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Abstract

The integrity of longitudinal studies is deeply interconnected with the accurate management of miss-
ing data, a ommnipresent issue that can introduce significant bias if improperly addressed. This
paper aims to reproduce and build upon a previous simulation study that evaluated nine methods
for handling missing data in the context of estimating the average treatment effect (ATE) using tar-
geted maximum likelihood estimation (TMLE). Building on this, the current study implements and
assesses a variety of TMLE methods in R, testing their robustness under extended data-generating
processes. Scenarios where the ATE is not recoverable, and complete-case methods yield satisfac-
tory or superior performance are specifically examined. Results align with previous findings that no
single method consistently outperforms across all missing directed acyclic graphs (m-DAGs). Non-
MI methods like complete-case and extended TMLE exhibit lower relative bias for certain m-DAGs
but underestimate model standard errors (ModSEs) especially in complex scenarios. Conversely in
the reproduced simulation, MI methods, notably MI Amelia, demonstrate precision and low bias,
resulting in low root mean square error (RMSE), even though there is an overestimation of Mod-
SEs. Certain considered TMLE implementations perform superiorly across all scenarios. These
findings underscore the necessity of considering the specific scenario and m-DAG when selecting an
imputation method, and emphasize the implications of increased complexity on the reliability of

imputation and estimation methods.
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1 Introduction

Longitudinal studies are an indispensable tool in epidemiologic research, providing critical insights
into health trends, disease processes, and the impact of interventions over time. Central to the utility
and validity of these studies is the principle of causal inference. In this domain, targeted maximum
likelihood estimation (TMLE) has emerged as a robust method for causal effect estimation. Esteemed
for its double-robustness, TMLE offers the potential for unbiased estimates even under conditions where
some model assumptions are not fully satisfied. However, the enduring challenge of handling missing
data persists in the deployment of TMLE, as it does across the broader landscape of epidemiologic
research. Missing data are a common occurrence in longitudinal studies. If not correctly managed,
they have the potential to introduce bias, decrease statistical power, and complicate the data analysis
process. As such, the manner in which researchers approach missing data is of critical importance.
Directed acyclic graphs (DAGs), or causal diagrams, serve as vital conceptual tools in this regard.
They are frequently used to visualize the relationships among various variables and anticipate potential
bias due to confounding or selection bias. When dealing with missing data, these diagrams can be
instrumental in understanding the underlying data-generating mechanism, guiding the choice of the
appropriate methodology for handling missing data. The correct strategy can range from simple
methods like complete-case analysis to more advanced techniques like multiple imputation, depending
on whether the data are missing completely at random (MCAR), missing at random (MAR), or missing
not at random (MNAR). This study was initially motivated by the intent to reproduce and expand on
the research of Dashti et al. (2021). The paper brought into focus the performance of complete-case
methods in scenarios involving missing directed acyclic graphs (m-DAGs) where the target parameter
is whether recoverable and not recoverable. It was found that complete-case methods often provided
sufficiently good performance compared to standard alternative methods, such as multiple imputation
by chained equations (MICE) The present research aims to build upon this work by conducting a
comprehensive simulation study that evaluates various methods for managing missing data within the
diverse TMLE implementations available in R (R Core Team, 2023).

2 Motivation/Aim

The initial motivation for this thesis was to reproduce the simulation study of Dashti et al. (2021). In
summary, they evaluated the performance of nine available approaches to handle missing data when
estimating the average treatment effect (ATE) using targeted maximum likelihood estimation (TMLE)
with data-adaptive methods in different complex datasets. This was based on motivating data from the
Victorian Adolescent Health Cohort Study. For the simulation of missing data processes, various miss-
ing directed acyclic graphs (m-DAGs) were used, encapsulating conventional missing data mechanisms
observed in epidemiological research involving incomplete data on exposure, outcome, and confound-
ing variables. Furthermore, the focus should be on m-DAGs where the target parameter (ATE) is not

recoverable, and complete-case methods still provide sufficiently good or better performance than the



standard alternative methods (like multiple imputation with multivariate imputation by chained equa-
tions). Various TMLE implementations in R (R Core Team, 2023) are also to be used and compared
under similar settings and scenarios. In addition, the results and approaches of Dashti et al. (2021)

should be tested for their robustness under different extended data-generating processes.

3 Theoretical Background

3.1 Missing Data

In the context of partially observed data, we characterize the missing mechanism by the conditional
distribution of missing indicator matrix R given the complete data matrix X. The complete data X
is a matrix consisting of n observations and p features, each feature being represented by an index
j=1,...,pand each observation by an index ¢ = 1,...,n. Each feature can be thought of as a column
in the matrix. Every element of R; is an indicator of missing data, and it denotes the status of each
component of a feature vector X;. More specifically, if an individual data point in feature X, let’s
denote it as Xj;, is observed, then the corresponding entry in R, denoted as R;; = 1. Conversely,
R;; = 0 if X;; is missing.The term ’'missing pattern’ represents the distribution or propensity of
missing data, as indicated by R, across the complete data set X. Analyzing this pattern provides
insights into the nature of the missing data within the dataset. The most typical categorization of

missing mechanisms is as follows (Little and Rubin, 2002):

e Missing Completely at Random (MCAR): This occurs when the missing pattern is com-
pletely random and independent of the data. In other words, the probability of a data point
being missing does not depend on the data itself: P(R | X) = P(R).

e Missing at Random (MAR): The missing pattern is independent of unobserved values Xiyiss
conditioned on observed values Xops : P(R | X) = P (R | Xobs)-

e Missing Not at Random (MNAR): The missing pattern may depend on unobserved values.
This means that the missingness can depend on the actual values of the data, whether observed

or not.

Mechanisms such as MCAR and MAR are sometimes considered ignorable. This implies that these
mechanisms may not affect likelihood-based inference and thus can be disregarded (Rubin, 1975).
Many imputation methods handle MCAR or MAR data effectively. However, data being MNAR
present more significant challenges for imputation methods, necessitating the modeling of the missing
mechanism itself. In the context of incomplete data, the MAR assumption is generally considered to
enable unbiased estimation when using suitable methods. Nonetheless, the importance of assessing the
plausibility of MAR and conducting sensitivity analyses under MNAR scenarios is underscored (van
Buuren, 2018).



3.1.1 m-Dags

With multivariable missingness, understanding the concept of MAR can be tricky. Interestingly, under
several MNAR scenarios, it is possible to obtain unbiased estimations using methods commonly asso-
ciated with MAR. As an alternative framework, directed acyclic graphs (DAGs) have been suggested
for specifying practically accessible assumptions beyond the MAR-MNAR dichotomy (Karthika and
Judea, 2019). Later in the conducted simulation, a general point-exposure study is considered, where
(i.e. in reproduced data) incomplete exposure A, incomplete outcome Y, an auxillary variable B, a set
of complete confounders W7 and Wi, and a set of incomplete confounders Wy, W3 and Wy are present.
These variables can be binary, continuous, or of any other type. Causal relationships between variables
are assumed to be depicted by DAGs, which utilize nodes connected by directed arrows. The absence
of relationships is encoded by the omission of variables or arrows (Greenland S., 1999). Furthermore
U is introduced, representing all completely unmeasured common causes of the exposure and outcome,
suggesting that the set of measured covariates is sufficient for confounding adjustment. The relation-
ships between the measured covariates are not depicted. The DAG that would be assumed if the data
were complete, named complete-data DAG (¢-DAG), can be considered in figure 1. However, a general
algorithm for deciding how to manage missing data based on a specific DAG is still lacking. In ad-
dressing this, Missingness Directed Acyclic Graphs (m-DAGs) have been formulated (Moreno-Betancur
et al., 2018), encapsulating conventional missing data mechanisms observed in epidemiological research
involving incomplete data on exposure, outcome, and confounding variables. These m-DAGs include
variable-specific missingness indicators to represent assumptions about missingness in each variable.
For instance, a missingness indicator for A is defined as M4 = 1 if A is missing and M4 = 0 if not. A
similar definition applies to My . As for the incomplete confounders, they are grouped together, with
the missingness indicator My, = 1 if any of the components of Ws, W3 and Wy is missing, and My = 0
otherwise. The basic MCAR or trivial m-DAG, denoted as T, is exemplified in figure 2, with U inten-
tionally omitted for a clearer view. To replicate the exact m-DAGs from Dashti et al. (2021), a slight
modification to the fourth assumption from Moreno-Betancur et al. (2018), which states that there
are no direct arrows between the missingness indicators, is needed when constructing m-DAGs. This
is because the missingness indicators are used to better control joint missing portions in the variables,
allowing associations among themselves. Although such causal relationships would be infrequent in the
point-exposure study, given that all variables and their missingness indicators, except for the outcome,
are measured simultaneously and therefore cannot cause one another. In short, all extensions of m-
DAG A (presented in figure 2) were sorted into 16 categories. This classification was based on whether
there were arrows from 1) confounders and/or the exposure variable to the missingness indicators of
other variables, 2) confounders and/or the exposure variable to their own missingness indicators, 3) the
outcome variable to missingness indicators of other variables, and 4) the outcome variable to its own
missingness indicator. The m-DAG with the most arrows was chosen as the canonical representative of
each class due to its general nature. Out of the 16 resulting canonical m-DAGs, ten and additionally
m-Dag T were selected, as illustrated in Figure 2. These were chosen for their representation of all dis-

tinct recoverability scenarios and for having the most arrows. Moreover, for each m-DAG, it is crucial



to determine whether common target parameters are recoverable. In cases where these parameters are
not recoverable, sensitivity analyses may be required. This work focuses on the recoverability of the
conditional distribution of outcome Y, since it is vital for the exposure-outcome association adjusted
for confounding through regression (and target parameter ) 47g). Further formal and technical details
including proofs are afforded in the Web Appendix of Moreno-Betancur et al. (2018). By definition,
recoverable parameters can be consistently estimated using only the available data, provided an ap-
propriate method is used. Available-case analysis involves estimating the target parameter using only
records with complete data on the involved variables. Importantly, if a parameter is recoverable in a
specific canonical m-DAG, then it is recoverable in all m-DAGs within the class that it symbolizes.
This is because these m-DAGs are derived by merely removing arrows. In brief, when the outcome vari-
able variable causes its own missingness, the conditional distribution of the outcome is not recoverable
(m-Dags G, H, J). In addition to this, the conditional distribution in m-Dags F, I is not recoverable
because of the collider structures A — My < Y and Wy, W3, Wy — My < Y. These structures
preclude identification of this parameter. For the m-Dag C, the joint distribution can be expressed in
terms of available data. This generally makes the conditional distribution of Y recoverable. Though,
it’s not expressible using an available-case approach. It’s necessary to note that modifying the fourth
assumption may result not just in an increase in the number of scenarios but also require further the-
oretical work. Nonetheless the conditional independence attributes for the respective m-DAGs remain
the same in m-DAGs A, B, D, E, and T where the conditional distribution of Y can be represented as
the conditional distribution among the complete cases. Thus providing theoretical recoverability for
the exposure-outcome association. However, for other recoverable parameters, potential selection bias
could be introduced by available-case analysis. Methods like multiple imputation (MI) can possibly
circumvent the selection bias in some situations with available-case analysis. Yet, these methods bring
into play parametric assumptions that extend beyond those of the analysis model (i.e., the outcome
regression). This could potentially lead to a precision gain in comparison to available case analysis,
but it might also induce misspecification bias (Moreno-Betancur et al., 2018). The unbiased nature of
multiple imputation is largely contingent on the quality of the parametric assumptions concerning the
target parameter, which connects to the concept of ’congeniality’ between the imputation and analysis
models (White et al., 2010).

3.1.2 MI - with mice and Amelia as R implementations

Missing data is a common issue in statistical analysis and machine learning, presenting challenges to
making valid inferences from the data. Multiple Imputation (MI), a technique developed by Rubin
(1977), has become a widely accepted approach for handling missing data. The power of MI lies in its
ability to generate multiple imputations, which captures together with incorporated random compo-
nents the uncertainty due to missingness (White et al., 2010). MI replaces each missing data point by
generating m independent simulated sets of values, drawn from the posterior predictive distribution of

the missing data conditional on the observed data. This differs from single imputation methods, which
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Figure 1: Complete-data directed acyclic graph (c-DAG) for a general point-exposure study. Exposure A,
outcome Y, auxillary variable B, a set of complete confounders W; and Wj, set of incomplete confounders
Wy, W3 and Wy and U as unmeasured common causes of the exposure and outcome. Figure has been adapted
from Moreno-Betancur et al. (2018).

replace missing values once, often leading to underestimated variance and overestimated significance
(van Buuren, 2018). The three stages of MI include generating multiply imputed datasets, analyzing
these datasets, and combining the estimates from these datasets (White et al., 2010):

e The initial stage involves creating m complete datasets. For an incomplete variable Z, this is
achieved by creating an imputation model that regresses Z on a set of variables, denoted as
X1,Xo,...,X,, which have complete data among individuals with observed Z values. If 6 and
V' are the set of estimated regression parameters and their corresponding covariance matrix from

fitting the imputation model, the process proceeds as follows:

1. A random draw, 8%, is obtained from the posterior distribution, which is often approximated
by 8% ~ N, (6, V).
2. Imputations for Z are drawn from the posterior predictive distribution of Z using 6* and

the appropriate probability distribution.

e Once the process of multiple imputation is completed, each dataset that has been imputed is
used to separate analysis utilizing standard methods for complete data. Given that the missing
values have been substituted with varying imputations, the outcomes from these m analyses will

not be identical.

e The m estimates derived from each respective analysis are subsequently integrated into a compre-
hensive estimate and a variance-covariance matrix using Rubin’s rules (Rubin, 1987). The com-
bined variance-covariance matrix encapsulates both within-imputation variability and between-
imputation variability. Assume 1&1 is an estimate of a univariate or multivariate parameter of

interest procured from the [th imputed dataset, and WV} is the estimated variance of 1&1. The



Figure 2: Missingness directed acyclic graphs (m-DAGs) illustrating the missingness scenarios considered in the
simulation study. Figure has been adapted from Dashti et al. (2021).

T) _”“-WM}-

For simplicity of exposition, confounders without missing data (W; and Wj) are presented on a single node and
confounders with missing data (Wa, W5, Wy) on another single node. Also, only one missingness indicator has
been included for confounders with missing data (M ), coded as 1 when any of the variables Wa, W3, Wy have
missing data and as 0 when none has missing data. The m-DAG T (trivial m-DAG) represents the simplest
missingness scenario and corresponds to a missing completely at random mechanism.



combined estimate 1[1 is the mean of the individual estimates:
1 m
v=_ ; (4

The total variance of 1) is computed from the within-imputation variance WV = (1/m) Yo WV,
2
and the between-imputation variance BV = ﬁ >y (m - w> :

Var(y) = WV + <1 + 1) BV
m

(van Buuren, 2018).

There are two general approaches that have emerged for imputing multivariate data: joint modeling
(JM) and fully conditional specification (FCS). The latter is also known as multivariate imputation by
chained equations (MICE).

The Amelia R-package (Honaker et al., 2011) offers a unique approach to missing data imputation by
assuming the hypothetically complete data X follows a multivariate normal distribution thus using the
JM approach. While the multivariate normal distribution may appear to be a rudimentary approxima-
tion of the true data distribution, evidence suggests that this model holds up comparably well to more
complex models, even when dealing with categorical or mixed data. Furthermore, transformations of
many types of variables can often make this normality assumption more plausible. This approach is

expressed as:
X~ NP(/-% E)

which implies that X, the dataset, has a multivariate normal distribution with parameters 6 = (u, X).
Amelia implies that the missing data pattern is dependent only on the observed data X, and not

on the unobserved data X,,;s. This is mathematically represented as before:
PR|X)=P(R| Xobs) -

After deriving the likelihood of the observed data and applying the law of iterated expectations, the

posterior is found:
P (0] Xope) < P (Xope | 6) = / (X | 6) dXmie.

Amelia employs the expectation-maximization with bootstrapping (EMB) algorithm, combining the
classic expectation-maximization (EM) algorithm with a bootstrap approach, to draw from the poste-

rior. In the bootstrap step, the observed data are resampled with replacement, and the EM algorithm



is applied to the resampled data to obtain bootstrap estimates of the parameters. These bootstrap
estimates are used to approximate the posterior distribution of the parameters given the observed
data. With the posterior of the complete-data parameters, imputations are created by drawing values

of X,nis from its distribution conditional on X5 and the draws of 6.

The mice R-package (van Buuren and Groothuis-Oudshoorn, 2011), which implements the MICE
approach, is a practical tool for handling missing values. MICE works also under the MAR assump-
tion. It iteratively imputes missing data, generating a series of plausible imputed datasets. Let the
hypothetically complete data X be a partially observed random sample from the p variate multivariate
distribution P(X | #). It is assumed that the multivariate distribution of X is completely specified
by 6, a vector of unknown parameters. Instead of trying to estimate the joint distribution of all the
variables, MICE handles each variable individually, allowing the model to accommodate variables of
different types and distributions. Starting from a simple draw from observed marginal distributions,
the general structure of the MICE algorithm involves iteratively sampling from the conditional distri-

bution of each variable with missing data, given the current imputed values of all other variables:
P(Xy | X_1,61)
P(Xp | Xp,0p).

The parameters 01, ..., 60, are specific to the respective conditional densities and are not necessarily
the product of a factorization of the true joint distribution P(X | #). The main concern of MICE stems
from the fact that the conditionally specified models may be incompatible in the sense that the joint
distribution cannot exist. Yet, simulation studies suggest that the consequences of incompatibility on
the quality of imputations are usually not serious in practice (van Buuren and Groothuis-Oudshoorn,
2011).

3.2 Super Learner

A Super Learner is an algorithm that utilizes an ensemble of diverse machine learning algorithms for
outcome prediction. The optimal combination of included models is selected by the Super Learner,
thereby producing an output that is expected to perform at least as well as the best individual predictor
included in the ensemble. The theoretical underpinning of Super Learning revolves around stacking,
an ensemble learning technique that combines multiple predictive models to generate a new model.
Super Learner differs from conventional stacking techniques by dynamically assigning weights to each
base learner based on their performance (van der Laan et al., 2007). The Super Learner algorithm

operates through a series of steps:

1. The dataset is split into training and validation sets.



2. Each candidate learning algorithm is fitted on the training set.
3. Each of these algorithms is used to predict outcomes on the validation set.

4. These predictions are used as inputs to another learning algorithm (the meta-learner) that pre-

dicts the outcome.

What makes a Super Learner powerful is the final step. Instead of using a simple technique like majority
voting or averaging to combine the predictions, a Super Learner uses another learning algorithm to
determine the optimal combination of the base learner’s predictions (Naimi and Balzer, 2018). More
theoretical: Given a set of k learning algorithms, denoted as {g1,¢2,...,gr} and later called ’library’.
The objective of the Super Learner, denoted .S, is to find the best combination of these candidate
algorithms, defined as follows:

§ = argmin[L(Y, £(X))]

where Y represents the dependent variable, X the independent covariates and f(X) is a weighted
combination of {g1,92,..., 9k}, i.e., f(X) = w1 x g1(X) + wa * g2(X) + ... + wg *x gp(X). LY, f(X))
represents the loss function, a quantification of the difference between the predicted and the actual
outcome and argmin [ L(Y, f(X))] implies the selection of f(X) that minimizes the loss function. The
Super Learner algorithm optimizes the weights w1, wo, .. ., wi such that the loss function is minimized
(van der Laan et al., 2007). Distinct from traditional Super Learner models that generally employ
logistic regression or other generalized linear models as a meta-learner, non-negative least squares
(NNLS) is utilized as a meta-learner within the Super Learner framework in the implementation by
Polley et al. (2021), which is later used in the simulation study. The use of NNLS as a meta-learner
ensures that the weights derived by the Super Learner algorithm are non-negative and sum up to 1
(Naimi and Balzer, 2018). This approach provides interpretability to the model, as negative weights
could imply inverse relationships. Furthermore, if a learning algorithm (i.e. g2) receives a weight of
we = 0, it simply indicates that go doesn’t contribute to enhancing the predictive accuracy. Some

benefits of Super Learner over parametric specifications are (van der Laan and Rose, 2011):

1. Reduction in model misspecification risks: Parametric modeling, reliant on an a priori
structure, is susceptible to misspecification if the chosen function doesn’t fit the data generation
process. By employing an ensemble of models, the Super Learner mitigates this risk, accommo-

dating a broader range of functional forms.

2. Elimination of data distribution assumptions: Traditional models often assume a spe-
cific data distribution, such as normality, which if violated can compromise prediction accuracy.
The Super Learner, incorporating non-parametric methods, is capable of dealing with complex

relationships without these assumptions.

3. Accommodation of high-dimensional data: High-dimensional data can challenge parametric

models due to concerns like multicollinearity. The Super Learner’s capacity to handle such data



structures effectively is owed to the inclusion of base learners designed for this task, like tree-based

models or support vector machines.

4. Capture of interactions and non-linearities: Interaction effects or non-linear relationships,
often overlooked by parametric models unless specifically modeled, can be implicitly captured by

the Super Learner through its base learners.

Despite these significant advantages, the Super Learner also presents challenges, primarily being com-
putationally intensive and necessitating rigorous validation to avoid overfitting. Nonetheless, when
deployed appropriately, it outperforms traditional parametric models in prediction tasks (Balzer and
Westling, 2021). As stated in the next Chapter 3.3.2, targeted likelihood estimation (TMLE) is double-
robust, meaning it can provide unbiased estimates if either the outcome model or the exposure model is
correctly specified, but not necessarily both. The use of Super Learner further enhances this property
by increasing the chances that at least one of these models is correctly specified (van der Laan and
Rose, 2011).

3.3 Causal inference

Causal inference is the science of determining cause and effect relationships from data. It explores
how manipulating a variable affects another, beyond mere correlation. These effects should be stud-
ied through experiments that randomly assign individuals to treatment or control groups, such that
comparable groups are compared under competing treatments. However, many such experiments,
specifically those which involve humans, are either infeasible or unethical (Kurz, 2021). Therefore tra-
ditional observational studies often need a statistical adjustment for confounders (variables associated
with both the exposure and the outcome) in order to obtain unbiased exposure effect estimates. For
the estimation of causal effects, numerous estimators can be used: G-computation methods, propen-
sity score methods or double-robust methods (Herndn and Robins, 2020). This chapter primarily
focuses on causal inference using targeted maximum likelihood estimation TMLE (van der Laan and
Rose, 2011). Nevertheless, the causal inference framework and its necessary assumptions regarding the

average treatment effect (ATE) should be explained first.

3.3.1 Causal inference framework

Causal inference based on the Neyman-Rubin potential outcome framework allows researchers to adjust
for confounders under structural causal assumptions (Rubin, 2005). Let A denote a binary exposure,
W a vector of potential confounders and Y a continuous outcome. In this setting each individual has

a pair of potential outcomes given the binary exposure:

. VARAEET; A;=1
y yi(A,) Z(o) 1
Y. if 4, =0

(2

10



with individuals indexed by i = 1, ..., n. The outcome when receiving a treatment, is denoted as Y1),
and the outcome when not receiving a treatment, is denoted as Y(©). These quantities are referred to
as ’'potential’ outcomes because it is only possible to observe a single realization of the outcome and
not both for an individual. This is also called the 'fundamental problem of causal inference’ (Holland,
1986). The causal effect of the treatment can be represented by the difference in potential outcomes,
Y and YO, It is assumed that the actual observed outcome for individual 7 is connected to the
potential outcomes through Y; = Yi(l)Ai + Yi(o) (1 —A;). A common causal estimand for aggregated
causal effects is the average treatment effect (ATE), defined as Yarp = E [Y(l) — Y(O)] (Kurz, 2021)

or rather the statistical target parameter:

Yars = Bw [E(Y® W) - B | w)]

R

PV =y|lA=1,W=w)-> PY =y|A=0W=uw)|P(W =uw)

representing the marginal difference in the outcome Y between the exposed and the unexposed, ad-
justed for measured confounders W, where the outer expectation averages over the distribution of W
(Schuler and Rose, 2016). In order to have a causal interpretation for the ATE several key assump-
tions are required. In specific, we assume that the stable unit treatment value assumption (SUTVA)
(Holland, 1986) is satisfied:

e Noninterference: The treatment status of a given individual does not affect the potential

outcomes of any other individual.

e Consistency: The potential outcome corresponds with the observed treatment:
V=YWA+YO (1 - A).

e Positivity: Within strata of W, every individual has a nonzero probability of receiving either

exposure condition. This is formalized as 0 < P(A =1 | W) < 1 for a binary exposure.

e Conditional exchangeability: The treatment is independent of the potential outcomes after
conditioning on W ({Y(l), Y(O)} L A | W). Or rather the outcome for those treated would have
been the same as for those untreated if untreated subjects had received the treatment. This

assume that all confounders have been measured.

(Luque-Fernandez et al., 2018).

3.3.2 TMLE

Targeted maximum likelihood estimation, an efficient and double-robust substitution estimators, is
a maximum likelihood based G-computation estimator, first introduced by van der Laan and Rubin
(2006). In short, for the ATE, the TMLE procedure requires initial estimates of E(Y | A,W) and
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P(A = 1| W). A subsequent ’targeting’ step is then incorporated that optimises the bias-variance
tradeoff for the specific parameter in question, such as the ATE. In the subsequent chapters, the ATE
is assumed as the target parameter. Additionally, the use of ensemble and machine-learning algorithms
(i.e. Super Learner) to estimate E(Y | A, W) and P(A =1 | W) can easily be adopted to avoid model
misspecification (Luque-Fernandez et al., 2018).

In that sense non-parametric structural equation modeling (NPSEM) is another concept that will be
briefly introduced here, as it offers an alternative framework for defining causal effect parameters (Pearl,
2010) and moreover is compatible with ensemble methods such as Super Learner. NPSEM encapsulates

our understanding of the structural causal model through a system of equations, as follows:

W = fw (Uw),
A= fa(W,Uy),
Y = fY (WvAaUY)’

where Uy, U 4, and Uy denote exogenous error terms, while W | A, and Y represent, in chronological or-
der, the confounders, the binary treatment of interest, and the outcome, respectively. This NPSEM al-
lows the definition of counterfactual outcomes Y1) = fy (W, A = 1,Uy) and YO = fy- (W, A = 0, Uy)
and thereby the causal quantity of interest. This general formulation leaves the functions fyw, fa, fy
open-ended, enabling more flexibility. It can accommodate exclusion restriction assumptions that
enhance identifiability by constraining the range of probability distributions under consideration. Fur-
thermore, it allows for the assumption of parametric forms, thereby providing a versatile foundation
for various models. In the context of NPSEM, the randomization assumption is associated with as-
suming that U4 and Uy are conditionally independent, given W and with respect to the distribution
of potential outcomes Y and Y(©. The NPSEM methodology and the counterfactual framework,
although presenting unique constructs for understanding causality, both provide the basis for defining
causal effects as parameters within statistical distributions (Gruber and van der Laan, 2012).

The TMLE methodology can be described in the following way: An orthogonal factorization of the
likelihood of the data O = (W, A,Y) ~ Po(W) is given by

L(O) =P(Y | A,W)P(A | W)P(W).

P(W) and P(Y | A, W) are refered as the @ portion of the likelihood, @ = (Qw, Qy), and P(A | W) as
the g portion of the likelihood. Py is an unknown underlying probability distribution. Further define

QO(Aa W) = E(Y ’ A? W)7
go(L| W) =Po(A=1[W).
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The subscript ’0’ represents the truth, while a subscript 'n’ signifies the corresponding quantity de-
rived from the data. The empirical distribution of W is used to estimate Po(7V), the non-parametric
maximum likelihood estimate. The term @, (A, W) can be obtained by regressing Y on A and W or
through the use of ensemble and machine-learning algorithms such as Super Learner. Similarly, the
propensity score g, (1 | W) can be obtained this way (Gruber and van der Laan, 2012). With the ATE

as the target parameter, the Super Learner substitution estimator is :

brnrLs, = %Z (@) (1, W3) — Q5 (0, W5)] .

i=1

(van der Laan and Rose, 2011), when A = 1 (represented as Q(1,W)) and A = 0 (represented as
Q% (0,W)) for all subjects. Thereby Q¥ (A, W) is the initial estimate of Qo(A,W). The superscripts

)

0’ and subsequently "1’ refer to the first and to the updated estimates, respectively. The next step
is to update the estimator above toward the parameter of interest. The process of targeting utilizes
gn(A | W) to define a one-dimensional model for fluctuating the initial estimator, a strategy often

referred to as employing a ’clever covariate’. This clever covariate is defined as:

. C(I(A=1) I(A=0)
H"(A’W)‘(gn<1|W>‘gn<0|W>>'

A straightforward logistic regression, involving just a single variable (the clever covariate), is subse-
quently executed for the outcome Y. In the context of this study, Y is continuous and consequently
needs to be rescaled to the interval [0, 1]. Despite that, this is typically done prior to the initial esti-
mation of Qp(A, W) (van der Laan and Rose, 2011). It is also possible to use the clever covaroate as
weight. The offset for this regression is given by logit (Q%(A, W)) and the resulting estimate of the
fluctuation parameter ¢ is employed to update the initial estimate QU (A | W) yielding a new estimate
QL(A | W) in the following manner:

logit (Qr, (A, W)) = logit (QW (A, W)) + e, Hji(A, W)

where €, is the estimate of e.

The updated fit is then employed to compute the expected outcomes when A = 1 (represented as
QL(1,W)) and A = 0 (represented as QL (0, W)) for all subjects. These estimates are inserted into the
subsequent equation to derive the final TMLE estimation of the ATE:

YrarLe, = %Z [Q (1,W3) = @ (0, W7)]

=1

13



(Liet al., 2022). At its core, TMLE, revolves around the concept of adjusting an initial estimation of the
conditional mean outcome, and minimizing a loss function to select the magnitude of the fluctuation.
TMLE corresponds to the selection of the negative log-likelihood loss function. Given that TMLE
provides a solution for the estimating equation of the efficient influence curve, and this curve fulfills
a property known as double robustness, it is guaranteed that TMLE will be asymptotically unbiased
provided that either the outcome mechanism Qo(A, W) or the treatment mechanism go(1 | W) is
estimated consistently. When both are consistently estimated, TMLE achieves the semi-parametric
efficiency bound, under appropriate regularity conditions (van der Laan and Rubin, 2006). For valid
statistical inference, regularity conditions first require that the outcome regression and propensity
score estimators converge to their targets at sufficiently fast rates. Secondly, these estimators should
not be excessively adaptive, a requirement often referred to as the 'Donsker condition’ (Balzer and
Westling, 2021). Unfortunatley it is possible to violate this assumptions by an overfit of the models of
the data-generating distribution (DGD). For instance by using a Super Learner library with random
forests and extreme gradient boosting, and this can occur even when cross-validation is used to choose
the resulting fits (Li et al., 2022).

In summary TMLE has several theoretical properties that makes it an attractive method for estimating
causal effects from observational data. Competing estimators, falling into the broad classes of maximum
likelihood estimation (MLE) and estimating equation methodology, do not have all of its properties

and will underperform in many scenarios in comparison to TMLE (van der Laan and Rose, 2011).

3.3.3 CV-TMLE

Despite TMLE being a doubly robust and efficient estimator, its performance can suffer when the
initial estimator is overly adaptive (van der Laan and Rose, 2011). Intuitively, if the initial estimator
of Qo(A, W) is prone to overfit, there is no realistic residual variation left for the targeting step, making
the update incapable to mitigate residual bias. To overcome these drawbacks of TMLE, a modified
version called cross-validated targeted maximum likelihood estimation (CV-TMLE) was developed
(van der Laan and Zheng, 2010). CV-TMLE incorporates an additional layer of cross-validation for
the initial estimator, enhancing the robustness of TMLE in its bias reduction step. As a result, it
allows for greater flexibility in using adaptive methods to estimate components of the DGD, while
maintaining realistic residual variation in the validation sample (Li et al., 2022). A general CV-TMLE

procedure can be described in the following way:

1. Split the data into V' independent folds (i.e., keeping track of repeated measures or dependencies
is necessary to ensure independence of the V folds). Each fold serves as the validation set, with
the remaining data forming the training set. This gives us v-specific sample splits across the

validation and training sets.

2. Forv=1,...,V, carry out the following steps:
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(a) Estimate the propensity score and conditional expectation of the outcome on the training

set.

(b) Using the models fitted in the previous step, generate predictions for both the observed treat-
ment assignment and the outcome under the treatment assignment for observations within

the validation set. Denote the corresponding estimates as gn (A | W), and QY , (A, W).
(c) Update QY , (A, W) generated in the previous step by fitting an intercept model (as de-

scribed in the TMLE updating procedure in the previous subsection 3.3.2) on observations
in the validation set. Call the updated fit in (A, W).

(d) Generate validation set-specific targeted estimates of the conditional mean outcome under
A =1and A =0 on data in the validation set. Denote the updated estimates Q}w (1, W)
and Q}w (0, W).

(e) Define the v'" validation set-specific estimate of the marginal difference in the outcome Y

between the exposed and the unexposed, adjusted for measured confounders W, as:

n _ 1 A1 A 1 A
wTMLEn,v - Fv Z [ n,v (17 WZ) - n,v (07 WZ)]
1€Val(v)

where n, denotes the number of individuals in the validation set v and Val(v) is the indices
i for which O; is in the validation set.

3. Average over all validation folds to obtain the CV-TMLE, i.e., the estimated marginal difference

in the outcome Y between the exposed and the unexposed of the sample-split-specific estimates:
1V
YOV -TMLEny = v Uz_:l YT MLEnw

(Montoya et al., 2021).

3.3.4 Inference

Targeted maximum likelihood estimation constructs estimators based on the efficient IC, which can be
used to obtain standard errors. The estimator @TM LE, 1s asymptotically linear and consistent for its

true value YrarrE, if it can be expressed as:

. 1 <& 1
YrMLE, —YTMLE, = o 21 IC; — Op () :

n
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By the weak law of the large numbers, the O, term in equation converges to 0 at a rate of ﬁ as
the sample size n approaches to infinity. The Influence Curve (IC) is a function of the data and the
components that generate data which can be derived for a specified model and target parameter that
has a mean of 0 and a finite variance. The central limit theorem is applicable such that in large samples,
the variance of the estimator is the variance of the IC divided by n (Luque-Fernandez et al., 2018). The
estimator zﬂT MLE, Dossesses thus several noteworthy properties: Firstly, as the sample size increases,

its bias approaches 0 at a rate faster than ﬁ Secondly when n, is large, its distribution approximates

a normal distribution, represented as n'/2 (@TMLE” — wTMLEO) AN (0,0(2]) . This property allows
the construction of Wald-type confidence intervals using an estimate of 08. Lastly, the asymptotic

variance of nl/2 <1[JT MLE, — WTML Eo> can be accurately approximated by the sample variance of its

estimated influence curve IC,. This is equivalent to 62 =150, I/E’i (O;), given that the mean of
an influence curve is 0 (Montoya et al., 2021). Even though a wide variety of influence functions and
corresponding estimators can be used for a specific target parameter, it is always possible to identify
an ’efficient’ influence curve. This efficient IC achieves the minimum asymptotic variance under the

given set of modeling assumptions. The efficient IC can be estimated as:

A B 1-A
g (W) 1= gu(W)

EICTMLE, = (Y — QL(A,W)) [ } + (Qn(L,W) = QL(0,W)) — ¥rarpE,.

The standard error estimate for TMLE can be constructed by multiplying 1/y/n by the standard

deviation of the plug-in efficient influence curve:

\//5“ (@TMLEH)

OTMLE, = - )

where Var (EI\Cn) represents the ’sample variance’ of the estimated IC (Luque-Fernandez et al.,
2018). Utilizing the TMLE estimator, it is possible to underestimate the variance of the estimator
if Qo(A,W) is estimated data-adaptively on the same data used for evaluating the sample variance
of the estimated influence curve. Overfitting, a common issue that arises from using the data twice
(for both estimation and evaluation), can be mitigated by employing CV-TMLE confidence intervals.
This approach involves sample splitting and helps protect the accuracy of the results. The fold-specific
estimate of the working influence curve for CV-TMLE is calculated by estimating, Qo(A4,W), and

go(A | W) on the v*® . This is then evaluated on the complementary validation sample as follows:

1-A
gn,v(W) 1- gn,v(W)

WCV—TMLEn,v = (Y - Q’}l,’u(A7 W)) + ( 7711,1)(17 W) - 7;,1)(0’ W))

- wC’V—TMLEn,v'



Subsequently, the fold-specific estimate of the variance for the fold-specific estimator can be formulated

as:

Var (EICCV—TMLEn,v)

OCV-TMLEny =
Ty

Therefore, the asymptotic variance of CV-TMLE can be conservatively estimated by following the
approach mentioned in (Montoya et al., 2021):

1 \%

On,CV—-TMLE = v g OCV-TMLEn,v-
v=1

4 Methodology

To evaluate the performance of various methods for handling missing data and different TMLE imple-
mentations in R, a simulation study was conducted, based heavily on the simulations presented in the
work of Dashti et al. (2021). However only 1000 datasets, each with 2000 observations, were generated.
The reduction in the number of datasets is due to a faster runtime and also computational constraints.
The number of observations remains the same to avoid any potential bias introduced by sample size, as
it is established that data-adaptive mechanisms show improved performance with larger sample sizes
(Luque-Fernandez et al., 2018).

4.1 Evaluation criteria

The performance measures used to evaluate the simulation study, with the ATE (Yarr = 9) as the

target parameter, are as follows:

e Bias:

— Definition: E[¢)] — 1
— Estimate: % S gy — )

Msi

o Relative Bias in %:

— Definition: (%) 100

— Estimate: (B/fs> 100

e Empirical standard error (EmpSE):

— Definition: 1/ Var(1))

“ -\ 2
. . 1 sim
— Estimate: \/”slm—l er'bzl <¢z - ¢)
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¢ Root mean square error (RMSE):

— Definition: +/E [(@ - 1/1)2}

R 2
— Estimate: \/nslm Y s <1/Ji - ¢)
e Model standard error (ModSE):

— Definition: E[@(ﬂ;)]

—

— Estimate: \/ ns% Yoism Var (1@)

e Error in ModSE in %:

~ Definition: 100 (35 — 1)

— Estimate: 100 (MOTdSE — 1)
EmpSE

e Coverage:

— Definition: P (@Z?low <y < ’Q;upp )

— Estimate: ﬁ Y opsim ] (wlow,i <y < T/Jupp,i>
¢ Bias eliminated coverage:

— Definition: P (1,210“, << &upp )

— Estimate: ﬁ Yopsim ] (Qﬁlow,i <P < Yupp l)
e Mean confidence interval (CI) length:

— Definition: F <1/A1upp - 1&10“, )

— Estimate: ﬁ St ('J}upp i &low,i)
e Proportional CI length:

— Definition: the mean CI length of each method is considered and related to the greatest

mean CI length of all methods

The mathematical formulations for these computations (despite mean CI length and proportional CI
length) are detailed in the work of Morris et al. (2019).
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4.2 Data generating process

In the following, the data generating processes (DGP) will be described. Firstly, the creation of data
as conducted in the first version of Dashti et al. (2021). Secondly, furhter modifications like increasing
positivity violation, adding continous and/or categorical confounders and incorporating some depen-
dencies between the confounders were made to test the proposed methods in various data settings.
Reproduced data:
In Dashti et al. (2021), an attempt was made to replicate the Victorian Adolescent Health Cohort
Study (VAHCS) data, which are not publicly available yet. Minor but reasonable changes were made.
The main takeaways are, that parametric regression models were used to generate the data and taking
into account three scenarios (simple, complex 1, and complex 2) which progressively increase in com-
plexity due to the presence of confounder-confounder interaction terms. Particularly, these scenarios
vary in terms of the exposure and outcome generation models. The simple scenario does not involve
any confounder-confounder interaction terms. In contrast, the complex 1 scenario includes such in-
teraction terms, and the complex 2 scenario contains the same interaction terms but with coefficients
approximately two times larger than those in the complex 1 scenario. For all scenarios, an auxiliary
variable B with a standard normal distribution was generated, along with a set of binary confounders
W = (Wh, Wy, W3, Wy, W5). Here, confounders Wo, W3, and Wy were generated through regression on
B. The NPSEM in this case is:

B = fp(Usp),

W = fw (B, Uw),

A= fa(B,W,Uy),

Y = fy (W,AUy),

and in specific the models for generating the variables for B and W are:

B~ N(0,1)
W1 ~ Binomial (1, logit ™" (a))
W2 ~ Binomial (1 logit™* (By + BlB))
W3 ~ Binomial (1, logit~ Lo + 71 B))
W4 ~ Binomial (1, logit ™" (6o + 01B))

(

W5 ~ Binomial (1, logit —1 ({p)) .

Furthermore it is assumed that all binary variables are coded 0/1 and logit™!((+)) = exp(-)/(1+exp(-)).
In the simple scenario, a binary exposure A was generated through a main-effects logistic regression

on B and W, while a continuous outcome Y was generated through a main-effects linear regression on
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A and W:

Agimple ~ Binomial (1, logitfl (no + mWi1 + n2Wa + n3Ws + nyWy 4+ n5Ws + 16 B))
Ysimple ~N (90 + 01A 4+ 05W1 + 03Wo + 0, W3 + 05 W4 + 06 W5, sd = 1)

In the complex scenarios A was generated through regression on B, W, and involved two-way confounder-
confounder interactions. Similarly, Y was generated through regression on A, W, and encompassed two-
, three-, and four-way confounder-confounder interactions. Interactions with Ws were not included in

the exposure and outcome models.

Acomplex ~ Binomial (1, logit™ (no +m W1 + n2Wa + n3W3 + n4Wa + nsWs + 16B + 17 W1 W3
+nsW1Wy + noW1 W5 + 110 W3 Wy + 1711 W3 W5 + 11a W4 Wi))

Yeomplex ~ N (0p + 01A + oW1 + 05Wo + 04W3 + 05 Wy + 06 W5 + 07 W1 W3 + 0sW1 Wy + 0 W W5
+ 010W3Wy4 + 011 W3sW5 + 01oW4 W5 + 013W 1 W3sWy + 01, W1 W3 W5
+015 W1 W W5 + 016 WsWy W5 + 017 W W3sW, W, sd = 1)

The coefficients for the respective models are depicted in table 2. Compared to Dashti et al. (2021),
there was only one change concerning the intercept value for A in the complex scenario 2, which was
-2.25 instead of -2.40. The range of the coefficient values for the interaction terms in the exposure and
outcome models was from -1.6 to 0.3 and from -1.2 to 1.7 respectively for complex scenario 1. For
complex scenario 2, these values ranged from -3.2 to 0.5 and from -2.4 to 3.4 respectively. Adjustments
were made to the intercept to ensure an approximately 15% in all scenarios within the simulated data.
Across all outcome generation models, the coefficient for A (0;), representing the true value of the ATE,
was set to 0.2 . This value denotes a moderate effect size, with the null hypothesis of no causal effect
being formally rejected ( p < 0.05) in around 80% of the simulated datasets. The outcome model’s
intercept was also modified to maintain the mean of Y at 0. The distributions of the variables and the
simulated frequencies can be found in table 1. In the simple scenario, the positivity violation was ~
0.02%, in the complex scenario 1 it was ~ 1.10% and in the complex scenario 2 it was ~ 9.25%. An
illustrative example of the probability density function of the propensity score by treatment status can

be found in figure 3.
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Table 1: Parameter 1 represents proportion for binary/categorical variables and mean for normal distributed
outcome. Parameter 2 represents the standard deviation.

Distribution of variables in simulated complete data

W1 W2 W3 W4 W5 A Y

Type binary binary binary binary binary binary normal
For all scenarios Parameter 1 0.21 0.14 0.59 0.37 0.38 0.15 0
Parameter 2 1.1

% with missing value

W2 W3 W4 A Y AJY Any

DAG T 30 15 20 30 20 40 50
DAG A 30 15 20 30 20 40 50
DAG B 30 15 20 30 20 40 50
DAG C 30 15 20 30 20 40 50
DAG D 30 15 20 30 20 40 50
For all scenarios DAG E 30 15 20 30 20 40 50
DAGF 30 15 20 30 20 40 50
DAG G 30 15 20 30 20 40 50
DAG H 30 15 20 30 20 40 50
DAG1 30 15 20 30 20 40 50
DAG J 30 15 20 30 20 40 50

Distribution of variables in the simulated complete data and proportion with missingness across the 11 simulated
missingness mechanisms and the different considered scenarios.
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Figure 3: Probability density function of the propensity score by treatment status for one randomly selected
data set from 1000 simulated data sets across the different scenarios.



Model for Regression coefficient of

Intercept W1 W2 W3 W4 W5 A Y B MW2 MW3 MW4 MZA
W1 -1.30
w2 -1.90 0.40
W3 0.40 0.70
W4 -0.60 -0.70
W5 -0.50
Complete Data Simple scenario
A -2.90 1.30 1.90 0.40 0.20 -0.30 0.70
Y -070 0.10 0.40 0.70 0.20 0.30 0.20
Complex scenarios
A 1.30 -1.90 0.40 0.20 -0.30 0.70
Y 0.10 0.40 0.70 0.20 0.30 0.20
MW2 -0.85
MW3 -4.40 4.30
DAG T MWwW4 -4.00 3.90 1.40
MA -2.00 1.50 1.50 1.50
MY -1.60 -0.50 0.50 0.50 0.50
MW2 -1.45 0.90 0.90
MW3 -5.60 0.90 0.90 4.80
DAG A MWwW4 -4.70 0.90 0.90 3.90 1.50
MA -2.50 0.90 0.90 1.30 1.50 1.50
MY -2.10 0.90 0.90 0.10 0.10 0.10 0.05
MW2 -1.60 0.90 0.90 0.90
MW3 -5.20 0.90 0.90 0.90 4.10
DAG B MWwW4 -4.40 0.90 0.90 0.90 3.20 2.00
MA -3.70 0.90 0.90 0.90 0.90 0.90 1.80 1.50 1.50
MY -3.25 0.90 0.90 0.90 0.90 0.90 0.90 -0.30 0.10 0.10 0.10
MW2 -1.60 0.90 0.90 0.90 0.10
MW3 -5.30 0.90 0.90 0.90 0.10 4.30
DAG C MWwW4 -4.50 0.90 0.90 0.90 0.10 3.50 1.30
MA -3.70 0.90 0.90 0.90 0.90 0.90 0.10 1.70 1.50 1.50
MY -3.25 0.90 0.90 0.90 0.90 0.90 0.90 -0.40 0.10 0.10 0.15
MW2 -1.60 0.90 0.90 0.90
MW3 -6.20 0.90 0.90 0.90 4.80
DAG D MWwW4 -5.00 0.90 0.90 0.90 3.90 1.50
MA -2.65 0.90 0.90 0.90 1.30 1.50 1.50
MY -2.10 0.90 0.90 0.10 0.10 0.10 0.10
MW2 -1.75 0.90 0.90 0.90 0.90
MW3 -5.70 0.90 0.90 0.90 0.90 4.10
DAG E MWwW4 -4.80 0.90 0.90 0.90 0.90 3.20 2.00
MA -3.80 0.90 0.90 0.90 0.90 0.90 0.90 1.50 1.50 1.50
MY -3.20 0.90 0.90 0.90 0.90 0.90 0.90 -0.60 0.10 0.10 0.20
MW2 -1.60 0.90 0.90 0.90 0.10
MW3 -6.60 0.90 0.90 0.90 0.10 5.20
DAGF MWwW4 -5.40 0.90 0.90 0.90 0.10 4.20 1.70
MA -2.55 0.90 0.90 0.90 0.10 1.20 1.30 1.30
MY -2.10 0.90 0.90 -0.30 0.10 0.10 0.40
MW2 -1.60 0.90 0.90 0.90
MW3 -5.20 0.90 0.90 0.90 4.10
DAG G MWwW4 -4.45 0.90 0.90 0.90 3.20 2.00
MA -3.70 0.90 0.90 0.90 0.90 0.90 1.70 1.50 1.50
MY -3.30 0.90 0.90 0.90 0.90 0.90 0.90 0.10 -0.30 0.10 0.10 0.10
MW2 -1.60 0.90 0.90 0.90 0.10
MW3 -5.40 0.90 0.90 0.90 0.10 4.30
DAG H MWwW4 -4.50 0.90 0.90 0.90 0.10 3.50 1.30
MA -3.65 0.90 0.90 0.90 0.90 0.90 0.10 1.50 1.50 1.50
MY -3.30 0.90 0.90 0.90 0.90 0.90 0.90 0.10 -0.50 0.30 0.30 0.10
MW2 -1.75 0.90 0.90 0.90 0.90 0.10
MW3 -5.95 0.90 0.90 0.90 0.90 0.10 4.30
DAG I MWwW4 -4.80 0.90 0.90 0.90 0.90 0.10 3.50 1.30
MA -3.80 0.90 0.90 0.90 0.90 0.90 0.90 0.10 1.50 1.50 1.50
MY -3.20 0.90 0.90 0.90 0.90 0.90 0.90 -0.60 0.10 0.10 0.20
MW2 -1.70 0.90 0.90 0.90 0.90 0.10
MW3 -5.95 0.90 0.90 0.90 0.90 0.10 4.30
DAG J MWwW4 -4.85 0.90 0.90 0.90 0.90 0.10 3.50 1.30
MA -3.80 0.90 0.90 0.90 0.90 0.90 0.90 0.10 1.50 1.50 1.50
MY -3.35 0.90 0.90 0.90 0.90 0.90 0.90 0.10 0.05 0.05 0.05 0.05

*For the complex scenarios models for A and Y also included interactions as follows
WIW3 WIW4 WIW5 W3W4 W3W5 W4W5 WIW3W4 WIW3W5 WIW4AW5  W3W4W5 WIW3W4W5
Complex 1 scenario

A -2.40 -1.60 -1.20 -0.50 -0.60 0.30 -1.50

Y -0.70 -0.50 1.00 0.10 0.10 0.40 -0.10 -1.20 -1.00 -0.10 -0.40 1.70
Complex 2 scenario

A -2.25 -3.20 -2.30 -1.00 -1.20 0.50 -2.90

Y -0.70 -0.90 2.00 0.20 0.20 0.70 -0.20 -2.40 -2.00 -0.30 -0.80 3.40

Table 2: Coefficient values are displayed for data generation and also for missing indicators across all considered
scenarios for reproduced Data.

Positivity violation data:
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Positivity violations can be particularly problematic in observational studies, where the assignment of
treatment or exposure is not under the control of the researcher. In such cases, there might be certain
groups of individuals who, due to their characteristics, are never assigned one of the treatment levels
(Petersen et al., 2012). Although (TMLE) is a powerful method for estimating causal effects, it’s not
immune to the issue of positivity violation. If certain combinations of covariates and treatment levels
are not observed in the data, then the treatment model used by TMLE would incorrectly estimate a zero
probability for these combinations and will lead to biased estimates of the causal effect. Moreover, some
treatment assignment probabilities might be exceedingly small. As a result, the values of H} (A, W)
could be extremely large for a subset of observations. This lack of identifiability may result in extreme
weights during the estimation procedure, introducing unnecessary variance and potentially leading
to instability in the estimates. To mitigate positivity violations, the application of techniques such
as truncation (i.e. Bounding g¢,(A | W) away from (0,1) ) is recommended. However, truncation
introduces bias, necessitating a trade-off between variance and bias. These effects are mitigated by
fluctuating on the logit scale (the default in the used R-packages; also introduced in Chapter 3.3.2).
Furthermore it is important to note, that the logistic fluctuation for continuous Y requires Y to be
bounded by (a,b). When these upper and lower bounds on Y are not provided by the user, the default
is to use the range of the observed outcomes. This may be problematic when there is missingness in
the outcome (i.e. MNAR case) if the distribution of observed outcomes is truncated with respect to
the true distribution of the outcome (Gruber and van der Laan, 2012).

For these reasons, it would be intriguing to further examine the effect of increasing the positivity
violation of the reproduced data through a slight modification in the DGP. The procedure was as
follows: First, the auxiliary variable B and the binary confounders W = (Wy, Wy, W3, Wy, W5) were
created as outlined in the 'Reproduced data’ section. Following this, a grid-search was conducted for all
13 parameters (intercept, main effects, and interaction terms) for the exposure model, which was based
on logistic regression. This process skipped the simple scenario from the 'reproduced data’ section.
All parameters were randomly drawn together, each from a uniform distribution between -3.5 and
3.5. For each draw, these parameters were utilized in the exposure model, and then the proportion
of observations where the predicted probability of treatment was below 0.002 was calculated. This
threshold is significant as values below it could lead to positivity violations in a causal inference
context. The parameters that resulted in the data being most closely aligned with the conditions
where 30% and 40% of observations had a predicted treatment probability below 0.002 were retained.In
essence, a simplified form of a grid search was applied across randomly generated parameters. This
was done to identify the parameters of a logistic regression model that could generate data with certain
characteristics, specifically 30% and 40% of observations demonstrating positivity violations. For both
positivity violation scenarios, the outcome variable Y was generated using regression on A, W and
incorporated two-way, three-way, and four-way interactions among the confounders, as described in
the reproduced data’ section. In addition, there was a variation in complexity. For example, in the
complex 2 scenario with a 30% positivity violation, the coefficients were approximately twice as large

as those in the complex 1 scenario. Therefore, in total, two distinct datasets were created for each
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desired level of positivity violation. The distributions of the variables and the simulated frequencies
can be obtained from table 1 whereas the coefficients for the respective models are depicted in table
B.1.

Modified data:

In order to evaluate the missing data method MI with Amelia in conjunction with TMLE, it was
necessary to include also continuous confounders in the data setup. Therefore a further modification
to the data in the 'Reproduced data’ section was carried out by replacing the binary confounders
Wy, W5 with continuous variables, drawn from a normal distribution. The mean of W, was generated
via regression on B. Their respective standard deviations were set to 1 and 2. These models can be

represented as follows:

W4 ~ N (60 + §;B,sd = 1)
W5NN(C0,Sd:2).

The models for the outcome Y and the exposure A were identical in the simple scenario. Nevertheless,
in the complex scenarios, higher interactions with Ws were incorporated. These were not included in
the two-way interactions but they were a part of the three-way and four-way interactions, essentially

replacing the confounder Wj3. As a consequence, the model for Y is given through:

Yeomplex ~ N (0p + 01A 4+ oW1 + 05Wo + 04W3 + 5 Wy + 06 W5 + 07 W1 W3 + W1 Wy + 0 W W5
+ 010W3Wy + 011 WaW5 + 01oW W5 + 013W i WaWy + 01, Wi Wa W5
+015W1WaWs5 + 016 Wa W4 W5 + 017 W1 Wa W, W5, sd = 1)

In the complex 2 scenario, the coefficients of the interaction terms in the exposure and outcome models
were approximately twice as large as those in the complex 1 scenario. Additionally, unlike the approach
outlined in the ’positivity violation data’ section, the positivity violation was manually adjusted. In
the simple scenario, the positivity violation was ~ 0%, while in complex 1 scenario it was ~ 10%, and
in complex 1 scenario, it was ~ 32.25%. Furthermore, the proportions of binary confounders Wy, Ws
and W3 were adjusted. The distributions of the variables and the simulated frequencies can be found
in table B.8 whereas the coefficients for the respective models are depicted in table B.2.

Copula 1 data:

This data setup follows the exact same procedure as described in the 'modified data’ section. The only
difference is the utilization of the copula r-package (Hofert et al., 2023) to model interdependencies
between the different confounders W = (W1, Wy, W3, Wy, W5). In essence, a copula is a multivariate
distribution function where the marginal distributions are uniformly distributed on the interval [0, 1].
The role of a copula is to describe the correlation or dependence structure between these variables,
independently of the margins. This separation of marginals and dependence is what gives copulas their

flexibility and makes them a powerful tool in multivariate modeling (Nelsen, 2006). In this DGP, the
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Gaussian copula is employed to generate dependent covariates, with the following correlation matrix:

1 03 —0.3 0.3 0.3]
03 1 07 03 03
p=1-03 07 1 03 03
03 03 03 1 0.7
03 03 03 07 1

From this, the marginal distributions are generated, including three Bernoulli and two normal marginals.
The Bernoulli marginals Wy, Wo and W3 are created using an ifelse statement along with the corre-
sponding logit ™! function from the reproduced data’ section to define the probability of success. Thus
resulting into a 1 if the sample drawn from the Gaussian copula is larger than the respective mod-
eled probability of success and 0 otherwise. The normal marginals Wy, W5 are generated through the
normal quantile function by modeling the mean and standard deviation as stated in the 'modified
data’ section, where the respective quantiles for each observation are accessed through the random
draws of the Gaussian copula. In the simple scenario, the positivity violation was ~ 0.25%, while in
complex scenario 1 it was ~ 9.75%, and in complex scenario 2, it was ~ 31.20%. The distributions of
the variables and the simulated frequencies can be obtained in table B.3 and the coefficients for the
respective models are depicted in table B.3.

Copula 2 data:

In the next DGP the binary confounder Wj is replaced by a categorical variable with four categories
W3, , Wa,, Ws,, W3,. The probabilities of each category depend on B and are created using a softmax
function:

e’yoi""'Yli'B
P(W3=1i) =

The probabilities created in the previous step are cumulative. This means that they represent the
probability of W3 falling into category i or any category below it. These cumulative probabilities are
calculated for each observation. Wj is assigned to the respective category such that the drawn sample
from the Gaussian copula falls in the range of the cumulative probability of that category. The other
confounders are generated as in the 'copula 1 data’ section. For the simple scenario the models for

exposure and outcome are:

Asimple ~ Binomial(1, logit ™" (no + m W1 + noWa + n3Ws, + mWs, + n5Wa, + n¢Wa + 1:Ws + 15 B))
Ysimple ~ ./\/(90 + 61 A+ 0:.W1 + 03Ws + 94VV31 + 95‘/1732 + 96W33 + 07 W4 + 0sWi5,sd = 1).

For the complex scenarios the models are:
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Acomplex ~ Binomial(1, logit ™ (no + m W1 + meWa + n3Ws, + naWa, + 15 Wa, + n6Wa + 77 Ws
+n8B + noW1Ws, +moWiWs, + nuuWiWs, + mioWiWy + misWiWs
+ maWs, Wa + misWs, Wa + 016 Ws, Wa + miz W, Ws + misWs, W
+ moWs, W + 120 WaWs))

Yeomplex ~ N (6o 4+ 61 A + 0.W1 + 03Wo + 0, W3, + 05W3, + 06 W3, + 07 Wy + 05 W5 + 09 W1 W3,
+ 010W1Ws, + 011 W1 W3, + 010W1 Wy + 013W1 W5 + 014W3, Wy + 015W3, Wy
+ 016W3, Wy + 017 W3, W5 + 018Ws3, Wi + 019W3, Wi + 020 WaWs + 021 W1 Wo Wy
+ O Wi WoWs + O3 W1 Wy W + Oos Wo Wy Wi + Gos Wi Wo W, W, sd = 1).

In the simple scenario, the positivity violation was ~ 0.2%, while in complex scenario 1 it was ~ 9%,
and in complex scenario 2, it was ~ 29.90%. The distributions of the variables and the simulated
frequencies can be found in table B.9 and the coefficients for the respective models are depicted in
table B.4.

Copula 3 data: The last DGP incorporates an additional continuous variable to increase complexity.

Therefore, the correlation matrix for the Gaussian copula requires enlargement by one dimension:

1 03 -03 03 03 -03
03 1 07 03 03 03
-03 07 1 03 03 03
03 03 03 1 07 03
03 03 03 07 1 —03

—-03 03 03 03 —-03 1

Therefore a gamma-distributed variable was selected. The shape and rate parameters of the gamma
distribution are linear functions of ¢p, the truncated version of B with the range of [—0.99,0.99]. This
requirement ensures that the parameters of the gamma distribution remain positive. The equations
for the parameters are shape = & + &1tp and rate = 79 + mitg. The gamma marginal of Wy are
generated through the gamma quantile function by using the modeled shape and rate parameters,
where the respective quantiles for each observation are accessed through the random draws of the

Gaussian copula. For the simple scenario the models for exposure and outcome are:
Agimple ~ Binomial(1, logit™ (no + m W1 + noWa + n3Ws, + maWs, + nsWs, + neWa

+ 07 Ws + ngWe +n9B))
Ysjmple ~ N(@o + 01 A+ 0:.W1 + 03Wo + 94V[/'31 + 95W32 + 96W33 + 0: W4 + 0s W5 + 09 W, sd = 1).
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For the complex scenarios the models are:

Acomplex ~ Binomial(1,logit ™" (no + m W1 + naWa + n3Wa, + naWs, + 15Ws, + 16Wa + n7Ws
+nsWe + 9B + moWi1Ws, +nuuWilWs, +niaWiWs, + migWiWa
+ maWiWs + nisWs, Wa + meWs, Wa + mizWs, Wy + misWs, Ws + nigWs, W5
+ M20W3s W5 + noa WaWs + noaWiWe + nasWaWe + neaWsWe))
Yeomplex ~ N (0o + 014 + OsW1 + 0sWo + 0, W3, + 05 W3, + 06Ws, + 0: Wy + 0sWs5 + 6 W
+ 010W1W3, + 011 W1iWs, + 01oW1 W3, + 013W1 Wy + 014W1 W5 + 015 W3, Wy
+ 616 W3, Wy + 017 W3, Wy + 018 W3, W5 + 019Ws, W5 + 020 W3, W5 + 021 W, W5
+ 022 W1 We + O23WyWe + 024 W5 We + 025 W1 Wy We + 06 W1 W5 We + 027 W1 W, Wi
+ Oos WaWs W + 0o Wi W W5 We,sd = 1).

In the simple scenario, the positivity violation was ~ 0.25%, while in complex scenario 1 it was
~ 9.25%, and in complex scenario 2, it was ~ 30.75%. The distributions of the variables and the
simulated frequencies can be found in table B.10 and the coefficients for the respective models are
depicted in table B.5.

4.3 Imposing missing data

Eleven missingness scenarios were considered, as defined by the m-DAGs presented in Figure 2. These
causal diagrams vary based on the presence of arrows stemming from confounders, exposure, and
outcome, leading to the missingness indicators for other variables or to their own missingness indicators.
These m-DAGs represent all distinct missingness scenarios in point-exposure epidemiological studies, in
terms of the implications of these conditional independencies for the identifiability of key parameters
(Dashti et al., 2021). Missingness was imposed on Wy, W3, Wy, A and Y by generating missingness
indicators Myy,, Mw,, Mw,, M4 and My, which were coded 1 if the variable was missing and 0 if
observed. For the copula 3 data missingness was as well imposed on Wg by missingness indicator Myy,.
In the simulation study, variables B, Wi, and W5 were considered as fully observed. The models used

for generating these missingness indicators in the reproduced data, positivity violation data, modified
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data, copula 1 data and copula 2 data were as follows:
My, ~ Binomial(1, logitfl(Lo + Wi+ 1oWs5 4+ 13Wo + 14A 4+ 15Y))

My, ~ Binomial(1, logit™ (ko 4+ k1 W1 + koW5 + k3W3 + kg A + k5Y 4 k6Mw,))

1, logitfl()\o + MW+ W5 + AWy + AA + XY + AsMwy, + )\7MW3))

1, logit 71(1/0 + vy Wi + 1oWs5 + v3Wo + vy W3 + s Wy + v56A + 7Y

Mywy, ~ Binomial

M4 ~ Binomial

e s N

+ vsMw, + v Mw, + vioMw,))
My ~ Binomial(1,logit ™ (& 4+ W1 + &Ws5 + E3Wo 4 W3 + Wy + A + &Y + My,
+ &M, + &1oMw, + &11Ma))

In each case, the coefficient values for confounders without missing data Wy, W, confounders with
missing data Wy, W3, Wy, and the exposure A were set to 0 if there was no arrow leading from the
variable to the missingness indicator. If there was an arrow, the coefficients were set to 0.9, equivalent
to an odds ratio (OR) of 2.5. For the outcome (Y) a similar approach was taken. In the absence
of an arrow from Y to the missingness indicator, the coefficient was set to 0. If there was an arrow,
the coefficient was set to 0.1, corresponding to an OR of 1.1 for a single increment increase in Y on
a standardised scale, as per Dashti et al. (2021) guidelines. As outlined in the models above, the
regression model for Myy, incorporated the missingness indicator Myy,. Similarly, the model for Myy,
included My, and Myy,, the model for M4 incorporated Myy,, My, and My, and the model for My
included all the preceding missingness indicators. Hence violating the forth assumption for m-DAGs
(Moreno-Betancur et al., 2018). The models used for generating the missingness indicators undergo

minor adjustments when Wy is incorporated into copula 3 data :

My, ~ Binomial(1,logit ™" (¢o + ¢1 W1 + ¢2W5 + ¢d3Wg + 944 + ¢5Y + d6Mw, + ¢7Mw,
+ ¢sMw,))
M4 ~ Binomial(1,logit ! (vg + v1 W1 + 15 W5 + 13Wo + vy W3 4+ vsWy + W + 74 4+ 18Y
+ v9Mwy, + v1oMw, + v11Mw, + v12Mwy))
My ~ Binomial(1, logit ™" (& + &1W1 + &Ws5 + &Wa + W3 + &Wy + EWe + & A + &Y
+ &Mw, + §10Mw; + §11Mw, + E12Mwg + &13Ma))

On top of that in the modified data, copula 1 data and copula 2 data Wy and W5 are normal distributed,
while in copula 2 data, Wg follows a gamma distribution. As a result, all continous confounders are
standardized before they are integrated in the missing models to ensure a similar effect as the outcome
induces to the respective missing indicators. If there is an arrow pointing to a missing indicator,
the coefficient is set to 0.1 and otherwise it is set to 0. For both copula 2 data and copula 3 data,

W3 is a categorical variable. For these data setups, the categories W3, and W3, are utilized in the
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missing models. Similar to the previous case, when an arrow exists, the coefficient is set to 0.9 and 0
otherwise. The coefficient values for these missingness indicators and the intercepts were adjusted to
maintain a consistent proportion of missing data across all scenarios for each variable. For the outcome
the proportion with missing data was set to 20%. The proportion with missing data for any of the
outcome or exposure variables was set at 40%, while the proportion with missing data for any variable
used in the target analysis (including exposure, confounders, and outcome) was set at 50%. However,
the proportion of missing values in the confounders deviates in the reproduced data and positivity data
table 1 from the other four data setups. The missing portions for modified data and copula 1 data are
displayed in Table B.8. Similarly, those for copula 2 data are presented in Table B.9, and those for
copula 3 data can be found in Table B.10.

4.4 Methods for handling missing data

In the following section, the various methods for handling missing data when estimating the ATE using
TMLE, are introduced. These are broadly categorised under non-MI and MI methods and were mostly
adopted from Dashti et al. (2021).

4.4.1 Non-MI approaches to handle missing data

e Complete-case analysis (CC):
The most straightforward method for dealing with missing data is a complete case analysis. This
method omits observations with missing data for any of the variables in the analysis. The analysis
then only includes records with complete data. While simple, this approach can lead to bias,
depending on the mechanism behind the missingness, and a loss of precision (White and Carlin,
2010). This approach should lead to unbiased estimation for the ATE in m-DAGS T, A, B, D,
E and biased for F, G, H, I, J.

e Extended TMLE (Ext):
Another strategy is the extended TMLE method to address missingness in the outcome, where
records with missing exposure or confounder data are excluded. Initially, the model for Qg (A, W)
is estimated among records with complete W, A, Y data. Then, the outcome predictions are
updated in the targeting step using information from both the model fitted for go(1 | W) and a
model fitted for P(My = 0| A, W) (the probability of having an observed outcome conditional
on the exposure and confounders) among records with complete W and A data. The clever
covariates H(A, W) are multiplied with the inverse of P(My = 0| A,W). Updated predictions
for the outcome under exposure and no exposure are thus obtained for all records, regardless
of their missing outcome status. These are subsequently incorporated into the g-formula to
estimate the ATE. Similar to the exposure and outcome models, the model for My utilizes the
same Super Learner library (Gruber and van der Laan, 2012). Provided there’s no incomplete

exposure and confounders, the extended TMLE method has been demonstrated to be unbiased
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under an extended exchangeability assumption (namely, Y4 L My | A, W and Y4 L A | W for
A =0,1) (Diaz and van der Laan, 2017). This approach should lead to unbiased estimation for
the ATE in m-DAGS T, A, B, D, E and biased for F, G, H, I, J. Since extended TMLE uses data

including those with missing outcomes, it may provide more precise estimates compared to CC.

¢ Extended TMLE plus missing covariate missing indicator approach (Ext MCMI):

The third method, which combines the extended TMLE approach to address missing outcome
data with missing covariate missing indicators (MCMI) approach to manage missing confounder
data, was utilized. This involves the inclusion of missingness indicators for the incomplete con-
founders in the confounding adjustment set, with records having missing exposure data being
omitted. For binary or categorical incomplete confounders this is equivalent to adding an extra
‘missing’ category to the variable, whereas for a continuous confounder, missing observations are
replaced with a fixed value, here 0.An unbiased estimate of the ATE can be yielded by the MCMI
approach under an extended exchangeability assumption, Y4 L A | W, My for A = 0,1, with
My being the vector of missingness indicators for the incomplete confounders. Additionally the
assumptions that the exposure or outcome only depends on the confounder when the confounder
is observed, named conditionally independent treatment (CIT) or conditionally independent out-
comes (CIO) (Blake et al., 2020). This approach should lead to unbiased estimation for the ATE
in m-DAGS T, A, B. For m-Dags D and E the assumptions CIT and CIO are violated.

4.4.2 MI approaches to handle missing data

Several MI methods exist within MICE framework to concurrently address missing exposure, con-
founder, and outcome data. MICE works by specifying univariate models for each incomplete variable
conditional on other variables in the imputation model, sequentially drawing imputations until conver-
gence. In this simulation study the default of five cycles in the mice package was used. The Amelia
package, on the other hand, uses a JM approach and assumes the hypothetically complete data to fol-
low a multival normal distribution. This method estimates the parameters of the multivariate normal
distribution using an expectation-maximization with bootstrapping algorithm. In Amelia the default
for drawing until convergence was used. Both procedures are repeatedly executed to generate a total of
five complete datasets. In practice, typically more than just five datasets would be imputed. However,
due to computational constraints, it is limited to five in this case. Afterwards, TMLE is carried out
within each complete dataset and the results are consolidated to provide the final MI estimate of the
ATE and its standard error (SE) using Rubin’s rules as outlined in chapter 3.1.2. In MI methods, it’s
recommended that all variables in the target analysis (i.e., exposure, outcome, confounders), and aux-
iliary variables (B), should be included in the imputation model, i.e., as predictors in each univariate
model (White et al., 2010).

e Parametric MI using linear regression (MI Reg):

This method employs logistic regression to perform multiple imputation of binary exposure and
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confounders. It uses polytomous logistic regression for categorical confounder, and linear regres-
sion for continuous confounders, with the exception of Wg. For W, predictive mean matching
(PMM), a semi-parametric imputation method, is used, as the mice package does not offer an
imputation method specifically designed for a gamma distributed variable. Linear regression is
also used for the continuous outcome. However, no interaction terms are incorporated into the

univariate models.

Parametric MI using PMM (MI PMM):

This approach is characterized by its specification of univariate models for the confounders and
the binary exposure, much like the previous one. However, PMM is employed this time to execute
the multiple imputation of the outcome, with imputed values selected from the closest observed
values post the application of a linear regression. This method was favored for its ability to
address nonlinear associations, comparable to techniques such as classification and regression
trees (CART) or Random Forest (RF). Within the mice package, the default count of donors
(i.e., the number of complete cases devoid of missing values used for imputation of a missing value)
is set to five. A simple random draw is employed from the pool of potential donors without any
additional weighting based on the precise distance between the predicted and observed values
(van Buuren, 2018). One possible issue with PMM is that it doesn’t favor closer matches over

others, as long as the matches come from the same donor pool. (Morris et al., 2014)

Parametric MI with two-way interactions (MI 2Int):

This approach, much like the previous one, is characterized by its specification of univariate mod-
els for the confounders, binary exposure and outcome. But this time it incorporates all two-way
interactions that were used in the respective data generation (see chapter 4.2). Furthermore it
includes the interactions between the exposure and outcome, exposure and each confounder, and
each confounder and outcome (i.e., AY, AW, YW1, AW3, Y W3, AWy, YWy, AWs5, Y W5, AWs, Y W
). These interaction terms are imputed using the 'passive’ approach from the mice package and
are generated within each cycle of the MI algorithm based on the current values of relevant
variables involved in the interaction term. However, to facilitate the inclusion of interaction
terms within each cycle, it was necessary to incorporate further auxiliary variables and manually
dummy coding for the categorical variable, as this process no longer seemed to be supported (van
Buuren and Groothuis-Oudshoorn, 2011). In the case that W3 is a categorical variable, the 4th
category, namely W3,, is not taken into account for the interactions, mirroring the treatment in

the corresponding DGPs.

Parametric MI with two-, three-, and four-way interactions (MI 3Int):
The method carries out all two-way interactions described above (Parametric MI with two-way
interactions (MI 2Int)) and further extended in this approach to additionally all include three-

and four-way interactions between the confounders, that are again used in each respective DGP.

Parametric MI with defaults using two-way interactions (MI 2IntN):

This approach uses the defaults of mice. Meaning PMM instead of logistic regression to impute
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the binary exposure/confounders, since they are of type numeric and 0/1 coded. PMM to impute
all continous confounders including the outcome. Polytomous logistic regression is applied for
the categorical confounder. In addition all two-way interactions that were used in the method
MI 2Int were added.

Parametric MI with defaults using two-, three-, and four-way interactions (MI
3IntN):

This approach uses the defaults of mice. Meaning PMM instead of logistic regression to impute
the binary exposure/confounders. PMM to impute all continous confounders including the out-
come and polytomous logistic regression is applied for the categorical confounder. In addition

all two-, three- and four-way interactions that were used in the method MI 3Int were added.

MI using classification and regression trees (MI CART):

For the next method, all variables with missing data are multiply imputed using a recursive
partitioning technique, CART. It has been proposed to enable imputation that can more flexibly
allow for interactions and nonlinearities. This approach allows for the imputation of missing
values for specific variables by fitting a decision tree. All other variables in the imputation
process are used as predictors, partitioning the data into groups based on the values of these
predictors. Each record is designated to a leaf node in the tree. A donor leaf is the leaf node
to which a particular record is assigned. Once this leaf is determined, a randomly chosen value
from the observed values within that leaf is used to impute the missing value for the given record
(Doove et al., 2014). Again the default settings of the mice package for the hyperparameters are
used, complexity parameter = 0.0001 and minimum leaf size = 5 for CART like in Dashti et al.
(2021).

MI using random forest (MI RF):

In the MI method using RF, a multitude of bootstrap samples are extracted from the complete
dataset, with each sample used to fit a unique tree. Every tree contributes a 'donor leaf’, and
a value for the variable is randomly selected from the array of these donor leaves. It enables
imputation that can more flexibly allow for interactions and nonlinearities (Doove et al., 2014).

The number of trees to grow = 10 for RF in the default setting in mice.

MI using Amelia (MI Amelia):

For this method data preprocessing is necessary. Specifically, categorical and binary variables
should be converted into factor data types because Amelia treats all non factor variables as
numerical. Furthermore, the noms argument was used to ensure these variables are treated
as nominal categorical variables, rather than ordinal categorical ones. Normal distributed con-
founders and outcomes do not require preprocessing. Moreover, the variable Wg underwent
manually logarithmization to approximate a more normal distribution, and was subsequently

rescaled through the application of the exponential function (Honaker et al., 2011).

33



4.5 R implementations and settings for TMLE

TMLE can be utilized either through available R-packages or by manually computing the algorithm
in six steps, as illustrated in (Luque-Fernandez et al., 2018). The methodology of this approach is also
explained in Chapter 3.3.2. For this simulation study, three different R-packages: tmle (Gruber and
van der Laan, 2012), tmle3 (Coyle, 2023), and ltmle (Lendle et al., 2017), were used and compared.
In order to ensure comparability, efforts were made to initiate a similar estimation process through
appropriate argument inputs, when needed. The same Super Learner library from the package Super-
Learner (Polley et al., 2021) was used for both estimates g, (1 | W) and Q% (A, W) across all TMLE
estimation functions. The number of folds for the cross-validation (CV) used for the Super Learner was
ensured to be 5, along with truncation on g,(1 | W). In specific symmetrical upper and lower bounds
on predicted conditional treatment assignment probabilities (propensity scores) were established at
(0.01;0.99).

For the tmle package, two different settings were used: The first estimation process, named TMLE,
had default settings as described in the paper by Dashti et al. (2021), with the exception of the gbound
argument, which was set to 0.01, indicating symmetrical upper and lower bounds on the propensity
scores. The second, TMLE_S2, used the same arguments as TMLE but additionally with the argument
cv. Qinit set to FALSE and carries out the methodology from chapter 3.3.2. As consequence in TMLE
an addional layer of CV is used to make predictions Q?w (A, W) on the validation sets but conditional
treatment assignment probabilities were predicted on the whole data set g, (A | W). The remaining es-
timation process remains the same, since the predictions Q?w (A, W) on the validation sets are stacked
before the updating step. The cv.Qinit argument is implemented to prevent overfitting Q¥ (A, W), as
overfitting could reduce the signal in the residuals required for bias reduction. Hence it is designed to
protect against overfitting by cross-validating the initial Super Learner estimate of Qo (A, W) (Gruber
and van der Laan, 2012).

In the context of the ltmle package, only two arguments were specifically configured: For the LTMLE
function, the V parameter was set to 5, indicating that the CV folds for Super Learner were configured
to 5. In the case of the LTMLFE_ic function, besides the V argument, the variance.method was set
to ’ic’. This setting instructs the function to compute the variance estimate based on the influence
curve. Without this configuration, the function would compute both the robust variance estimate
using TMLE (an approach which directly targets the variance of the influence function as a counter-
factual mean outcome (Tran et al., 2018)) and the influence curve-based variance estimate, choosing
the larger of the two results for use. The primary distinction in the estimation process between the
Itmle package and the tmle package is that the clever covariates H (A, W) are used as weights in
the logistic regression for updating QL(A, W) in the ltmle package. Moreover the Super Learner is
slightly distinct incorporated, yielding diverse selection and weights for the learning algorithms con-
tained in the library. This is particularly applicable when Y is continuous and needs to be rescaled to
the interval [0, 1].

The use of the tmle3 package is slightly more complex, as it necessitates specifying different func-

tions in separate steps and works in collaboration with the sl3 package (Coyle et al., 2023) . More-
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over, it utilizes 'R6’ classes rather than ’S3’ and 'S4’ as do tmle and ltmle. Two major versions
were distinguished: The first one, CVTMLES, uses the TMLE methodology introduced in conjunc-
tion with CV, as outlined in Chapter 3.3.3. The estimates gn(A | W) and Q) , (A, W) on the
validation sets are stacked on an earlier stage (presented in step (b)). The update is expressed as
logit (QL(A,W)) = logit (Q0 (A, W)) + e, H;;(A, W), where the v -index dropped due to concatena-
tion. In this scenario, the epsilon estimated for the update QL(A, W) is pooled over the V folds. It
is then simply required to compute %Z?:l [Q}m (1,W;) — QL (0, WZ)] The number of folds assigned
for both CVTMLE and Super Learner is set to 5. The other version TMLFES3 employs the TMLE
methodology as described in chapter 3.3.2. Both versions truncate the propensity score (0.01;0.99)
and use the same Super Learner library from SuperLearner package. Then again there are noticeable
differences in comparison to the tmle and ltmle packages. Firstly, in tmle and ltmle, the outcome
variable is scaled to [0, 1] before estimating Q% (A, W). In contrast, TMLES scales Y just before it is
used as an offset for the updating step, not prior to estimating Q% (A4, W). Furthermore CV is executed
by the sl3 package for each Super Learner fit, rather than the SuperLearner package as used in tmle
and ltmle. As for CV-TMLE, it incorporates a nested Super Learner instead of an additional layer of
CV. This procedure employs the ’Split Sequential Super Learner’ method proposed by Coyle (2017),
which merges folds in a manner designed to enhance speed performance while maintaining innocuous-
ness. Further tmle and tmle3 can handle missingness in the outcome through the inverse probability
of censoring weights. Despite this capability, the missing data methods Ext and Ext MCMI are not
executed via tmle3, This is due to the fact that an extra specification of the likelihood is needed for
these methods to match the unified properties listed above. Unfortunately, this specification is not
supported when using the inverse probability of censoring weights approach.

Generally, it is recommended to first implement the Super Learner on the full dataset, using a diverse
set of algorithms. These algorithms can include for instance generalized linear models, generalized
additive models, regression splines, random forests and extreme gradient boosting. Despite that, it is
recommended to include simpler algorithms alongside more complex, data-adaptive ones in the Super
Learner ensemble. This can provide balance and robustness, helping to improve the predictive perfor-
mance of the ensemble (Balzer and Westling, 2021). Such a set of learning algorithms is summarized
as 'library’. An overview of the performance of the proposed libraries in complete reproduced data (as
done in Dashti et al. (2021)) is provided in Table 3. The ’lib2’ library was selected for the Super Learner
due to its good performance (especially bias) across all scenarios and its relatively short runtime for
the scenarios and was thus used for all TMLE implementations in this simulation study. Furthermore,
the positive influence becomes apparent, especially in the more complex scenarios, when Super Learner

is combined with TMLE compared to simple parametric estimation without interactions.
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Estimated Bias Relative empSE RMSE ModSE Error in Coverage Bias eliminated Mean CI Proportional Runtime

mean Bias (%) ModSE (%) coverage length CI length 1 Core
Simple scenario
main effects 0.20 0.00 1.01 0.08 0.08 0.08 0.62 0.95 0.95 0.32 1.00 0.27
lib 1 0.20 0.00 0.92 0.08 0.08 0.08 -3.17 0.94 0.94 0.30 0.94 8.39
1lib 2 0.20 0.00 1.07 0.08 0.08 0.08 -2.92 0.94 0.94 0.30 0.94 8.36
lib 3 0.21 0.01 3.16 0.11 0.11 0.08 -28.01 0.91 0.91 0.30 0.95 10.20
lib 4 0.20 0.00 1.03 0.08 0.08 0.08 -2.98 0.94 0.94 0.30 0.95 13.30
lib 5 0.20 0.00 1.02 0.08 0.08 0.08 -8.94 0.92 0.92 0.29 0.91 31.60
lib 6 0.20 0.00 1.01 0.08 0.08 0.08 -1.83 0.95 0.95 0.30 0.96 4.65
lib 7 0.20 0.00 1.12 0.08 0.08 0.08 -2.62 0.94 0.94 0.30 0.95 4.87
lib 8 0.20 0.00 1.06 0.08 0.08 0.08 -1.30 0.94 0.94 0.30 0.96 7.61
lib 9 0.20 0.00 1.01 0.08 0.08 0.08 -1.82 0.94 0.94 0.30 0.96 1.41
Complex 1 scenario
main effects 0.27 0.07 32.95 0.08 0.11 0.08 -0.88 0.86 0.95 0.32 1.00 0.25
lib 1 0.20 0.00 1.57 0.08 0.08 0.08 -10.30 0.92 0.92 0.29 0.91 9.41
lib 2 0.20 0.00 1.05 0.08 0.08 0.07 -9.98 0.92 0.92 0.29 0.90 9.46
lib 3 0.21 0.01 7.12 0.09 0.10 0.08 -20.22 0.88 0.88 0.29 0.91 12.40
lib 4 0.20 0.00 0.88 0.08 0.08 0.08 -9.20 0.92 0.92 0.30 0.92 21.90
lib 5 0.20 0.00 1.02 0.08 0.08 0.08 -8.94 0.92 0.92 0.29 0.91 29.18
lib 6 0.21 0.01 2.85 0.09 0.09 0.08 -9.24 0.92 0.92 0.30 0.94 4.60
lib 7 0.20 0.00 1.47 0.08 0.08 0.08 -9.21 0.92 0.92 0.30 0.92 5.02
lib 8 0.21 0.01 2.89 0.09 0.09 0.08 -8.31 0.93 0.92 0.31 0.95 15.90
lib 9 0.21 0.01 2.52 0.09 0.09 0.08 -9.01 0.92 0.92 0.30 0.95 1.85
Complex 2 scenario

main effects 0.40 0.20 100.68 0.11 0.23 0.11 -2.11 0.54 0.93 0.43 1.00 0.23
lib 1 0.22 0.02 9.54 0.10 0.10 0.08 -20.29 0.87 0.88 0.30 0.70 9.37
lib 2 0.20 0.00 1.95 0.10 0.10 0.08 -19.29 0.88 0.88 0.30 0.70 8.94
lib 3 0.22 0.02 10.74 0.11 0.11 0.08 -26.04 0.84 0.85 0.30 0.70 11.21
lib 4 0.20 0.00 2.20 0.10 0.10 0.08 -18.25 0.89 0.89 0.30 0.71 26.00
lib 5 0.20 0.00 2.23 0.10 0.10 0.08 -18.97 0.88 0.88 0.30 0.70 32.76
lib 6 0.23 0.03 17.39 0.11 0.11 0.08 -20.66 0.85 0.87 0.32 0.76 4.31
lib 7 0.20 0.00 2.24 0.10 0.10 0.08 -18.42 0.88 0.88 0.30 0.71 4.65
lib 8 0.23 0.03 14.54 0.10 0.11 0.08 -19.20 0.86 0.88 0.32 0.76 21.10
lib 9 0.24 0.04 17.86 0.11 0.11 0.08 -21.26 0.84 0.87 0.32 0.76 1.89

Table 3: Results on complete reproduced data across all sceanrios and different library settings using the
implementation TMLE as decribed in chapter 4.5; 'main effects’ uses parametric linear regression for both
exposure and outcome instead of Super Learner. The libraries are:

libl + c¢(’SL.mean’/’SL.glm’’SL.glm.interaction’, ’SL.bayesglm’, ’SL.gam’, ’SL.glmnet’, ’SL.earth’,’SL.rpart’,
'SL.ranger’)

lib2 « c¢(’SL.mean’’SL.glm’,’SL.glm.interaction’, ’SL.bayesglm’, ’SL.gam’, ’SL.glmnet’, ’SL.earth’,’SL.rpart’,
'SL.rpartPrune’, 'SL.ranger’)

1ib3 <« c¢(’SL.mean’,’SL.glm’,’SL.glm.interaction’, ’SL.bayesglm’, ’SL.gam’, ’SL.glmnet’, ’SL.earth’,”SL.rpart’,
'SL.rpartPrune’, ’SL.ranger’,’SL.nnet’)

lib4 + c(’SL.mean’/’SL.glm’’SL.glm.interaction’, ’SL.bayesglm’, ’SL.gam’, ’SL.glmnet’, ’SL.earth’,’SL.rpart’,
'SL.rpartPrune’, ’SL.ranger’,’SL.step’, ’SL.step.interaction’)

1lib5 «— c¢(’SL.mean’’SL.glm’,’SL.glm.interaction’, ’SL.bayesglm’, ’SL.gam’, ’SL.glmnet’, ’SL.earth’,’SL.rpart’,
'SL.rpartPrune’, SL.ranger’,’SL.randomForest’)

1ib6 + c(’SL.mean’’SL.glm’,’SL.glm.interaction’, ’SL.bayesglm’, ’SL.gam’, SL.glmnet’, ’SL.earth’)

lib7 « c¢(’SL.mean’,’SL.glm’,’SL.glm.interaction’, ’SL.bayesglm’, ’SL.gam’, ’SL.glmnet’, ’SL.earth’,
"SL.rpartPrune’)

1ib8 + ¢(’SL.glm’, ’SL.step.interaction’, ’SL.earth’, ’SL.mean’)

1ib9 «+ ¢(’SL.glm’, ’SL.glm.interaction’, ’SL.earth’, ’SL.mean’)
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5 Results

5.1 Results of reproduced data

In this section, the results regarding the reproduced data will be presented. For the proposed MI
methods and the implementation TMLE (chapter 4.5), the results of the simulation study (Dashti

et al., 2021) were consistently replicated.

5.1.1 Pre-analysis

Estimated Bias Relative empSE RMSE ModSE Error in Coverage Bias eliminated Mean CI Proportional Runtime
mean Bias (%) ModSE (%) coverage length CI length 1 Core

Simple scenario

TMLE 0.20 0.00 1.00 0.08 0.08 0.08 -2.76 0.94 0.94 0.30 0.98 12.86
TMLE_S2 0.20 0.00 1.07 0.08 0.08 0.08 -3.77 0.94 0.94 0.29 0.97 6.93
LTMLE 0.21 0.01 4.93 0.08 0.08 0.08 -1.65 0.94 0.95 0.30 0.99 51.18
LTMLE ic 0.21 0.01 4.87 0.08 0.08 0.08 -1.85 0.94 0.95 0.30 0.99 50.40
CVTMLE3 0.20 0.00 1.11 0.08 0.08 0.08 -1.62 0.94 0.94 0.30 1.00 24.83
TMLE3 0.20 0.00 1.30 0.08 0.08 0.08 -4.68 0.94 0.94 0.29 0.96 21.12

Complex 1 scenario

TMLE 0.20 0.00 0.77 0.08 0.08 0.07 -9.60 0.92 0.92 0.29 0.98 9.96
TMLE_S2 0.20 0.00 0.65 0.08 0.08 0.07 -11.34 0.91 0.91 0.28 0.95 5.61
LTMLE 0.21 0.01 3.26 0.08 0.08 0.08 -8.02 0.92 0.93 0.29 0.99 45.93
LTMLE ic 0.21 0.01 3.39 0.08 0.08 0.08 -8.63 0.93 0.93 0.29 0.99 45.41
CVTMLE3 0.21 0.01 3.62 0.09 0.09 0.08 -10.55 0.91 0.92 0.30 1.00 24.64
TMLE35 0.21 0.01 5.28 0.08 0.08 0.07 -16.13 0.89 0.89 0.28 0.92 21.34

Complex 2 scenario

TMLE 0.20 0.00 1.87 0.10 0.10 0.08 -18.66 0.89 0.89 0.30 0.96 9.58
TMLE_S2 0.20 0.00 0.73 0.09 0.09 0.07 -19.48 0.88 0.88 0.29 0.92 5.59
LTMLE 0.23 0.03 15.69 0.10 0.10 0.08 -17.91 0.87 0.89 0.31 1.00 46.30
LTMLE ic 0.23 0.03 15.81 0.10 0.10 0.08 -17.74 0.88 0.88 0.31 1.00 44.00
CVTMLE3 0.23 0.03 16.83 0.10 0.11 0.08 -24.48 0.84 0.85 0.30 0.96 24.86
TMLE3 0.24 0.04 20.17 0.10 0.11 0.07 -31.84 0.78 0.81 0.27 0.86 21.49

Table 4: Results for various TMLE implementations on complete reproduced data across all scenarios

In table 4, the different TMLE implementations for the reproduced data are shown across all scenarios.
In the simple scenario, the implementations TMLE, TMLE_S2, CVITMLES3, and TMLES3 have a very
low bias. For LTMLE and LTMLE_ic, the relative bias is slightly higher, at about 5%. For the other
performance measures, the different TMLE implementations are very similar. An exception is the
slightly larger error in Model SE for TMLES. In the complex 1 scenario, the relative bias for TMLES
and CVTMLES slightly increases by 4 and 2 percentage points, respectively. Additionally, the error
in Model SE increases for all implementations, especially for TMLES3. This also directly reflects in
lower coverage. Under the complex 2 scenario, the first notable differences in performance between
the individual TMLE implementations arise. The estimation of ATE remains nearly unbiased for
TMLE and TMLE_S2. For LTMLE and LTMLE_ ic, the relative bias is approximately 16%, while it
is 17% for CVTMLES3 and 20% for TMLE3. The empirical standard error (empSE) slightly increases

for all implementations, with TMLE_S2 having the lowest value, along with the root mean square
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error (RMSE). The error in ModSE significantly increases for all implementations, particularly for
CVTMLES and TMLES3, which is reflected in the lower coverage. However, the bias eliminated coverage
shows that the bias also increasingly affects the coverage. Furthermore, looking at the mean CI
length, it can be observed that TMLE_S2, along with TMLES3, has the smallest CIs. Additionally, the
implementations using the tmle package have the shortest runtime. For one dataset using a single
core, TMLE_S2 only requires approximately 6 seconds. The Itmle package takes around 9 times longer
for both implementations. TMLES3 from the tmle3 package requires 3.5 times longer, and CVITMLES3
takes 4 times longer. In conclusion, TMLE_S2 offers the best overall performance combined with the

lowest runtime.

5.1.2 Bias

Simple scenario — with tmle() and cvQinit Complex1 scenario — with tmle() and cvQinit Complex2 scenario — with tmle() and cvQinit
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Figure 4: Relative bias (%) in ATE estimation using different missing data methods for the 11 assessed missing-
ness directed acyclic graphs (m-DAGs) and implementation TMLE as described in chapter 4.5 in reproduced
data.

In figure 4, the relative bias of the estimated ATE of the presented missing data methods in combina-
tion with TMLFE is shown.

For the non-MI methods (CC and Ext) under the simple scenario, the relative bias was very low for
the m-DAGs T, A, B, D, E, F, G (less than 6%) for m-Dag C it was somewhat higher (-11%) and
highest for m-Dags H, I, J (-17% to -22%). For the Ext MCMI method, the relative bias was signifi-
cantly higher, 7-12 percentage points compared to CC and Ext methods, for the m-DAGs T,A,B,D.E,
however, it was 3-4 percentage points less biased for the m-DAGs C, H, I, J. These observations are
roughly reflected in the more complex scenarios (complex 1 and complex 2) as well. Here, the relative
bias for the m-DAGs H, I, J remains constant, i.e., it does not tend to increase slightly as it does for
the other m-DAGs.

The methods MI Reg and MI PMM show a very similar performance in terms of relative bias. In the
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simple scenario, the relative bias is very low for m-DAGs T, A, B, D, E, F whereas for m-Dags C,
G, I the distortion is higher (-8% to -13%) and greatest for the m-Dags H, J (up to -20%). As the
complexity of the DGP increases, so does the distortion regarding the bias. Interestingly, the distortion
for the m-Dags T, A, B, D, E, F seems to increase much more than for H, I, J.

The MI methods with interaction terms MI 2Int, MI 3Int, MI 2IntN and MI 3IntN show a very similar
distortion across all m-Dags as MI Reg and MI PMM under the simple scenario. There seems to be
no difference whether two-way or higher three-way and four-way interactions were included. However,
it should be noted that the MI methods 2IntN and MI 3IntN tend to be 2-5 percentage points more
distorted. The relative bias remains approximately the same for all m-Dags in the complex 1 scenario
and interestingly decreases in the complex 2 scenario. Especially in the m-Dags C, G, H, I, J, this is
7-12 percentage points lower compared to the complex 1 scenario.

Across all three scenarios, the MI CART method produced estimates with comparable levels of bias.
This was highest for m-DAGs B, C, G, H, I, and J, ranging from -13% to -27%.

Similarly, the MI RF method also yielded estimates with similar levels of bias across the scenarios
and respective m-DAGs, although this was consistently much greater than the bias observed with MI
CART. The MI RF method demonstrated the worst performance considering relative bias in simple
and complex 1 scenarios compared to all other methods. In the complex 2 scenario, it also performed
worst for m-DAGs C, G, H, I, and J. For m-DAGs T, A, B, D, E, and F in the complex 2 scenario,
simple parametric methods MI PMM and MI Reg had the highest relative bias, ranging from -28% to
-58%.

In the simple scenario, the relative bias for MI Amelia across all m-DAGs was in the range of -7% to
-17%. Interestingly, the performance of MI Amelia seems to improve with the increasing complexity
of the data, showing relatively low bias in the complex 2 scenario except for m-DAGs F and T.

A single best method concerning the relative bias across all m-DAGs cannot be determined. Never-
theless, the non-MI methods, CC and Ext, performed relatively well for m-DAGs T, A, B, D, E, F, G,
with a maximum relative bias of 7%. For m-DAGs H, I, and J, across all scenarios, MI Amelia yielded
a relatively low bias.

In figure A.1, the relative bias of the estimated ATE of the presented missing data methods in combi-
nation with TMLE_S2 is displayed. This approach combined with the proposed missing data methods
displayed consistent performance in terms of bias across all different scenarios and m-DAGs compared
to TMLE.

The LTMLE in combination with MI methods generally showed a similar pattern regarding bias
over the scenarios and m-DAGs (figure A.2) compared to TMLE and TMLE_S2. However, ATE was
consistently overestimated by 1-4 percentage points relative to both TMLE and TMLE_S2. This char-
acteristic could prove advantageous for those m-DAGs where the ATE is underestimated when using
TMLE and TMLE_S2. A noticeable difference emerges when looking at the non-MI method using CC.
There’s a clear overestimation when compared to TMLE and TMLE_S2. This behavior isn’t surprising
if the estimates based on the full data set (table 4) is considered and compared to CC, particularly

with m-DAG T. This overestimation becomes even more significant in the complex scenario 2. How-
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ever, what appears intriguing is why the overestimation of the ATE is less pronounced when used in
conjunction with MI methods. The overestimation of the ATE for the CC method results in a higher
bias, particularly for the recoverable m-DAGs T, A, B, D, and E compared to TMLE and TMLE_S2.
In contrast, for the non-recoverable m-DAGs F, G, H, I, J, this bias significantly decreases.

The TMLES and CVTMLES implementations in combination with missing methods (figures A.3 and
A.4) exhibit the same behavior as LTMLE and, when used with MI-methods, tend to underestimate
the ATE less than when used with CC. For the CC, the overestimation is larger compared to TMLE
and TMLE_S2. Furthermore, it is shown that the relative bias, like the estimate on the complete
dataset, is lower for CVTMLES than for TMLE3.

5.1.3 Relative error in model-based standard error

Simple scenario — with tmle() and cvQinit Complex1 scenario — with tmle() and cvQinit Complex2 scenario — with tmle() and cvQinit
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Figure 5: Relative error in ModSE (%) in ATE estimation using different missing data methods for the 11
assessed missingness directed acyclic graphs (m-DAGs) and implementation TMLE as described in chapter 4.5
in reproduced data.

In the figure 5, the relative error in ModSe of the estimated ATE of the presented missing data methods
in combination with TMLFE is shown.

The relative error in ModSE is very similar for the non-MI methods CC, Ext, and Ext MCMI, with the
relative error in ModSE for CC tending to be lower in more complex scenarios. In total, the ModSE
is underestimated by CC, Ext, and Ext MCMI (-4% to -21%). The underestimation of the ModSE
increases with the complexity of the scenarios.

For all MI methods including MI Amelia, the ModSE is overestimated. The relative error in ModSE
strongly increases with the growing complexity of the scenarios. This trend is particularly strong for
MI 2Int, MI 3Int, MI 2IntN, and MI 3IntN. MI Amelia and MI RF have the highest relative error in
ModSE, with the overestimation of ModSE being significantly much larger for MI RF compared to
MI Amelia in the complex 2 scenario. The error in ModSE for the other TMLE implementations in
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combination with missing methods can be seen in the figures A.5, A.6, A.7, and A.8 in the appendix.

5.1.4 RMSE

Simple scenario — with tmle() and cvQinit Complex1 scenario — with tmle() and cvQinit Complex2 scenario — with tmle() and cvQinit

MIAmeha-. 0.08 0.09 0.09.0.09 0.08 0.09 0.09 0.09 0.09 . 0.08 0.08 0.08 0.08 0.09 0.08 0.09 0.08 0.08 0.09 - 0.09 0.08 0.09 0.09 0.08 0.09 0.09 0.08 0.08 0.09 0.09

MIRF-/0.08 008 01 011 009 011 009 011 012 012 012 . 008 008 01 011 0.09 01 009 011 011 012 012 _/008 008 01 0.11 009 011 0.09 011 011 0.11 0.12

MiCart- 01 01 012 012 01 0.11 011 0.12 0.12 0.12 0.13 . 009 01 011 011 01 011 01 0.1 0.11 0.11 012 - 009 009 01 011 01 011 01 011 011 0.11 0.11
MI3IntN- 009 0.1 012 012 01 013 011 012 013 013 013 . 009 01 011 011 01 011 01 011 011 011 012 . 01 01 01 011 01 011 01 01 01 011 011
g MI2intN- 01 01 012 012 01 0.13 011 012 0.12 0.13 013 . 009 01 011 011 01 011 0.1 0.1 0.12 0.12 012 - 01 01 011 011 01 012 011 011 011 0.11 0.11 0.20
< | ]
k5]
1= Mi3Int- 01 01 013 012 011 0.13 0.11 0.13 0.13 0.14 0.13 . 009 01 011 011 01 013 01 012 011 0.12 0.12 - 01 01 011 011 01 012 011 011 011 0.12 0.12 0.15
g8
% Mi2int- 01 01 013 0.13 0.11 0.13 012 0.13 0.13 0.14 0.14 . 009 01 012 012 01 013 011 0.12 0.12 0.12 0.13 - 01 01 042 012 011 0.12 011 012 0.12 0.12 0.12 0.10
2
g MIPMM- 01 01 012 012 01 0.13 011 0.12 0.12 0.13 0.13 . 01 01 012 011 011 013 011 0.1 0.1 0.12 0.13 - 016 0.14 0.14 0.14 0.14 0.15 0.14 013 0.13 0.14 0.13 - 0.05
£
MIReg- 01 01 012 012 01 013 011 012 012 043 013 . 01 011 012 011 011 013 011 011 011 012 012 . 016 014 013 013 014 015 015 013 012 0.14 013
ExtMcmi- 01 01 0.13 0.12 0.11 0.14 0.12 0.12 0.13 0.14 0.14 . 01 011 012 012 0.11 013 011 0.12 0.11 0.13 0.13 - 012 011 0.3 0.2 0.1 0.13 0.11 011 0.12 0.13 0.12

£yt~ 011 011 015 0.14 012 0.5 0.12 0.14 0.5 016 016 . 0.1 012 0.14 0.4 0.2 015 012 0.3 0.3 0.5 015 _ 013 012 0.4 0.4 0.2 015 013 0.3 0.14 0.5 0.14

cc- 011 011 015 014 012 015 013 014 015 016 016 . 011 011 013 013 012 015 0.2 013 013 015 014 _ 013 011 013 014 011 014 012 013 013 0.14 0.14

T A B ¢C D E F G H I J T A B C D E F G H | J T A B C D E F G H I 13
m-DAGs

Figure 6: Root mean squared error (RMSE) in ATE estimation using different missing data methods for the 11
assessed missingness directed acyclic graphs (m-DAGs) and implementation TMLE as described in chapter 4.5
in reproduced data.

In the figure 6, the RMSE of the estimated ATE of the presented missing data methods in combination
with TMLE is shown.

For the non-MI methods, Complete-Case (CC) and Ext, the root mean square error (RMSE) remained
relatively constant as the complexity of the scenarios increased (ranging from 0.11 to 0.16). However,
these methods had the highest RMSE for the m-DAGs E, G, H, I, J. On the other hand, Ext MCMI
had a lower RMSE across all scenarios (ranging from 0.10 to 0.14).

The RMSE for the parametric MI methods without interactions (MI Reg and MI PMM) increased
with the complexity of the scenarios. In the simple scenario and complex 1 scenario, the RMSE was
low for m-DAGs T, A, B, C, D, and F (ranging from 0.10 to 0.12) but increased more for m-DAGs G,
H, I, J in complex 2 scenario.

The RMSE for the MI methods with interaction terms (MI 2Int, MI 3Int, MI 2IntN, and MI 3IntN)
decreased with the complexity of the scenarios and was very homogeneous across all m-DAGs in
complex scenarios 1 and 2. In the simple scenario, the RMSE was largest for m-DAGs E, H, I, J and
smallest for m-DAGs T and A. The performance regarding the RMSE of the MI methods with CART
and RF was almost identical to that of MI 2Int, MI 3Int, MI 2IntN, and MI 3IntN. However, MI
RF had a slightly lower RMSE, particularly for m-DAGs T, A, B, D, E. The lowest RMSE across all
m-DAGs and scenarios was achieved by MI Amelia (ranging from 0.07 to 0.09). The RMSE for the

other TMLE implementations in combination with missing methods can be seen in the figures A.9,
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A.10, A.11, and A.12 in the appendix.

5.1.5 Coverage

Simple scenario — with tmle() and cvQinit Complex1 scenario — with tmle() and cvQinit Complex2 scenario — with tmle() and cvQinit
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Figure 7: Coverage in ATE estimation using different missing data methods for the 11 assessed missingness
directed acyclic graphs (m-DAGs) and implementation TMLE as described in chapter 4.5 in reproduced data.

The coverage probabilities of the 95% CI are displayed in figure 7 for the estimated ATE across all
m-DAGs and considered sceanrios.

All non-MI methods CC, Ext, and Ext MCMI had very similar coverage probabilities across all m-
DAGs and scenarios. However, the coverage probabilities decrease as the complexity of the scenarios
increases. Especially for m-DAGs I and J, the coverage probabilities are lower compared to the other
m-DAGs.

The coverage probabilities were uniform in behavior for all MI methods across all scenarios. For the
m-DAGs H, I, J, the coverage probabilities are lower compared to the other m-DAGs. Moreover, it
should be noted that the coverage probabilities increase with the complexity of the scenarios under
consideration, and in the complex 2 scenario, they are always above 96% (excluding MI Reg and MI
PMM). For MI Amelia and MI CART, the coverage probabilities in the more complex scenarios are
very high (94%-100%) for all m-DAGs.

For MI Reg and MI PMM under simple and complex 1 scenarios, the coverage probabilities were
relatively constant (93%-96%) and also tend to increase with the complexity of the scenarios, although
these are significantly lower under m-DAG T (89% and 90%). Further, in tables B.11, B.12, and
B.13, one can observe all performance measures for the TMLE implementation in relation to the 11
assessed missingness mechanisms across all scenarios. In the results, it can be observed that for MI
using Amelia, the empSE is the lowest across all m-dags and scenarios. Although MI Amelia, along
with MI RF, tends to overestimate the ModSE to some extent, this overestimation is not problematic

when considering the length of the CI and comparing it to other MI methods. This is because the
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non-MI methods, CC and Ext, underestimate the ModSE and have a similar CI length. Overall, it can
be concluded that MI Amelia has a high coverage mainly due to its high precision (low empSE and
RMSE). Since MI Amelia also exhibits no substantial bias, the bias-eliminated coverage is only slightly
higher. The RMSE for the other TMLE implementations in combination with missing methods can
be seen in the figures A.13, A.14, A.15, and A.16 in the appendix.

5.2 Results of positivity violation data

5.2.1 Pre-analysis

Estimated Bias Relative empSE RMSE ModSE Error in Coverage Bias eliminated Mean CI Proportional
mean Bias (%) ModSE (%) coverage length CI length

Positivity violation 1 and complex 1 scenario

TMLE 0.17 -0.03  -12.78 0.12 0.12 0.10 -16.20 0.88 0.89 0.39 0.99
TMLE_S2 0.17 -0.03  -14.08 0.12 0.12 0.10 -16.89 0.87 0.88 0.38 0.95
LTMLE 0.13 -0.07  -35.05 0.12 0.14 0.10 -17.40 0.81 0.87 0.39 1.00
LTMLE_ic 0.13 -0.07  -34.95 0.12 0.14 0.10 -17.66 0.80 0.88 0.39 1.00
CVTMLE3 0.19 -0.01 -7.03 0.12 0.12 0.08 -31.35 0.82 0.80 0.33 0.83
TMLE3 0.19 -0.01 -6.41 0.12 0.12 0.08 -36.00 0.78 0.79 0.30 0.77

Positivity violation 1 and complex 2 scenario

TMLE 0.18 -0.02  -10.66 0.12 0.13 0.10 -17.89 0.88 0.88 0.39 0.95
TMLE_S2 0.18 -0.02  -11.56 0.12 0.12 0.10 -16.85 0.88 0.89 0.38 0.93
LTMLE 0.12 -0.08  -39.29 0.13 0.15 0.11 -19.93 0.80 0.87 0.41 1.00
LTMLE_ic 0.12 -0.08  -39.31 0.13 0.15 0.11 -19.93 0.79 0.88 0.41 1.00
CVTMLE3 0.20 0.00 1.30 0.13 0.13 0.09 -34.38 0.80 0.80 0.33 0.81
TMLE3 0.21 0.01 3.39 0.13 0.13 0.08 -38.60 0.76 0.76 0.31 0.76

Positivity violation 2 and complex 1 scenario

TMLE 0.17 -0.03  -16.87 0.12 0.12 0.08 -32.08 0.76 0.80 0.30 1.00
TMLE_S2 0.17 -0.03  -16.89 0.11 0.12 0.08 -32.79 0.76 0.79 0.29 0.97
LTMLE 0.08 -0.12  -59.52 0.12 0.17 0.08 -36.19 0.54 0.77 0.29 0.99
LTMLE_ic 0.08 -0.12  -60.00 0.12 0.17 0.08 -35.18 0.54 0.78 0.29 0.98
CVTMLE3 0.19 -0.01 -6.60 0.14 0.14 0.07 -50.98 0.63 0.65 0.26 0.88
TMLE3 0.19 -0.01 -3.92 0.14 0.14 0.06 -54.77 0.61 0.61 0.24 0.81

Positivity violation 2 and complex 2 scenario

TMLE 0.16 -0.04  -17.88 0.11 0.12 0.08 -29.53 0.79 0.82 0.30 0.97
TMLE_S2 0.16 -0.04  -18.10 0.11 0.11 0.08 -30.08 0.79 0.82 0.29 0.94
LTMLE 0.06 -0.14  -70.98 0.12 0.19 0.08 -35.11 0.51 0.77 0.31 1.00
LTMLE_ic 0.06 -0.14  -70.63 0.12 0.19 0.08 -35.11 0.50 0.78 0.31 1.00
CVTMLE3 0.23 0.03 13.32 0.14 0.15 0.07 -51.74 0.61 0.63 0.27 0.87
TMLE3 0.23 0.03 14.82 0.15 0.15 0.06 -56.43 0.58 0.59 0.25 0.81

Table 5: Results for various TMLE implementations on complete positivity violation data across all scenarios

Table 5 presents the results for different TMLE implementations across all scenarios for the positivity
data. In scenarios with a 30% positivity violation, the implementations CVTMLES and TMLES3
exhibited relatively low bias in both scenarios. However, the relative bias was significantly higher
(-11% to -14%) for TMLE and TMLE_S2, and even worse for LTMLE and LTMLE ic (-35% to -39%).
The empirical SE and RMSE were higher for LTMLE and LTMLE_ic due to their higher bias. On the
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other hand, the error in ModSE was greatly underestimated for CVTMLES and TMLES (-31% to -
38%), leading to narrower CIs and consequently worse coverage. In the case of LTMLE and LTMLE_ic,
despite their longer CI lengths, the poorer coverage can be attributed to their high bias. The error in
ModSE is approximately the same for TMLE, TMLE_S2, LTMLE, and LTMLE_ ic. It is worth noting
that the ModSE is consistently underestimated for all implementations.

Under the scenarios with a 40% positivity violation, the bias for TMLE and TMLE_S2 decreased
by 17% to 18%. For CVTMLES3 and TMLES, the bias for the ATE only increased under complex
2 scenario (14%). For LTMLE and LTMLE ic, the relative bias increased to -60% in complex 1
scenario and -71% in complex 2 scenario. Compared to positivity violation 1, the empSE increased
for CVTMLES3 and TMLES, resulting in a significantly greater underestimation of the ModSE and
consequently leading to poor coverage (0.58 to 0.63). Despite having long Cls, LTMLE and LTMLE ic
resulted in poor coverage due to bias, as evident from the bias eliminated coverage. In terms of coverage
and RMSE, TMLE and TMLE_S2 achieved the best performance but underestimated the ATE more
than CVTMLES and TMLES. Among all scenarios and positivity violations, CVTMLES3 exhibited a
lower underestimation of the ModSE compared to TMLES.
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5.2.2 Bias
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Figure 8: Relative bias (%) in ATE estimation using different missing data methods for the 11 assessed miss-
ingness directed acyclic graphs (m-DAGs) and implementation TMLE as described in chapter 4.5 in positivity
data.

In figure 8, the relative bias of the estimated ATE of the presented missing data methods in combination
with TMLE in the positivity violation data is shown.

Taking the bias on the complete data from table 5 into account, it can be stated that the non-MI
methods CC and Ext have less bias for the m-DAGs T, A, B, D, E, except for the complex 1 scenario
with a positivity violation of 30%. The bias is larger for the non-recoverable m-DAGs H and J. All
MI methods exhibit higher bias in both scenarios with a 40% positivity violation. MI Amelia, MI RF,
and MI CART have the largest bias across all scenarios and m-DAGs.
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5.2.3 Relative error in ModSe

Pos1 & complex1 scenario — with tmle() and cvQinit Pos1 & complex2 scenario — with tmle() and cvQinit
MI Amelia- - 33 37 37 38 d 36
MIRF- 38 25 23 26 k. 29
Micart- 21 14 32 35 19 37 20 38 38 37 . = 19
MizinN- 27 16 24 27 15 28 18 23 27 24 28 . 28 17
MI 2IntN = 27 16 22 26 13 22 21 22 22 20 23 4 28 17 30 25 20 22 21 25 24 25 25
-
MI 3Int- 17 14 19 14 9 23 12 18 16 17 18 4 20 16 30 16 16 17 12 21 18 21 21 30
0
M 2int- 17 16 20 21 8 21 10 15 18 18 16 - 33 18 31 21 16 16 13 24 21 30 36 0
MiPMM- 18 1 22 24 13 29 16 2 26 26 25 .= 14 29 26 21 21 16 27 26 28 27 - -60
MiReg- 15 9 17 26 8 23 12 28 24 21 23 .18 13 24 23 15 18 11 23 24 26 25
ExtMCMI- =20 -20 -27 -23 -24 -25 . 21 -2 -6 -21 -2 -3 -2
Ext- 22 -22 -23 -23 -26 . o2 -2 -21 21 -2
=3
o cc- -22 -21 -23 -23 -24 - -22 -21 =27 -21 -22 -24 =27
£ T A B Cc D E F G H I J T A B c D E F G H I J
ks Pos2 & complex1 scenario — with tmle() and cvQinit Pos2 & complex2 scenario — with tmle() and cvQinit
j=23
£
‘@ Ml Amelia- 39 38 -
2
=
MIRE- 31 33 31 4 39 33 31
MiCart- 25 23 25 25 . 28 24 30 24
Mi3intN- 36 21 37 26 23 29 28 31 30 34 33 d 32 36 39 32 35 32 39 37 38 34
Mi2intN- | 36 24 34 2 23 27 23 28 28 28 30 36 38 34 33 27 30 35 33 35 36
-
Mi3int- 30 25 38 24 21 2 2 30 27 32 28 34 39 36 29 32 2 33 36 34 35 20
0
Mi2int- 36 23 33 23 25 26 25 30 28 33 33 37 36 35 33 34 26 37 36 38 37 .
-30
MPMM- 25 15 35 22 15 24 16 25 21 27 29 23 29 31 19 29 19 30 27 33 27 I -60
MI Reg - 22 11 30 17 15 24 18 23 19 28 22 4 29 17 25 24 18 25 14 27 26 25 22
Ext MCMI = k-
Ext= -
cc- -
T A B ¢ b £ F ¢ H i 3
m-DAGs

Figure 9: Relative error in ModSE (%) in ATE estimation using different missing data methods for the 11
assessed missingness directed acyclic graphs (m-DAGs) and implementation TMLE as described in chapter 4.5
in positivity data.

In the figure 9, the relative error in ModSe of the estimated ATE of the presented missing data methods
in combination with TMLF is shown.

All non-MI methods underestimated the ModSEs similarly across all m-DAGs and scenarios. The
underestimation increases with the positivity violation. In contrast, MI methods tended to overestimate
the ModSE, and this overestimation increases as the positivity violation increases. The nonparametric
MI methods, MI Amelia, MI RF, and MI CART significantly overestimate the ModSE. For m-DAGs
C, H, I, and J, the error in ModSE is the highest across all scenarios and positivity violations across

all missing data methods.



5.2.4 RMSE
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Figure 10: Root mean squared error (RMSE) in ATE estimation using different missing data methods for the
11 assessed missingness directed acyclic graphs (m-DAGs) and implementation TMLE as described in chapter

4.5 in positivity data.

Figure 10 shows the RMSE of the estimated ATE of the presented missing data methods in combination
with TMLE. For all non-MI methods, the RMSE is significantly worse compared to the MI methods.
Among them, Ext MCMI tends to have a lower RMSE compared to CC and Ext. The RMSE is
particularly poor for the m-DAGs G, H, I, J. Among the MI methods, MI Amelia stands out again,

consistently demonstrating a low RMSE for all m-Dags across all scenarios and positivity violations.
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5.2.5 Coverage
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Figure 11: Coverage in ATE estimation using different missing data methods for the 11 assessed missingness
directed acyclic graphs (m-DAGs) and implementation TMLE as described in chapter 4.5 in positivity data.

In Figure 11, it can be observed that underestimating the ModSE for the non-MI methods leads to
significantly lower coverage. The coverage decreases with higher positivity violation. Among the four
scenarios, MI PMM and MI Reg have the highest coverage. MI Amelia performs significantly worse in
terms of coverage compared to the other MI methods. The reason for this lies in the significant bias

combined with a relatively short CI.

5.3 Results of modified data

In the subsequent chapter, estimation of the ATE is solely performed using TMLE_S2, owing to its

shorter runtime advantage.



5.3.1 Pre-analysis

Estimated Bias Relative empSE RMSE ModSE Error in Coverage Bias eliminated Mean CI Proportional
mean Bias (%) ModSE (%) coverage length CI length

Simple scenario

TMLE 0.20 -0.00 -1.03 0.07 0.07 0.07 -5.76 0.93 0.93 0.27 0.90
TMLE_S2 0.20 -0.00 -0.85 0.07 0.07 0.07 -6.87 0.92 0.92 0.26 0.88
LTMLE 0.21 0.01 4.64 0.07 0.08 0.07 -4.43 0.94 0.93 0.28 0.93
LTMLE_ ic 0.21 0.01 4.37 0.07 0.08 0.07 -4.08 0.94 0.94 0.28 0.93
CVTMLE3 0.20 -0.00 -0.73 0.08 0.08 0.08 0.04 0.95 0.95 0.30 1.00
TMLE3 0.20 0.00 0.08 0.08 0.08 0.07 -11.75 0.91 0.91 0.26 0.87

Complex 1 scenario

TMLE 0.21 0.01 4.40 0.11 0.11 0.08 -28.80 0.80 0.80 0.30 0.93
TMLE_S2 0.21 0.01 3.94 0.11 0.11 0.08 -30.24 0.79 0.79 0.29 0.89
LTMLE 0.25 0.05 23.12 0.11 0.12 0.09 -24.75 0.79 0.83 0.33 1.00
LTMLE ic 0.25 0.05 23.23 0.11 0.12 0.09 -24.50 0.80 0.84 0.33 1.00
CVTMLE3 0.21 0.01 5.07 0.12 0.12 0.08 -32.36 0.80 0.79 0.32 0.98
TMLE3 0.21 0.01 6.50 0.12 0.12 0.07 -45.26 0.68 0.68 0.26 0.79

Complex 2 scenario

TMLE 0.24 0.04 18.60 0.16 0.17 0.09 -45.44 0.64 0.66 0.33 0.85
TMLE_S2 0.23 0.03 17.02 0.16 0.16 0.08 -48.16 0.63 0.64 0.30 0.79
LTMLE 0.39 0.19 95.68 0.22 0.29 0.10 -53.59 0.46 0.59 0.38 1.00
LTMLE_ ic 0.39 0.19 97.07 0.23 0.30 0.10 -56.15 0.43 0.56 0.38 0.99
CVTMLE3 0.25 0.05 25.50 0.20 0.20 0.08 -57.55 0.58 0.59 0.32 0.84
TMLE3 0.25 0.05 25.90 0.20 0.21 0.06 -67.88 0.46 0.46 0.25 0.65

Table 6: Results for various TMLE implementations on complete modified data across all scenarios

Table 6 presents the performance of different TMLE implementations across all scenarios for the mod-
ified data. The results for the simple scenario are very similar compared to those obtained from the
reproduced data. However, in general, the error in ModSE for all TMLE implementations is approx-
imately twice as large. An exception to this is CVTMLES, which estimates the ModSE accurately.
Nonetheless, the estimates for the more complex scenarios are less precise for all TMLE implementa-
tions, as indicated by larger empSE and RMSE values. Among these, TMLES exhibits the greatest
underestimation of ModSE. For TMLE, TMLE_S2, CVITMLES3, and TMLES3, the poorer coverage is
again due to the significant underestimation of ModSE, while for LTMLE and LTMLE_ ic, the large
bias also affects the coverage. In terms of coverage, RMSE, and bias, TMLE and TMLE_S2 achieved
the best performance across all scenarios. In the complex 2 scenario, LTMLE and LTMLE_ic exhibited

extremely high relative biases of 96% and 97%.
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5.3.2 Bias
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Figure 12: Relative bias (%) in ATE estimation using different missing data methods for the 11 assessed
missingness directed acyclic graphs (m-DAGs) and implementation TMLE_S2 as described in chapter 4.5 in
modified data.

In figure 12, the relative bias of the estimated ATE of the presented missing data methods in combi-
nation with TMLFE in the modified data is shown.

Taking into account the bias on the complete data from table 6, it can be stated that the non-MI
methods CC and Ext are unbiased for the m-DAGs T, A, B, D, E, F, G except for the complex 2
scenario. For the complex 2 scenario m-DAGs B, C, E, G, H, I, J seem to have low relative bias.
The bias is larger for the non-recoverable m-DAGs H and J. Ext MCMI exhibits a significantly larger
bias across all m-DAGs compared to CC and Ext in the complex 1 and complex 2 scenarios. All MI
methods exhibit higher in both complex scenarios. MI Amelia and MI RF have the largest bias across
all scenarios and m-DAGs. For the simple scenario 1, all methods exhibit similar behavior in terms of
relative bias, except for MI Amelia, MI CART, and MI RF. However, in the complex 1 scenario and

complex 2 scenario, the MI methods show significantly higher bias, particularly in complex 2 scenario

5.3.3 Relative error in ModSe

For the non-MI methods, the underestimation of ModSE increases with the complexity of the scenarios
(figure 13). However, in all scenarios, it is greater for the m-DAGs H, I, J. In complex 2 scenario, the
underestimation is relatively homogeneous across all m-DAGs. Among the MI methods, MI CART
stands out, as the overestimation of ModSE is relatively low across all scenarios and m-DAGs. It

should be noted that all MI methods overestimate ModSE in the complex scenarios.
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Relative error in ModSE (%) in ATE estimation using different missing data methods for the 11

assessed missingness directed acyclic graphs (m-DAGs) and implementation TMLE_S2 as described in chapter
4.5 in modified data.

5.3.4 RMSE

MI Amelia -

MIRF -

M Cart -

MI 3IntN =

MI 2IntN =

MI 3int=-

MI 2Int =

MI PMM -

Missing data method

MI Reg -

Ext MCMI -

Ext-

cc-

Simple scenario — with tmle() Complex1 scenario — with tmle()

Complex2 scenario — with tmle()

032 04 04 033 042 034 036 038 04 037

0.24 0.33 0.37 0.26 0.33 0.28 0.27 0.36 0.34 0.33

- 039 035 04 043 036 04 041 0.34 041 043 042
- 037 031 0.36 041 032 038 0.36 031 0.39 041 04
0.5
- 04 034 035 037 034 035 0.37 0.31 0.35 0.35 0.35 0.4
0.3
- 041 034 0.36 0.38 0.34 0.35 0.36 0.33 0.38 0.35 0.35 02
0.22 0.18 0.23 0.37 0.33 0.43 0.42 I 01
i 0.22 018 0.23 021 02 0.38 0.34
0.19 0.18 .. 0.36 0.34 0.39 0.35 0.34 0.37 0.36 0.37
0.21 0.21 0.22 - 023 023 03 031 0.25 0.33 0.27 0.27 0.32 0.34 0.33
022 022 . 023 024 03 032 025 0.33 027 0.28 0.33 0.34 0.33
' ' ' ' ' ' ' ' ' ' ' ' '
I J T A B C D E F G H | J

m-DAGs

Figure 14: Root mean squared error (RMSE) in ATE estimation using different missing data methods for the 11
assessed missingness directed acyclic graphs (m-DAGs) and implementation TMLE_S2 as described in chapter
4.5 in modified data.

For the complex 1 and complex 2 scenarios, MI Amelia and MI CART have the lowest RMSE compared
to the other missing methods (figure 14). In general, the non-MI methods have a higher RMSE.

However, this changes in the complex 2 scenario, which is due to the fact that the bias for the MI

methods was much higher here.
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5.3.5 Coverage
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Figure 15: Coverage in ATE estimation using different missing data methods for the 11 assessed missingness
directed acyclic graphs (m-DAGs) and implementation TMLE_S2 as described in chapter 4.5 in modified data.

The coverage is relatively high for the MI methods in the simple scenario and decreases slightly in

the complex 1 scenario (figure 15). In the complex 2 scenario, it is significantly lower, which can be

attributed to the high bias. The non-MI methods exhibit very poor coverage, especially in the complex

2 scenario. This is primarily due to a significant underestimation of the ModSE and to a lesser extent,

the bias.
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5.4 Results of copula 1 data

5.4.1 Pre-analysis

Estimated Bias Relative empSE RMSE ModSE Error in Coverage Bias eliminated Mean CI Proportional
mean Bias (%) ModSE (%) coverage length CI length

Simple scenario

TMLE 0.20 -0.00 -1.76 0.08 0.08 0.08 -8.91 0.90 0.90 0.29 0.91
TMLE_S2 0.20 -0.00 -1.82 0.08 0.08 0.07 -9.41 0.90 0.90 0.28 0.89
CVTMLE3 0.20 -0.00 -1.59 0.09 0.09 0.08 -6.64 0.93 0.92 0.31 1.00
TMLE3 0.20 -0.00 -0.35 0.09 0.09 0.07 -18.84 0.86 0.86 0.27 0.86

Complex 1 scenario

TMLE 0.21 0.01 3.52 0.10 0.10 0.07 -30.83 0.80 0.80 0.27 0.90
TMLE_S2 0.21 0.01 2.95 0.10 0.10 0.07 -32.68 0.78 0.78 0.26 0.86
CVTMLE3 0.22 0.02 11.00 0.11 0.12 0.08 -32.02 0.80 0.81 0.30 1.00
TMLE3 0.24 0.04 18.64 0.12 0.12 0.06 -46.72 0.67 0.69 0.24 0.79

Complex 2 scenario

TMLE 0.23 0.03 12.59 0.14 0.14 0.08 -44.72 0.67 0.66 0.28 0.96
TMLE_S2 0.22 0.02 10.22 0.13 0.14 0.07 -45.69 0.67 0.67 0.27 0.91
CVTMLE3 0.25 0.05 27.41 0.17 0.18 0.08 -55.21 0.59 0.61 0.30 1.00
TMLE3 0.28 0.08 38.86 0.19 0.20 0.06 -68.06 0.45 0.49 0.23 0.77

Table 7: Results for various TMLE implementations on complete copula 1 data across all scenarios

Table 7 presents the results of the performance of different TMLE implementations across all scenarios
for the copula 1 data. The implementations with the ltmle package were not further considered for the
copula 1, copula 2, and copula 3 data due to significant increases in runtime when using continuous
confounders. The results for the simple scenario are very similar compared to those obtained from
the modified data. However, in general, the error in ModSE for all TMLE implementations is larger,
resulting in worse coverage. As the complexity of the scenarios increases, the overestimation of the
ATE also increases, particularly in complex 2 scenario for CVI'MLE3 and TMLES3, with a relative bias
of 27% and 39%, respectively, while it remains moderate at 13% and 10% for TMLE and TMLE_S2.
Additionally, the empSE and RMSE also increase, particularly for CVTMLES and TMLES. Moreover,
the ModSE is significantly underestimated, especially for TMLES. Once again, in terms of coverage,
RMSE, bias, and estimation of ModSE, TMLE and TMLE_S2 achieved the best performance across
all scenarios, with similar performance as observed previously. Finally CVTMLES has the widest CI

in all scenarios.
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5.4.2 Bias
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Figure 16: Relative bias (%) in ATE estimation using different missing data methods for the 11 assessed
missingness directed acyclic graphs (m-DAGs) and implementation TMLE_S2 as described in chapter 4.5 in
copula 1 data.

For the non-MI methods CC and Ext, the bias in the complex 1 scenario was low for m-DAGs T, A, B,
D, E, F, G, but also moderate for the other non-recoverable m-DAGs H, J, and C (see figure 16). In the
complex 2 scenario, the relative bias was significantly larger, but it was lower for the non-recoverable
m-DAGs F, G, H, I, J compared to the recoverable m-DAGs. The simple scenario reflects the expected
results, with lower bias for m-DAGs T, A, B, D, E. However, it can be concluded that CC and Ext

outperform the MI methods in terms of bias in the complex scenarios.

5.4.3 Relative error in ModSe

For the non-MI methods, the underestimation of ModSE increases with the complexity of the scenarios
(figure 17) similar to modified data. However, in the simpler scenarios, it is smaller for the m-DAGs
T, A, F. In complex 2 scenario, the underestimation is relatively homogeneous across all m-DAGs.
Among the MI methods, MI CART stands out, as the overestimation of ModSE is very low across all
m-DAGs and also in complex 2 scenario it is superior compared to the other methods. It should be
noted that all MI methods overestimate the ModSE in the complex scenarios. Ext MCMI exhibits a
significantly larger bias across all m-DAGs compared to CC and Ext in the complex 1 and complex 2

scenarios.
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Figure 17: Relative error in ModSE (%) in ATE estimation using different missing data methods for the 11
assessed missingness directed acyclic graphs (m-DAGs) and implementation TMLE_S2 as described in chapter
4.5 in copula 1 data.

5.4.4 RMSE
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Figure 18: Root mean squared error (RMSE) in ATE estimation using different missing data methods for the 11
assessed missingness directed acyclic graphs (m-DAGs) and implementation TMLE_S2 as described in chapter
4.5 in copula 1 data.

For the simple and complex 1 scenarios, MI Amelia and MI CART have the lowest RMSE compared to
the other missing methods (figure 18). And in complex 2 scenario MI Cart and MI 3Int were superior
across all m-DAGs. In general, the non-MI methods have a higher RMSE in the simpler scenarios,
whereas it changes in the complex 2 scenario, which is due to the fact that the bias for the MI methods

was much higher.
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5.4.5 Coverage
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Figure 19: Coverage in ATE estimation using different missing data methods for the 11 assessed missingness
directed acyclic graphs (m-DAGs) and implementation TMLE_S2 as described in chapter 4.5 in copula 1 data.

The coverage is relatively high for the MI methods in the complex 1 scenario (figure 19). In the
complex 2 scenario, it is significantly lower, which can be attributed to the high bias. The non-MI

methods togehter with MI Amelia exhibit very poor coverage, especially in the complex 2 scenario.

This is primarily due to a significant underestimation of the ModSE and to a lesser extent, the bias.
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5.5 Results of copula 2 data

5.5.1 Pre-analysis

Estimated Bias Relative empSE RMSE ModSE Error in Coverage Bias eliminated Mean CI Proportional
mean Bias (%) ModSE (%) coverage length CI length

Simple scenario

TMLE 0.20 -0.00 -0.09 0.09 0.09 0.08 -10.30 0.91 0.91 0.30 0.94
TMLE_S2 0.20 -0.00 -0.54 0.09 0.09 0.08 -11.77 0.91 0.91 0.30 0.92
CVTMLE3 0.20 0.00 0.33 0.09 0.09 0.08 -8.77 0.92 0.92 0.32 1.00
TMLE3 0.20 0.00 1.30 0.09 0.09 0.07 -19.66 0.87 0.87 0.29 0.89

Complex 1 scenario

TMLE 0.20 -0.00 -2.24 0.11 0.11 0.08 -31.19 0.79 0.79 0.29 0.93
TMLE_S2 0.19 -0.01 -4.70 0.10 0.10 0.07 -33.40 0.78 0.77 0.26 0.86
CVTMLE3 0.21 0.01 5.35 0.12 0.12 0.08 -34.32 0.78 0.79 0.31 1.00
TMLE3 0.22 0.02 11.32 0.12 0.13 0.07 -46.61 0.69 0.69 0.25 0.82

Complex 2 scenario

TMLE 0.19 -0.01 -6.76 0.15 0.15 0.08 -48.23 0.64 0.64 0.28 0.95
TMLE_S2 0.18 -0.02 -8.92 0.14 0.14 0.07 -51.01 0.63 0.63 0.26 0.87
CVTMLE3 0.17 -0.03  -13.06 0.18 0.18 0.08 -57.21 0.60 0.61 0.30 1.00
TMLE3 0.21 0.01 2.51 0.19 0.19 0.06 -66.91 0.49 0.48 0.24 0.80

Table 8: Results for various TMLE implementations on complete copula 2 data across all scenarios

Table 8 contains the results of the performance of different TMLE implementations across all scenarios
for the copula 2 data. The results for the simple scenario are very similar to those obtained from the
Copula 1 data for all performance measures. Similarly, for the complex 1 and complex 2 scenarios,
empSE, RMSE, coverage, CI length, and error in ModSE are comparable. However, a difference can be
observed in the relative bias, which is lower in both complex scenarios for Copula 2 data. In particular,
CVTMLES and TMLES exhibit significantly lower bias. In complex 2 sceanrio the relative bias was
also lower for TMLE and TMLE_S2. Overall, the coverage for TMLFE and TMLE_S2 is also better
than that for CVTMLES and TMLES, although CVTMLES has the widest CI in all scenarios.
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Relative bias (%) in ATE estimation using different missing data methods for the 11 assessed
missingness directed acyclic graphs (m-DAGs) and implementation TMLE_S2 as described in chapter 4.5 in
copula 2 data.

The relative bias is highest for the non-MI methods in the m-DAGs H, I, J. In the simple and complex
1 scenarios, the bias is low for the CC and Ext methods in the recoverable m-DAGs (figure 20). Ext
MCMI exhibits a significantly larger bias across all m-DAGs compared to CC and Ext in the complex

1 and complex 2 scenarios. Additionally, in comparison, MI PMM and MI Reg also exhibit low bias.

Generally, the bias is low for the parametric MIs. No clear trend can be observed for all missing data

methods in the complex 2 scenario. Across all scenarios, MI Amelia exhibits the largest bias.
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5.5.3 Relative error in ModSe
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Figure 21: Relative error in ModSE (%) in ATE estimation using different missing data methods for the 11

assessed missingness directed acyclic graphs (m-DAGs) and implementation TMLE_S2 as described in chapter
4.5 in copula 2 data.

For simple and complex 1 scenarios, MI 2Int has the lowest error in ModSE among all m-DAGs (figure

20). MI Amelia overestimates ModSE the most compared to the other MI methods for all scenarios

and m-DAGs. For simple and complex 1 scenarios, the error in ModSE is also evident for the non-MI

methods. The underestimation of ModSE increases with the complexity of the scenarios for the non-MI

methods. Furthermore the underestimation is very homogeneous across all m-DAGs.
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5.5.4 RMSE
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Figure 22: Root mean squared error (RMSE) in ATE estimation using different missing data methods for the 11
assessed missingness directed acyclic graphs (m-DAGs) and implementation TMLE_S2 as described in chapter
4.5 in copula 2 data.

For all scenarios MI CART has the lowest RMSE compared to the other missing methods (figure 22).
In complex 2 scenario MI Amelia has high RMSE because of the high bias. In general, the non-MI
methods have a higher RMSE across all scenarios and m-DAGs.

5.5.5 Coverage
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Figure 23: Coverage in ATE estimation using different missing data methods for the 11 assessed missingness
directed acyclic graphs (m-DAGs) and implementation TMLE_S2 as described in chapter 4.5 in copula 2 data.
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The coverage probabilities of the 95% CI are displayed in figure 23 for the estimated ATE across all m-
DAGs and considered scenarios in copula 2 data. For the non-MI methods, the coverage probabilities
were reasonably acceptable in the simple scenario, except for the m-DAGs I, J. In the complex scenarios,
the coverage deteriorated further and had poor coverage in the complex 2 scenario. In contrast, for the
MI methods, the coverage was high again for all scenarios, which can be attributed to the overestimation
of the ModSE.

5.6 Results of copula 3 data

5.6.1 Pre-analysis

Estimated Bias Relative empSE RMSE ModSE Error in Coverage Bias eliminated Mean CI Proportional
mean Bias (%) ModSE (%) coverage length CI length

Simple scenario

TMLE 0.20 0.00 0.33 0.09 0.09 0.08 -14.86 0.88 0.88 0.30 0.92
TMLE_S2 0.20 -0.00 -0.25 0.09 0.09 0.08 -16.72 0.88 0.88 0.29 0.89
CVTMLE3 0.20 0.00 0.73 0.09 0.09 0.08 -12.29 0.91 0.90 0.32 1.00
TMLE3 0.20 0.00 1.15 0.10 0.10 0.07 -24.78 0.83 0.83 0.28 0.86

Complex 1 scenario

TMLE 0.18 -0.02  -10.77 0.11 0.11 0.08 -26.03 0.82 0.82 0.31 0.87
TMLE_S2 0.17 -0.03  -14.96 0.10 0.11 0.07 -28.84 0.79 0.82 0.28 0.79
CVTMLE3 0.22 0.02 10.09 0.13 0.13 0.09 -28.89 0.83 0.84 0.36 1.00
TMLE3 0.26 0.06 30.35 0.15 0.16 0.07 -54.06 0.61 0.63 0.26 0.72

Complex 2 scenario

TMLE 0.17 -0.03  -16.26 0.17 0.17 0.09 -43.36 0.68 0.71 0.35 0.91
TMLE_S2 0.16 -0.04  -19.76 0.16 0.16 0.09 -45.21 0.67 0.70 0.32 0.84
CVTMLE3 0.27 0.07 34.95 0.22 0.23 0.10 -563.74 0.60 0.63 0.39 1.00
TMLE3 0.36 0.16 79.60 0.25 0.29 0.07 -70.78 0.40 0.42 0.28 0.73

Table 9: Results for various TMLE implementations on complete copula 3 data across all scenarios

Table 9 represents the results of the performance of different TMLE implementations across all scenarios
for the copula 3 data. The results for the simple scenario are similar to those obtained from the Copula
2 data for all performance measures, despite the error in ModSE which is roughly by 5 percentage
points more underestimated for all TMLE implementations. As the scenario becomes more complex,
the relative bias increases, with TMLES consistently exhibiting the highest bias. Interestingly, the
implementation of the tmle3 package tends to overestimate the ATE, whereas TMLFE and TMLE_S2
underestimate the ATE. Additionally, the empirical standard error empSE increases for all TMLE
implementations as the complexity of the scenarios increases. However, the poor coverage is observed
for CVITMLES and TMLES.
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5.6.2 Bias
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Figure 24: Relative bias (%) in ATE estimation using different missing data methods for the 11 assessed
missingness directed acyclic graphs (m-DAGs) and implementation TMLE_S2 as described in chapter 4.5 in
copula 3 data.

In figure 24, the relative bias of the estimated ATE of the presented missing data methods in combi-
nation with TMLEFE is shown.

For CC and Ext, the bias for m-DAGs H, I, J was again the largest in all scenarios. The bias for
m-DAG C was also larger in the more complex scenarios. For complex 1 and complex 2 sceanrio, the
bias for CC and Ext was the smallest across all m-DAGs. Ext MCMI exhibited a significantly larger
bias across all m-DAGs compared to CC and Ext in the complex 2 scenarios. In the simple scenario,
the bias for MI Amelia, MI RF, and MI CART was large for all m-DAGs, being the largest compared

to the other missing methods.

5.6.3 Relative error in ModSe

For both simple and complex 1 scenarios, and across all m-DAGs, the error in ModSE was relatively
small for all MI methods except MI Amelia (see Figure 25). MI Amelia consistently showed the highest
overestimation of ModSE compared to the other MI methods in all scenarios and m-DAGs, except for
the complex 2 scenario. In addition, for the simple and complex 1 scenarios, the error in ModSE was
also observed for the non-MI methods. The underestimation of ModSE becomes more pronounced as
the scenarios become more complex for the non-MI methods. It should be noted that all MI methods

tend to overestimate ModSE in the complex scenarios.
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Figure 25: Relative error in ModSE (%) in ATE estimation using different missing data methods for the 11
assessed missingness directed acyclic graphs (m-DAGs) and implementation TMLE_S2 as described in chapter
4.5 in copula 3 data.

5.6.4 RMSE

For both complex 1 and complex 2 scenarios, CC and Ext exhibit the lowest root mean square error
(RMSE) among the other missing data imputation methods (see figure 26), except for MI CART and
MI RF. The parametric MI methods and MI Amelia display a particularly high RMSE for complex
2 scenario due to their significant bias. However, in the simple scenario, the MI methods outperform
the non-MI methods.
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Figure 26: Root mean squared error (RMSE) in ATE estimation using different missing data methods for the 11
assessed missingness directed acyclic graphs (m-DAGs) and implementation TMLE_S2 as described in chapter

4.5 in copula 3 data.

5.6.5 Coverage
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Figure 27: Coverage in ATE estimation using different missing data methods for the 11 assessed missingness
directed acyclic graphs (m-DAGs) and implementation TMLE_S2 as described in chapter 4.5 in copula 3 data.

Due to the significant underestimation of the ModSe, once again, a lower coverage is observed for the

CC and Ext methods. In complex 2 scenario, MI Amelia had the lowest coverage (see figure 27).
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6 Discussion

The findings of the reproduced data indicate that the effectiveness of various missing data imputation
methods can differ significantly depending on the particular scenario and m-DAG being examined. No
single method was found to consistently outperform all others across all m-DAGs in terms of relative
bias. Nevertheless, relatively low bias was observed for m-DAGs T, A, B, D, E, F, G when the non-MI
methods, CC and Ext were utilized. For more complex m-DAGs H, I, and J, the MI method using
Amelia demonstrated lower relative bias in the complex 2 scenario. In scenarios where missingness
did not depend on the outcome for any variable and where a complete-case analysis could recover
the conditional distribution of the outcome (m-DAGs T, A, B, D, E), low bias was observed when
using the CC and Ext methods. This was noted regardless of the complexity of the data generation
procedure. The same methods maintained relatively low bias even for m-DAGs F and G, where the
conditional distribution of the outcome isn’t recoverable. A slightly higher bias compared to m-Dag F
was observed for m-DAG G, which had missingness in the outcome directly influenced by the outcome.
Ext MCMI method, however, resulted in more biased estimates across these scenarios. When applied
to the other non-recoverable m-DAGs H, I, J, an slight decrease in bias compared to other non-MI
methods CC and Ext was observed.

In the simple scenario, the parametric MI methods with no interactions, MI PMM and MI Reg, was
found to generate smaller bias when the outcome did not directly influence missingness in the outcome
(m-DAGs T, A, B, C, D, E, F, I) and higher bias when the outcome did directly influence missingness
in the outcome (G, H, J). In the complex scenarios, a trend towards higher bias was observed with
these MI methods with no interactions. Especially for m-DAGs T, A, B, C, D, E, F bias was high in
complex 2 scenario.

The inclusion of interaction terms in the imputation models, namely MI 2Int, MI 3Int, MI 2IntN
and MI 3IntN appeared to improve the performance of parametric MI methods in these complex
scenarios. The findings suggest that MI 2Int, MI 3Int, MI 2IntN and MI 3IntN, which incorporate
interaction terms, performed well in complex scenarios because these scenarios were defined based on
the presence and intensity of confounder-confounder interactions. This means that MI models with
interactions were reasonably well-specified to handle the data structure of these scenarios. However, it’s
crucial to remember that in real-world observational studies, the underlying process that generates the
data is often not fully understood. This ambiguity makes it difficult to define parametric imputation
models that are perfectly compatible with the models used for analysis. Additionally, for datasets with
significantly more variables, it is difficult and tedious to include all interaction effects in mice package.
It’s also important to consider that some interactions could be collinear and in general, the estimates
could be unstable (van Buuren and Groothuis-Oudshoorn, 2011). This difficulty highlights the value
of using a data-adaptive approach such as MI CART, also because MI CART led to significantly lower
bias compared MI RF. Another convenient application is offered by MI Amelia, demonstrating a lower
bias for the non-recoverable m-DAGs F, G, H, 1, J, especially in more complex scenarios. Despite this
advantage, it’s worth noting that MI CART and MI Amelia did not uniformly reduce bias across all

types of m-DAGs and all three scenarios, and were not superior compared to the non-MI methods like
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CC and Ext.

Regarding the results of the reproduced data, it is seen that for non-MI methods the ModSEs are
underestimated, and this underestimation increases with the complexity of the scenarios. This might
be due to the fact that these methods ignore the uncertainty associated with missing data, leading
to overly optimistic estimates of the model error. This was also the case for all different TMLE
implementations performed using the complete data and was thus not surprising. On the other hand,
MI methods tend to overestimate the ModSE, and this overestimation increases as the complexity of
the scenario increases. This could be because MI methods take into account the uncertainty associated
with the imputation process, which can result in larger estimates of the model error. Particularly,
methods that include two-way or additionally three-way and four-way interactions (MI 2Int, MI 3Int,
MI 2IntN, and MI 3 IntN) and more flexible methods like CART and Amelia seem to be more sensitive
to increasing complexity, likely because they can capture more complex patterns in the data that might
not actually be useful or accurate for the imputation. Additionally, the performance of the MI Rubin
variance estimator is anticipated to be suboptimal in situations of incompatibility, as suggested in
prior research (Bartlett and Hughes, 2020). This may provide an explanation for the observed error
ModSE associated with the MI approaches in the present study. It is suggested that incompatibility
presents a significant challenge when utilizing MI in conjunction with TMLE, where models are fitted
using Super Learner.

It can be observed that for MI using Amelia, the empSE and RMSE are the lowest across all m-dags and
scenarios. Although MI Amelia tends to overestimate the ModSE to some extent, this overestimation
is not problematic when considering the length of the CI and comparing it to other MI methods or
even to the non-MI methods, CC and Ext, which underestimate the ModSE and still have a similar
CI length. Nevertheless, it should be mentioned that overestimation of ModSE leads to overcoverage
(Morris et al., 2019). In practical terms, this implies that the MI Amelia method has performed well in
this analysis, demonstrating both precision and accuracy in handling missing data across a variety of
scenarios and data structures represented by different m-DAGs. Its ability to estimate with low empSE
and high coverage make it a reliable choice for dealing with missing data in this context. The superior
performance of MI Amelia could potentially be attributed to the nature of the DGP. The reproduced
data only contains binary confounders and exposure. With binary variables, the uncertainty introduced
by missingness is often less than that introduced by continuous variables, as there are only two possible
values for imputation. Therefore, if the missing values are conditional on the categories of the binary
variables, it might be easier to assign the missing values accurately to their respective classes. Amelia’s
EMB algorithm makes fewer assumptions about the distribution of the data, which can provide more
robust results against model mis-specification. In other words, even if the actual data distribution does
not align with the distribution assumed by the model, Amelia can often still perform well (Honaker
et al., 2011).

The results for the positivity violation data broadly confirm the findings from the reproduced data.
However, the bias for the non-MI methods is now higher for the non-recoverable m-DAGs F and G.
Furthermore, it can be noted that the RMSE for the non-MI methods CC and Ext is significantly
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worse compared to the MI methods. This is not due to a larger bias, but rather to a higher dispersion
(empSE). For MI Amelia, the bias was now significantly higher for all m-Dags and scenarios, but
still had a lowest RMSE overall due to the high precision (low empSE). Furthermore the inclusion
of interaction terms in the imputation models, namely MI 2Int, MI 3Int, MI 2IntN and MI 3IntN
no longer appeared to improve the performance of parametric MI methods in both complex scenarios
under high positivity violation (40%).

For the modified, copula 1, copula 2, and copula 3 data, the bias was generally low for the recoverable
m-DAGs T, A, B, D, E, and slightly increased for non-recoverable m-DAGs F, G for the methods CC
and Ext. The method Ext MCMI consistently had a higher bias and was particularly distorted in the
complex 2 scenario. Regarding the complex 2 scenario, it can be noted that all MI methods had a
significantly higher bias compared to CC and Ext. Interestingly, even the MI methods MI 2Int, MI 3Int,
MI 2IntN, and MI 3IntN displayed a relatively large bias in the complex 2 scenarios for these expanded
datasets. These MI methods should theoretically be well-specified and capable of accurately capturing
the relationships in the data. However, an underperformance compared to CART was apparent. One
main reason could be that the interactions in the data are extremely complex, and even correctly
specified interaction terms might not fully encapsulate the complexity of these relationships. Tree-
based methods like CART can sometimes better capture these complex interaction structures as they
can create more intricate partitions of the data. Furthermore, compared to the reproduced data, there
are now continuous confounders in the dataset, thereby making outliers possible. Linear regression,
which some of these MI methods may use, can be sensitive to outliers, which might unduly influence
the imputed values.

Generally, the MI methods exhibited higher distortion in the complex 1 and complex 2 scenarios but
had much lower empSE and consequently lower RMSE compared to the non-MI methods CC and Ext.
A possible reason for this is that, MI methods produce in general lower empSEs because they use the
correlations between variables to generate more accurate and consistent estimates of the missing values.
This reduces the spread or dispersion of the estimates across the multiple imputed datasets, resulting
in a lower empSE. However, these methods rely on certain assumptions, and if these assumptions are
violated, they may produce biased results (van Buuren, 2018). On the other hand, in non-MI methods,
cases with any missing values are completely dropped, which can result in loss of power or increase in
empSE.

The good performance of MI Amelia on the reproduced data and also on the positivity violation data
could not be confirmed for the expanded datasets.

Overall, it can be concluded that CC and Ext methods have relatively low bias except for the m-DAGs
C, H, I, J. However, they possess a larger empSE than the MI methods and additionally underestimate
the ModSe, which in turn leads to poor coverage. When considering the RMSE, for the more complex
scenarios and extended datasets, MI CART has performed the best.

For the different TMLE implementations, some surprising results were obtained. First of all, across all
considered datasets except positivity violation data, and across all scenarios, the implementation from

the package tmle yielded the lowest bias, the lowest empSE, and therefore the lowest RMSE. It is also
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evident that while ModSE is consistently underestimated across all scenarios, its underestimation is
still lower compared to the other implementations from the tmle3 and ltmle packages, resulting in
not only higher coverage but also relatively narrower Cls.

It is clear that TMLE and TMLE_S2 provided the best performance compared to the other TMLE
implementations for the given simulations. Additionally, in all different data scenarios, it was not
evident that TMLFE, which utilizes the cv. Qinit argument and is designed to protect against overfitting
by cross-validating the initial Super Learner estimate of Qg (A, W), provided better estimates than
TMLE_S2. Both implementations produced identical results, making TMLE_S2 more attractive for
application due to its approximately halved runtime, as the additional layer of cross-validation is
eliminated.

The implementations LTMLE and LTMLE _ic showed a significant bias regarding the estimation of
ATE for reproduced data, positivity violation data, and modified data. This bias logically increased
with the complexity of the scenarios. Compared to the other TMLE implementations, the empSE
was similarly large and the underestimation of ModSE was also similar to TMLE and TMLE_S2.
The high bias is probably more due to the Super Learner implementation than to the inclusion of
the clever covariates as weights in the logistic regression for updating the initial estimates. Especially
when outcome Y is continuous and needs to be rescaled accordingly, the results from the ltmle package
deviate from those of the tmle. Surprisingly, there are no performance differences between LTMLE and
LTMLE ic in terms of estimating ModSE. Particularly in the default setting, the robust variance, an
approach that directly targets the variance of the influence function as a counterfactual mean outcome
(Tran et al., 2018), and the influence curve-based variance are estimated, and the larger of the two is
used. Furthermore, the estimation using ltmle takes by far the longest, and the runtime increases even
further when continuous covariates are used instead of just binary variables. The required runtime
makes it nearly impossible to conduct larger simulation studies with ltmle.

Lastly, for the tmle3 package, the TMLES implementation, especially in more complex scenarios
across different datasets, exhibited a high underestimation of the ModSE in comparison to other
implementations. Moreover, the empSE was relatively large, resulting in a combination of low coverage
while maintaining relatively large confidence intervals (CI). The bias for this was significantly high only
in the complex scenarios for copula 1 and copula 3 data. Nonetheless, CVTMLES provided a lower
bias across all scenarios and datasets. For positivity violation data, the distortion was even less than
for TMLE and TMLE_S2. Compared to TMLES3, the underestimation of ModSE was almost always
less. For implementation using the tmle3, this at least confirms the theory that, for valid statistical
inference, cross-validation (CV) is beneficial (Balzer and Westling, 2021). This is mainly because the
initial estimator of Qo (A, W) is prone to overfitting. Thus, there is no realistic residual variation left for
the targeting step, making the update incapable of mitigating residual bias (van der Laan and Zheng,
2010), (Gruber and van der Laan, 2012). However, both the underestimation of ModSE and the bias,
except in positivity violation data, are greater than for TMLE and TMLE_S2. Therefore, it would, in
principle, be possible and necessary to try to manually combine CV with TMLE_S2 to more accurately
verify the benefits of CV-TMLE. One advantage of CVIMLES over TMLES is its marginally longer
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runtime, despite the fact that it essentially uses an additional layer of cross-validation.

A weakness in the used execution of missing data methods in combination with TMLE in this simulation
study is that the missing data methods are not applied once, but rather for each TMLE implementation
separately. This introduces additional uncertainty in estimating the ATE. However, it can be observed
through the implementations TMLE and TMLE_S2, both of which have nearly identical performance,
that the variability remained within limits. Nevertheless, it is advisable to address first missingness in
the datasets and then apply the different TMLE implementations to estimate the ATE.

Another interesting point is, for example, using the different TMLE implementations, it is possible to
compare and determine the biases regarding the ATE on the full dataset. Now, considering the distance
between the biases of the individual TMLE implementations, it is observed that this distance relatively
decreases in relation to the different TMLE implementations in combination with MI methods, while

it remains unchanged for the non-MI methods.

7 Conclusion

In conclusion, for the proposed missing data methods and the implementation TMLE, the results of
the simulation study (Dashti et al., 2021) were consistently replicated.

The analysis of reproduced data demonstrates the variability in performance across different missing
data imputation methods, contingent on the specific scenario and m-DAG under consideration. There
was no single method that consistently excelled across all m-DAGs in terms of relative bias. However,
lower relative bias was detected for certain m-DAGs T, A, B, D, E, F, G when non-MI methods, specif-
ically CC and Ext, were used. For more intricate m-DAGs H, I, J, MI Amelia performed admirably
with lower relative bias in complex scenarios.

The CC and Ext method performed well where missingness did not depend on the outcome for any
variable and a complete-case analysis could recover the conditional distribution of the outcome. These
methods maintained relative low bias for non-recoverable m-DAGs F and G, even though a slightly
higher bias was observed for m-DAG G, which exhibited missingness in the outcome directly influ-
enced by the outcome. In contrast, Ext MCMI method exhibited more biased estimates across these
scenarios.

The results indicate that the non-MI methods underestimated the ModSEs, and this underestimation
increased with the complexity of the scenarios. This could be because these methods ignore the un-
certainty associated with missing data, leading to overly optimistic estimates of the model error. In
contrast, MI methods tended to overestimate the ModSE, and this overestimation increases as the
complexity of the scenario increases.

The MI Amelia method has shown to perform well in this analysis, demonstrating both precision and
low bias (leading to low RMSE) in handling missing data across a variety of scenarios and data struc-
tures represented by different m-DAGs. The superior performance of MI Amelia could potentially be
attributed to the nature of the data generation process.

Results from the positivity violation data largely confirm the outcomes from the original reproduced
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data, with a few differences worth noting. The bias for non-MI methods was now more pronounced
for the non-recoverable m-DAGs F and G. Additionally, MI Amelia exhibited an increased bias across
all m-DAGs and scenarios, despite maintaining the lowest overall RMSE due to high precision.

In terms of the modified, copula 1, copula 2, and copula 3 data, the bias was generally low for the
recoverable m-DAGs and slightly higher for non-recoverable m-DAGs using methods CC and Ext.
Moreover, for these expanded datasets, all MI methods demonstrated a significantly higher bias in the
complex 2 scenario compared to CC and Ext. This suggests that even correctly specified interaction
terms might not fully encapsulate the complexity of these relationships, and methods like CART may
be more adept at capturing these complex interaction structures.

While MI methods presented higher bias in the complex scenarios, they exhibited lower empirical
standard errors (empSE) and thus lower RMSE compared to non-MI methods.

Notably, the superior performance of MI Amelia on the reproduced data and positivity violation data
was not confirmed for the expanded datasets.

In summary, the CC and Ext methods tend to demonstrate relatively low bias, except for m-DAGs C,
H, I, J. However, these methods have higher empSE than the MI methods and tend to underestimate
the ModSe, resulting in poor coverage. Considering the RMSE, MI CART outperforms other methods
in more complex scenarios and extended datasets.

In terms of the different TMLE implementations, it was found that the TMLE implementations TMLE
and TMLE_S2 package yielded the lowest bias, the lowest empSE, and therefore the lowest RMSE
across all scenarios. On top of that TMLE_S2 has by far lowest runtime, making this approach su-
perior. Meanwhile, implementations such as LTMLE and LTMLE ic exhibited a significant bias for
estimating ATE.

Finally, the TMLES3 implementation, especially in more complex scenarios across different datasets,
exhibited a high underestimation of ModSE in comparison to other implementations. However,
CVTMLES provided a lower bias and underestimation of ModSE across all scenarios and datasets
in comparison to TMLES3, could possibly confirm the theory that, for valid statistical inference CV is
beneficial and could add robustness.

Therefore, this comprehensive analysis underscores the importance of considering the characteristics
of the specific scenario and m-DAG when choosing an imputation method, the intricacies of different
implementations of TMLE, and the impact of increasing complexity on the reliability of imputation

and estimation methods.
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Figure A.1: Relative bias (%) in ATE estimation using different missing data methods for the 11 assessed
missingness directed acyclic graphs (m-DAGs) and implementation TMLE_S2 as described in chapter 4.5 in
reproduced data.
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Figure A.2: Relative bias (%) in ATE estimation using different missing data methods for the 11 assessed miss-
ingness directed acyclic graphs (m-DAGs) and implementation LTMLE as described in chapter 4.5 in reproduced

data.
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Figure A.6: Relative error in ModSE (%) in ATE estimation using different missing data methods for the 11
assessed missingness directed acyclic graphs (m-DAGs) and implementation LTMLE as described in chapter 4.5

in reproduced data.
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Figure A.7: Relative error in ModSE (%) in ATE estimation using different missing data methods for the 11
assessed missingness directed acyclic graphs (m-DAGs) and implementation TMLES as described in chapter 4.5

in reproduced data.
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Figure A.8: Relative error in ModSE (%) in ATE estimation using different missing data methods for the 11
assessed missingness directed acyclic graphs (m-DAGs) and implementation CVTMLES as described in chapter
4.5 in reproduced data.
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Figure A.9: Root mean squared error (RMSE) in ATE estimation using different missing data methods for the 11
assessed missingness directed acyclic graphs (m-DAGs) and implementation TMLE_S2 as described in chapter
4.5 in reproduced data.
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Figure A.10: Root mean squared error (RMSE) in ATE estimation using different missing data methods for the
11 assessed missingness directed acyclic graphs (m-DAGs) and implementation LTMLE as described in chapter
4.5 in reproduced data.
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Figure A.11: Root mean squared error (RMSE) in ATE estimation using different missing data methods for the
11 assessed missingness directed acyclic graphs (m-DAGs) and implementation TMLE3 as described in chapter
4.5 in reproduced data.
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Figure A.12: Root mean squared error (RMSE) in ATE estimation using different missing data methods for
the 11 assessed missingness directed acyclic graphs (m-DAGs) and implementation CVTMLES3 as described in
chapter 4.5 in reproduced data.
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Figure A.13: Coverage in ATE estimation using different missing data methods for the 11 assessed missingness
directed acyclic graphs (m-DAGs) and implementation TMLE_S2 as described in chapter 4.5 in reproduced
data.
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Figure A.14: Coverage in ATE estimation using different missing data methods for the 11 assessed missingness
directed acyclic graphs (m-DAGs) and implementation LTMLE as described in chapter 4.5 in reproduced data.
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Figure A.15: Coverage in ATE estimation using different missing data methods for the 11 assessed missingness
directed acyclic graphs (m-DAGs) and implementation TMLES as described in chapter 4.5 in reproduced data.
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Figure A.16: Coverage in ATE estimation using different missing data methods for the 11 assessed missingness

directed acyclic graphs (m-DAGs) and implementation CVTMLES as described in chapter 4.5 in reproduced
data.
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Regression coefficient of

Model for 1\ rcept W1 w2 w3 w4 W5 A Y B MW?2 MW3 MW4 MZA
W1 -1.30
w2 -1.90 0.40
W3 0.40 0.70
W4 -0.60 -0.70
Complete data W5 -0.50
Both complexity and positivity violation scenarios
A 1.00 0.70 -2.00 -1.40 1.20 -2.40
Y 0.10 0.40 0.70 0.20 0.30 0.20
MW2 -0.85
MW3 -4.40 4.30
DAGT MW4 -4.00 3.90 1.40
MA -2.00 1.50 1.50 1.50
MY -1.60 -0.50 0.50 0.50 0.50
MW2 -1.45 0.90 0.90
MW3 -5.60 0.90 0.90 4.80
DAG A MW4 -4.70 0.90 0.90 3.90 1.50
MA -2.50 0.90 0.90 1.30 1.50 1.50
MY -2.10 0.90 0.90 0.10 0.10 0.10 0.05
MW2 -1.60 0.90 0.90 0.90
MW3 -5.20 0.90 0.90 0.90 4.10
DAG B MW4 -4.40 0.90 0.90 0.90 3.20 2.00
MA -3.70 0.90 0.90 0.90 0.90 0.90 1.80 1.50 1.50
MY -3.25 0.90 0.90 0.90 0.90 0.90 0.90 -0.30 0.10 0.10 0.10
MW2 -1.60 0.90 0.90 0.90 0.10
MW3 -5.30 0.90 0.90 0.90 0.10 4.30
DAG C MW4 -4.50 0.90 0.90 0.90 0.10 3.50 1.30
MA -3.70 0.90 0.90 0.90 0.90 0.90 0.10 1.70 1.50 1.50
MY -3.25 0.90 0.90 0.90 0.90 0.90 0.90 -0.40 0.10 0.10 0.15
MW2 -1.60 0.90 0.90 0.90
MW3 -6.20 0.90 0.90 0.90 4.80
DAG D MW4 -5.00 0.90 0.90 0.90 3.90 1.50
MA -2.65 0.90 0.90 0.90 1.30 1.50 1.50
MY -2.10 0.90 0.90 0.10 0.10 0.10 0.10
MW2 -1.75 0.90 0.90 0.90 0.90
MW3 -5.70 0.90 0.90 0.90 0.90 4.10
DAG E MW4 -4.80 0.90 0.90 0.90 0.90 3.20 2.00
MA -3.80 0.90 0.90 0.90 0.90 0.90 0.90 1.50 1.50 1.50
MY -3.20 0.90 0.90 0.90 0.90 0.90 0.90 -0.60 0.10 0.10 0.20
MW2 -1.60 0.90 0.90 0.90 0.10
MW3 -6.60 0.90 0.90 0.90 0.10 4.10
DAGF MW4 -5.40 0.90 0.90 0.90 0.10 3.20 2.00
MA -2.55 0.90 0.90 0.90 0.10 1.20 1.30 1.30
MY -2.10 0.90 0.90 -0.30 0.10 0.10 0.40
MW2 -1.60 0.90 0.90 0.90
MW3 -5.20 0.90 0.90 0.90 4.10
DAG G MW4 -4.45 0.90 0.90 0.90 3.20 2.00
MA -3.70 0.90 0.90 0.90 0.90 0.90 1.70 1.50 1.50
MY -3.30 0.90 0.90 0.90 0.90 0.90 0.90 0.10 -0.30 0.10 0.10 0.10
MW2 -1.60 0.90 0.90 0.90 0.10
MW3 -5.40 0.90 0.90 0.90 0.10 4.30
DAG H MW4 -4.50 0.90 0.90 0.90 0.10 3.50 1.30
MA -3.65 0.90 0.90 0.90 0.90 0.90 0.10 1.50 1.50 1.50
MY -3.30 0.90 0.90 0.90 0.90 0.90 0.90 0.10 -0.50 0.30 0.30 0.10
MW2 -1.75 0.90 0.90 0.90 0.90 0.10
MW3 -5.95 0.90 0.90 0.90 0.90 0.10 4.30
DAG 1 MW4 -4.80 0.90 0.90 0.90 0.90 0.10 3.50 1.30
MA -3.80 0.90 0.90 0.90 0.90 0.90 0.90 0.10 1.50 1.50 1.50
MY -3.20 0.90 0.90 0.90 0.90 0.90 0.90 -0.60 0.10 0.10 0.20
MW2 -1.70 0.90 0.90 0.90 0.90 0.10
MW3 -5.95 0.90 0.90 0.90 0.90 0.10 4.30
DAG J MW4 -4.85 0.90 0.90 0.90 0.90 0.10 3.50 1.30
MA -3.80 0.90 0.90 0.90 0.90 0.90 0.90 0.10 1.50 1.50 1.50
MY -3.35 0.90 0.90 0.90 0.90 0.90 0.90 0.10 0.05 0.05 0.05 0.05

*For the complex and positivity violation scenarios models for A and Y also included interactions as follows
WIW3 WIw4d WIW5 W3W4  W3W5 W4W5 WIW3W4 WIW3W5 WIW4AW5  W3W4W5 WIW3W4W5
Positivity violation 1 (30%)

Complex 1 scenario A -2.90 1.30 0.30 1.20 -2.00 -1.90 2.00
Y -0.70 -0.50 1.00 0.10 0.10 0.40 -0.10 -1.20 -1.00 -0.10 -0.40 1.70
Complex 2 scenario A -2.90 1.30 0.30 1.20 -2.00 -1.90 2.00
Y -0.70 -0.90 2.00 0.10 0.20 0.70 -0.20 -2.40 -2.00 -0.30 -0.80 3.40
Positivity violation 2 (40%)
. A -3.40 2.60 0.70 2.40 -4.00 -3.90 4.00
Complex 1 scenario
Y -0.70 -0.50 1.00 0.10 0.10 0.40 -0.10 -1.20 -1.00 -0.10 -0.40 1.70
Complex 2 scenario A -3.40 2.60 0.70 2.40 -4.00 -3.90 4.00
Y -0.70 -0.90 2.00 0.10 0.20 0.70 -0.20 -2.40 -2.00 -0.30 -0.80 3.40

Table B.1: Coefficient values are displayed for data generation and also for missing indicators across all considered
scenarios for positivity violation data
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Model for Regression coefficient of

Intercept W1 W2 W3 W4 W5 A Y B MW2 MW3 MW4 MZA
W1 -0.40
w2 -0.90 -0.50
W3 0.40 0.70
W4 3.00 -0.10
W5 1.00
Complete Data Simple scenario
A -3.85 0.40 0.80 0.50 0.20 0.40 0.70
Y -0.60 -0.30 -0.40 0.20 0.20 0.10 0.20
Complex scenarios
A 0.40 0.80 0.50 0.20 0.40 0.70
Y -0.30 -0.40 0.20 0.20 0.10 0.20
MWwW2 -1.10
MW3 -2.45 5.60
DAG T MW4 -4.10 3.90 2.90
MA -1.35 -0.50 1.00 1.00
MY -2.50 0.90 0.90 0.50 0.60
MWwW2 -1.50 0.90 0.10
MW3 -2.45 0.90 0.10 3.70
DAG A MW4 -3.65 0.90 0.10 2.50 2.50
MA -2.55 0.90 0.10 1.30 1.30 1.30
MY -2.25 0.90 0.10 0.30 0.30 0.30 0.35
MWwW2 -1.70 0.90 0.10 0.90
MW3 -2.75 0.90 0.10 0.90 4.80
DAG B MWwW4 -4.35 0.90 0.10 0.90 3.30 2.70
MA -3.15 0.90 0.90 0.90 0.10 0.10 1.10 1.10 1.00
MY -3.20 0.90 0.90 0.90 0.10 0.10 0.90 0.20 0.20 0.10 0.40
MWwW2 -1.70 0.90 0.10 0.90 0.10
MW3 -2.85 0.90 0.10 0.90 0.10 5.00
DAG C MWwW4 -4.30 0.90 0.10 0.90 0.10 3.20 2.60
MA -3.20 0.90 0.90 0.90 0.10 0.10 0.10 1.10 1.10 1.10
MY -3.10 0.90 0.90 0.90 0.10 0.10 0.90 0.10 0.10 0.10 0.40
MWwW2 -1.80 0.90 0.90 0.10
MW3 -2.85 0.90 0.90 0.10 3.35
DAG D MW4 -3.90 0.90 0.10 0.10 3.00 2.50
MA -2.95 0.90 0.10 0.90 1.60 1.60 1.50
MY -2.20 0.90 0.10 0.30 0.30 0.20 0.30
MWwW2 -2.00 0.90 0.90 0.10 0.90
MW3 -3.55 0.90 0.90 0.10 0.90 5.55
DAG E MW4 -4.20 0.90 0.10 0.10 0.90 3.30 2.40
MA -3.10 0.90 0.90 0.90 0.10 0.10 0.90 0.80 0.80 0.90
MY -3.05 0.90 0.90 0.90 0.10 0.10 0.90 0.10 0.05 0.05 0.30
MWwW2 -1.80 0.90 0.90 0.10 0.10
MW3 -2.40 0.90 0.90 0.10 0.10 3.35
DAGF MW4 -3.90 0.90 0.10 0.10 0.10 3.00 2.60
MA -2.85 0.90 0.10 0.90 0.10 1.50 1.40 1.40
MY -2.20 0.90 0.10 0.30 0.30 0.20 0.30
MWwW2 -1.55 0.90 0.10 0.90
MW3 -2.85 0.90 0.10 0.90 5.20
DAG G MW4 -4.15 0.90 0.10 0.90 3.30 2.30
MA -3.30 0.90 0.90 0.90 0.10 0.10 1.20 1.20 1.20
MY -3.15 0.90 0.90 0.90 0.10 0.10 0.90 0.10 0.05 0.05 0.05 0.60
MWwW2 -1.70 0.90 0.10 0.90 0.10
MW3 -2.90 0.90 0.10 0.90 0.10 5.20
DAG H MWwW4 -4.15 0.90 0.10 0.90 0.10 3.30 2.30
MA -3.10 0.90 0.90 0.90 0.10 0.10 0.10 1.00 1.00 1.00
MY -3.10 0.90 0.90 0.90 0.10 0.10 0.90 0.10 0.05 0.05 0.05 0.45
MWwW2 -2.00 0.90 0.90 0.10 0.90 0.10
MW3 -3.40 0.90 0.90 0.10 0.90 0.10 5.20
DAG I MWwW4 -4.20 0.90 0.10 0.10 0.90 0.10 3.30 2.30
MA -3.25 0.90 0.90 0.90 0.10 0.10 0.90 0.10 1.00 1.00 1.00
MY -3.10 0.90 0.90 0.90 0.10 0.10 0.90 0.05 0.05 0.05 0.40
MWwW2 -2.00 0.90 0.90 0.10 0.90 0.10
MW3 -3.40 0.90 0.90 0.10 0.90 0.10 5.20
DAG J MWwW4 -4.05 0.90 0.10 0.10 0.90 0.10 3.30 2.30
MA -3.25 0.90 0.90 0.90 0.10 0.10 0.90 0.10 1.00 1.00 1.00
MY -3.10 0.90 0.90 0.90 0.10 0.10 0.90 0.10 0.05 0.05 0.05 0.40

*For the complex scenarios models for A and Y also included interactions as follows
WIW3 WIW4 WIW5 W3W4 W3W5 W4W5 WIW2W4 WIW2W5 WIW4AW5  W2W4W5 WIW2W4W5
Complex 1 scenario

A -2.95 -0.70 0.50 0.40 -0.50 0.40 -0.55

Y 0.20 -0.30 0.20 -0.10 -0.40 0.10 -0.10 -0.10 0.10 -0.10 0.10 0.10
Complex 2 scenario

A -3.30 -1.40 1.00 0.80 -1.00 0.80 -1.00

Y 1.05 -0.60 0.40 -0.20 -0.80 0.20 -0.20 -0.20 0.20 -0.20 0.20 0.20

Table B.2: Coefficient values are displayed for data generation and also for missing indicators across all considered
scenarios for the modified data
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Regression coefficient of

Model for p \ rcept W1 w2 w3 W4 w5 A Y B MW?2 MW3 MW4 MZA
W1 0.40
w2 0.85 0.30
W3 -0.35 0.30
W4 3.00 -0.10
W5 1.00
Complete Data Simple scenario
A -4.00 0.40 0.80 0.50 0.20 0.40 0.70
Y -0.60 -0.30 -0.40 0.20 0.20 0.10 0.20
Complex scenarios
A 0.40 0.80 0.50 0.20 0.40 0.70
Y -0.30 -0.40 0.20 0.20 0.10 0.20
MWwW2 -1.10
MW3 -2.45 5.60
DAG T MW4 -4.10 3.90 2.90
MA -1.35 -0.50 1.00 1.00
MY -2.50 0.90 0.90 0.50 0.60
MWwW2 -1.50 0.90 0.10
MW3 -2.45 0.90 0.10 3.70
DAG A MW4 -3.65 0.90 0.10 2.50 2.50
MA -2.55 0.90 0.10 1.30 1.30 1.30
MY -2.25 0.90 0.10 0.30 0.30 0.30 0.35
MWwW2 -1.70 0.90 0.10 0.90
MW3 -2.75 0.90 0.10 0.90 4.80
DAG B MWwW4 -4.35 0.90 0.10 0.90 3.30 2.70
MA -3.25 0.90 0.90 0.90 0.10 0.10 1.10 1.10 1.00
MY -3.15 0.90 0.90 0.90 0.10 0.10 0.90 0.20 0.20 0.10 0.10
MWwW2 -1.70 0.90 0.10 0.90 0.10
MW3 -2.85 0.90 0.10 0.90 0.10 5.00
DAG C MWwW4 -4.30 0.90 0.10 0.90 0.10 3.20 2.60
MA -3.25 0.90 0.90 0.90 0.10 0.10 0.10 1.10 1.10 1.10
MY -3.20 0.90 0.90 0.90 0.10 0.10 0.90 0.15 0.15 0.15 0.25
MWwW2 -1.85 0.90 0.90 0.10
MW3 -2.80 0.90 0.90 0.10 3.20
DAG D MW4 -3.90 0.90 0.10 0.10 3.00 2.60
MA -3.00 0.90 0.10 0.90 1.60 1.60 1.50
MY -2.20 0.90 0.10 0.30 0.30 0.20 0.30
MWwW2 -2.00 0.90 0.90 0.10 0.90
MW3 -3.55 0.90 0.90 0.10 0.90 5.55
DAG E MW4 -4.20 0.90 0.10 0.10 0.90 3.30 2.40
MA -3.15 0.90 0.90 0.90 0.10 0.10 0.90 0.80 0.80 0.90
MY -3.05 0.90 0.90 0.90 0.10 0.10 0.90 0.10 0.05 0.05 0.10
MWwW2 -1.85 0.90 0.90 0.10 0.10
MW3 -2.30 0.90 0.90 0.10 0.10 3.20
DAGF MW4 -3.90 0.90 0.10 0.10 0.10 3.00 2.60
MA -2.85 0.90 0.10 0.90 0.10 1.50 1.40 1.40
MY -2.20 0.90 0.10 0.30 0.30 0.20 0.30
MWwW2 -1.55 0.90 0.10 0.90
MW3 -2.95 0.90 0.10 0.90 5.00
DAG G MW4 -4.05 0.90 0.10 0.90 3.20 2.30
MA -3.35 0.90 0.90 0.90 0.10 0.10 1.20 1.20 1.30
MY -3.15 0.90 0.90 0.90 0.10 0.10 0.90 0.10 0.05 0.05 0.05 0.40
MWwW2 -1.70 0.90 0.10 0.90 0.10
MW3 -2.90 0.90 0.10 0.90 0.10 5.20
DAG H MWwW4 -4.15 0.90 0.10 0.90 0.10 3.30 2.30
MA -3.15 0.90 0.90 0.90 0.10 0.10 0.10 1.00 1.00 1.00
MY -3.15 0.90 0.90 0.90 0.10 0.10 0.90 0.10 0.05 0.05 0.05 0.40
MWwW2 -2.00 0.90 0.90 0.10 0.90 0.10
MW3 -3.45 0.90 0.90 0.10 0.90 0.10 5.10
DAG I MWwW4 -4.10 0.90 0.10 0.10 0.90 0.10 3.20 2.30
MA -3.30 0.90 0.90 0.90 0.10 0.10 0.90 0.10 1.00 1.00 1.00
MY -3.05 0.90 0.90 0.90 0.10 0.10 0.90 0.10 0.05 0.05 0.10
MWwW2 -2.00 0.90 0.90 0.10 0.90 0.10
MW3 -3.45 0.90 0.90 0.10 0.90 0.10 5.10
DAG J MWwW4 -4.10 0.90 0.10 0.10 0.90 0.10 3.20 2.30
MA -3.30 0.90 0.90 0.90 0.10 0.10 0.90 0.10 1.00 1.00 1.00
MY -3.05 0.90 0.90 0.90 0.10 0.10 0.90 0.10 0.05 0.05 0.05 0.15

*For the complex scenarios models for A and Y also included interactions as follows
WIW3 WIW4 WIW5 W3W4 W3W5 W4W5 WIW2W4 WIW2W5 WIW4AW5  W2W4W5 WIW2W4W5
Complex 1 scenario

A -2.50 -0.60 0.50 0.40 -0.50 0.30 -0.50

Y 0.30 -0.30 0.20 -0.10 -0.40 0.10 -0.10 -0.10 0.10 -0.10 0.10 0.10
Complex 2 scenario

A -2.90 -1.00 1.00 0.80 -0.90 0.50 -0.90

Y 1.20 -0.60 0.40 -0.20 -0.80 0.20 -0.20 -0.20 0.20 -0.20 0.20 0.20

Table B.3: Coefficient values are displayed for data generation and also for missing indicators across all considered
scenarios for copula 1 data
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Regression coefficient of

Model for
Intercept Wi w2 W31 W32 W33 W4 W5 A Y B

W1 0.40
w2 0.90 -0.50
W31 -0.20 0.70
W32 -0.30 -1.00
W33 0.70 -0.30
W34 -0.80 -0.60

Complete Data W4 3.00 -0.10

V5 1.00

Simple scenario
A -4.10 0.40 0.80 0.50 0.30 0.60 0.20 0.40 0.70
Y -0.50 -0.30 -0.40 0.20 -0.30 0.35 0.20 0.10 0.20
Complex scenarios
A 0.40 0.80 0.50 0.30 0.60 0.20 0.40 0.70
Y -0.30 -0.40 0.20 -0.30 0.35 0.20 0.10 0.20

*For the complex scenarios models for A and Y also included interactions as follows

WIW31  WIW32  WI1W33 Wiw4 WI1W5 W31W4  W32W4 W33W4 W31W5 W32W5 W33W5 W4W5
Complex 1 scenario
A -2.40 -0.40 0.30 0.30 0.30 -0.20 -0.30 -0.50 0.10 -0.20 -0.50 -0.40 -0.30
Y 0.15 -0.30 0.40 -0.50 0.20 -0.10 -0.40 0.20 -0.40 0.10 -0.30 -0.20 -0.10
Complex 2 scenario
A -2.55 -0.80 0.60 0.60 0.50 -0.40 -0.50 -0.80 0.20 -0.40 -0.90 -0.70 -0.50
Y 0.60 -0.60 0.70 -0.90 0.40 -0.20 -0.70 0.40 -0.70 0.20 -0.60 -0.40 -0.20
WIW2W4  WIW2W5 WIW4W5 W2W4W5 WIW2W4W5

Complex 1 scenario
A
Y -0.10 0.10 -0.10 0.10 0.10
Complex 2 scenario
A
Y -0.20 0.20 -0.20 0.20 0.20

Table B.4: Coefficient values

are displayed for data generation across all

90

considered scenarios for copula 2 data



Regression coefficient of

Model for
Intercept W1 w2 W31 W32 W33 W4 W5 W6 A Y B

W1 0.40

w2 0.90 -0.50

W31 -0.20 0.70

W32 -0.30 -1.00

W33 0.70 -0.30

W34 -0.80 -0.60

W4 3.00 -0.10
Complete Data W 100

W6 shape 2 0.10

W6 rate 1 0.10

Simple scenario

A -4.90 0.40 0.80 0.50 0.30 0.60 0.20 0.40 0.40 0.70

Y -0.05 -0.30 -0.40 0.20 -0.30 0.35 0.20 0.10 -0.20 0.20

Complex scenarios

A 0.40 0.80 0.50 0.30 0.60 0.20 0.40 0.40 0.70

Y -0.30 -0.40 0.20 -0.30 0.35 0.20 0.10 -0.20 0.20

*For the complex scenarios models for A and Y also included interactions as follows

Wi1w31l WIW32 WIW33 Wiw4 W1ws5 W3_1W4 W3_2W4 W3_3W4 W31W5 W32W5 W33W5 W4W5

Complex 1 scenario

A -2.80 -0.60 0.40 0.50 0.60 -0.60 -0.50 0.60 0.20 -0.40 -0.60 -0.30 -0.30
Y 0.60 -0.30 0.40 -0.50 0.20 -0.10 -0.40 0.20 -0.40 0.10 -0.30 -0.20 -0.10
Complex 2 scenario

A -2.85 -1.10 0.80 0.90 1.10 -1.10 -0.90 1.10 0.40 -0.70 -1.10 -0.50 -0.50
Y 1.30 -0.60 0.80 -1.00 0.40 -0.20 -0.80 0.40 -0.80 0.20 -0.60 -0.40 -0.20

W1we6 W4W6 W5W6 ~ WIW4W6 WIW5W6 WIW4W5 W4AW5W6 WIW4W5W6

Complex 1 scenario

A -0.40 -0.30 0.20

Y -0.20 -0.10 0.10 -0.10 0.10 -0.10 0.10 0.10
Complex 2 scenario

A -0.70 -0.50 0.40

Y -0.40 -0.20 0.20 -0.20 0.20 -0.20 0.20 0.20

Table B.5: Coefficient values are displayed for data generation across all considered scenarios for copula 3 data
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Regression coefficient of

Model for | rcept W1 W2 W31 W33 W4 W5 A Y B MW2 MW3 MW4 MZA
MW2 110
MW3 245 5.60

DAGT MW4 415 3.90  2.90
MA -1.35 2050 1.00 1.0
MY -2.50 090  0.90 050  0.60
MW2 150 0.90 0.10
MW3 245 0.90 0.10 3.70

DAG A MW4 365  0.90 0.10 250  2.50
MA 255 0.90 0.10 130 1.30  1.30
MY 225 0.90 0.10 030 030 030 0.35
MW2 165 0.90 0.10 0.90
MW3 270 0.90 0.10 0.90 4.20

DAGB MW4 435 0.90 0.10 0.90 310  2.70
MA 310 090 090 090 090 0.10 0.10 110 110 1.10
MY 310 090 090 090 090 0.0 0.0 0.0 020 020 010 0.35
MW2 165 0.90 010 090 0.10
MW3 275 0.90 0.10 090 0.10 4.50

DAG C  MW4 430 0.90 010 090 0.10 3.20  2.60
MA 310 090 090 090 090 010 0.10 0.10 110 110  1.10
MY 305 090 090 090 090 010 0.0 0.90 010 010 010 0.40
MW2 185 090 0.90 0.10
MW3 275 0.90 0.90  0.90 0.10 3.30

DAGD MW4 420  0.90 0.0 0.10 3.00  2.95
MA 295  0.90 0.10 0.90 1.60 1.60  1.50
MY 220  0.90 0.10 030 030 020 030
MW?2 200 090 0.90 010 0.90
MW3 350 0.90 0.90  0.90 0.10 0.90 5.55

DAGE MW4 420 090 010 010 0.90 330 2.40
MA 300 090 090 090 090 0.10 0.10 0.0 0.80  0.80  0.90
MY 295 090 090 090 090 0.10 0.10 0.90 010 005 005 025
MW2 185 0.90 0.90 0.10 0.10
MW3 275 0.90 090  0.90 0.10 0.10 3.35

DAGF MW4 400 0.90 0.10 0.10 0.10 3.00  2.60
MA 3.00  0.90 0.10 090 0.10 160 1.60  1.60
MY 220  0.90 0.10 030 030 020  0.30
MW2 165 0.90 0.10 0.90
MW3 305 0.90 0.10 0.90 5.90

DAG G MW4 435 0.90 0.10  0.90 330 2.70
MA 295 090 090 090 090 010 0.10 0.90  0.90  1.00
MY 300 090 090 090 090 010 010 090 0.10 0.05  0.05 005 040
MW?2 170 0.90 010 090 0.10
MW3 305 0.90 010 0.90 0.10 5.90

DAGH MW4 435 0.90 010 090 0.10 330  2.70
MA 295 090 090 090 090 010 0.10 0.10 .00 090  0.90
MY 300 090 090 090 090 010 010 090 0.10 010 010 010 0.35
MW?2 200 090 0.90 010 090 0.10
MW3 345 0.90 0.90  0.90 010 0.90 0.10 5.50

DAGI MW4 420 090 010 010 0.90 0.10 330 2.35
MA 295 090 090 090 090 010 010 090 0.10 0.80  0.80  0.80
MY 295 090 090 090 090 010 0.10 0.90 005 005 005 025
MW2 200 090 0.90 010 090 0.10
MW3 345 0.90 090  0.90 0.10 090 0.10 5.50

DAGJ MW4 420 0.90 010 010 090 0.10 330 2.35
MA 295 090 090 090 090 010 010 090 0.10 080  0.80  0.80
MY 295 090 090 090 090 010 010 090 0.10 005 005 005 025

Table B.6: Shows coefficient values for missing indicators across all considered scenarios for copula 2 data
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Regression coefficient of

Modelfor 1 rcept W1 W2 W31 W33 W4 W5 W6 A Y B MW2 MW3 MW4 MW6 MZA
MW2 -1.10
MW3 245 5.60
MW4 -4.10 390 280

DAG T MW6 -4.40 1.90 1.90 1.90
MA 135 050 070 070 0.80
MY -2.60 090 090 050 050  0.40
MW2 150 0.90 0.10
MW3 245 090 0.10 3.70

DAG A MW4 365 0.90 0.10 250 250
MW6 515 0.90 0.10 190 230 220
MA 255 0.90 0.10 110 110  1.00  1.00
MY 225 090 0.10 030 030 020 020 0.20
MW2 170 090 0.10 0.90
MW3 205 0.0 0.10 0.90 5.40

bAGp  Mwi 430 0.90 0.10 0.90 330 250
MW6 595 0.90 0.10 0.90 320 1.80  1.90
MA 310 090 090 090 090 0.0 010 0.10 090 090 090 0.0
MY 300 090 090 090 090 010 010 010 0.90 010 010 010 020  0.10
MW2 170 0.90 0.10 0.90 0.10
MW3 295 090 0.10 0.90 0.10 5.40

DAG . Mwi 435 090 0.10 0.90 0.10 330 250
MW6 605  0.90 0.10 0.90 0.10 320  1.80  1.90
MA 310 090 090 090 090 0.10 010 0.10 0.10 080 090 090 0.0
MY 305 090 090 090 090 010 010 010 0.90 010 010 010 020 025
MW2 185 090 0.90 0.10
MW3 275 0.90 090  0.90 0.10 3.35

baGD MW .00 0.90 0.10 0.10 3.00 270
MW6 -5.30 0.90 0.10 0.10 2.20 2.20 2.30
MA 285 090 0.10 0.90 130 120 120  1.20
MY 220 0.90 0.10 030 030 020 020 0.10
MW2 200 000 0.90 0.10 0.90
MW3 350 0.90 090  0.90 0.10 0.90 5.50

baGE MW 415 0.90 0.10 0.10 0.90 330 220
MW6 590 0.90 0.0 0.0 0.90 320 170 1.90
MA 295 090 090 090 090 010 010 010 0.90 070 060 060  0.70
MY 300 090 090 090 090 0.0 010 010 0.90 010 005 005 005 025
MW2 185 000 0.90 0.10 0.10
MW3 275 0.90 090  0.90 0.10 0.10 3.30

baGE Mwi 400 0.90 0.10  0.10 0.10 300 270
MW6 540 0.90 0.10 0.10 0.10 220 230 220
MA -2.90 0.90 0.10 0.90 0.10 1.20 1.20 1.20 1.20
MY 220 090 0.10 030 030 020 020 0.10
MW2 170 0.90 0.10 0.90
MW3 295 0.0 0.10 0.90 5.50

baGG MW 455 0.90 0.10 0.90 330 270
MW6 630 0.90 0.10 0.90 320 220 210
MA 295 090 090 090 090 0.0 010 0.10 080 080 0.80  0.60
MY 305 090 090 090 090 010 010 010 090 0.10 005 005 005 005 040
MW2 170 0.0 0.10 0.90 0.10
MW3 305 0.90 0.10 0.90 0.10 5.50

baGn  Mwd 435 0.90 0.10 0.90 0.10 330 250
MW6 605  0.90 0.10 0.90 0.10 320  1.80  1.90
MA 295 090 090 090 090 0.0 010 0.10 0.10 080 080 080  0.60
MY 300 090 090 090 090 0.0 010 010 090 0.10 005 005 005 005 0.30
MW2 200 090 0.90 0.10 090 0.10
MW3 350 0.90 0.90  0.90 0.10 0.90 0.10 5.50

baGD  Mwd 420 0.90 0.10 0.10 0.90 0.10 330 220
MW6 590 0.90 010 010 090 0.10 320 170 1.90
MA 205 090 090 090 090 010 010 010 090 0.10 070 060  0.60  0.70
MY 295 090 090 090 090 0.0 010 010 0.90 010 005 005 005 0.5
MW2 200 000 090 0.10 090 0.10
MW3 350  0.90 090  0.90 0.10 0.90 0.10 5.50

DAG g Mwa 420 0.90 0.10  0.10 0.90 0.10 330 220
MW6 590 0.90 010 010 090 0.10 320 170 1.90
MA 205 090 090 090 090 010 010 010 090 0.10 070 060 060 0.70
MY 205 090 090 090 090 010 010 010 090 0.10 005 005 005 005 015

Table B.7: Shows coefficient values for missing indicators across all considered scenarios for copula 3 data
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Parameter 1 represents proportion for binary/categorical variables and mean for normal distributed outcome.
Parameter 2 represents the standard deviation and for Y it is ordered regarding scenario complexity.

Distribution of variables in simulated complete data

W1 W2 W3 W4 W5 A Y
Type binary binary binary mnormal normal binary  normal

For all scenarios Parameter 1 0.40 0.30 0.59 3 1 0.15 0
Parameter 2 1 2 1;1.3;2.2

% with missing value

W2 W3 W4 A Y AJ)Y Any

DAGT 25 30 25 30 20 40 50
DAG A 25 30 25 30 20 40 50
DAG B 25 30 25 30 20 40 50
DAG C 25 30 25 30 20 40 50
DAG D 25 30 25 30 20 40 50
For all scenarios DAG E 25 30 25 30 20 40 50
DAGF 25 30 25 30 20 40 50
DAG G 25 30 25 30 20 40 50
DAG H 25 30 25 30 20 40 50
DAG1 25 30 25 30 20 40 50
DAG J 25 30 25 30 20 40 50

Table B.8: Distribution of variables in the simulated complete data and proportion with missingness across the
11 simulated missingness mechanisms and the different considered scenarios

Parameter 1 represents proportion for binary/categorical variables and mean for normal distributed outcome.
Parameter 2 represents the standard deviation and for Y it is ordered regarding scenario complexity.

Distribution of variables in simulated complete data

W1 w2 W3_1 W32 W3.3 W34 W4 W5 A Y
Type binary binary categorical categorical categorical categorical normal normal binary  normal

For all scenarios Parameter 1 0.40 0.30 0.25 0.56 0.20 0.09 3 1 0.15 0
Parameter 2 1 2 1;1.5;2.7

% with missing value

W2 W3 W4 A Y AJY Any

DAGT 25 30 25 30 20 40 50
DAG A 25 30 25 30 20 40 50
DAG B 25 30 25 30 20 40 50
DAG C 25 30 25 30 20 40 50
DAG D 25 30 25 30 20 40 50
For all scenarios DAG E 25 30 25 30 20 40 50
DAGF 25 30 25 30 20 40 50
DAG G 25 30 25 30 20 40 50
DAG H 25 30 25 30 20 40 50
DAGI 25 30 25 30 20 40 50
DAG J 25 30 25 30 20 40 50

Table B.9: Distribution of variables in the simulated complete data and proportion with missingness across the
11 simulated missingness mechanisms and the different considered scenarios.
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Parameter 1 represents proportion for binary/categorical variables, shape for gamma distributed variable and
mean for normal distributed outcome. Parameter 2 represents rate for gamma distributed variable and the
standard deviation and for Y its ordered regarding scenario complexity.

Distribution of variables in simulated complete data

W1 W2 W31 W32 W3.3 W34 W4 W5 W6 A Y
Type binary binary categorical categorical categorical categorical normal normal gamma binary  normal

For all scenarios Parameter 1 0.40 0.30 0.25 0.56 0.20 0.09 3 1 2 0.15 0
Parameter 2 1 2 1 1;2.5:4.5

% with missing value

W2 W3 W4 W6 A Y AJY Any

DAGT 25 30 25 30 30 20 40 50
DAG A 25 30 25 30 30 20 40 50
DAG B 25 30 25 30 30 20 40 50
DAG C 25 30 25 30 30 20 40 50
DAGD 25 30 25 30 30 20 40 50
For all scenarios DAG E 25 30 25 30 30 20 40 50
DAG F 25 30 25 30 30 20 40 50
DAG G 25 30 25 30 30 20 40 50
DAGH 25 30 25 30 30 20 40 50
DAGI 25 30 25 30 30 20 40 50
DAG J 25 30 25 30 30 20 40 50

Table B.10: Distribution of variables in the simulated complete data and proportion with missingness across the
11 simulated missingness mechanisms and the different considered scenarios.
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