possible. An unshielded triple are three nodes a, b, c with a− b, b− c where a and

c are not connected. If node b is not in sepset(a, c), the unshielded triples a− b− c is oriented

into an unshielded collider a→ b← c. Otherwise b is marked as a non-collider on a− b− c.

Next , the partially directed graph we just received is checked using three further rules to see

if any other edges can be oriented while avoiding new unshielded colliders or cycles. You can

see that in this step of the pc-algorithm we do not have to do further calculations but only

consider some rules. Kalisch and Bühlmann (14) have combined the two substeps into one

algorithm which can be seen below 1.

Algorithm 1 Extending the skeleton to a CPDAG
Input: Skeleton, seperation sets S

Output: CPDAG

for all pairs of nonadjacent variables u, v with common neighbour k do
if k /∈ S(u, v) then

Replace u− k − v in Skeleton by u→ k ← v
end if

end for

In the resulting PDAG, try to orient as many undirected edges as possible by repeated
application of the following three rules:

R1 Orient v − k into v → k whenever there is an arrow u → v such that u and k are
nonadjacent.

R2 Orient u− v into u→ v whenever there is a chain u→ k → v.

R3 Orient u − v into u → v whenever there are two chains u − k → v and u − l → v such
that k and l are nonadjacent.

R4 Orient u − v into u → v whenever there are two chains u − k → l and k → l → v such
that k and l are nonadjacent.

By completing this step, the pc-algorithm terminates and the final CPDAG is found. (14)

(15) (6) (11)
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3.5.2 Missing value pc-algorithm

We have discussed in section 3.4 that we have to adapt the traditional pc-algorithm when

having missing data at hand since this algorithm is valid only for complete data analysis.

An alternative algorithm is the so called missing-value pc-algorithm, short mvpc, which takes

into account that some observations are missing. In the first place the aim of this algorithm

is not to produce a m-graph but to produce a more realistic version of the graph based on

the pc-algorithm when comparing it to the true underlying dependence graph. But we can

use this algorithm also for our purpose of get a better version of the m-graph. Before we ap-

ply the algorithm we have to make some assumptions which are restrictive but necessary. (29)

Assumption 1 There is no confounder or selection bias relative to the set of observed vari-

ables. Further we assume causal sufficiency, which means that the latent variable set U

is an empty set

Assumption 2 No missingness indicator can be the cause of any observed variable.

This means , if variables of interest X and Y are not d-separated by a variable set

Z ⊆ V \(X,Y ), they are not d-separated by Z together with their missingness indica-

tors RX , RY . Hence if they are conditionally independent given Z together with their

missingness indicators, they are conditionally independent given only Z. Of course we

cannot directly verify whether they are conditionally independent given Z and their

missingness variables because we do not have the records for the considered variables

when their missingness indicators R = 1. Therefore we need further assumptions:

Assumption 3 Any conditional independence relation in the observed data also holds in the

unobserved data. This also means that there is no accidental conditional independence

relation caused by missingness.

Assumption 4 No causal interactions between missingness indicators.

Assumption 5 Missingness in a variable that is caused directly by itself is called self masking

missingness. In the m-graph this is depicted by X → RX , for X ∈ Vm. We assume that

there are no such edges in the m-graph. This assumption is very restrictive in our case

since self masking missingness is one type of MNAR and cannot be seen from the graph

but cannot be circumvented due to the reason mentioned in assumption 2.

Now we can apply the mvpc-algorithm which looks as follows (29):
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Algorithm 2 Missing value pc-algorithm
1: Skeleton search with deletion-based PC:

i) Graph initialization:

Build a complete undirected graph on the node set V as in traditional pc-algorithm.

ii) Causal skeleton discovery:

Remove edges in the graph with the same procedure as the pc-algorithm with the test-

wise deleted data. Test-wise deletion means that we only delete records with missing

values for variables involved in the current CI test when performing the pc-algorithm.

This is far more data-efficient than the naive approach of list-wise deletion, i.e. deleting all

records that have any missing value and then applying the pc-algorithm to the remaining data.

2: Detecting direct causes of missingness indicators:

For each variable Vi ∈ V containing missing values and for each j that j ̸= i, test the CI

relation of Ri and Vj . If they are independent given a subset of V \(Vi, Vj), Vj is not a direct

cause of Ri.

3: Detecting potential extraneous edges:

For each i ̸= j, if Vi and Vj are adjacent and have at least one common adjacent variable or

missingness indicator, the edge between Vi and Vj is potentially extraneous.

4: Recovering the true causal skeleton:

Perform correction method for removing the extraneous edges in the graph. 3

5: Determining the orientation:

Orient edges in the graph with the same orientation procedure as the traditional pc-algorithm.

The first thing we have to discuss is why it is not sufficient to just use the test-wise deletion

pc-algorithm TD-PC, which would shorten the above algorithm to the steps one and five.

At least in the case of MCAR TD-PC gives asymptotically correct results since (Vm, Vo) ⊥

⊥ R is satisfied. Let’s say Ry ⊥⊥ (X,Y, Z) holds which is represented in the graph by

the absence of an edge between Ry and the other variables. Consequentially, we have

X ⊥⊥ Y |Z ↔ X ⊥⊥ Y |(Z,Ry). Using now assumption 2 3.5.2 we can conclude that

X ⊥⊥ Y |Z ↔ X ⊥⊥ Y ⋆|(Z,Ry = 0). When applying the CI test to the test-wise deleted

data of concerned variables X,Y, Z, we test whether X ⊥⊥ Y ⋆|(Z,Ry = 0) holds. Therefore,

CI results imply d-separation relations of concerned variables in m-graphs when data are

MCAR, which guarantees the asymptotic correctness of TD-PC.

Having MAR or MNAR data at hand the TD-PC-algorithm does not longer provide asymp-
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totic correct results. The causal skeleton given by TD-PC has no missing edges though,

but may contain extraneous edges. Extraneous edges are produced if dependence relations

in test-wise deleted data imply the wrong corresponding relations in the m-graph because

X��⊥⊥Y |(Z,Rx = 0, Ry = 0, Rz = 0) ↛ X��⊥⊥Y |Z. Fortunately, such extraneous edges appear

only under special circumstances which makes it possible to remove them afterwards. You

can see an example in the following graph 6. W is the direct common effect of X and Y and

the missingness indicator Ry is a descendant of W . Thus, the extraneous edge occurs between

X and Y in the causal skeleton produced by TD-PC. The reason for that is that under the

assumptions 3.5.2 for at least one variable inX∪Y ∪Z its missingness indicator is either the di-

rect common effect or a descendant of the direct common effect of X and Y if we suppose that

X and Y are not adjacent in the true causal graph and that for any variable set Z ⊆ V \(X,Y )

such that X ⊥⊥ Y |Z, it is always the case that X��⊥⊥Y |(Z,Rx = 0, Ry = 0, Rz = 0). A detailed

proof for that proposition can be found in (29). With this information we can improve the

TD-PC-algorithm by using the mvpc-algorithm which considers this cases in step three. Note

that step two is equivalent to performing TD-PC on V ∪R, which we will do in the simulation

study since we want to depict the R variables themselves in the graph.

Figure 6: Example for potentially extraneous edge produced by TD-PC between X and Y in
MAR scenario

The most difficult part of the algorithm is step four where we have to perform a correction for

these extraneous edges. Ruibo Tu and others propose the permutation-based correction (29).

This method does not cover all possible missingness cases but is nevertheless a substantial

improvement in contrast to the TD-PC-algorithm. The conditions for the validity of PermC

are

(i) (Rx, Ry, Rz, Rw) ⊥⊥ (X,Y, Z)|W , where the variable set W is the set of direct causes of

missingness indicators Rx, Ry, Rz. If variables in W also have missing values, the direct

causes of their missingness indicators Rw are also included in W .

(ii) In the m-graph, the missingness indicators of W follow the condition that X ⊥⊥ Y |Z ↔

X ⊥⊥ Y |(Z,Rw).
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For the proof you may have a look at (29).

Algorithm 3 Permutation-based correction
Input: data of concerned variables, such as X,Y, Z in figure 6, and the direct causes of their

corresponding missingness indicators, such as the direct cause W of Ry

Output:: The CI relations among concerned variables, such as the CI relations amongX,Y, Z

1: Delete records containing any missing value. We denote the deleted dataset by Dd, and

denote the original dataset by Do.

2: Regress X,Y, Z on W with Dd.

3: Shuffle data of W in Do, denoted by WS , and delete records containing any missing value

in Do (included WS).

4: Generate virtual data of X̂, Ŷ , Ẑ with WS and the residuals.

5: Test the CI relations among X̂, Ŷ , Ẑ in the generated virtual data.

6: return

The CI relations among X,Y, Z.

To gain a better understanding of the algorithm we will go through the steps two, three and

four in more detail using the graph 6 (29). We have already discussed that in this example

samples from the joint distribution P (X,Y, Z) are not available in the observed dataset. In

this case, we test the CI relations in the test-wise deleted data from P (X,Y ⋆, Z|Ry = 0),

which leads to producing the extraneous edge between X and Y . The above algorithm intro-

duces a random variable W which is the direct cause of Ry to reconstruct the dataset and then

marginalise it out. With W , the joint distribution can be estimated by learning the model

for P (X,Y, Z|W ) from test-wise deleted data, further by plugging in the values of W in the

dataset, as data samples from P (W ), and last by disregarding the input W and keeping the

generated virtual data for (X,Y, Z) to marginalise W out. We can then test CI relations in

the complete data when virtual data of X,Y, Z that follow the joint distribution is given.

Since we do not have samples from P (X,Y, Z|W ), we have to somehow generate them in

step two of the algorithm. Therefore we can use our assumptions 3.5.2 and a further assump-

tion which is that our data is normal distributed to apply linear regression and learning the

33



equivalent model P (X,Y ⋆, Z|W,Ry = 0) as :

X = β1W + ϵ1, Y = β2W + ϵ2, Z = β3W + ϵ3

where β denotes the parameter of the linear regression and ϵ the residual.

Now we can sample the input values from the probability distribution P (W ). One has to

shuffle the values of W in the observed dataset such that P (WS |Ry = 0) = P (WS) where

WS denotes the shuffled W , because inputting the test-wise deleted data of W and adding

the residuals from the linear regression models would yield the data follow the conditional

distribution P (W |Ry = 0) instead of P (W ). This is done in step three. The next step is to

replace W with W ⋆ and to build again regression models

X̂ = β1W
S + ϵ1, Ŷ = β2W

S + ϵ2, Ẑ = β3W
S + ϵ3

By plugging in the permutation-based correction algorithm 3 into the fourth step of the

mvpc-algorithm 2 we have received at least in theory a better graph than the graph we

would have obtained by using the simple TD-PC-algorithm and for sure a better graph than

when applying list-wise deletion pc-algorithm. We will compare the results of the two main

procedures, namely the pc- and the mvpc-algorithm, in the simulation study 4. (29) (19)

(27)(4)
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4 Simulation study

In order to examine if it is indeed also in practice possible to detect the three different types

of missing values using graphical models and improve their imputation with this additional

knowledge, a simulation study was conducted, which will be discussed in the next sections.

The main focus will be to first examine if there are differences in the prediction quality be-

tween the pc-algorithm and the mvpc-algorithm. Secondly to check if the imputations for

MNAR variables are biased not only in theory but also in practice and furthermore can be

corrected by using weighted knn instead of traditional multiple imputation to impute the

values.

Since especially the mvpc-algorithm only covers datasets which contain just normal distributed

variables or binary variables, the obvious choice was to start with a multivariate normal dis-

tributed data generating process, for which all explanatory variables are independent. Though

this is not a very realistic scenario and requires an extension. Therefore the second data gen-

erating process which was used aims to represent a more realistic dataset and will be used

for the main analysis, even if it violates in theory some of the model assumptions like the

normality assumption.

The following figures 7 8 9 provide an overview over the general structure of the simulation

study. It can be separated in three main parts, namely the simulation of the data itself 7, the

modelling and evaluation of the graphical models 8 and the imputations 9. In the following

sections we will discuss these steps shown in the figures below in more detail.

Figure 7: Scheme of main steps in the data simulation process
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Figure 8: Scheme of main steps in the graphical modelling part of the simulation study
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Figure 9: Scheme of main steps in the imputation part of the simulation study
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4.1 Data simulation

You can find the dependence structure of the data simulation model illustrated in figure 10.

We have one target variable y which we will need later when building the regression model

and nine explanatory variables which are both categorical with two or three categories and

continuous. The continuous ones follow different distributions as the normal distribution but

also others like the beta or gamma distribution. It can also be seen that some explanatory

variables are dependent from each other. The concrete dependency structures can be obtained

from the formula shown in the figure. Following the formulas, 1000 samples were drawn from

the different distributions for each variable. Later in the simulation study we will investigate

also the influence of the dataset size by shortening it to 500 and 100 entries, respectively.

Figure 10: Chart of the simulated data, including the information about the distribution of
the single variables and their connection to each other

In order to simulate afterwards the missing entries the R-package simstudy (7) was used. We

simulated for each missing type a separate dataset, such that one dataset contains only one

type of missingness, except of MNAR were it was needed due to the definition of MNAR to

include also a MCAR/MAR variable. Further the tidyverse package (32) was used to create

most of the visualisations using ggplot2. The procedure to produce MCAR variables was

straightforward by randomly removing entries of the variables analogously to the ratio we

want to be missing which was first 0.1 then 0.3 and 0.6, respectively. To be able to simulate

MAR and MNAR scenarios one has to additionally calculate different sampling probabilities
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for the single entries before sampling which entries should become NA with these computed

probabilities. To do that we first standardise the variable x on which the missing procedure

will depend to avoid problems with different value ranges. After that we input the values into

a sigmoid function to have a smooth transition between the probabilities of being missing or

not. This looks as follows:

P (being sampled) = sigmoid(multiplier · x− µ̂
σ̂

)

First we tried small values for the multiplier around one to examine if the graphical model can

recognise also weak MAR/MNAR relations, which worked quite well, later on the value was

fixed at three to get a steeper sigmoid and hence a stronger relation between the dependent

variable and the missing indicator in order to intensify the potential bias in the imputations.

It turned out that as well the graphical models as the imputations were not influenced by this

changes significantly. Therefore only results with multiplier = 3 will be shown.

The only difference between MAR simulation and MNAR simulation is that the variable x

on which we depend the missingness process has to be fully observed in the first scenario

whereas it has to be partially observed in the second scenario. Thus we made the dependent

variable x MCAR for the MNAR category. Further some missing entries were produced by

depending on two x variables. In this case we first fix on how the two variables should affect

the missingness. For the y variable x1, which is normal distributed, and x7, which is binary,

should affect the missing process equally strong. Therefore we sample 50% of the missing

entries with putting in the x1 variable in the sigmoid and 50% the x7 while ensuring the

desired missingness frequency and by taking into account that entries might overlap. For x5

the missingness was influenced approximately by 80% of x1 and by 20% by x4. The other

simulated dependencies can be seen in the graphs 13 14. Note that we use the notation of

chapter 3.4, but here the missing indicator variable R is called missingxj and j is the index

of the corresponding variable.

The figures 11 12 show the MNAR process on the single observations level for one sample.

The missing variable which we are interested in is on the x-axis and the MCAR variable

which influences the missingness process is on the y-axis. The missing entries are shown in

red. We can see that in both plots there are significantly more missing values in the upper

part of the figure which means that the probability of an entry to be missing increases by

higher values of the variable on the y-axis and hence is not MCAR. The missingness rate was

fixed to 0.1 for this visualisation for the sake of clarity. Have a look at the Appendix A for

the visualisation of the variables x5, y and x2 from the multivariate normal dataset. We will

discuss the general structure of the multivariate normal data generatig process briefly in the

next section. The plots for MAR look similar to those shown here, with the only difference
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that now the dependent variable on the y-axis is fully observed. In the MCAR scenario one

would not see any patterns since the missingness is by definition completely random.

Figure 11: Graph that displays the relationship of the missing values of the Beta distributed
variable x2 on the x-axis and the normal distributed Variable x1, that contains MCAR values,
on the y-axis which influences the missing process of x2 in such a way that it is MNAR.

Figure 12: Graph that displays the relationship of the missing values of the Gamma distributed
variable x3 on the x-axis and the Beta distributed Variable x2, that contains MNAR values,
on the y-axis which influences the missing process of x3 in such a way that it is MNAR.
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Figure 13: The graph shows what the graphical model should predict ideally in the MAR
scenario.
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Figure 14: The graph shows what the graphical model should predict ideally in the MNAR
scenario.
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4.2 M-graphs: Modelling and Evaluation of the results

After having created the datasets we want to work with, we will look at the graphical mod-

els produced by the pc-algorithm and the mvpc-algorithm in this section. For the mvpc-

algorithm the sligthly adapted code of Ruibo Tu was used for the modelling, which can

be found at https://github.com/TURuibo/mvpc. The pc-algorithm is implemented in the

R-package pcalg (16) (8). The main function pc() takes as one of the inputs the correla-

tion matrix of the data which we calculated by computing the correlations of the pairwise

complete observations to avoid problems with missing entries and to be at the same time

as sample efficient as possible. We saw already in figure 13 and figure 14 how the graphs

should ideally look like in the MNAR and MAR scenario if the mvpc- and pc-algorithm would

have worked perfectly. Even if we can say that overall the algorithms worked quite well,

there are nevertheless some missmodeled relations which we will look at now. For the sake

of clarity we will not discuss every single graphical model but focus on the most interesting

ones, which are those that differ strongly between the mvpc- and the pc-algorithm and made

more mistakes in modelling the true underlying structure. The other graphical models can be

found in the Appendix B or be reproduced by using the r-code provided at https://github.

com/Eleftheria1/Classifying-missing-values-with-graphical-models as anything else

done in the simulation study.

Exemplary evaluation of the m-graphs for one single dataset

We will start with the MCAR scenario. For the missingness rates 0.1 and 0.3 both algorithms

worked quite well. The pc-algorithm made one mistake at each missingness rate whereas the

mvpc-algorithm recognised everything correctly at the 0.1 scenario. When having a missing-

ness rate of 0.6 we can see in figure 15 that the y variable and the x8 variable were predicted

to be MAR instead of MCAR, whereas the mvpc-algorithm in figure 16 classified everything

correctly. Of course the overall graph structure is not quite good since it does not recognise

a lot of relations between variables which have one but this is not the first aim here since we

are only interested in classifying the correct types of missingness processes.
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m−graph for experiment: mcar and relative missingness: 0.6
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Figure 15: The graph displays the prediction of the graphical model when using the pc-
algorithm when having simulated MCAR variables only and a missingness rate of 0.6 for each
variable.
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m−graph for experiment: mcar and relative missingness: 0.6
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Figure 16: The graph displays the prediction of the graphical model when using the mvpc-
algorithm when having simulated MCAR variables only and a missingness rate of 0.6 for each
variable.

In the MAR scenario things went very well as for the mvpc as for the pc-algorithm for the

missingness rates 0.1 and 0.6. As you can see in figure 17 the pc-algorithm predicted bidirected

arrows for all variables which are connected to x1 which yields an MNAR prediction and also
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the missingness indicator of x5 is connected to another missing indicator namely x6 which

again let us assume that we have an MNAR process here. The mvpc-algorithm had in the

0.3 scenario the exactly same problems which can be seen in figure 59 in the Appendix.

m−graph for experiment: mar and relative missingness: 0.3
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Figure 17: The graph displays the prediction of the graphical model when using the pc-
algorithm when having simulated MAR variables only and a missingness rate of 0.3 for each
variable.
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On the other hand both algorithms worked nearly perfectly when having a missingness rate of

0.3 20 and 0.1 in the MNAR scenario but have some problems recognising one MNAR process

and also one MCAR process with a missingness rate of 0.6 18 19. When using the pc-algorithm

x7 which is MCAR is predicted to be MNAR since it has a connection with x8 which itself is

missing, whereas the mvpc-algorithm predicted it correctly. But before concluding that the

mvpc-algorithm did a better job in general we have to look at our target variable y which is

in many applications of high interest for us and this variable is wrongly predicted as MCAR

from the mvpc-algorithm which is undesirable. The pc-algorithm has also not recognised all

the true relations of y correctly but at least it would yield the correctconclusion that y is in

fact MNAR.

As you can see it is not easy to decide which algorithm works better since they perform both

quite similar. Further we have to keep in mind that there is always some randomness in our

model and we should not overinterprete the results of one replication.

This is why we will have a look at the averaged performance of those models when repeating

the procedure 100 times with slightly different datasets caused due to this randomness and

produced by replicating the same data model. Moreover we will change also the size of the

dataset to investigate if the algorithms work also for smaller data.

In summary it can be said that the algorithms work in general quite good for this single

dataset but nevertheless there are problems in some specific scenarios. Since some theoretical

assumptions, especially the normality assumption, are violated, we have simulated also a

dataset which contains only normal distributed variables of which only one is missing in the

MCAR and MNAR scenario and two are missing in the MNAR scenario to make the MNAR

relation possible. Further the covariates are independent from each other to make the structure

of the graph as simple as possible to examine if the algorithms work far better under these

perfect conditions which of course are not very realistic in practice. The theoretical graphical

model for MNAR can be seen in figure 23. The theoretical structures for MAR and MCAR

cases are the trivial reductions of this graph and are shown in Appendix B. On the whole the

algorithms worked very good for this dataset, which is not very surprising but nevertheless

also these graphs have for some setups problems with recognising the missing type correctly

as in figure 22. Here the missing indicator variable should be connected to x1 to be classified

as MAR but it is not and hence classified as MCAR. We will see also in the following that

the performance suffers strongly under the reduction of the sample size even if the dataset is

in theory perfectly suitable for using this models. This is why we will not proceed with the

analysis of this simplistic normal distributed dataset, since it does not perform much better

than the mixed dataset and does not represent a realistic dataset in practice. If someone is

still interested in the analysis of this dataset she/he might use the provided r-code to get the

results for the imputations, which we will discuss later.
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m−graph for experiment: mnar and relative missingness: 0.6
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Figure 18: The graph displays the prediction of the graphical model when using the pc-
algorithm when having simulated MNAR variables x2, x3, x5, x6, x8, y and MCAR variables
x1, x7 and a missingness rate of 0.6 for each variable.
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m−graph for experiment: mnar and relative missingness: 0.6
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Figure 19: The graph displays the prediction of the graphical model when using the mvpc-
algorithm when having simulated MNAR variables x2, x3, x5, x6, x8, y and MCAR variables
x1, x7 and a missingness rate of 0.6 for each variable.
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m−graph for experiment: mnar and relative missingness: 0.3
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Figure 20: The graph displays the prediction of the graphical model when using the mvpc-
algorithm when having simulated MNAR variables x2, x3, x5, x6, x8, y and MCAR variables
x1, x7 and a missingness rate of 0.3 for each variable.
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m−graph for experiment: mnar and relative missingness: 0.3
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Figure 21: The graph displays the prediction of the graphical model when using the mvpc-
algorithm when having simulated MNAR variables x2, x3, x5, x6, x8, y and MCAR variables
x1, x7 and a missingness rate of 0.3 for each variable.
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m−graph for experiment: mar_x2 and relative missingness: 0.1

x1

x2

x3

x4

x5
y

missing_x2

Figure 22: The graph shows the predicted graphical model under MAR in the multivariate
normal dataset when having a missingness rate of 0.1 and having used as well the pc-algorithm
as the mvpc-algorithm.
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m−graph for experiment: mnar_x2 and relative missingness: 0.6
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Figure 23: The graph shows the predicted graphical model under MNAR in the multivariate
normal dataset when having a missingness rate of 0.6 and having used the pc-algorithm.

Overall evaluation of the m-graphs

Figure 24 reinforces this statement. Also for the normal distributed dataset 100 replications

were done to reduce the variance of the results due to randomness. The figure on the left
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shows the results for the pc-algorithm and that one on the right represents the results of the

mvpc-algorithm. On the x-axis we have the three different missingness rates and on the y-axis

the variables which have missing values. For each missing type one figure is provided. We

start with the MAR scenario and end with the MNAR. Although we choose n = 1000 as size

of the dataset only 40% of the MAR variables were recognised as MAR with a missingness rate

of 0.1. The results for smaller sample sizes were even worse 25. There the mvpc-algorithm

recognises nearly nothing correctly as MAR. We will have a look at the results for the mixed

dataset soon but even without having seen these results we can say that using the normal

distributed dataset does not lead to notably superior results.

Figure 24: Averaged evaluation of the classification predictions of 100 replicated graphical
models for the multivariate normal dataset when using the pc-algorithm on the left and the
mvpc-algorithm on the right and a sample size of n = 1000.

Figure 25: Averaged evaluation of the classification predictions of 100 replicated graphical
models for the multivariate normal dataset when using the mvpc-algorithm and a sample size
of n = 100.

Switching now back to the analysis of the mixed dataset we can see in figure 26 and figure

27 the results of the 100 replicated graphical models for the pc-algorithm and the mvpc-
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algorithm, respectively. Looking only at the colours we can see that the mvpc results are

lighter which means an overall better performance. This can be observed especially at the

MCAR scenario which is somehow obvious since the difference between the pc-algorithm and

the mvpc is primarily that the mvpc-algorithm deletes some additional edges which yields

more MCAR relations. The MNAR scenario is predicted by both algorithms very good

which is of high importance to us since MNAR imputation has to be treated differently.

The algorithms predict in this sense conservatively because nearly all MNAR are classified

correctly but some MAR for example are also classified as MNAR. In some applications this

trend might be better than the other way around, following the slogan "better safe than

sorry" when imputing missing values and adapting the imputations for MNAR scenarios. In

the MAR scenario the two categorical variables x6 and x8 were predicted nearly always false

from the mvpc-algorithm and also the pc-algorithm seems to have some problems with these

type of variables. Thus we can conclude that using continuous variables which are not normal

distributed as x2 and x3 pose no serious problem but using categorical ones could lead to

increasing errors at least in the MAR scenario. Further we observe that the predictions get

worse when increasing the missingness rate which is not surprising since we have then less

values to calculate the correlations for the independence tests in the graphical model. The

results for the smaller datasets n = 100 and n = 500 can be found in the Appendix B. For

n = 100 the modelling does not work reliably at all as also discussed in the normal dataset.

For n = 500 the algorithms worked quite well for the MCAR and MNAR scenario and also

the MAR scenario got good results apart from the categorical variables whose predictions got

even worse than in the n = 1000 case.
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Figure 26: Averaged evaluation of the classification predictions of 100 replicated graphical
models for the mixed dataset when using the standard pc-algorithm and a sample size of
n = 1000.
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Figure 27: Averaged evaluation of the classification predictions of 100 replicated graphical
models for the mixed dataset when using the mvpc-algorithm and a sample size of n = 1000.

Overall the quality of the predictions were satisfying and can be used with high confidence also

in practice when having at least 500 observations to detect the missingness type at hand. The

mvpc-algorithm did a slightly better work then the pc-algorithm but is not provided as a r-

package and hence not very user friendly. The pc-algorithm on the other hand is implemented

in the pcalg package and very easy to use. It depends on the single use case which algorithm

is preferable to use since the differences in performance are not too high. This missing value

type detection can be used for adapting the imputation as we will discuss in the following

chapter but the information itself can already be interesting for the researcher. By knowing

which variables are MNAR one can focus on these variables to investigate for instance why

people are not willing to answer certain questions in surveys. This can yield e.g. in social

science a better understanding of the communities we are living in and maybe also to an

improvement based on this analysis, e.g an improved survey design.
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4.3 Imputations

4.3.1 AMELIA

The information about the type of missingness can now be used to adapt the imputation

process. First we impute everything with the expectation-maximization with bootstrapping

algorithm implemented in the R-package Amelia II (13) although it produces in theory biased

results when having MNAR data at hand and hence likely also in practice. We will examine

this hypothesis with our simulation study and then adapt the imputation method of the as

MNAR classified variables to get theoretically valid imputations. Since Amelia II assumes

that our data is normally distributed we will apply transformations to our variables to make

them fit better into the normality assumption. The algorithm works also without these trans-

formations but of course performs better with them, which is why we decided to do them.

The applied transformations will be shortly discussed in the following.

We perform a ordered quantile normalization for the variable x2. This normalization tech-

nique is based off of a rank mapping to the normal distribution, which guarantees normally

distributed transformed data and is especially suitable when the data at hand is heavily

skewed as x2 is. The transformation looks as follows:

g(x) = Φ−1(
rank(x)− 0.5

length(x)
)

while x refers to the raw data(23). The chosen transformations are not arbitrary but selected

according to calculations of the bestNormalize package (22). The incorporated function at-

tempts to find and execute the best of all of potential normalizing transformations. It selects

the best one on the basis of the Pearson P test statistic for normality. The transformation that

has the lowest P, calculated on the transformed data, is selected. The Pearson test statistic is

P =
∑

(Ci − Ei)
2/Ei

where Ci is the number of counted and Ei is the number of expected observations (under the

hypothesis) in class i. The classes are build is such a way that they are equiprobable under

the hypothesis of normality.

For x3 we chose a simple square root transformation, whereas for the categorical variables we

used the non standardized arcsinh transformation:

g(x) = log(x+ sqrt(x2 + 1))

(22). After having imputed the missing values an inverse transformation has to be done to

obtain the original value ranges which is easily done with the predict method of the bestNor-
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malize package.

As already discussed in the previous chapter simulations are always linked with randomness,

which is why also for the imputations 100 replications were performed. In every of these 100

replications we imputed the data five times as characteristically done in multiple imputation.

To evaluate the goodness of the imputation we will have a look at the marginal densities for

continuous variables as well as histograms for the categorical ones on the one hand and on the

other hand at the parameter estimates of the linear regression models. Those will be fitted

firstly on the fully observed data rows, which is assumed to be the entire population, secondly

on the listwise deleted data in the following also denoted as complete cases and thirdly the

imputed dataset. We decided to not look at single imputation values as they do not tell

us whether the relations within the available dataset are retained which is of interest when

working with a dataset. Further it would be great if it would be feasible to compare the joint

density before and after imputation but since this joint density is in most cases not accessible

in closed form to us for now we stick with the marginal densities which serve only as indicators

of the goodness of the imputations and thus should not be over interpreted since even if the

densities look good for each variable the joint density might not be recovered as the relations

between variables potentially were not modelled correctly. To be able to aggregate the five

imputations into one graph we average over the five marginal densities which is a further a

reason why the graphs should not be over interpreted as they do not represent exactly the one

to one imputations. Nevertheless we have to somehow put our results into a clearly arranged

format to make visualization possible. For the categorical variables the average over the class

ratios in each imputation was taken to create the barplot.

Marginal view of imputations

Most of the categorical variables showed good marginal imputation results regarding to these

barplots C but not as good as proceeding just with the complete case analysis which is of

course very undesirable since we want to improve our results by imputing the missing values.

The imputation of x8 under MCAR with a missingness rate of 0.6 28 was very good which

is not surprising since MCAR is the easiest missing type to impute. When looking at the

results of the imputations for the MAR 29 and MNAR 30 scenario, things do not look so

good anymore. Whereas the third category of variable x6 was imputed nearly perfectly the

imputations of the first two categories were quite bad since the first one is twice as high as

it should be. Also for the x7 variable the imputations are far apart from the original values.

But it is interesting that MNAR imputation does not seem to perform worse than MAR

imputation although it should in theory. In fact you can find several plots in the Appendix

C where imputations in the MNAR scenario worked quite well.
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Figure 28: Histogram which displays the proportions between the categories of the categorical
variable x8 for the population, the observed and the imputed dataset with a missing ratio of
0.6 under MCAR.

Figure 29: Histogram which displays the proportions between the categories of the categorical
variable x6 for the population, the observed and the imputed dataset with a missing ratio of
0.6 under MAR.
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Figure 30: Histogram which displays the proportions between the categories of the categorical
variable x7 for the population, the observed and the imputed dataset with a missing ratio of
0.6 under MNAR.

Also for the continuous variables no significant differences between MNAR and the other

types of missingness are visible in the imputations. The imputation for the variables x1 and

x3 worked very good for all missingness rates although x3 is heavily skewed and not normal

distributed C. It has to be mentioned though that also the complete case analysis represents

the margins of the data very good. Especially for x2 the model had problems with the im-

putation when having a missingness rate of 0.6 in all three settings of missingness 31. Here

the complete case analysis was far better than the imputed one. For comparison also the

imputation without normalizing the variables before the imputation is shown in figure 32 to

show that the normalization is indeed improving the model. The imputation of x5 worked also

well 34 and gives also better results then the complete case analysis for a missingness rate of

0.6. Most plots which are showed here are with a missingness rate of 0.6 since it is more chal-

lenging to impute variables with a lot of missing values and one can conclude from the results

that if the imputation worked well with a missingness rate of 0.6 then it will most likely work

in general also for a lower missingness rate. For the other plots have a look at the Appendix C.
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Figure 31: Density of x2 before and after imputation with a missingness rate of 0.6 compared
to the population based density under MNAR. Here we have additionally normalized the
variable to improve imputation

Figure 32: Density of x2 before and after imputation with a missingness rate of 0.6 compared
to the population based density under MNAR.
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Figure 33: Density of x5 before and after imputation with a missingness rate of 0.6 compared
to the population based density under MAR.

Figure 34: Density of x5 before and after imputation with a missingness rate of 0.6 compared
to the population based density under MAR.

Goodness of imputation via regression

As already discussed in the introduction of this section one should not over interpret this

results since they do not cover any kind of relationship between the variables. This is why we
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will look now at the coefficients of the linear regression

y = β0 + β1x1 + β2x2 + β3x3 + β4x4 + β5x5 + β61x61 + β62x62 + β7x7 + β8x8 + β9x9

which cover some of the mentioned relations. With this regression we want to predict our

target variable y, the true simulated coefficients can be found in fiure 10. For the regression

parameters we have to first pool the results of these five imputations according to Rubin’s

Rules before pooling the results for the 100 imputations. This was done with the pool() func-

tion from the mice (31) (3) package which is one of the most popular packages for multiple

imputation especially when you are interested in using Markov Chain Monte Carlo approaches.

After having pooled the coefficients themselves but also their variances, confidence intervals

were produced which are displayed in the following graphics. We compare the confidence

intervals from the imputations with those of the original dataset which represents our popula-

tion without any missigness and the complete case analysis if we have at least 5 observations,

else we take only the population based estimates for comparison. Note that the real values

of the regression are taken to be the point estimates of the population estimates since we

treat the dataset as the whole population and not as sample of the population. Theoretically

one could compare the coefficients also with the theoretically real values which were used to

create the population but we will not do that here since we want to portray the population

with our simulation.

Overall the results showed that especially for high missingness rates the coefficients of the

imputations are a lot closer to the population coefficients then the complete case analysis

estimates. Not only the point estimates themselves are closer to the true values but also

the variances are far smaller which means that we have less uncertainty in the estimation

than when using the complete cases which is obvious since we have considerably less data

for the complete case estimation. For missingness rates of 0.6 often it was not even possible

to estimate coefficients since the complete cases were too few which is also the reason why

we will not look at estimated coefficients for less then five observations. This estimations

are very unstable and the variances so high that it does not make sense to interpret them.

An example for a missingness rate of 0.6 for each variable which yields a total number of 35

complete observations in the MAR scenario can be found in figure 35. One can see that the

confidence intervals of the complete cases are far bigger then those of the imputed coefficients.

For the variable x7 the estimated value from the complete cases is so far out of range that

it is not even displayed. The 95% confidence intervals of the imputations from most of the

variables cover the true value. An exception is the variable x6 which might be caused due to

the categorical nature of this variable. But especially for the continuous ones the imputation

is better than the estimation using only the complete cases. Taking these results into account,
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which assess the relations between the different variables more realistically and hence indicate

better whether the dataset as a whole is well imputed, show us that, as already mentioned,

that the marginal densities we have looked at before should not be overinterpreted. Whereas

the imputations seemed to be often even worse than the complete cases when considering only

the marginal densities the estimation of the coefficients demonstrates the opposite.

Figure 35: Pooled coefficients from Amelia imputation in the MAR scenario with 0.6 miss-
ingness in each variable compared to the list wise deletion calculated coefficients and the
population based coefficients.

If only few entries are missing as in figure 36 it can be assumed that the complete cases can

cover the relations between the variables still quite good. This can be seen also in the figure.

There are not much differences between the complete case analysis and the imputed data

analysis. The intervals are similar wide but nevertheless the point estimates of the imputed

data are slightly more precise. It is interesting that this holds especially for the categorical

variables, e.g the coefficient for x9 was estimated perfectly with the imputed data.
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Figure 36: Pooled coefficients from Amelia imputation in the MAR scenario with 0.1 miss-
ingness in each variable compared to the list wise deletion calculated coefficients and the
population based coefficients.

When looking at the MCAR scenario with a missingness rate of 0.3 which corresponds to an

amount of 105 fully observed rows 37, the interpretation is similar to that of the 0.6 scenario

from above. Also here the estimation of the imputed continuous variables worked better than

for the categorical ones, e.g x5 was estimated perfectly with the imputed values whereas it

could be better for the complete cases. Moreover this time every confidence interval based

on the imputed data covers the true value. Note that also the complete case analysis covers

the true values for every variable but of course this is also due to the wide ranges of these

confidence intervals. Now we want to compare the MCAR scenario with the MNAR scenario

to see if the theoretically existing bias in the imputation is also visible in the simulation

38. It can be seen that e.g. the estimated coefficients for x2 got worse but is still in the

confidence interval as every other estimated coefficient. Also the estimates for the variables

x3 and x5 are not as good as before but on the other hand the estimation for the coefficient of

x8 and x9 improved. Note that in the MNAR scenario due to randomness more data points

were partially observed than in the MCAR scenario, which makes a one to one comparison

difficult. Nevertheless we can say that in general the results are not much worse for the MNAR

scenario then for the MCAR scenario. Still it is never bad to search for alternatives which do

not violate model assumptions because even if in this simulation the imputation for MNAR

seems to work quite well with Amelia one has no guarantee that it will work also with another

dataset since the theory has proofed that the imputations under MNAR are biased. This is

why we will discuss also the knn imputation as a potential solution in the next section, which

does not have any model assumptions that can be violated by MNAR data.
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Figure 37: Pooled coefficients from Amelia imputation in the MCAR scenario with 0.3 miss-
ingness in each variable compared to the list wise deletion calculated coefficients and the
population based coefficients.

Figure 38: Pooled coefficients from Amelia imputation in the MNAR scenario with 0.3 miss-
ingness in each variable compared to the list wise deletion calculated coefficients and the
population based coefficients.
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4.3.2 Weighted knn

In this section we want to examine if the imputations can be improved when using a non

parametric imputation method which has no model assumptions and hence does not violate

those under MNAR. For the implementation the R-package kknn (25) was primarily used. It

offers you the possibility to hand over the nominal variables and the columns which should be

taken into account for the calculation of the distances. The distances were weighted according

to the rules presented in section 2.2.2. The information retained from the graphical models

was used to focus only on distances between variables which have some kind of relation,

i.e edges in the graph to remove noises caused due to uncorrelated variables. Not only the

variables that had edges with the variable of interest itself were included in the calculation

but also these ones which had edges with the missing indicator variable of the corresponding

variable. Further the epanechnikov kernel was used as an argument of the kknn() function.

Note that until now we focused on the interpretation of the coefficients based on the true

underlying scenarios MCAR, MAR and MNAR. Now we want to include our results from the

classifications for each variable from the graphical models and impute only those variables with

the knn method which were classified as MNAR and not those which are indeed MNAR. We

will do so because we want to examine if the imputations improve when using the graphical

models before to decide which imputation method is adequate. Imputing simply all true

MNAR variables assumes that the graphical models exhibits no classification errors which is,

as we have seen, not realistic, although a high accuracy is likely.

Further the preimputed data created by Amelia II was used for all variables which were not

imputed in the current state as input for the function to make calculations between these

variables and that one which should be imputed in this state possible. This was repeated

until every variables which was classified as MNAR was imputed by the knn method.

Again we have to account for variances in the knn imputation due to randomness which is

why we repeated also this imputation method also 100 times and pooled the results such that

we are able to interpret them.

Starting with the comparison of the densities we can see that the knn imputations worsen

significantly with increasing missing ratio 39 39 41, especially when comparing them to the

Amelia imputations which seem to be more robust against these changes. For a missingness

rate of 0.1 the knn method can compete with the Amelia imputation but for a missingness

rate of 0.6 for sure not.
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Figure 39: Averaged density of x2 before and after imputation with Amelia and knn, respec-
tively with a missingness rate of 0.6 compared to the population based density under MNAR.

Figure 40: Averaged density of x2 before and after imputation with Amelia and knn, respec-
tively with a missingness rate of 0.3 compared to the population based density under MNAR.
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Figure 41: Averaged density of x2 before and after imputation with Amelia and knn, respec-
tively with a missingness rate of 0.1 compared to the population based density under MNAR.

Besides the imputation of the x2 variable also the variables x5 and y were not satisfyingly

imputed by the knn method as visualised in figures 44 42. The values around the mean are

clearly over estimated. Even the complete case density in the 0.6 missing scenario is far closer

to the true marginal density than the knn density. But it has to be again noted that if one

considers only the marginal densities a missingness rate of 0.6 means that exactly 60% of

the variable which we are looking at is missing but if you are interesting in recovering the

relations between more variables as done in the presented linear regression based assessment

far more observations are not fully observed which is why we can assume that the joint den-

sity for the dataset would look much worse for the complete data cases than the imputed ones.
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Figure 42: Averaged density of x5 before and after imputation with Amelia and knn, respec-
tively with a missingness rate of 0.6 compared to the population based density under MNAR.

Figure 43: Averaged density of y before and after imputation with Amelia and knn, respec-
tively with a missingness rate of 0.6 compared to the population based density under MNAR.

Even if the knn method has again overestimated the density around the mean for the variable

x3 it is competitive to the imputation of Amelia which has underestimates this area of the

density. The problem with overestimating the density around the mean is probably due

to the construction of the knn algorithm which calculates the distances and averages them

afterwards such that values around the mean are more heavily influencing the resulting value
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of the missing entry.

Figure 44: Averaged density of x3 before and after imputation with Amelia and knn, respec-
tively with a missingness rate of 0.6 compared to the population based density under MNAR.

The differences between the different estimates were very little for the categorical variables,

which is why the results will be presented in the tables below, showing only the difference be-

tween the estimation and the true population value instead of looking at the barplots. Table

1 displays the averaged error of the estimated ratios for the MNAR variables x6 and x8 for

the scenario where 10% of the variable entries are missing. Since x8 is binary it is sufficient

to look only at the error rate of the ratios for category 0. The error of category 1 is then

exactly the same value with opposite sign. Variable x6 has three categories hence we have

to consider two of them. It is interesting that unlike for the continuous variables the knn

algorithm worked well for the categorical variables in this scenario. At least if we compare

the results with the Amelia imputation. The complete case analysis is even better than the

knn imputation not only for a missingness rate of 0.1 but also for higher missingness rates 2

3. Even if more then the half of the entries is missing 3, the complete case analysis performed

better than the imputation based analyses. This is surprising but maybe also misleading as

we will see in the following, when looking at the regression coefficients which consider also the

relations between the variables. In that case that we have a missingness rate of 0.3 the results

of the knn imputation and the Amelia imputation are quite similar. You can notice that the

results of the knn algorithm are still slightly better than those of the Amelia one whereas that

changes when increasing the missingness rate to 0.6. The results are again comparable but

now Amelia outperforms knn, especially for the estimated ratio of x62 and therefore also for

the reference category which is not displayed.

72



In summary it can be said that the performance of the knn imputation suffers greatly by in-

creasing the missingness rate both for the continuous and for the categorical variables whereas

Amelia is more robust against these changes. Contrary to our expectations the performance

of the complete case analysis did not suffer from increasing the missingness rate in the cate-

gorical variables. Nevertheless the results should be interpreted with care, since they do not

cover the multivariate dependence between the variables and do not give indication of whether

the joint density which is often of interest is estimated correctly or not.

x61 x62 x8

complete cases 0.0019 0.0024 -0.0044

Amelia -0.025 0.048 0.011

knn -0.003 0.024 0.012

Table 1: Table displays the difference between the imputed ratios and the true ratios of the
categorical variables. The results of the three different approaches are listed row wise. The
categorical variables which are analysed are displayed in the columns. The present missingness
rate is 0.1.

x61 x62 x8

complete cases -0.0070 0.0123 0.0014

Amelia -0.091 0.145 0.024

knn -0.085 0.15 0.018

Table 2: Table displays the difference between the imputed ratios and the true ratios of the
categorical variables. The results of the three different approaches are listed row wise. The
categorical variables which are analysed are displayed in the columns. The present missingness
rate is 0.3.

x61 x62 x8

complete cases -0.007 -0.002 -0.01

Amelia -0.133 0.154 0.035

knn -0.175 0.298 0.038

Table 3: Table displays the difference between the imputed ratios and the true ratios of the
categorical variables. The results of the three different approaches are listed row wise. The
categorical variables which are analysed are displayed in the columns. The present missingness
rate is 0.6.

In the following we will proceed with examining if the relations between the variables were

retained when using knn imputation by looking again at the coefficients of the linear regression

model. It is interesting that one of the worst estimates is that one of x4 which itself is not

missing 45. This shows that the bad imputation of a variable can influence the estimate
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of another variable which might be well imputed or not even missing. This emphasises the

statement that it is not enough to look only at the marginal densities. The confidence intervals

are very tight but do not cover the true values for many variables as x3, x62 and x9. We

can further see that those variables were treated as MNAR that are indeed MNAR, so the

classification itself worked good in this example.

Figure 45: Pooled coefficients from Amelia imputation and knn imputation in the MNAR
scenario with 0.3 missingness in each variable compared to the list wise deletion calculated
coefficients and the population based coefficients. The variables which were predicted as
MNAR from the graphical model are used for knn imputation

While figure 45 shows the results for a missingness rate of 0.3, only 10% of the observations

for each variable are missing in figure 46. Since less data points are missing it is easier for

the knn algorithm to impute the values correctly. Therefore the true values are covered by all

confidence intervals. The confidence intervals of the knn results are slightly tighter than those

of the Amelia imputation and of course also than those of the complete case analysis, as you

can see e.g when comparing the estimated intervals of x61 or x7. This means that the variance

and hence also the uncertainty is smaller when using the knn algorithm. On the other hand

we have again clearly better point estimates for the variables x1, x3, x5, x9 and the intercept

when using Amelia imputation instead of knn imputation. Compared with the complete case

analysis the point estimates are similar to those of the knn imputation. Taking into account

that the intervals are much bigger when not imputing the missing values it is worth to use

the knn imputation instead of doing a complete case analysis. If we increase the missingness

rate to 0.6 47 it is also recommended to use knn imputation instead of complete case analysis

since the remaining amount of fully observed values is 5 which does not make it possible to

calculate meaningful estimates for the coefficients. Nevertheless Amelia outperforms knn again
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significantly. While the 95% intervals of the Amelia imputation cover all true values, only

four out of eleven knn intervals cover the true values. Again we can observe that the intervals

are much smaller when using knn imputation, which is also a reason why the probability

of covering the true value when using Amelia is much higher. Nevertheless we also notice

that the point estimates of Amelia are with exception of the estimates of x2, x4, x9 always

much closer to the true value then those of the knn imputation. Only the estimate of x4 got

nearly perfectly calculated by using knn imputation instead of Amelia imputation. Overall

Amelia performs better than knn based extension for MNAR variables although it violates

some model assumptions not even for a missingness rate of 0.6 but for all missingness rates.

Note that in figure 47 x1 was treated also as MNAR although it was simulated as MCAR

since the graphical model classified this variable wrongly. Assuming that the graphical model

has classified everything correctly yields figure 48. This figure shows comparable results as

figure 47. Also here the true values is often not covered by the knn intervals and the point

estimates are in the most cases worse than those of the Amelia imputation. It seems that the

x1 variable which was classified wrongly did not influence the results of the coefficients a lot.

Especially for the estimate of x1 itself the results are overlapping but as we have seen before

a bad imputation of a variable can be unrecognised if we look only at the variable itself and

not at the whole dataset, including their depenence etc.

Figure 46: Pooled coefficients from Amelia imputation and knn imputation in the MNAR
scenario with 0.1 missingness in each variable compared to the list wise deletion calculated
coefficients and the population based coefficients. The variables which were predicted as
MNAR from the graphical model are used for knn imputation
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Figure 47: Pooled coefficients from Amelia imputation and knn imputation in the MNAR
scenario with 0.6 missingness in each variable compared to the population based coefficients.
The variables which were predicted as MNAR from the graphical model are used for knn
imputation

Figure 48: Pooled coefficients from Amelia imputation and knn imputation in the MNAR
scenario with 0.6 missingness in each variable compared to the population based coefficients.
The variables which were simulated as MNAR from the graphical model are used for knn
imputation
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5 Conclusion

The importance of considering missing values in a data analysis is due to its potentially high

amount of information unquestionable. The difficult question is not if we should incorporate

missing data analysis in our data analysis but how we should do it. This work has presented

two approaches which cover two different aspects of missing data analysis. Firstly we answered

the question: Why is the data missing? by using graphical models and classifying the missing

values into the three categories of missingness: MCAR, MAR, MNAR. Secondly we looked

at the question: How should we impute the missing values? The second question can be

answered also independent from the first one by just trying to find a generally best imputation

methodfor all missigness types. We focused on combining the two questions and using the

information about the missingness process to adapt the imputation if missingness is MNAR

to work on this question.

Since Mohan et. al. have proven that traditional graphical models are biased when missing

data is present and have provided an alternative graphical model which yields in theory

better results, it seemed reasonable to compare these two approaches when classifying the

missing value types. The results in the simulation study showed that the adapted mvpc-

algorithm indeed achieved a better classification accuracy, especially for the MAR variables.

Nevertheless also the results from the traditional pc-algorithm, which is compared to the

mvpc-algorithm, that is not available as a R package, very easy to use, were satisfactory. The

performance worsened slightly by increasing the missingness rate, but was still good. Severe

problems have been observed when decreasing the sample size on the other hand. Independent

of the chosen algorithm the classifications were unreliable and it is not advisable to use those.

The results of the simulation study indicate that assuming that one has data with at least

500 observations using graphical models to detect the missing type is recommended.

Is it also recommended to use this information further for adapting the imputation method? In

theory we have seen that MNAR imputations are biased when using model based imputation

methods. In the simulation study this behaviour could not be reproduced from the analysis of

the regression coefficients. Although we simulated the data to have strong MNAR relations by

fixing the multiplier to a value of three 4.1 the estimated coefficients are comparably accurate

compared to those estimated under MAR or MCAR. Of course this is not a guarantee for

other datasets which is why even if the imputation quality did not seem to suffer under

MNAR in this simulation study it would still be great to find an alternative imputation

method which does not violate model assumptions and gives thus in theory unbiased results.

Based on that we tried also an imputation method based on the weighted knn algorithm

for the MNAR variables predicted by the graphical model. For most of the cases the knn

imputation performed worse than Amelia imputation. However the confidence intervals of
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the analyzied regression coefficients were smaller which is desirable since this demonstrates

less uncertainty. But in many cases they did not even cover the true values which is of course

undesired, since it indicates stability issues in the estimation.

Even if the knn imputation does not violate model assumptions since it is an unparametric

procedure and is hence in theory more adequate for the MNAR case, it does not seem like

a good alternative to Amelia imputation in practice based on the results of this simulation

study. Nevertheless several other simulation studies can be found in the literature which

showed biased results for MNAR, which underlines the future relevance of finding an unbiased

method for MNAR imputation. Maybe knn is not the best alternative or can be improved

by doing a multiple steps knn or changing the weights in a more proper way. At least the

simulation study has shown that probably all of the studies done in practice which mostly

assume MAR or MCAR processes to impute their data are not as bad as expected from the

theory. For now we can conclude that as the detection of missingness types using graphical

models works with high accuracy in cases with adequate data size the open challenge remains

in finding a rigorous imputation method for adapting the MNAR imputations that perform

competitively with respect to standard imputation methods. Besides, the detection by itself

can result in valuable insights for the researcher performing the analysis.
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Appendices

A Data Simulation

Figure 49: Graph that displays the relationship of the missing values of the normal distributed
variable x5 on the x-axis and the normal distributed Variable x1, that contains MCAR values,
on the y-axis which influences the missing process of x5 in such a way that it is MNAR.

Figure 50: Graph that displays the relationship of the missing values of the normal distributed
variable y on the x-axis and the normal distributed Variable x1, that contains MCAR values,
on the y-axis which influences the missing process of y in such a way that it is MNAR.
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Figure 51: Graph that displays the relationship of the missing values of the normal distributed
dataset with x2 on the x-axis and x5, that contains MCAR values, on the y-axis which
influences the missing process of x2 in such a way that it is MNAR.
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B Graphical models

m−graph for experiment: mcar and relative missingness: 0.1
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Figure 52: The graph displays the prediction of the graphical model when using the pc-
algorithm when having simulated MCAR variables only and a missingness rate of 0.1 for each
variable.
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m−graph for experiment: mcar and relative missingness: 0.3
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Figure 53: The graph displays the prediction of the graphical model when using the pc-
algorithm when having simulated MCAR variables only and a missingness rate of 0.3 for each
variable.
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m−graph for experiment: mcar and relative missingness: 0.1
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Figure 54: The graph displays the prediction of the graphical model when using the mvpc-
algorithm when having simulated MCAR variables only and a missingness rate of 0.1 for each
variable.
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m−graph for experiment: mcar and relative missingness: 0.3
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Figure 55: The graph displays the prediction of the graphical model when using the mvpc-
algorithm when having simulated MCAR variables only and a missingness rate of 0.3 for each
variable.
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m−graph for experiment: mar and relative missingness: 0.1
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Figure 56: The graph displays the prediction of the graphical model when using the pc-
algorithm when having simulated MAR variables only and a missingness rate of 0.1 for each
variable.
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m−graph for experiment: mar and relative missingness: 0.1

x1

x2

x3

x4

x5

x6

x7x8

x9

y

missing_x2

missing_x3

missing_x5

missing_x6

missing_x8

missing_y

Figure 57: The graph displays the prediction of the graphical model when using the mvpc-
algorithm when having simulated MAR variables only and a missingness rate of 0.1 for each
variable.
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m−graph for experiment: mar and relative missingness: 0.6
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Figure 58: The graph displays the prediction of the graphical model when using the pc-
algorithm when having simulated MAR variables only and a missingness rate of 0.6 for each
variable.
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m−graph for experiment: mar and relative missingness: 0.3
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Figure 59: The graph displays the prediction of the graphical model when using the mvpc-
algorithm when having simulated MAR variables only and a missingness rate of 0.3 for each
variable.
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m−graph for experiment: mar and relative missingness: 0.6
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Figure 60: The graph displays the prediction of the graphical model when using the mvpc-
algorithm when having simulated MAR variables only and a missingness rate of 0.6 for each
variable.
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m−graph for experiment: mnar and relative missingness: 0.1
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Figure 61: The graph displays the prediction of the graphical model when using the pc-
algorithm when having simulated MNAR variables only and a missingness rate of 0.1 for each
variable.
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m−graph for experiment: mnar and relative missingness: 0.1
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Figure 62: The graph displays the prediction of the graphical model when using the mvpc-
algorithm when having simulated MNAR variables only and a missingness rate of 0.1 for each
variable.
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m−graph for experiment: mcar_x2 and relative missingness: 0.1
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Figure 63: The graph shows the correct graphical model under MCAR in the multivariate
normal dataset, which was also predicted by both the pc-algorithm and the mvpc-algorithm
when having a missingness rate of 0.1 and 0.6.
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m−graph for experiment: mar_x2 and relative missingness: 0.6
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Figure 64: The graph shows the correct graphical model under MAR in the multivariate
normal dataset, which was also predicted by both the pc-algorithm and the mvpc-algorithm
when having a missingness rate of 0.3 and 0.6.
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m−graph for experiment: mnar_x2 and relative missingness: 0.3
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Figure 65: The graph shows the correct graphical model under the MNAR scenario in the
multivariate normal dataset, which was also predicted by both the pc-algorithm and the
mvpc-algorithm when having a missingness rate of 0.3.
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m−graph for experiment: mnar_x2 and relative missingness: 0.6

x1

x2

x3

x4

x5

y

missing_x2

missing_x5

Figure 66: The graph shows the predicted graphical model under MNAR in the multivariate
normal dataset when having a missingness rate of 0.6 and having used the mvpc-algorithm.
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Figure 67: Averaged evaluation of the classification predictions of 100 replicated graphical
models for the mixed dataset when using the mvpc-algorithm and a sample size of n = 500.

Figure 68: Averaged evaluation of the classification predictions of 100 replicated graphical
models for the mixed dataset when using the mvpc-algorithm and a sample size of n = 100.
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C Imputation

Figure 69: Pooled coefficients from Amelia imputation in the MCAR scenario with 0.1 miss-
ingness in each variable compared to the list wise deletion calculated coefficients and the
population based coefficients.

Figure 70: Pooled coefficients from Amelia imputation in the MCAR scenario with 0.6 miss-
ingness in each variable compared to the list wise deletion calculated coefficients and the
population based coefficients.
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Figure 71: Pooled coefficients from Amelia imputation in the MAR scenario with 0.3 miss-
ingness in each variable compared to the list wise deletion calculated coefficients and the
population based coefficients.
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