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Sensitivity of Binary Prediction Models to Boundary Shifts

Abstract

Poverty is a widespread and complicated social problem that affects individuals
all over the world. To reduce the suffering of the poor, it is critical first to understand
the causes of poverty and then identify the individuals affected by it. Boundary
Shifts is a method that can address both challenges. It is a new technique in the
field of fuzzy poverty measurement. Like other fuzzy poverty measurement methods,
Boundary Shifts accounts for the fact that there is not only one dimension of poverty.
It further overcomes the binary view of some poverty measurement methods where
individuals are either poor or non-poor by assigning each individual a degree of
being poor.

A central concept of Boundary Shifts is that repeatably a binary prediction
model is fit to a data set, where progressively more individuals with higher incomes
are classified as poor. This gives for each fit of the binary prediction model es-
timated parameters which reveal what distinguishes the poor from the non-poor
when the boundary, which divides poor and non-poor, rises. A central task of this
thesis is to evaluate the changes in the parameter estimates under different model
assumptions. To overcome the problem of different parameter estimates despite only
small boundary shifts, a new binary prediction model is introduced and analysed.
Because Boundary Shift can assign a degree of poverty to each individual in the
data set, it will be examined if this method assigns the same degrees of poverty to
the same individuals as other fuzzy poverty measurement methods.

The sensitivity analysis showed that the logistic regression model as the binary
prediction model caused the least fluctuating parameter estimations. Using Robust
logistic regression or Bootstrap could not reduce the fluctuation of the parameter
estimations. Further, it could be observed that count and categorical variables cause
quasi-complete separation at some boundaries, which means that either the poor
or non-poor can, to a certain degree, be perfectly predicted with a single variable.
Comparing Boundary Shifts and other fuzzy poverty measurement methods showed
that the household-assigned degree of poverty differs between the fuzzy poverty
measurement methods.

It can be concluded that Boundary Shifts is a useful fuzzy poverty measurement
method with advantages over other fuzzy poverty measurement approaches since the
drivers of poverty at different boundaries and the poverty indices can be evaluated
simultaneously.
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1 Introduction

Poverty is a challenging problem that affects individuals all around the world. Events
with global impact, like COVID-19 and the war in Ukraine, are derailing the progress
on ending extreme poverty. The world’s poorest individuals bore the highest costs of
the pandemic. Their income losses were twice as great as the world’s richest, and global
inequality climbed for the first time in decades. In addition, the poorest suffered major
setbacks in health and education, leading to premature mortality and pronounced learning
losses (World Bank, 2022b, p. XXI). Poverty reduction is more challenging than ever due
to increasing food and energy prices caused in part by the Russian Federation’s invasion
of Ukraine and climate shocks in the world’s largest food producers (World Bank, 2022b,
p. 1).

Understanding poverty and its causes is essential for reducing its impacts and im-
proving the lives of those in it. To quantify, monitor and compare the poverty of different
populations or the individuals in it, poverty measurement is used. Depending on the
method, poverty measurement can go beyond just analysing the income dimension and
include other dimensions like health, education and housing. In this way, it can be deter-
mined to what extent the population’s basic needs are met or to what extent individuals
are particularly disadvantaged in certain dimensions compared to the population as a
whole.

One method the World Bank uses to measure international extreme poverty is an
absolute poverty measurement approach where the poverty line is placed at $ 2.15 per in-
dividual per day and anyone living on less than $ 2.15 a day is in extreme poverty (World
Bank, 2022a). The At-risk-of-poverty rate (AROP) is a relative poverty measure used as
a social indicator by the European Commission. Individuals who earn less than 60% of
the median income are at risk of poverty, according to this measure (European Commis-
sion, n.d.). The Multidimensional Poverty Index (MPI) measures acute multidimensional
poverty across over 100 developing countries. The MPI report was first launched in 2010
by the Oxford Poverty and Human Development Initiative at the University of Oxford and
the Human Development Report Office of the United Nations Development Programme
(UNDP). The MPI is calculated from 10 Indicators of the three dimensions Health, Edu-
cation and Standard of Living. The indicator income is not used for poverty measurement
in this index (UNDP and OPHI, 2022, p. 3). The Human Development Index (HDI) is
a summary measure of average achievement in major dimensions of human development
and is another poverty measurement method used by the UNDP. Like in the MPI, the
used dimensions are Health, Education and Standard of Living, but the indicators differ.
For example, income is used here as an indicator of the standard of living (UNDP, n.d.).

The methods mentioned have in common that they assess poverty using only income
as an indicator, or arbitrary decisions are made in the calculation. Examples are the
poverty line placed at $ 2.15 or 60% of the median income or that the HDI is calculated
as the geometric mean and not as the arithmetic mean of the dimension-related indices
(UNDP, 2022, p. 3). Additional poverty measurement methods can be derived from the
mathematical theory of fuzzy sets. Some of these methods overcome the mentioned issues
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and have a way to deal with the property of poor being a vague predicate. Poor being a
vague predicate means that there exist borderline cases where it is not possible to assign
individuals to the set of the poor or non-poor since it can not be said where the poverty
line lies that separates the poor from the non-poor or it does not even exist depending on
the view of vagueness (Qizilbash, 2006, pp. 12-17).

There are a few fuzzy poverty measurement methods that will be discussed in the
following and a new fuzzy poverty measurement method will be introduced as well. The
name of it is Boundary Shifts (BS). The structure, procedures and model modifications
of this method are explained in this thesis. Also, it is explained why this method is a
fuzzy poverty measurement method and it is shown how it compares to other methods.

To get started, the following chapter shows that poverty can be defined and under-
stood differently. The resulting consequences are then explained. Afterwards, in Chapter
3, the fuzzy sets theory is introduced to understand the selection of poverty measurement
approaches given in the same chapter. To go more in detail, four fuzzy poverty mea-
surement approaches are looked at, and afterwards, these approaches are compared and
discussed. In Chapter 4, logistic regression is briefly introduced to understand the process
of estimating the regression coefficients. This knowledge is needed to understand logistic
lasso regression and another modification of the logistic regression model that will be
presented in a later chapter. The theoretical foundation for the new approach, BS, is laid
in Chapter 5. In Chapter 6, the data set “Filipino Family Income and Expenditure” is
introduced, and the structure, variables and other characteristics of the data set are sum-
marised. Afterwards, the data set is prepared. The chapter also contains an exploratory
data analysis to get a good data overview. Chapter 7, Sensitivity Analyses, covers vari-
ous BS-related topics. An initial model is used to localise the first characteristics and to
make the analyses clearer. Since different statistical data types affect the BS differently,
they are considered in detail. In the remaining part of the chapter, model changes are
analysed. A new binary prediction model to improve BS is introduced in Chapter 8.
Sensitivity analyses are performed subsequently. In Chapter 9, it is demonstrated why
BS may now be referred to as a fuzzy poverty measurement technique and how various
methods for computing poverty indices from BS are established. Afterwards, the poverty
indices derived from these methods are compared to those calculated from other non-BS
fuzzy poverty measurement methods. In the last Chapter 10, the results are summarised
and discussed. In addition, an outlook is given on where to conduct further research on
this topic. The Appendix A contains further illustrations. In the electronic Appendix B,
the thesis-related R-files are described.

The following chapter clarifies poverty and poverty measurement.

2
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2 The Concept of Poverty

Poverty can be defined as follows. Poverty is the state of being poor, whereby being poor
is defined as having very little money or not having enough money for basic needs (Hornby
et al., 2015, pp. 1190, 1201). Another definition is that poverty is a denial of choices and
opportunities, as well as a violation of human dignity; it is a lack of fundamental ability
to participate effectively in society, which includes not having enough to feed and clothe
a family, not having a school or clinic, and other things (ACC, 1998, p. 1). There is a
fundamental difference between the two definitions since one depicts poverty as a lack of
money, making it a one-dimensional problem, and the other as a lack of several needs,
making it a multi-dimensional problem.

According to Vero (2006, p. 211), poverty is a difficult concept, and it may be defined
in various ways which correspond to different philosophical approaches. Still, the basic
idea is that poverty is a consequence of inequality, between individuals, in the control of
certain things. Keeping this in mind, I would argue that deciding which one of the two
definitions better represents poverty is impossible. Deciding which one to use is, moreover,
a matter of personal taste. Still, it is clear that an individual who has a lot of money
and is therefore non-poor according to the first definition does not necessarily have more
quality of life when basic needs such as access to nearby hospitals, education, freedom,
availability of healthy food and clean water are missing. Therefore poverty measurement
will be seen as a multi-dimensional problem in this thesis.

In poverty measurement, vagueness is another topic that needs to be considered since
“poor” is a vague predicate. Simply said, vague indicates that something is unclear.
According to Qizilbash (2006, p. 10), a predicate is whatever is affirmed or denied of a
subject by means of the copula. This explanation probably contains various unknown
terms from the field of linguistics, so the examples “tall”, “bald” and “nice” might better
show what vague predicates are. All of these predicates additional to “poor” have in
common that (Qizilbash, 2006, p. 10)

1. they allow for situations in which it is unclear whether the predicate applies or not,

2. there is no sharp borderline between circumstances where the predicate applies and
where it does not,

3. they are prone to a Sorites paradox.

The Sorites paradox was invented by the philosopher Eubulides. He starts with the
assumption that one million grains of sand constitute a heap. Removing one grain of
sand never turns a heap into a non-heap. When this principle is used repeatedly, it leads
to the conclusion that one grain of sand constitutes a heap (Kim et al., 2009, p. 565).
But according to Qizilbash (2006, p. 11), there is a contradiction in this situation since a
single grain can not be considered a heap.

Checking if the three characteristics apply to the previously mentioned predicates
reveals that they are all vague predicates. The following example shows that the three
characteristics apply to the predicate poor, whereby in this example, an individual is
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considered poor in terms of the single indicator, income. That poor has the first charac-
teristic can be seen in situations where individuals have a medium-high or medium-low
income since here it can not be said that these individuals are definitely poor or non-
poor. The second characteristic is present since there is no exact income value where it
can be said that someone with a higher income is non-poor and someone with an income
below is considered poor. Lastly, if a non-poor individual gives away one income unit,
the individual is a bit poorer but still non-poor. After repeated removal of one income
unit, the individual should still be non-poor according to this logic. But, the individual is
poor after removing too many income units. This is a contradiction since the individual
is poor and non-poor at the same time (Qizilbash, 2006, pp. 10-11). This is why poverty
measurement needs special treatment.

A further relevant aspect in poverty measurement is absolute and relative poverty.
One could argue that depending on the degree of poverty approaching the problem
changes. Sachs (2005, p. 20) describes the two degrees of poverty as follows. Abso-
lute poverty, also known as extreme poverty, means that the ones affected by it cannot
meet their basic needs for survival because they are chronically hungry, have no access to
health care, no clean drinking water and much more. This degree of poverty occurs only
in developing countries. Relative poverty means, according to Eskelinen (2011, pp. 942-
943), that the ones affected by it are poor in comparison to individuals of the analysed
population. This means that someone can be relatively and not absolutely poor at the
same time if basic needs are met but common goods are not possessed. Examples of lack
of goods include not owning a car, mobile phone or not having access to entertainment
(Sachs, 2005, p. 20).

One may consider the later introduced BS method as a method to analyse relative
poverty since observations of the data set are compared among each other, and the poverty
indices are calculated on a population basis.

One can conclude from this chapter that from here on, poverty measurement will be
seen as a multidimensional problem, and there are different degrees of poverty. Further,
accounting for it that “poor” is a vague predicate might help to understand poverty better.
Fuzzy poverty measurement methods aim to account for the vagueness of poverty, and
these methods can be applied to multidimensional problems. A few of these methods are
explained next, but before, fuzzy set theory is introduced.
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3 Fuzzy Poverty Measurement

3.1 Fuzzy Set Theory

In this chapter, fuzzy set theory is introduced. It starts with the definition and two
examples. Afterwards, related properties are explained. This chapter is about teaching
fuzzy set theory to the extent that different methods of fuzzy poverty measurement can
be understood.

An “ordinary” set A, which will be referred to as crisp set, is defined by Zimmermann
(2001, p. 11) as a collection of elements or objects v ∈ V that can be finite, countable,
or over countable and each element either belongs or does not belong to this set A with
A ⊆ V . A fuzzy set is defined according to Zimmermann (2001, pp. 11-12) as follows.

Definition 3.1 (Fuzzy set). If V is a collection of objects denoted generically by v, then
a fuzzy set Ã in V is a set of ordered pairs

Ã = {(v, µÃ(v)) | v ∈ V }. (1)

The membership function µÃ is the degree of membership. It maps V to the
membership space M . When µÃ(v) ∈ {0, 1} applies, then is Ã a crisp set as well and
could be denoted as usual. For clarification of Definition 1 and the analogy to crisp sets,
Fustier (2006, p. 31) gives the upcoming example. Given is the set V = {a, b, c, d}, which
represents a set of regions. Region a, d are islands and b, c are mainland regions. The
crisp set A = {a, d} that contains the “insular” regions can according to Definition 1 in
fuzzy terms then be written as

Ã = {(a, 1), (b, 0), (c, 0), (d, 1)}.

So in this example, each element of V belongs either to A or does not.

The more interesting case of the membership degree µÃ(v) being not just equal to
0 or 1 requires the usage of fuzzy sets, which is of central importance in this thesis, as
it is not the task to distinguish between belonging to a set A or not but moreover to
identify the degree of belonging to Ã, whereby µÃ(v) the degree of v belonging to a fuzzy
set Ã is. To clarify what a fuzzy set is, Zimmermann (2001, p. 12) gives the following
example. There is a set V = {1, . . . , 10} of available house types that reflects the number
of bedrooms available. For example, a house of type three contains three bedrooms. A
real estate agent wants to classify these houses now by the comfort of each house type for
a four-person family. It is said that the indicator of comfort is the number of bedrooms
in a house. The resulting fuzzy set Ã, which contains the comfortable types of houses for
a four-person family then could be

Ã = {(1, 0.2), (2, 0.5), (3, 0.8), (4, 1), (5, 0.7), (6, 0.3)}.

House type four with four bedrooms is, in this example, the most comfortable house since
the membership degree is one and for either increasing or decreasing house types, the

5



Sensitivity of Binary Prediction Models to Boundary Shifts

degree of membership decreases. That means that house types could still suit the family,
but less than a house of type 4.

The examples have now shown what fuzzy sets are. The main interest in the following
will be to determine the membership degree of individuals to the set of poor. Therefore,
membership functions and the approaches they are used in are introduced.

3.2 Poverty Measurement Approaches

It is recommended to involve multiple poverty indicators for poverty measurement (Betti,
Cheli, Lemmi and Verma, 2006, p. 125; Panek, 2006, p. 234; Betti, D’Agostino and
Neri, 2006, p. 257) . Miceli (2006, p. 196) adds that multivariate poverty measurement
makes capturing the general living conditions possible instead of just the material sit-
uation. It is assumed that each individual i out of n individuals possesses a k-vector
(v1, v2, . . . , vk) = v ∈ Rk of indicators. Furthermore, µj is the membership function for
indicator Vj out of the k indicators, so each indicator has its own membership function. It
starts now with the non-fuzzy traditional poverty measurement approach, which assigns
individuals to the set of the poor based on a single indicator. Afterwards, fuzzy poverty
measurement approaches are introduced, where multiple poverty indicators are used.

3.2.1 Traditional

In the traditional approach, poverty is measured based on a single indicator, such as
income. A poverty line z ∈ R is placed at a certain value in this approach. Every
individual that is more disadvantaged according to the measured indicator is considered
poor. As a result, there is a crisp set of poor A, that includes all the poor individuals.
Note that in this thesis, the term “poverty line” is a poverty measurement-specific term,
and it refers to the more general term “sharp borderline” used previously.

As seen in Chapter 3.1, can a crisp set A be expressed as a fuzzy set Ã. The mem-
bership function of the traditional approach is then defined as

µÃ(v) =

{
1 if v < z,

0 if v ≥ z.
(2)

v is the measurement of a single poverty indicator of an individual, and it is assumed
that having less of some good that is measured by the indicator makes an individual more
disadvantaged. One could thus argue that the traditional approach is theoretically a fuzzy
poverty measurement approach.

In the traditional poverty measurement approach, the poverty line is drawn in refer-
ence to the mean or median income of a society (Berenger and Celestini, 2006, p. 139). The
World Banks’ extreme poverty measurement and the calculations of AROP mentioned in
the introduction are two examples of the application of the traditional approach. These
examples showed that absolute and relative poverty can be measured with this approach.
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3.2.2 Totally Fuzzy and Absolute (TFA)

The second mentioned approach for poverty measurement, which is multivariate, is the
TFA approach by Cerioli and Zani (1990, p. 274). For continuous variables, the mem-
bership functions

µj(vj) =


1 if vj ≤ v

(L)
j ,

v
(H)
j − vj

v
(H)
j − v

(L)
j

if v
(L)
j < vj ≤ v

(H)
j ,

0 if vj > v
(H)
j ,

(3)

are used with the boundary values v
(L)
j up to which individuals are definitely poor and

v
(H)
j above which individuals are definitely non-poor. Again, this means an individual who
owns less of a good is more disadvantaged. The membership function has to be defined
in this method for the indicators individually.

To highlight here, the difference between this and the traditional approach is, when it
is concentrated on a single indicator, that between the two boundary values, the member-
ship function linearly declines from 1 to 0. Thus, there are now partially poor individuals.

Besides the linear decreasing function in
Ä
v
(L)
j , v

(H)
j

ó
, there could further non-linear

functions be taken. Among them are sigmoid, logistic, gaussian, exponential or irregularly
shaped functions that can be used for fine-tuning. Some not only require defining v

(L)
j

and v
(H)
j but also the flex or crossover point to be associated with a degree of membership

of 0.5 (Martinetti, 2006, p. 101).

The determination of the values for v
(L)
j and v

(H)
j for indicator i is done by the in-

vestigator. An approach given by Cerioli and Zani (1990, p. 274) is to set v
(L)
j equal to

the minimal amount of goods that are required for living, and v
(H)
j at the observed mean

number of goods. With this rule, individuals with a number of goods below the lower
limit are regarded as poor, and individuals with a number of goods between the boundary
values are partially poor.

Schaich and Münnich (1996, p. 449) mention that it is convenient to set v
(L)
j to zero

for economically well-developed countries because a physiologically conceived subsistence
minimum is provided by public institutions, e.g. by paying income support. For develop-
ing countries, v

(L)
j > 0 should be equal to the minimum amount of goods that are required

to secure the physiological subsistence minimum for the sake of not having a developed
social system. I would argue that with the placement of the lower and upper limits, it
is controlled if relative or absolute poverty is measured. For example, relative poverty
could be measured if the lower limit is set equal to zero or the smallest observed amount
of goods and the upper limit to the highest observed amount of goods or above. Absolute
poverty is, in my view, measured when values in between are taken for the lower and
upper limits.

For categorical indicators that are measured on an ordinal scale, a modification of the
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membership function from Equation 3 can be used. This process is explained by Cerioli
and Zani (1990, pp. 275-276). Looking at an indicator Vj with sj ordered categories then

a score ψ
(r)
j with r = 1, . . . , sj can be assigned to each category, so that

ψ
(1)
j < . . . < ψ

(r)
j < . . . < ψ

(sj)
j , (4)

applies. A straightforward assignment is

ψ
(r)
j = r, (5)

which assumes that the categories of Vj are equally spaced, but other scores assignments
are also possible. Having these scores, the membership function is then defined as

µj(ψj) =


1 if ψj ≤ ψ

(L)
j ,

ψ
(H)
j − ψj

ψ
(H)
j − ψ

(L)
j

if ψ
(L)
j < ψj ≤ ψ

(H)
j ,

0 if ψj > ψ
(H)
j ,

(6)

with values ψ
(L)
j , ψ

(H)
j , ψj as the categories v

(L)
j , v

(H)
j , vj corresponding scores.

Cerioli and Zani (1990, p. 275) explain handling of dichotomous indicators too. It
is assumed that there are k′ ≤ k dichotomous indicators, and one category in each di-
chotomous indicator Vj, j = 1, . . . , k′ indicates poverty. The membership degree to the
set of being poor is then calculated for all dichotomous indicators similarly by using the
membership function

µdicho(v) =
1

k′

k′∑
j=1

µj(vj), (7)

where µj(vj) = 1 applies if an individual is according to indicator Vj poor and µj(vj) = 0
if an individual is not. This means that the membership function of all dichotomous
indicators comprises individual membership functions. This idea is used in the following
to combine the membership functions of all indicators into a single membership function.

In multidimensional poverty measurement, it is preferable to end up with a single
index for each individual. This index will be referred to as the poverty index in this
thesis. It can be calculated for each individual in a population to reflect how poor the
individual is dependent on the measured indicators.

The poverty index of an individual composes of the membership degrees calculated
with the membership functions. In TFA can, according to Cerioli and Zani (1990, p. 276),
Formula 7 be used to calculate the poverty index µ(v) from the membership degrees µj(vj).
It is just necessary that the membership degrees for each indicator are calculated with
its data type corresponding membership function. When the poverty index is calculated
with Formula 7, equal importance is attached to each variable. For example, suppose
poverty is measured with the indicators “Owning a Television” and “Income”. In that
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case, both indicators equally impact the poverty index, although one indicator might be
more important to determine if an individual is poor.

The issue of the previous example leads to the weighted version. Cerioli and Zani
(1990, p. 276) define the poverty index as

µ(v) =

∑k
j=1 µj(vj)wj∑k

j=1wj

, (8)

where wj are weights that determine the impact of indicators since it is reasonable to
assume that some indicators are more important when determining if an individual is
poor. Two mentioned ways to define the weights wj are

wj =
1

fj
, (9)

and the modification

wj = ln

Ç
1

fj

å
, (10)

where fj is the rate of individuals exhibiting deprivation according to indicator Vj (Cerioli
and Zani, 1990, p. 277). It is said that taking the logarithm of 1

fj
avoids assigning large

weights to variables with a small fj that would consequently dominate the poverty index.
A precise description of how to derive fj is not given, which makes it unclear how to
calculate it, as it is unclear in this fuzzy poverty measurement method which individuals
are exhibiting deprivation in this indicator. It could be those with a membership degree
below zero or below one.

It is explained that both definitions of weight see poverty as a matter of relative
deprivation (Cerioli and Zani, 1990, p. 277). If a great fraction of the population owns
some goods, and just some individuals do not, it makes sense to weight the corresponding
indicator higher. For example, “Having a Bathroom” is achieved by a large fraction of
the population because it is essential for living and “Owning a Car” is achieved by a
smaller proportion as there are alternative ways of getting around. Then it makes sense
to give the indicator “Having a Bathroom” a larger weight because an individual without
a bathroom is relatively more deprived than an individual without a car, and therefore
more individuals put a greater effort into having a bathroom.

3.2.3 Totally Fuzzy and Relative (TFR)

Another fuzzy poverty measurement approach is the TFR approach introduced by Cheli
and Lemmi. Like before, the membership function is different depending on the indicator,
and according to Cheli and Lemmi (1995, p. 124), dichotomous indicators are handled
the same as already described in the TFA approach. Handling continuous and ordinal
indicators is different according to Filippone et al. (2001, pp. 2-3) since the membership
function is now defined as

µj(vj) =

®
H(vj) if the degree of poverty grows as Vj increases,

1−H(vj) otherwise,

9
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where H(vj) is the distribution function of indicator Vj, and the modalities of the ordinal
indicators are ordered in increasing order. In the case of ordinal indicators, where the
frequency associated with a category is quite high, it is advised to adopt a normalised
version given by

µj(vj) =


0 if vj = v

(1)
j ,

µj(v
(r−1)
j ) +

H(v
(r)
j )−H(v

(r−1)
j )

1−H(v
(1)
j )

if vj = v
(r)
j and r > 1,

(11)

where v
(r)
j with r = 1, . . . , sj are the modalities of Vj sorted in increasing order. The

poorest individual, according to indicator Vj, has in the TFR approach a membership
degree of one, and the richest has a membership degree of zero. By definition, the mean
of the membership degrees is always 0.5 (Betti, Cheli, Lemmi and Verma, 2006, p. 118),
and if it is desired to change the mean to a specified value, it is further advised to raise
the membership function to some power α ≥ 1. It is added that larger values of α result
in more weight to the poorer end of the distribution.

The membership degrees are combined into a single poverty index as before in the TFA
approach with Formula 8, but now it is clear how the weights are calculated. According
to Cheli and Lemmi (1995, p. 126) the weights are defined as

wj = ln

Ç
1

µj

å
, (12)

where

µj =
1

n

n∑
i=1

µj(vij), (13)

represents the fuzzy proportion of poor individuals concerning the indicator Vj. Cheli
and Lemmi (1995, pp. 126-127) note that the weighting system is a generalisation of the
TFA system, and it is furthermore stated that the whole TFR approach can be seen as a
generalisation of the most widespread poverty measurement techniques.

3.2.4 Vero and Werquin (VW)

The last fuzzy approach mentioned is the VW approach. The information about it is
taken from Deutsch and Silber (2006, pp. 156-157).

The difference to previously explained approaches is that the poverty indices of the
individuals are not weighted averages of the membership degrees of the indicators. In-
stead, all indicators are included in a single membership function from the beginning.
The approach is explained with the following example adopted from the literature. Given
are the three variables V1 the individual does not have a bathroom, V2 the individual does
not have a car and V3 the individual does not have a phone. Table 1 shows example data
for n = 6 individuals. The values of the variables are equal to 1 if the statement is true
and 0 if the statement is false. The values fi in the last column indicate the proportion

10
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Individual V1 V2 V3 fi
1 0 1 1 4/6
2 1 1 1 1/6
3 0 1 1 4/6
4 0 0 0 6/6
5 0 1 1 4/6
6 1 0 0 2/6

Table 1: Example data that is used to explain the VW approach.

of individuals who are at least as poor as individual i when all indicators are considered.
The proportion f3 is calculated as an example. Considering all indicators, individual two
is poorer, and individuals one and five are as poor as individual three. Therefore, the
third individual is together with the first and the fifth, the fourth poorest of the six indi-
viduals. Notice that individual six is poor in variable V1 but rich in variables V2 and V3,
so it can only be said that this individual is richer than individual two. It is impossible
to say whether this individual is more or less poor than individuals one, three and five.

With the proportions fi, the deprivation indicator

m(i) =
ln
Ä

1
fi

ä
∑n

i=1 ln
Ä

1
fi

ä if 0 < fi < 1, (14)

is then calculated for each individual i. Afterwards, the membership function

µ(vi) =
m(i)− min

1≤i≤n

(
m(i)

)
max
1≤i≤n

(
m(i)

)
− min

1≤i≤n

(
m(i)

) , (15)

is used to calculate the poverty index for each individual.

A few poverty measurement approaches have now been introduced and explained in
this chapter. In the next chapter, these will be discussed and compared.

3.3 Discussion

The previous chapter aimed to show how the poverty measurement approaches work, but
the problems were not discussed.

The first thing that distinguishes the traditional approach from the others is that only
a single poverty indicator, such as income or expenditure, can be used. This is problematic
because according to Miceli (2006, p. 195), it is very likely that income alone tells not
very much about an individual’s living conditions, and the same applies to expenditures.
It goes on to say that it should not be automatically considered that individuals with
lower consumption expenditures are poorer, as it is the choice of each individual whether
or not to buy certain goods or services or participate in certain activities. The study by
Panek (2006, p. 233) on the poverty measurement in Poland confirms this. One reason

11
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why measuring poverty with a single indicator is insufficient is that each indicator reflects
only one particular aspect of poverty (Miceli, 2006, p. 195). The second point that makes
the traditional approach problematic is that a poverty line z is required. It was mentioned
in Chapter 3.2.1 that this value is chosen in reference to the mean or the median income
of the population, but according to Berenger and Celestini (2006, p. 139), arbitrariness
is then inherent in the identification of poor and non-poor. That any cut-off point is
somewhat arbitrary is also pointed out by Mack and Lansley (1985, p. 41) with the
statement “it is likely that there is a continuum of living standards from the poor to the
rich”.

All the other methods mentioned in the previous chapter overcome the first issue since
multiple poverty indicators can be used. Still, they are not standard algorithms that can
be applied to data sets without making assumptions. Using them requires fundamental
understanding at each step to establish a close connection between the contents of the
theoretical concepts under examination and their representation through fuzzy set theory
(Martinetti, 2006, p. 112). The TFA approach is an excellent example because several
decisions relating to the membership functions µj(vj) need to be made, like picking a

linear or a non-linear membership function between v
(L)
j and v

(H)
j , deciding which poverty

indicators need to be included, which weights wj are used or setting v
(L)
j to zero for

economically well-developed countries.

Next, the TFA approach is discussed, which differs from the other approaches in that
it requires defining v

(L)
j and v

(H)
j . One could say that this approach’s weak points could

also be considered as benefits depending on the literature. Therefore it could have an
advantage or disadvantage over the TFR approach. On the one hand, the choice of the two
thresholds is again arbitrary, and using the linear function between the threshold values is
justified only based on its simplicity, without any theoretical basis or empirical evidence to
support it (Cheli and Lemmi, 1995, p. 123). On the other hand, Martinetti (2006, p. 101)
sees both points as an advantage because it is possible to maintain linearity, and it makes
it possible to include minimum and maximum thresholds. This allows adopting the states
of an indicator to different realities or circumstances. This can be explained with an
example of calorie income in a well-developed and least-developed country with fictive
numbers. In a well-developed country, an individual with a calorie income below 2,000
kcal might be considered deprived, while in a least-developed country, an individual with
a calorie income below 1,700 kcal. If the same lower threshold v

(L)
j is used for analysing

both countries, the result would either be that a large proportion of the population would
be considered poor in the least-developed country or the opposite in the well-developed
country.

Another issue to note about the TFA and TFR approaches is that an individual needs
the highest membership degree for each indicator to have a poverty index equal to one
(Qizilbash, 2006, p. 19). This means that for an increasing number of indicators, it is less
likely to have a poverty index equal to one because it is likely that an individual has, for
at least one indicator, a membership degree larger than one, regardless of how important
this indicator is. One could conclude that this creates the problem of selecting the right
amount of indicators. Selecting the right indicators gets even more complex since the
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indicators’ correlations are not considered in the TFA and TFR approach (Silber and
Deutsch, 2005, p. 150). This can be derived by thinking about the weighting systems
from both approaches. The weights are determined based on the measured values of the
respective indicator. So, if there are two or more highly correlated indicators, they are
not weighted down and instead treated like independent indicators.

The VW approach from Chapter 3.2.4 solves the problem of having highly correlated
attributes (Silber and Deutsch, 2005, p. 150). For this reason, it is argued by Silber and
Deutsch (2005, p. 170) that this algorithm may be ultimately more reliable than other
approaches that ignore the problem of correlated attributes. The authors came up with
this statement because, with their data, they observed differences between fuzzy poverty
measurement methods that account for correlation, like the VW approach, and those
that do not, like TFA and TFR. They noticed that methods that account for correlation
categorised different households as poor. Since it was not proven that the VW approach
is more reliable, it is added that further empirical illustrations are required to confirm
this statement.

I would further argue that a disadvantage of the relative approaches TFR and VW is
that, depending on the weighting system, the poverty indices of individuals from different
populations are not directly comparable. This issue can appear when studies are per-
formed in two different countries or at different times. The issue is that the membership
degrees or weights are calculated relative to the population. So if the population changes,
the poverty indices change too.

To sum up the criticism of fuzzy poverty measurement, it has to be said that the
user’s decisions, like membership function and chosen attributes, strongly impact the
result. The results are indifferent if the approach has a completely different procedure,
like the VW approach. In my opinion, this raises the question of whether fuzzy poverty
measurement approaches are a reliable way to calculate poverty indices for individuals,
as the results of the methods vary, and ultimately it is impossible to say which method
best reflects reality.

The following chapter continues with the theory about logistic regression and logistic
lasso regression as preparation for the BS approach and to understand a later introduced
modification of logistic regression.
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4 Regression Analysis

One main goal of regression analysis is to analyse the influence of the independent vari-
ables xi1, . . . , xik on the mean value of the dependent variables yi, i = 1, . . . , n. So, the
conditional expected value E(yi | xi1, . . . , xik) of yi is modelled as a function of the inde-
pendent variables xi1, . . . , xik. Note that categorical variables are assumed to be dummy
coded from now on. For the class of linear regression models with a linear function f , it
then applies

E(yi | xi1, . . . , xik) = f(xi1, . . . , xik) = β0 + β1xi1 + . . .+ βkxik, (16)

where β0, . . . , βk are the coefficients. β0 is referred to as intercept, and β1, . . . , βk are the
slopes. As a result, for given data (xi1, xi2, . . . , xik, yi) it then applies that

yi = E(yi | xi1, . . . , xik) + εi, (17)

whereby εi the random errors are that the independent variables can not explain. It
applies that εi ∼ N(0, σ2) with V (εi) = σ2. The random errors {εi | i = 1, . . . , n} are
assumed to be independent and identically distributed. In the regression analysis, it is
then the task to estimate the linear function f for the given data (Fahrmeir et al., 2009,
pp. 19-21).

In BS, the dependent variables yi take the values one and zero. However, the linear
regression model is recommended only when the dependent variables yi are continuous
and ideally approximately normally distributed (Fahrmeir et al., 2009, p. 30). For this
reason, logistic regression is used instead. Logistic regression is explained in more detail
in the following chapter, as it is an important part of the BS procedure. Logistic lasso
regression will be introduced afterwards.

4.1 Logistic Regression

The information in this chapter is mainly taken from Fahrmeir et al. (2009, pp. 189-201)
if not differently declared.

For binary dependent variables yi ∈ {0, 1}, it is now the goal to model and estimate
the effect of the independent variables xi1, . . . , xik on the conditional probability

πi = P(yi = 1 | xi1, . . . , xik) = E(yi | xi1, . . . , xik). (18)

The second relation holds because yi are binary, and then the following applies

E(yi | xi1, . . . , xik) = 1 · P(yi = 1 | xi1, . . . , xik) + 0 · P(yi = 0 | xi1, . . . , xik)
= P(yi = 1 | xi1, . . . , xik).

(19)

Because the conditional probabilities P(yi = 1 | xi1, . . . , xik) take a value in [0, 1] and
further reasons mentioned by Fahrmeir et al. (2009, pp. 30-31), there is not the exact same
relation between the conditional expectation E(yi | xi1, . . . , xik) and the linear function
of the independent variables f(xi1, . . . , xik) that could be noticed in the linear regression
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model. Instead, a strictly increasing function h, called the response function, on the range
[0, 1] is used to derive a function of the dependent variables f(x1, . . . , xk) on this range.
In the case of logistic regression, this function is defined as

h : R −→ [0, 1], η 7−→ exp(η)

1 + exp(η)
, (20)

and known as the standard logistic function. This leads to the logistic model

πi = P(yi = 1 | xi1, . . . , xik)

=
exp(β0 + β1xi1 + . . .+ βkxik)

1 + exp(β0 + β1xi1 + . . .+ βkxik)

=
exp(ηi)

1 + exp(ηi)

= h(ηi),

(21)

whereby ηi is called the linear predictor.

The maximum likelihood method is used to estimate the coefficients β0, . . . , βk. For
the assumption that the the binary dependent variables yi, i = 1, . . . , n are Bernoulli
distributed yi ∼ B(1, πi), the likelihood function that is used for estimation is

L(β0, . . . , βk) =
n∏

i=1

πyi
i (1− πi)

1−yi . (22)

Because of Equation 21, the likelihood function is a function of the coefficients β0, . . . , βk.
Taking the logarithm of the likelihood function to receive the log-likelihood function,
which simplifies maximisation, and plugging in πi leads to the different form

ℓ(β0, . . . , βk) = ln

Ñ
n∏

i=1

πyi
i (1− πi)

1−yi

é
=

n∑
i=1

yi ln(πi) + (1− yi) ln(1− πi)

=
n∑

i=1

yi ln

Ç
exp(xt

iβ)

1 + exp(xt
iβ)

å
+ (1− yi) ln

Ç
1− exp(xt

iβ)

1 + exp(xt
iβ)

å
,

(23)

where β = (β0, β1, . . . , βk)
t and xi = (1, xi1, . . . , xik)

t. The next step is to identify the val-
ues of β0, . . . , βk that maximise the log-likelihood function. These values are estimations
for a given data set with the individual observations

(xi1, xi2, . . . , xik, yi) = (xi, yi), i = 1, . . . , n. (24)

To receive the estimations, the gradient of the log-likelihood function with respect to
β0, . . . , βk, which is the score function, is set equal to zero to get the maximum of the
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log-likelihood function. According to Fahrmeir et al. (2009, p. 199), the resulting ML-
equation is

s(β̂) =
∂ℓ(β̂)

∂β̂
=

n∑
i=1

xi

(
yi −

exp(xt
iβ̂)

1 + exp(xt
iβ̂)

)
= 0. (25)

This non-linear system of equations for β̂ is usually solved iteratively by the Fisher Scor-
ing algorithm or another iterative numeric algorithm because it is difficult to solve this
equation analytically.

The received estimations β̂0, . . . , β̂k are different to interpret compared to the linear
model where a linear relationship between the independent variables xi1, . . . , xik and the
conditional expected value E(yi | xi1, . . . , xik) is present. In the linear regression model,
the interpretation is as follows. If xij, j ∈ {1, . . . , k} is increased by one unit in the
linear model, the expected value of yi increases by βj, suppose all other variables remain
constant. The non-linearity introduced by the response function in the logistic regression
model makes it just possible to interpret the effects on the odds or log odds. This can be
seen with the equation

g(h(ηi)) = ln

Å
πi

1− πi

ã
= ηi = β0 + β1xi1 + . . .+ βkxik, (26)

where g = h−1 and the odds being defined as

P(yi = 1 | xi1, . . . , xik)
P(yi = 0 | xi1, . . . , xik)

=
πi

1− πi
. (27)

Further, a multiplicative interpretation of the odds

πi
1− πi

= exp(β0) exp(β1xi1) · . . . · exp(βkxik), (28)

is possible too. A modification of the logistic regression, the logistic lasso regression,
will be explained in the upcoming chapter.

4.2 Logistic Lasso Regression

Unless otherwise stated, the information regarding lasso regression was taken from Fried-
man et al. (2010, pp. 1-9).

The technique least absolute shrinkage and selection operator (lasso) shrinks some
coefficients and sets others to zero (Tibshirani, 1996, p. 267). According to Tibshirani
(1996, p. 268), this can be useful for two reasons. Firstly, the prediction accuracy of the
lasso regression model can exceed that of the ordinary regression model. The second, in the
context of BS more important reason, is interpretability, which is easier if fewer variables
are included in the model. Logistic lasso regression can therefore be used to select a
smaller subset of variables that still exhibits the strongest effects. Said differently, logistic
lasso regression will be used for variable selection. This method uses an L1-penalty to
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achieve a sparse solution by forcing the absolute values of the coefficients to be smaller
than a specific value

k∑
j=1

|βj| ≤ t. (29)

The value t ≥ 0 controls the shrinkage applied to the estimates (Tibshirani, 1996, p. 268).

This restriction is incorporated by adding a penalty term to the log-likelihood function
from Equation 23, resulting in the log-likelihood function for logistic lasso regression

ℓ(β0, . . . , βk) =
1

n

n∑
i=1

yi ln

Ç
exp(xt

iβ)

1 + exp(xt
iβ)

å
+ (1− yi) ln

Ç
1− exp(xt

iβ)

1 + exp(xt
iβ)

å
− λ

k∑
j=1

|βj|.

(30)

The parameter λ ≥ 0 is called the tuning parameter and controls the amount of
shrinkage. It is related to t, but the exact relation will not be explained. To get the
estimations for the coefficients, maximum likelihood analysis is performed. It is noted
here that the additional factor 1

n
in front of the log-likelihood function that is not there in

Equation 23 should not affect the minimisation in my view since it is a positive constant.

Understanding logistic lasso regression is not crucial to be able to use logistic lasso
regression for variable selection, but the concept of adding a penalty term needs to be
understood as it is later used to build a modified logistic regression model.

This chapter has now provided the basics needed to understand BS, which is intro-
duced in the following chapter.
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5 Boundary Shifts (BS)

In BS, different poverty lines are placed according to the variable income, and individuals
with income below each poverty line are considered poor. The proposed approach has
a fuzzy view on poverty measurement since not just a single fixed poverty line is used
to divide the population into poor and non-poor, like in the traditional approach, but
instead, there are many poverty lines at different income values. Thus there is no fixed
poverty line but many instead. The consequence of the shifting poverty line is that an
increasing or decreasing number of individuals are considered poor. To highlight that not
a single poverty line is used and the concept is different, the poverty lines will be called
boundaries in the BS approach.

What also differentiates BS from the traditional approach is that after dividing the
data set into poor and non-poor, a binary prediction model is applied to the data set
using the additional variables provided in the data set. The parameter estimations of
the binary prediction model can be interpreted to understand the drivers of poverty
better. For example, suppose the logistic regression model is used, and the coefficients
are estimated at many boundaries. In that case, it can be interpreted how a change of
one unit of some independent variable impacts the odds of being poor at each boundary.
This shows how the influence of an independent variable for dividing the population into
poor and non-poor changes when the boundary is shifted upwards, and more individuals
are considered poor.

The data notation is now simplified and defined as follows. Each individual i out of
n individuals possesses a vector

(x1, x2, . . . , xk, y) = (x, y). (31)

After dummy coding of the categorical variables, there are k poverty indicators. According
to the dependent variable y, individuals are separated into poor and non-poor. In the
following, will yi always correspond to the income measurement of individual i.

There are three steps in the BS procedure

• boundary placement,

• creation of boundary-dependent data sets,

• fitting binary prediction model on the dependent data sets.

The steps are are explained in detail in the following.

5.1 Boundary Placement

In the first step, the boundaries zt, t = 1, . . . , T are defined. Since the data is split
according to the dependent variable y, it is reasonable to demand the conditions

0 ≤ |{zt | y(l) < zt < y(l+1)}| ≤ 1, (32)
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with y(l), y(l+1), l ∈ {1, . . . , n− 1} being neighbouring ordered measurements and

zt = zt′ ⇐⇒ t = t′, (33)

where t′ = 1, . . . , T . This ensures that two boundaries do not result in the same separation
of poor and non-poor since there is a maximum of one boundary zt placed between two
income measurements y(l), y(l+1). Further, it is guaranteed that there are no boundaries
below the income poorest or above the income richest individual, resulting in a separation
where all individuals are assigned to the poor or the non-poor. This is necessary for fitting
the logistic regression model. It follows from these conditions that there are a maximum of
n−1 different assignments of the individuals to the set of poor as that amount of sensible
boundaries exist. The last thing that follows from this condition is that no boundary zt
corresponds to an observed income. If this were otherwise, it would be unclear whether
an individual should be classified as poor or non-poor.

5.2 Boundary Dependent Data Sets

As there are now T boundaries, there can be T different separations into poor and non-
poor, which has T different data sets as a consequence. In each data set Dt then is,
according to its boundary zt, the membership for each individual to the set of poor
calculated with

ỹi = µ(yi) =

{
1 if yi < zt,

0 if yi ≥ zt.
(34)

Since the income measurements yi are no longer required after calculating the member-
ships, they are removed.

For the assumption that the data set is sorted according to the income and t = 1, . . . , T ,
the structure of the data is

Dt = (X, Ỹt), (35)

with the matrix
X = (xij)1≤i≤n, 1≤j≤k ∈ Rn×k, (36)

and
Ỹt =

Ä
1, . . . , ỹ(l), ỹ(l+1), . . . , 0

ät
∈ {0, 1}n×1, (37)

where l = 2, . . . , n− 2 and ỹ(l) ≥ ỹ(l+1). It can be seen that the income poorest individual
is always assigned to the set of poor, while the opposite is true for the income richest
individual because the income value y(1) of the income poorest individual is below every
boundary zt and the income of the richest individual y(n) is above.

The process of getting multiple data sets is visualised in Figure 1. In this example,
the data set contains five observations of three variables and the data is split according
to variable Y with four boundaries. After the splitting processes, there are four modified
data sets. The measurements of the variables X1 and X2 are identical in the data sets,
but the measurements of Y changed according to the boundaries.

As there are now T different data sets, the parameters of a binary prediction model
can be estimated.
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Figure 1: Example data set with attributes X1, X2 and income Y is transformed into
four modified data sets with the same X1, X2 measurements but binary variable Ỹi with
values depending on the boundaries z1, . . . , z4.

5.3 Fitting the Binary Prediction Model

In BS, the logistic regression model is used as the primary binary prediction model due
to its good interpretability of its parameters and simplicity compared to other methods.
Therefore, logistic regression is used to explain the concepts of BS. In subsequent chapters,
modifications of logistic regression models are used, but the concept of BS remains the
same.

There are now different data sets Dt with binary dependent variables ỹt. Logistic
regression can be conducted on each data set Dt separately to estimate the coefficients
β(zt). In each model x1, . . . , xk are the independent variables.

This means β(zt) is a function of zt. In the following chapters, β(zt) is often written
as β for better readability. Still, it should be remembered that the coefficients depend
on the boundaries in BS. After estimating the coefficients β̂(zt), the coefficients can be
graphically displayed with the corresponding boundary zt.

A concern is noted at this point. It was said in Chapter 3.3 that using income as the
only poverty indicator is questionable. Nonetheless, this is done in the first step. It is
assumed that this is fine as more poverty indicators are used in the third step.

The procedure is now clear, and it is continued with the introduction of the data set.
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6 Data Introduction

6.1 Data Set: Filipino Family Income and Expenditure

Taken is the data set used for the sensitivity analysis from the website Kaggle. Kaggle is
the most popular data science competition platform (Banachewicz et al., 2022, p. 33) and
allows users, among other things, to publish data sets. The data set is called “Filipino
Family Income and Expenditure” (Flores, n.d.). It is according to the information on
the website based on a survey from the Philippine Statistics Authority to provide data on
family income and expenditure. This survey is conducted every three years. It is assumed
that this data set resulted from the survey in 2015 since it was uploaded in 2017, and it
is claimed that the data is from the latest family income and expenditure survey in the
Philippines.

The data set has a usability score of 7.06 out of 10, according to Kaggle, since it
has not been updated and the source is not clear. Furthermore, the file and column
descriptions are missing. In addition to the points criticised by Kaggle, it is unclear
what survey design was chosen, and in particular, it is not known how a unit or item
non-response was dealt with. It still has been taken for the following reasons

• amount of observations,

• amount of variables,

• contains continuous and categorical variables,

• clear and self-explaining variable names,

• no missing values,

• data file format,

• relationship to poverty measurement.

With measurements of 41,544 households, it can be assumed that the data set represents
the Filipino population well. Further, with over 60 variables, the data contains a lot of
information regarding each individual’s living conditions. Having a mixture of variable
types is for the sensitivity analysis of interest since they are included differently in the
logistic regression model. The self-explanatory variable names are necessary to compen-
sate for the missing description of the variables so that a subsequent interpretation is
possible. Although NAs are in the data set, there is actually no missing data, which will
be explained in the next chapter. This is advantageous since imputation methods that
need assumptions about the missing data mechanism are not required. The data set is
supplied in tabular style, as a single comma-separated values (CSV) file, so there is no
need to combine any data sets which could result in missing values. The last reason for
taking this data set is that this data set is survey data collected for poverty measurement,
which fits the topic of the thesis. However, I would argue that BS theoretically be used on
any other data set having a continuous or ordinal variable to assess any vague predicate.
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Since the origin of the data is now clear, the data set will be processed in the following
chapter, and exploratory data analysis will be made.

6.2 Data Preparation and Exploratory Data Analysis

The following tasks are executed in RStudio (Posit team, 2023), which is an integrated
development environment for the programming language and environment for statistical
computing, R (R Core Team, 2022).

The data preparation involves five steps. The first step is to change the data types
of the variables. The categorical variables are transformed into factors because these are
supplied as the data type character. The continuous variables are supplied as integers,
so no adjustment is required. The second step is to abbreviate or rename some variables
and values of the categorical variables. This is not required, but it makes later analyses
and graphics easier to read. In the third step, the following possible error is corrected.
The variable “Highest Grade” contains the two categories “Engineering and Engineering
trades Programs” and “Engineering and Engineering Trades Programs” written identically
except for a capital letter. The two categories seem to result from a spelling mistake and
are therefore combined into one variable.

The fourth step consists of combining two variables. The first variable is “Class of
Worker”, which indicates the state of working showing if someone is self-employed, owns
a family-operated farm or family business, or for whom the individual works, and in the
case of a family-operated farm or business, whether the individual is paid or not, resulting
in seven categories. But, some households are not assigned to any of these categories
resulting in NAs. The second variable, called “Job Business”, is binary and indicates
whether or not the head of the household has a job or business. Now, observations with a
NA value for the “Class of Worker” variable have no job or business, and vice versa. This
makes the variable “Job Business” redundant. By adding the category “No Job/Business”
to the variable “Class of Worker”, the variable “Job Business” can be removed. The last
step is to standardise the continuous variables, but working with interpreting standardised
regression coefficient is controversial, according to Bring (1994, p. 209). The following
reasons why working with interpreting standardised is controversial are taken from Bring
(1994). Afterwards, it is explained why the data set is still standardised.

Comparing regression coefficients with regard to the size is a typical modelling goal,
but it is not easy when variables are measured in different units. Standardising seemingly
overcomes this issue as the standardised variables are measured in the same units, the
standard deviations. The standardised coefficients are then interpreted as the standard
deviation change in the dependent variable when the independent variable is changed by
one standard deviation if all other variables are held constant.

Using the standardised coefficients to assess relative importance is natural since
the standardised coefficient is related to the variables’ contribution to the prediction of
y. It could be concluded that the more a variable contributes to the prediction of y,
the more important it is. However, it is said that the question of how to quantify the
contribution to the prediction of y is left open in this view. Therefore the interpretation
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Figure 2: Logarithmically scaled plots are used in further analyses since they give a better
overview.

of relative importance is unclear. More reasons against using standardised coefficients
are that they are difficult to interpret and sample-specific, making them unreliable for
comparing different samples.

Despite the reasons against using standardised coefficients, it is said that relative
importance is a diffuse concept that can have many different meanings. Therefore a single
measure of relative importance that can be used in all situations cannot be recommended.

Due to the last defusing statement and the following reason, standardised data will
still be used in BS. It is not aimed at assessing the relative importance as an absolute
value. Moreover, it is of interest in which direction the values of the estimated coefficients
change when the boundaries are shifted, and that is more obvious if the different units
are brought to the same unit.

The following exploratory data analysis provides an initial overview of the data set.
In particular, the variable “Income”, measured in Philippine peso (PHP), is looked at
in detail since the boundaries are placed dependent on this variable. Primarily, the
correlations between the variables and the distribution of the categorical variables are
analysed, and additional assumptions are made about why the correlations are high or
low. In this thesis, the absolute correlation values are not given in a table but can be
extracted from the electronic appendix.

The histogram in Figure 2 a) shows that the observed income of most households is just
a fraction of the maximal observed income. Further, the median income of 164,080 is far
below the maximum income of 11,815,988. Since measuring poverty is the main objective,
giving greater attention to those with lower incomes makes sense. This is visually done
by scaling the x-axis with the decadic logarithm as the lower incomes are then more
spread across the x-axis, and the higher are more compressed. The histogram with the
scaled x-axis is shown in Figure 2 b). Note that this is just a visual transformation. The
positive skew in the histogram shows that the mean income is higher than the median
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Figure 3: Heat map that visualises the correlation between the numerical variables. With
a few exceptions, one can notice clusters of higher correlated variables. Expenditure vari-
ables are generally higher with each other correlated, but these variables are also relatively
high correlations with variables corresponding to household machines or communication
devices.

income. Furthermore, the figure shows that 90 per cent of the households have an income
higher than approximately 56,000 and lower than 700,000, so the later analysis should be
concentrated on this range. The usage of units is avoided from here on in the text. It is
safe to conclude that income and expenditures are given in PHP.

The heat map from Figure 3 shows the correlation between the numerical variables of
the data set. It can be seen that the correlations are mainly positive or slightly negative.
Exceptions are the variables “Age 5to17” and “Age 5”, which indicate how many children
between five and 17 years and how many children under five years live in a household,
as they show the strongest negative correlation in combination with the variable “Age”,
which corresponds to the age of the head of the household. One may argue that this is
because as the age of the head of the household grows, so do the children. The consequence
of this would be that there are fewer children in the household.
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Highly correlated is “Housing Water Expenditure”, describing the water expendi-
tures, with “Rental Value”, giving the imputed house rental value, with a correlation of
0.92, followed by the correlation of 0.88 between the variables “Rice Expenditure” and
“Bread Cereals Expenditure”. The heat map shows that all expenditure variables are
very correlated, excluding expenditures for legal drugs, like tobacco and alcohol, and the
already mentioned for rice and bread or cereals. One could conclude that drugs are not
highly correlated with other expenditures because they are consumed by the poor and the
non-poor with similar frequency. The same may apply to basic foods like bread and rice.
Therefore, this relation is further analysed when the income correlations are discussed.
The variables that indicate the number of things a household owns, excluding “Motorised
Banca”, are also stronger correlated with the expenditures. One may conclude from this
small correlation of the variable “Motorised Banca” and the other expenditure variables
that having one or more bancas, small boats, is independent of whether a household is
poor or not. This is a reasonable conclusion since owning one or more bancas is useless
for a household if it does not live near the water.

Looking at the correlations with income reveals that it correlates strongly with the
expenditure variables, except for the few already mentioned. This is plausible since house-
holds with higher incomes can afford more luxury goods. Another fact is that income has
a correlation of approximately zero with the variables “Age 5to17” and “Age 5”, which
could mean that rich and poor have a similar amount of children. It needs further analysis
to confirm this.

As previously seen with the low correlation of expenditure on rice and other expen-
ditures, income is just slightly correlated with expenditure on rice, with a correlation of
0.16. This could mean the poor and non-poor spend similar amounts on this food. Be-
cause rice is a fairly cheap product compared to other foods, poor households can afford
this food source. The higher the income, the more households can afford; therefore, the
correlation might be slightly positive. For the wealthier households, the spending on rice
no longer increases because these households can afford other, more expensive foods such
as meat, which has a higher correlation with income. For wealthy households, spending
on rice goes back down a bit, as they are likely to buy more expensive food instead of
rice. The fact that food expenditure and income show a correlation of 0.66 supports this
thesis, indicating that households need to compensate for their lower expenditure on rice.
Figure 23 in the appendix shows the just described relationship of expenditure on rice
and income. In this figure, the scaling of the two axes is logarithmic to account for very
large values.

“Income Entrepeneurial”, which gives the total income of entrepreneurial activities,
has a correlation of 0.56 with income but is at the same time not that correlated with
the variables that are also highly correlated with income. Entrepreneurial activity is,
according to the family income and expenditure survey from 2015 (Bersales, 2017, p. 81),
any economic activity, business or enterprise, whether in agriculture or the non-agriculture
sector, engaged in by any member of the family as an operator or as self-employed,
operated by any family member as a self-employed individual or a single proprietorship,
excluding formal partnerships, corporations, and registered associations. The relatively
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low correlation with expenses may be due to reinvesting the income in the company and
not spending on excessive luxuries, but this is only speculation.

It can further be noticed that the variables, which will be derived in Chapter 7.2 and
will be relevant later on, do not correspond to the ten variables with the highest correlation
with income. Without pointing out which variables are involved, it is highlighted here
that the variable “Food Expenditure” is the only variable in both sets. This may mean
that the later used variables are good at describing all dimensions of poverty as not only
variables with a strong link to income are used. But this is also pure speculation.

The last important correlation highlighted is the one between the variables “Income”
and “Family Size” since the income in the data set is not individual but household related.
So, with the increasing size of the family inside a household, the income should increase
since it is likely that more individuals are working. Figure 24 in the appendix shows this
as the family size increases approximately until the income of 110,000. Then the family
does not further increase with increasing income. The correlation between income and
family size is 0.37 when only households with incomes below 110,000 are considered and
0.06 when households above 110,000 are considered. This confirms that the family size
increases until a certain income and afterwards remains constant.

Knowing this relation between the variables “Income” and “Family Size” allows for
further speculations. One conjecture is that the variable “Mobile” might later, when BS
is applied, have a high relative importance for dividing the population into poor and non-
poor at low thresholds. For increasing boundaries, the relative importance could decrease
but remain medium important. The reason for this speculation is that households with
low incomes can not afford a mobile phone at all. If a household’s income and family size
increase, it can be assumed that more income must be invested in food and order essential
things. Therefore, many households can still not afford one or more mobile phones.

Besides the numerical variables, the data set contains 16 categorical variables. The
variables “Class of Worker”, “Occupation” and “Region” are not discussed as they will
not be added to the BS model. These variables contain a lot of categories which makes
the plots hardly understandable. I would expect that at least occupation could be useful
for poverty measurement. However, each category results in one estimated coefficient due
to dummy coding in the regression model. In the case of occupation, this would result in
378 estimated coefficients, which can hardly be visualised.

The only binary variables are the gender of the head of the family (Bersales, 2017,
p. 127) and Electricity, indicating that electricity is used in this household (Bersales, 2017,
p. 179). For both variables, the categories are unbalanced, as almost 90 per cent of all
households have electricity, and the head of household is male in about 78 per cent of
households. The variable “Electricity” might be good for dividing into poor and non-
poor as households with electricity have a 2.5 times higher mean income, and further, a
household without it is quite disadvantaged. The same does not apply to the variable
“Sex” since the mean is in both categories approximately the same.

The other variables have between three and eleven categories. More than half of the
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variables are dominated by one class. An example of this is the variable “Building” that
indicates in which type of building or house the family resides (Bersales, 2017, p. 178).
For this variable, one can see that 94 per cent of the households reside in a single house.
A similar pattern applies to the variables “Martial Status”, “Roof”, “Tenure Status”,
“Toilet”, “Walls” and “Water Supply”.

I came up with four reasons for small class frequencies. The first possible reason is that
the category is very rare because it is very special, like the building category houseboat.
It is reasonable to infer that an alternative building class within the same price segment
exists, but it is not chosen for mostly money-unrelated reasons. The second reason is
that something is so cheap that almost everyone but the very poorest can afford it. This
probably applies to the variable toilet, where most households have some type of water-
sealed toilet, and only a small number have an open or closed pit toilet or no toilet
at all because these households can probably not afford to buy one. The third reason
for small class frequencies is the opposite of the latter, as there are wealthy households
that can afford luxury goods that are too expensive for most of the population. The
last explanation for low category frequencies is that something is neither expensive nor
necessary for survival, such as items held only by collectors and so infrequently owned.

The exploratory data analysis now gave a good overview of the variables included
and their relationship to income to show how a boundary shift might affect the variable
importance in BS.

The discussion of the first BS modelling approach occurs in the following chapter.
This model contains all variables except the one already mentioned.
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7 Sensitivity Analyses

In this chapter, mainly the fluctuation of the estimated coefficients is analysed. It is shown
how different variable types impact the analysis and how different boundary placement
and binary prediction models impact the BS models. A first BS model is used to explain
some issues of BS and what tasks lie ahead.

From here on, for the sake of simplicity, the variables are addressed directly by their
names in the formulas. In the text, the variables are not enclosed in quotes.

7.1 First BS Model

For the first BS model, the whole data set is used with all variables except class of
Worker, Occupation and Region. Over the range of minimum income, min

1≤i≤n
(Incomei),

and maximum income, max
1≤i≤n

(Incomei), there are T = 998 boundaries zt, t = 1, . . . , T
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(38)
This special boundary placement accounts for the income distribution by using the decadic
logarithm and scaling with the exponential function. One should note here that house-
holds with incomes equal to a boundary are assigned to the non-poor due to the R code.
Since nearly all variables are included, there result 103 poverty curves from the esti-
mated coefficients of the 998 boundaries. The number of poverty curves results from

• 42 continuous variables,

• 60 dummy variables generated from 13 categorical variables,

• intercept.

The term “poverty curves” is defined as follows.

Definition 7.1 (Poverty curve). Provided that the coefficients βj(zt) with j = 0, . . . , k are

estimated for all boundaries zt with t = 1, . . . , T . If the estimated coefficients β̂j(zt) with
associated zt are plotted as points in a coordinate system, the graph produced by visually
connecting the points of the same coefficient is called the poverty curve of coefficient βj.

For simplicity, each poverty curve will be directly addressed by the variable name if
the poverty curve is drawn from slope estimations, i.e., the poverty curve resulting from
the estimated coefficients of the independent variable mobile will be referred to as mobile
poverty curve or the poverty curve of the variable mobile. The poverty curve resulting
from the intercept estimations will be called the intercept poverty curve or the poverty
curve of the intercept.
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Figure 4: Poverty curves resulting from the first BS modelling approach. The plots show
that for extreme boundaries, extreme coefficients are estimated. Further, one can notice
extreme jumps in the poverty curves corresponding to categorical or count variables.

The poverty curves of the first model are depicted in Figure 4 in three plots in distinct
ways, but always with a logarithmically scaled x-axis. It should be noted that Figure 4
is not analysed in detail, as it serves as a reference point to show the problems of the
first model and the first conspicuous features of BS. Plot a) shows the complete poverty
curves without restricting the y-axis to highlight the extremely small and large estimated
coefficients for low and high boundaries. One can see that large estimations occur mainly
for extreme boundaries. If the y-axis is restricted to the range -15 to 15, the poverty curves
shown in Plot b) result. This plot is chaotic due to many poverty curves, making it hard
to interpret single poverty curves, which makes it impossible to interpret the change in
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relative importance. It can be noted, however, that the poverty curves fluctuate strongly,
with the boundaries around an income of 100,000 PHP experiencing the least fluctuation,
which may be related to the fact that many households have an income around this
value. This is highlighted in the figure with the black vertical lines, as 80 per cent of
the households have an income in between. Plot c) depicts the same information as Plot
b), but only five arbitrarily selected poverty curves are displayed. When comparing the
various poverty curves, one can notice a fluctuation in all of them. Jumps are particularly
high in poverty curves belonging to categorical or counting variables. The poverty curves
belonging to the dummy variables roof salvaged, tenure status rent free 2, and the counting
variable, stove, are examples of this observation. The jumps are highlighted in pink.

With these first insights, there will be the tasks of

1. reducing the number of poverty curves,

2. determining the source of the high jumps,

3. handling the extreme estimations of the coefficients for high and low boundaries.

When these tasks are completed, the impacts of model and data changes can be evaluated.
The next chapter deals with variable selection.

7.2 Variable Selection with Logistic Lasso Regression

The first issue that is tackled is the reduction of poverty curves which is done by using
logistic lasso regression with the purpose of variable selection. It has been explained in
Chapter 4.2 that the tuning parameter λ ≥ 0 controls how many coefficients are set to
zero. As just a certain number of variables should remain in the model, a corresponding
λ is sought that ensures this. I think it makes sense to set all but ten coefficients to
zero. One can justify this by the fact that with ten variables, which results in ten or
more poverty curves depending on the number of dummy variables, there is still a certain
clarity in the analysis of the poverty curves. For clarification, it can be more than ten
poverty curves in the case that dummy variables are among the selected variables. That
is because it has been decided that if at least one category of a categorical variable has
been determined to be important by lasso logistic regression, the whole variable is added
to the model having as a consequence that the for each category, a poverty curve is drawn.
However, selecting ten variables is still an arbitrary decision.

Variable selection is now made in two steps. In the first step, BS is used with logistic
lasso regression models instead of logistic regression models and the boundaries are placed
at the mean income and the income quantiles. The tuning parameters λ10(zt), t = 1, . . . , 4
depend on the boundaries and are chosen to end up with ten non-zero coefficients. The
variables corresponding to the coefficients are then seen as the relevant variables.

In the second step, the intersection of the variable sets resulting from the four logistic
lasso regressions is formed. One could argue that this reveals the variables that play
an important role in poverty measurement on the whole income range. They did it at
least for the four boundaries that cover a large income range without being too close
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to extremely low or high incomes. Doing BS with only four boundaries might seem
arbitrary again. Still, the risk of getting a completely different set of variables increases
with every additional boundary. This would result in fewer variables in the intersection
of the boundary-dependent variable sets. Accordingly, I believe that employing just four
boundaries, as long as they are distributed over the whole income range, is acceptable.

There are two reasons that logistic lasso regression is not primarily used in BS, but
logistic regression is instead. Firstly, different coefficients are set to zero. This makes
drawing the poverty curves hardly possible. The second reason is that the run time of BS
increases drastically. For just four boundaries, the run took nearly six minutes. For these
two reasons, using logistic lasso regression at each boundary in BS is not practicable.

The variables food expenditure, refrigerator, washing machine and mobile are in the
intersection of the sets of variables. These variables are now used in the BS models for
comparing the placement of boundaries and the used binary prediction models, as well
as for calculating the poverty indices later on. But before, the jumps noticed in poverty
curves of categorical or count variables are analysed. Since the intersection of variables
does not contain any categorical variables, BS is performed with the variables from the
union of the sets of variables. The analysis of the jumps in the poverty curves now follows.

7.3 Categorical and Count Variables

In the first BS model, there were jumps in the poverty curves of categorical and count
variables observable. The term “jump” is used in the context of the poverty curves de-
scription. The term describes situations where the estimated coefficients of neighbouring
boundaries are extremely different, resulting in a noticeable jump in the poverty curve.
The BS union model with 15 variables is used in this chapter. Formula 38 was used again
for boundary placement, so the boundaries are the same as in the first BS modelling
approach. Next, the jumps in the poverty curves of the categorical variables are analysed.

7.3.1 Categorical Variables

Out of all the poverty and SE curves resulting from the union BS model, just those
resulting from the variables electricity and walls are drawn. The SE curves concept is
similar to the poverty curves concept. The only difference is that the estimated coefficients
β̂j related Standard Errors (SE) are drawn with the associated boundary zt as points
in the coordinate system. To note here, the SE values are derived from the asymptotic

covariance matrix Ĉov(β̂) (Fahrmeir et al., 2009, p. 134). Figure 5 shows the poverty
and SE curve of the dummy variable electricity 1. The poverty and SE curves are drawn
for each dummy variable resulting from the categorical variable. Therefore, there is a
single poverty curve and a single SE curve for the dummy variable electricity 1. One can
see three jumps in both plots of Figure 5. The major jump is between the boundaries
3,282,764 and 3,305,694. The first is at the smallest boundary, and the third is at the
highest boundary. The major jump will be discussed since the others are at boundaries
that lead to extremely imbalanced data sets, with just a single or a few observations being
in the set of poor or non-poor. One can attribute the reason for the other jumps to the
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Figure 5: Poverty a) and SE b) curve corresponding to the variable that indicates if a
household uses electricity and is therefore in category one. In both curves, the jumps are
located at the maximum and minimum income measurement of electricity category zero
households.

same problem.

Discussing the major jump, one can see that among all the households with no elec-
tricity, the household with the maximum income has an income of 3,294,322, right at the
jump of the poverty curve. A vertical grey line with the label zero has been added to
highlight this jump. Adding the minimum incomes of households from each category and
the maximum income of households from electricity category one to the plots shows that
the jumps occur at these values.

Because it is now known where the jumps occur, it can be explained what they are due
to. First, however, the poverty curve is interpreted. Looking at the poverty curve, one can
see that it remains at approximately zero between the maximal minimum income, 11,988,
and minimal maximum income, 3,294,322, of the two existing electricity categories, zero
and one. The poverty curve rises slightly when it approaches one of the two mentioned
values. It is now required to explain what it means if a coefficient is close to zero.
Therefore, Equation 28 is used, which shows the multiplicative impact on the odds in the
logistic regressions. This equation reveals that if a coefficient βj, j = 0, . . . , k is close to
zero, then the odds of something will not change much when the corresponding value xij
is changed by one unit. The odds increase if βj is positive and xij increases by one unit.
Transferring this insight shows that for boundaries between 11,988 and 3,294,322, the odds
of being poor change just slightly when a household belongs to either electricity category
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one or zero. At the few boundaries where one can observe slightly positive estimated
coefficients, being in the electricity category one even has a positive multiplicative effect
on the odds of being poor. This means that a household with electricity has higher odds of
being poor than a household without electricity, if all other variables remain unchanged.
I would argue that this makes no sense because households that are connected to the
electricity grid are less disadvantaged, but no justification for this inconsistency is sought.

The estimated coefficients for boundaries above the critical value at 3,294,322 are
approximately -14 and then slightly decrease to -12 until the second-to-last boundary.
This means that having electricity in the house is a good indicator of not being poor since
it results in a strong decrease in the odds of being poor. So, for these boundaries, being
in the electricity category one is a relatively good indicator of being non-poor.

It is striking that electricity is suddenly an important indicator, although it was not
important for lower boundaries. This is because the data sets Dt above this boundary are
quasi-complete separable. Quasi-complete separation is defined as follows (Lu, 2016,
p. 1).

Definition 7.2 (Quasi-Complete Separation). Quasi-complete separation occurs when
the dependent variable separates an independent variable or a combination of several
independent variables to a certain degree.

It is added that this means that at least one category of the dependent variable has
zero frequency for at least one category of an independent variable. It can occur due to
continuous variables as well. This is fulfilled for boundaries above the critical value of
3,294,322 since one can assign households without electricity automatically to the poor.
In the case of households that have electricity, one can not possibly say whether they are
poor or not. There are methods to indicate if a data set is quasi-complete separated, and
one is implemented in the R package “detectseparation” (Kosmidis et al., 2022). It is
not explained here how it works, but the package description contains all the technical
information. This method can check if the previous statement is true by testing the data
sets resulting from the four boundaries 3,255,355, 3,294,322, 3,320,300 and 3,389,330 on
quasi-complete separation. For these few examples, the test shows that quasi-complete
separation occurs above the critical value because the first and second data sets are not
quasi-separable, but the third and fourth are. One has to note here that the remaining
variables have been removed from the data set as some lead to quasi-complete separated
data sets too.

The issue of quasi-complete separation is that it can lead to some estimated regres-
sion coefficients being infinite, and adding independent variables to the data set does
not remove quasi-complete separation (Mansournia et al., 2018, web appendix 2). The
estimated coefficients of electricity 1 are not infinite at any boundary. Instead, it can
be seen in Plot a) that they range from about -14 to 30. The estimated coefficients are
probably finite due to the reason described by Mansournia et al. (2018, p. 865), that the
algorithm that maximises the log-likelihood function stops when regression coefficients
become numerically too large for the software to handle.
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According to Mansournia et al. (2018, p. 866), another consequence of quasi-complete
separation are very large SE values and, thus, the SE curve shown in Plot b) should have
a jump at 3,294,322. One can indeed observe this jump, and I would therefore argue that
it can be confirmed with certainty that the jumps are due to quasi-complete separation.

Some of the ways to address quasi-complete separation are to remove the variables
causing the quasi-complete separation, to use the method “Exact logistic regression” as it
can provide finite “median unbiased” estimates or to perform “Firth penalisation” which
solves the quasi-complete separation by penalising the log-likelihood function from Equa-
tion 23 to reduce the bias of maximum likelihood estimators in generalised linear models
(GLM) (Mansournia et al., 2018, p. 868). Another solution given by Allison (2008, p. 8)
is to do nothing and to leave all variables in the model because the estimated coefficients,
SE values and test statistics for the variables that do not cause quasi-complete separation
are still valid maximum likelihood estimates. One could report the coefficient that caused
the quasi-complete separation as positive or negative infinite. Furthermore, the interpre-
tation changes if the problem variable is a dummy variable because one has to interpret
the estimated coefficients for the remaining variables as the estimated coefficients of the
model based on the subsample of individuals that fall into the dummy variable associated
category. This means for boundaries above 3,294,322, that the estimated coefficients,
which are based on the whole data set, are identical to those calculated based on the data
containing just the households with electricity.

For a second example of the consequences of quasi-complete separation, the poverty
curves of the variable walls are displayed in Figure 6 Plot a), and the related SE curves in
Plot b). Just as there were jumps in the poverty curve of electricity 1, one can see jumps
in all poverty curves corresponding to the categorical variable walls. Between 40,764 and
341,586, all poverty curves are close to zero. In Plot b), one can notice that the SE
values are very large except in the mentioned interval. Again the largest value of the
minimum income and the smallest value of the maximum income within the categories
of the variable walls bind this interval. So the large SE values indicate quasi-complete
separation.

Because of the results shown in this chapter, I am confident that the issue of quasi-
complete separation is present for all categorical variables. It affects many boundaries,
as the highest incomes of the households of the same category differ greatly. The same
applies to the lowest incomes but not to such an extent.

One could also notice jumps in the poverty curves of the count variables. Therefore,
the following chapter looks at count variables in detail.

7.3.2 Count Variables

Variables that have positive integer values and are used to record the quantities are called
count variables in this thesis. An example of this is the variable washing machines in the
data set. Although the count variables are standardised, which means that the positive
integer values are transformed to continuous numbers, the variable remains discrete as
there is a one-to-one connection to the set of the natural numbers possible. Therefore,
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Figure 6: Poverty a) and SE b) curves corresponding to the variable that indicates which
material the house walls are made of. Again, in the poverty and SE curves, one can see
jumps at the categories’ maximum and minimum incomes.

they will still be called count variables. One could expect that the discrete nature of the
count variables is the reason for the jumps in some poverty curves of the first BS model
from Chapter 7.1. The suspicion arises because there were jumps in the poverty curves
of categorical variables for the same reason.

Figure 7 a) displays the poverty curve and b) the corresponding SE curve of the
variable washing machine. In Plot a), one can see a few jumps in the poverty curve. One
is in line with the minimum income among those who own a single washing machine at
36,569. One can also notice this jump in Plot b), as the SE of the estimated coefficients
boosts from slightly above zero at the boundary 36,592.08 to approximately 300 at the
boundary below. Except for the jump at the last boundary that will be ignored again,
and the jumps at boundaries below 36,569, one can not notice more jumps. The other
poverty curves of count variables, displayed in Figure 25 in the appendix, show the same
pattern since the major jump occurs at the minimum income of the households that own
the second least amount of some good.

One can explain this behaviour with quasi-complete separation again. Concentrating
on the variable washing machine, for each boundary below the critical value of 36,569,
one can perfectly predict if a household is non-poor. This is because if the household
owns one or more washing machines, it is non-poor. If a household does not own one, it is
uncertain whether it is poor or not. Above the critical value, this is not possible anymore.
It is still possible to say that a household with two or more washing machines is non-poor,
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Figure 7: Poverty a) and SE b) curve corresponding to the variable washing machine.
One can notice a striking jump in the poverty curve below approximately 50,000.

but for owning less than two, it is uncertain. For a quasi-complete separation, it would
be necessary that not owning a washing machine leads to being poor so that there is only
uncertainty if a household owns exactly one washing machine.

Quasi-complete separation can occur for each count variable individually as long the
boundaries are below a variable-specific critical value. The critical values are given in
Table 5 in the appendix for the variable washing machine and other count Variables.
Testing these critical values with a few boundaries using the R function from package
“detectseparation” (Kosmidis et al., 2022) reveals again that quasi-complete separation
occurs below them. Also, the SE curve of the variable washing machine confirms that
quasi-complete separation is present for this variable because one can observe large SE
values for boundaries below the variable’s critical value.

In Plot a), below the critical value, 36,569, one can observe further jumps in the
poverty curve. My explanation for them is that they are due to the quasi-complete
separation of other variables. However, since it is already clear that data sets for limits
below the critical value are quasi-completely separated, no search is made for the trigger
of the jumps.

As seen in Plot a), there is no jump in the poverty curve at high boundaries, excluding
the jump at the last boundary. This would mean there is no quasi-complete separation
for high boundaries. This may be because the quantity of some goods does not increase
gradually with a household’s income. To understand this speculation, what is meant by
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Number Washing Machines Min Max
0 11,285 11,639,365
1 36,569 11,815,988
2 141,910 6,452,314
3 245,025 2,231,340

Table 2: Minimum and maximum income per group, defined by the number of washing
machines each household owns. It can be seen that the number of washing machines
increases with the minimum income in each group but the same can not be said about
the maximum income.

a gradual increase must be explained.

For lower incomes, it might be the case that households can not afford the goods they
need, but they can with an increasing income. However, this only applies to a certain
income level at which a household is saturated with this good so that no more is bought,
even though the household has enough income to buy more. The result is that grouping
the households according to the number of products and examining the minimum income
for each group reveals a connection between minimum income and the number of goods.
The minimum incomes are ordered according to the amounts of goods, or differently said,
the quantity of goods gradually increases with the income. As far as I am concerned,
there is no relationship between the maximum incomes and the number of goods, and I
would go even further and claim that the order is random.

At least for the variable washing machine, this can be observed. Table 2 shows the
order of the minimum and maximum incomes of the groups. The minimum incomes of
the groups are in the same order as the number of washing machines, and the opposite is
true for the maximum incomes.

Heading back to the claim that quasi-complete separation is unlikely to occur for high
boundaries, it is now clear that the number of goods does not always increase with the
maximum income. As a result, the households with the highest quantity of goods just
by chance have the highest income. Therefore one can not expect that quasi-complete
separation occurs for high boundaries, as there is no allocation where households with
the second largest quantity of goods or less are allocated to the poor, and those with the
largest quantity of goods to the non-poor or poor.

Because it is now clear that quasi-complete separation causes the jumps in the poverty
curves of the count variables, it is continued with the third task of handling extremely
small or large estimated coefficients at low and high boundaries.

7.4 Boundary Limits

In upcoming analyses, extreme estimated coefficients could strongly impact calculated
metrics. One way of handling them is to remove them entirely. Since the extreme esti-
mated coefficients occur at different boundaries depending on the binary prediction model
and the boundaries, one must define an upper limit U and a lower limit L to ensure
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that models are always compared on the same boundary range.

One already noticed in the previous chapter that some jumps in the poverty curves are
attributed to quasi-complete separation. Based on that, quasi-complete affected bound-
aries can be removed, which already removes the fluctuation of the poverty curves at low
boundaries. Since quasi-complete separation only affects lower boundaries in data sets
that do not contain categorical variables, an additional approach is required to remove
extreme estimated coefficients at high boundaries.

The other approach is to remove boundaries that lead to extremely imbalanced data
sets. Having an imbalanced data set means that the class distributions in the dependent
variable are highly imbalanced (Ling and Sheng, 2010, p. 167) or, differently said, skewed.
In the following, the skew of a data set is calculated as the ratio of households in the
minority class to the total number of households. Data imbalance occurs in BS by design,
and the lower or higher the boundaries are placed, the more imbalanced the data sets get.
In the most extreme case, one assigns just a single household to the poor or non-poor.

A consequence of data imbalance is that the SE values increase for an increasing class
imbalance skew. One could conclude this from King and Zeng (2001, p. 141) as they
show that observations belonging to the minority class are more statistically informative
than observations from the majority class. They show it with the asymptotic covariance
matrix

Ĉov(β̂) =
1∑n

i=1 πi(1− πi)xT
i xi

, (39)

that is used to calculate the SE values. They further claim that most imbalanced data
applications result in small estimates of πi = P(yi = 1 | xi) for all observations. As the
factor πi(1−πi) is in the denominator of Formula 39, it becomes clear that the denominator
decreases the more πi deviates from 0.5, and as a result, the SE values increase.

Later, one can see that the SE curves rise with increasing class imbalance skew. To
avoid large SE values, low and high boundaries must be removed. It has been decided
that there will be a maximal data imbalance skew of 0.01. One has to note that this is,
again, an arbitrary value.

To account for both issues, data imbalance and quasi-complete separation, which are
most likely the cause of extreme estimated coefficients, some metrics are just calculated for
estimated coefficients between the boundaries ranging from L = 36, 619 to U = 1, 287, 000.
The lower limit is set due to quasi-complete separation. It is calculated on the basis
that only the intersection variables, derived in the variable selection with logistic lasso
regression chapter, Chapter 7.2, are included in the data set. One calculates the upper
limit based on the data imbalance skew of 0.01. More information on the placement of the
limit is supplied in the following two chapters. However, if the derivation is not of interest
to the reader, it is possible to proceed to Chapter 7.5, where the Basic BS model is
discussed.
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7.4.1 Quasi-Complete Separation Limits

One could observe in Chapter 7.3 that in BS, quasi-complete separation occurs for high or
low boundaries that are, depending on the variable, above or below one or more critical
values. As it was decided in Chapter 7.2, just the variables food expenditure, mobile,
refrigerator and washing machine are used in the BS models. For this reason, it must
only be dealt with quasi-complete separation resulting from count variables, which means
that boundaries that are simultaneously below the critical values of the variables mobile,
refrigerator and washing machine have to be removed. Table 5 from the previous chapter
contains the critical values of the three mentioned count variables. Since the variable
Computer, with the largest critical value, 44,313, is not included in the following BS
models, the critical value, 36,569, corresponding to the variable washing machine, is the
largest relevant critical value. Since the lower boundary has to be above the critical value,
the lowest boundary is placed at L = 36, 619, which corresponds to the income of the
household with the next highest income.

7.4.2 Imbalance Limits

There are 41,544 households in the data set, and the task is to find a lower and an upper
limit that the data imbalance skew is above 0.01 for each data set Dt, = 1, . . . , T . The
search is for two limits because, in one case, the poor are the minority class and, in the
other, the non-poor. To get a data imbalance skew of less than 0.01, in the minority class
have to be at least

⌈0.01 · 41, 544⌉ = 416, (40)

households. The 417th lowest income is 34,128; therefore, the lower limit will be placed
at this value. The upper limit will be placed at 1,285,400 at the income of the 41,128th
household.

The lower limit, resulting from data set imbalance, is below the lower limit result-
ing from quasi-complete separation. Therefore, the final, more restrictive limits are
L = 36, 619 and U = 1, 285, 400.

7.5 Basic BS Model

The BS model that is discussed in this chapter will be referred to as the Basic BS model.
Compared to the first BS model, simply the independent variables food expenditure,
refrigerator, washing machine and mobile are included. This means there is not any
categorical variable used in this model. These variables are used as they have proven in
the variable selection with the logistic lasso regression chapter that they are relevant for
BS poverty measurement, as they were within the ten most relevant variables of each of
the four used boundaries. Compared to the first BS model, one estimates the coefficients
in the Basic BS model for each unique boundary that satisfies Condition 32.

Figure 8 shows the poverty curves resulting from the Basic BS model. The resulting
poverty curves on the whole income range can be seen in Plot a). The purple area in the
plots is in this and the following chapters, bounded by U and L, which were derived in the
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Figure 8: The poverty curves of the Basic BS model on the total income range are
shown in Plot a), and between the limits L and U in Plot b). The poverty curves of the
variables washing machine, refrigerator and mobile are shown in detail in Plot c). The
poverty curves are relatively smooth between the limits, but there is still some observable
fluctuation. The poverty curves of the variables shown in detail in Plot c) are in between
the limits close to zero, indicating low relative importance.

previous chapter. Although the estimated coefficients and their corresponding P-values
and SE values in the purple region are of main relevance when comparing models, the
plots that are shown on the whole income range are used to demonstrate the form of the
curves outside of the limits.

In Plot a), it can be seen that the poverty curves heavily fluctuate below the lower
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limit L, and further, in the poverty curves corresponding to the count variables, at least
one jump is observable. The food expenditure poverty curve starts to fluctuate for very
low incomes wildly. The trigger of the fluctuation will not be further analysed since it just
occurs for extremely low boundaries. At the critical values of the count variable, jumps
can also be seen in the intercept poverty curve. For low incomes, the intercept poverty
curve fluctuates wildly similarly to the food expenditure poverty curve.

Generally, the intercept poverty curve is far below the poverty curves of the slopes for
low incomes. Between the limits L and U , the intercept poverty curve rises for increasing
boundaries and crosses the x-axis at 186,840. The poverty curves of the slopes also rise,
but not as fast, and they do not cross the x-axis. Above the upper limit U , the poverty
curves do not start to fluctuate and continue the trend seen between the limits.

The poverty curves between L and U are shown in Plot b). Although the poverty
curves seemed to be smooth in Figure a), it is now notable that there is some fluctuation
but mostly for boundaries close to L. Interpreting the poverty curves, one can see that
the relative importance is higher for boundaries close to L. One should note that relative
importance has to be understood like it was explained in Chapter 6.2, and also that
the estimated coefficients are less, but the absolute value is important for interpreting
relative importance. For the variable food expenditure, the relative importance is very
high at boundaries close to the lower limit and then decreases with increasing boundaries.
Compared to the other variables, the variable food expenditure has by far the greatest
effect on the odds of being poor as the estimated coefficients, for the boundaries close to
L, are approximately -10. In contrast, the other estimated coefficients have values smaller
than -2. As the relative importance of food expenditure decreases with increasing limits,
this variable has near the upper limit a similar relative importance as the other variables.

I would argue that the intercept poverty curve increases with increasing boundaries
due to the ratio of the poor to the non-poor. For low boundaries, for example, households
are in the data set mainly assigned to the set of the non-poor, which means that if the
boundary corresponding model predicts whether a household with average characteristics
is poor, this household is likely non-poor. As the proportion of non-poor households
decreases, households with average characteristics are more likely to be classified as poor.

The poverty curves of the variables mobile, refrigerator and washing machine are
close together, making it hard to interpret them. For this reason, Plot c) shows the
poverty curves in detail. One can see fluctuation at low boundaries near L. Although
the general trend is that the relative importance decreases with increasing boundaries,
the relative importance of the variable refrigerator increases before it decreases again.
One can observe a strong decrease in the relative importance of the variable washing
machine. For increasing boundaries then, the relative importance increases gradually and
later slowly decreases again.

These changes in relative importance are probably due to differences in the quantity
of a good between the poor and the non-poor. Taking the variable refrigerator as an
example. Relative importance is high at low boundaries since the poor cannot afford
a single refrigerator, but most non-poor households can afford at least one refrigerator.
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When the boundary shifts upwards, it might be the case that the relative importance
decreases because more and more households with a single refrigerator are assigned to the
poor. Therefore, at these boundaries, this variable might not be that good for dividing
into poor and non-poor anymore. But after further shifting the boundary upwards, there
might come a point where some households can afford a second refrigerator or a freezer.
Thus, one might expect that the relative importance of this variable increases again, as
it is suitable for dividing the households into those that can afford one or less and those
that can afford two or more.

The third notable thing is that the variable mobile, compared to the variables re-
frigerator and washing machine, has a larger relative importance for boundaries close to
L but for boundaries close to U it has lesser. A reason for this could be that mobile
phones are relatively cheap compared to the other two goods, and so households with a
small income are able to afford at least one. Just the really income poor can not afford
one, and therefore, this variable might have higher relative importance at low boundaries.
However, owning one or more mobile phones, which are comparatively cheap goods, is
no longer a luxury if income exceeds a certain value, as most households can afford it.
From this, one could conclude that at higher boundaries, the variable mobile is no longer
suitable for dividing households into poor and non-poor.

In Figure 9, the estimated coefficients associated P-values and SE values for every
boundary are drawn as P-value and SE curves. Figure a) shows the P-value curves, and
Figure b)-c) the SE curves on different scales.

The jumps in the P-value and SE curves are at the same boundaries as in the poverty
curves. The intercept P-value curve has one outstanding peak at approximately 200,000.
Heading back to Plot a) in Figure 8, one can see that the intercept poverty curve crosses
the x-axis at this point, which means that the intercept estimations are close to zero.
Because for calculating the P-value in a GLM, the null hypothesis H0 : βj = 0 is tested
against the alternative hypothesis with the Wald statistic (Liu, 2016, pp. 75-76)

Z =
β̂j√

Ĉov(β̂j)

, (41)

it is clear that this peak does not occur due to an increase in the SE values. Instead, it
is attributable to the estimated coefficient being nearly zero resulting in the test statistic

being close to zero. Note here that Ĉov(β̂j) is the SE of coefficient βj, that has been
calculated with Equation 39.

This peak is not noticeable in the intercept SE curve in Figure 9 Plot b). But one can
see in this plot that all SE curves are close to zero above the lower limit L and seemingly
also above U . The large SE values below the lower limit L occur due to quasi-complete
separation again. To see how close the SE curves are to the x-axis, one has to look at
Plot c) with the scaled y-axis. One can see that the SE curves smoothly decrease and
increase between the limits. While the curves are close to L at approximately 0.5, they
are nearly zero at U . The SE curves decrease and increase due to data imbalance. The
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Figure 9: P-value and SE curves on the whole income range. Between the lower limit L
and the upper limit U are all the P-value and SE curves close to zero. One can notice a
peak in the intercept P-value curve due to the estimated intercept being close to zero at
this boundary.

details of how the SE values are affected by data imbalance were given in Chapter 7.4 in
the context of the asymptotic covariance matrix. The SE curves keep rising above the
upper limit U , with no noticeable jumps.

For further analysis, it has been decided to analyse just the SE curves and no longer
the P-value curves. I argue that it is unnecessary to look at the P-value curves as well
since one derives the P-values from the SE values and the estimated coefficients, and both
are in each model discussed in detail.
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The fluctuation between L and U is now further analysed. Therefore, the estimated
coefficients are not analysed, but the absolute difference of estimated coefficients of neigh-
bouring boundaries are. The absolute difference is defined as

difft =
∣∣∣β̂(zt)− β̂(zt−1)

∣∣∣ , (42)

with t = 2, . . . , T . T is again the total amount of boundaries and diff1 = 0 applies.

To see how the fluctuation changes, the boundaries are divided into strata and the
mean, median and standard deviation (SD) values of the absolute difference are calculated
in each stratum. For readability reasons, the mean absolute difference of differences within
the same stratum is referred to as the stratum mean. The same applies to the median
and the SD of the absolute differences within the same stratum.

Dividing boundaries into strata means a domain is divided into sub-intervals (Saltelli
et al., 2008, p. 59). Here, one uses 100 sub-intervals of different widths since the sub-
intervals will be placed dependent on the boundaries. This means one places the sub-
intervals so that each stratum has the same amount of boundaries. Note that if the
number of boundaries is not a multiple of 100, the number of boundaries inside the strata
can differ by up to one. The domain in the following analysis is the interval ranging from
the lower limit L to the upper limit U .

Before it is looked at the results, one has to mention that the mean, median and SD
values of the strata are not assumed to be zero, even if there is no fluctuation in the poverty
curves. This is the case since the poverty curves are increasing and decreasing. Now, if
there is a steeper increase or decrease of the estimated coefficients inside a stratum, one
can expect the resulting differences to be larger. This problem is partly exacerbated by the
fact that one places the sub-intervals dependent on the boundaries, and the boundaries
have different distances depending on the boundary placement. There will not be used a
method to account for this problem.

Figure 10 displays the strata mean, median and SD values. For increasing strata,
the estimated coefficient-dependent mean, median and SD values of the strata decrease
to nearly zero and then increase again. The absolute differences between neighbouring
estimated coefficients are, in most cases, quite small, as the highest mean value across
all strata and coefficients is 0.018. One can see this value in the lowest strata for the
intercept. The mean values are generally higher in the lower strata than in the middle
and upper strata. One can observe the same for the SD values, which confirms the
previous observation in the analysis of the poverty curves that there is more fluctuation
at lower boundaries. Also, it indicates that there are probably a few larger differences.
The strata median values are overall below the strata mean values. This indicates that
there are a few larger differences difft, which increase the mean value. One can conclude
that there is indeed more fluctuation at lower boundaries, which is partly attributed to
a few differences difft. One could also observe that there might be some fluctuation at
higher boundaries. But this is not sure because the larger differences could also be due
to the increasing or decreasing trends of the poverty curves.

To clarify the two possible reasons for large strata mean values, Figure 11 shows the
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Figure 10: Figure that displays each stratum’s mean, median and SD values. One can
observe larger absolute differences in neighbouring estimated coefficients in the lower
strata. For central strata are, the three statistics very small, which shows that there is
nearly no fluctuation in the poverty curves at mediocre boundaries.

poverty curves of the intercept and washing machine for boundaries between 38,000 and
39,300. This is just a section of the first stratum, which is so small that one can still
recognise individual boundaries, shown as vertical dashed lines. The first reason for large
strata mean values is that the strata mean values are not supposed to be zero. One can see
this in the intercept-related poverty curve in Figure 11 as the intercept estimations increase
with increasing boundaries. The difference between the estimation of the first and last
boundary in this section is 1.20, so if the mean value of absolute differences was calculated
for this section, one could already say that it is at least 1.2

77
= 0.015 as the absolute
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Figure 11: Plots that illustrate the two possible reasons for larger strata mean values. The
first reason for the higher mean values of the strata shown in the upper poverty curve is a
trend in the poverty curve. The second reason, illustrated with the lower poverty curve,
is that the stratum has a few larger differences difft.

differences are calculated for the intercept estimations of 78 boundaries. Comparing this
value with the previously observed stratified mean of 0.018 of the intercept, it becomes
clear that the large mean value is probably attributed to the trend of the intercept poverty
curve.

The second reason for large absolute mean differences is actual fluctuation. One can
observe this from the washing machine poverty curve as the poverty curve is relatively
smooth except for two large jumps at the boundaries 38,075 and 39,011.

To conclude this chapter, one could see that below the lower limit, there were larger
jumps in the poverty curves that are related to count variables. Between L and U , there
is far less notable fluctuation for all poverty curves. Still, there is some fluctuation in
the poverty curves for boundaries close to L. But the fluctuation decreases rapidly until
it drops to zero. When the absolute differences difft are used to analyse fluctuation,
one must remember that larger strata mean values are not automatically attributed to
fluctuation.

The next chapter continues with the first assumption change. The effects of the
number and placement of boundaries on the poverty curves are investigated.
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7.6 Boundary Placement

The Basic BS model, where one uses every possible boundary, can be time-consuming for
large data sets. Reducing the number of boundaries reduces the run time on the one hand
but, on the other hand, could result in a loss of information.

In the following, the poverty curves of five models, which differ in the amount and
placement of the boundaries, are compared in order to analyse the effects. One should note
that stair-step plots are used for the Basic BS model and line plots for the other models.
That is because each data split is carried out in the Basic BS model. In the others, it is
not. Using a stair-step plot highlights that due to the Condition 32, all zt, zt′ ∈ [y(l), y(l+1)]
with the ranked incomes y(l), y(l+1) ∈ y and l ∈ 1, . . . , n− 1 have the same data setsDt, Dt′

and therefore the same coefficients β(zt),β(zt′) as a consequence. If not every data split
is carried out, the pairs (zt, β̂j(zt)) are drawn as points in the coordinate system and
afterwards connected with lines. The lines are drawn for clarity, and one should not use
this to derive the estimated coefficients β(z) for a boundary that has not been used,
which means z /∈ {zt | t ∈ 1, . . . , T}. Logistic regression has been used as the binary
prediction model in the compared BS models. Also, the variables food expenditure,
mobile, refrigerator and washing machine are the relevant independent variables again.
The compared BS models are named Basic, Permilles, Sequence, Log998 and Log498.
The Basic BS model is known from the previous chapter. In the model Permilles BS, one
places the boundaries at the 1,000 sample quantiles, called Permilles (Walker and Lev,
1969, p. 60), of the observed incomes. T = 4, 998 boundaries are used in the Sequence
BS model and placed evenly between the minimum and maximum observed income. For
the boundaries applies

zt = t ·
max
1≤i≤n

(Incomei)− min
1≤i≤n

(Incomei)

T + 1
+ min

1≤i≤n
(Incomei), (43)

where t = 1, . . . , 4998. The boundaries of the last BS models, Log998 and Log498, are
placed with Formula 38. In the Log998 BS model is T = 998, and in the Log498 is
T = 498. The boundaries of the Log998 BS model are equal to the boundaries that have
been used in the first BS model.

Figure 12 displays the poverty curves on the whole income range in the first row, the
poverty curves between L and U in the second row and the SE curves between L and U
in the third row. The titles above the first row’s Plots a)-e) identify to which model the
plots in the same column belong to.

Looking at the figures in the first row, it is obvious that the parts of the poverty
curves below L and above U differ. While the poverty curves of the BS models Log998
and Log498 look like copies of those of the Basic BS model, the poverty curves of the
other two models look less detailed. This is because there are just a few boundaries
above and below the limits for which the coefficients are estimated. Below L, one can
observe the second least detailed poverty curves for the Sequence BS model, where the
coefficients are estimated for ten boundaries. At the same time, the parts of its poverty
curves above U are very detailed because the coefficients are estimated for 298 boundaries.
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Figure 12: The poverty and SE curves are between the limits similar. Above and below
the limits are the models Log998 and Log498, comparable with the Basic BS model. In
the other models, Permilles and Sequence, the curves are less detailed.

This distribution of the boundaries results from the income distribution in the data. Since
the boundaries in the Sequence BS model are set at even intervals, it occurs for lower
boundaries that hundreds of households have an income between two boundaries. With
higher boundaries, the opposite can occur, namely that multiple boundaries lie between
the incomes of two households. Consequently, there are not many boundaries for lower
incomes but lots for high incomes.

If multiple boundaries are between two successive income observations, they all lead
to identical poor and non-poor data splits and, therefore, to identical coefficients β(zt).
This means that there is a reduced amount of effective splits. This is considered when
the coefficients are estimated, which means that in the R code, the coefficients are only
estimated for one boundary to avoid redundant calculations. This reduces the number of
boundaries, and in the case of the Sequence BS model, only 833 effective boundaries are
left of the originally defined 4,998 boundaries.
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Low Middle High Sum Initial Boundaries
Basic 525 37,727 417 38,669 38,669
Permilles 12 977 11 1,000 1,000
Sequence 10 525 298 833 4,998
Log998 115 511 139 765 998
Log498 66 255 87 408 498

Table 3: The Permilles BS model is outside the limits, not that detailed. The Sequence
BS model is not detailed below L but above U . The BS models Log498 and Log998 are
satisfactorily detailed on the whole domain. Additionally, both models result in many
effective boundaries, while the Sequence BS model does not.

Table 3 shows the number of the effective boundaries of the five models below L,
above U and between the limits. Further, the numbers of total effective boundaries and
the numbers of initial boundaries are given. Previously mentioned numbers about the
number of boundaries have been taken from this table.

Above the upper limit U , the Sequence BS model has, with a number of 298, the
second most effective splits. However, this model has only 833 effective boundaries in
total, meaning about 35 per cent of all boundaries are above the upper limit. Adding
that the model originally had 4,998 boundaries, one can conclude from these numbers that
the Sequence BS model might be good for analysing the change of relative importance for
higher incomes but is not that detailed between the limits.

In the Permilles BS model, the number of effective boundaries equals the number of
initial boundaries by design. Nearly 98 per cent of the effective boundaries are between
the limits. Therefore, this model may be more suitable than the Sequence BS model for
analysing the relative importance between the limits. But a disadvantage of this model
is that it is not as detailed outside the limits. The BS models Log998 and Log498 seem
to be somewhere between the capabilities of the other two already discussed models. Ap-
proximately 80 per cent of the initial number of boundaries result in effective boundaries,
and approximately 65 per cent are between L and U . Like Figure 12 already showed,
both models can visually return the same information about relative importance on the
whole income domain as the Basic BS model.

Returning to Figure 12 to analyse the poverty and SE curves between the limits, no
major differences are noted by comparing Plots f)-j). It is only noticeable for the Permilles
and Sequence BS model that there are not that many boundaries close to L. Since there
are no major spikes at lower boundaries, the decreased boundary density is, in my view,
acceptable. The same applies to the SE curves in Plots k)-o). It can be concluded that
each model is adequately detailed between the limits since the poverty and SE curves look
like copies of those of the Basic BS models.

After visually analysing and justifying the shape of the poverty curves, the fluctua-
tion is now analysed. Again, just the fluctuation between L and U is looked at and the
absolute differences, diff t, t = 2, . . . , T , between the estimated coefficient of neighbouring
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boundaries, β̂(zt−1) and β̂(zt), are analysed. To see how the absolute differences change
over the income domain, the income domain is divided into strata, and each stratum’s
mean, median and SD value is calculated. One has to note here that the strata depend
on effective boundaries and not the initial boundaries. If there are more boundaries per
stratum, the statistics are calculated with more absolute differences. Having more abso-
lute differences per stratum will very likely reduce the SD values. Another consequence
of using effective boundaries is that the sub-intervals that define the strata are getting
wider at higher boundaries where the income density is lower. This increases the mean
and median values if there are trends in the poverty curves. This relationship was ex-
plained before with the help of Figure 11. This issue also arises if the boundaries are not
evenly distributed due to the boundary placement of the model. This makes it hard to
compare BS models with different boundaries directly, but the strata are still analysed as
this analysis gives insights into the individual BS models.

Figure 13 displays the results. The rows of the figure correspond to the calculated
strata statistics and the columns to the BS models. The first observation is that the
strata mean, median and SD values are very different between the BS models. While the
mean values in all the Basic BS models strata are very low, the maximum strata mean
value of the Sequence BS model is larger than 0.75. The second observation is that the
values of the strata statistics from the Log998 and Log498 BS models fluctuate and do not
decrease and increase gradually, as one can notice for the other BS models. Additionally,
it seems like there are more strata. This is because the exponential function was used
to derive the boundaries. The x-axis in the plot is logarithmically scaled, and thus the
strata seem to be evenly spread. This is not the case for the other models, and for this
reason, depending on the distribution of the income and the boundaries, the strata are
more or less spread.

Discussing the strata mean values, one can see that the strata mean values of the
Basic and Permilles BS model are similar, as the strata mean values quickly decrease at
low strata and increases at large strata. The ranking of the mean values for low strata is
different since the strata mean values of the variable mobile are smaller than the strata
mean values of the other variables in the Permilles BS model. The strata SD and median
values ranking is also different, and the SD is generally higher since each stratum has
fewer boundaries.

Discussing the other three models, one can see that the ranking of strata mean values
corresponds to the ranking of the Permilles BS model. Further, the strata mean values
decrease slower and do not rise at the end. That the stratum mean values do not increase
indicates that at higher incomes, there are a lot of boundaries which result in data splits
that differ just by a few households. The Sequence BS model is highly affected since
the strata mean values vanish for increasing strata. The slow decrease of the strata mean
values in the Sequence BS model is due to the same reason. This model does not attribute
to the fact that income is not evenly distributed. Therefore, low boundaries result in data
sets that differ by many households, which results in estimated coefficients β(zt) that
differ by a lot. As the boundaries increase, the data sets resulting from neighbouring
boundaries become more similar, so the estimated coefficients no longer differ greatly.
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Figure 13: The strata statistics are very dependent on the boundaries, making comparing
the models hard. One can still notice that the BS models Log998 and Log498 can overcome
the issue of not evenly distributed boundaries. One can see this as the strata mean, median
and SD values fluctuate, and additional due to the constant and not increasing values at
higher strata.

This has smaller differences difft as a consequence.

The strata mean and median values in the Log998 and Log498 BS models stay equal
or increase slightly for higher strata. These models seem to compensate for the unequal
income distribution and find strata widths that lead to similar strata mean and median
values in higher strata. This can also be noticed due to the fluctuation of the strata
mean, median and SD values, which indicates the existence of a random error in every
stratum, which can hardly be noticed if the strata statistics increase or decrease too
fast. A difference between the Log998 and Log498 BS model is that the strata mean and
median values are approximately twice as large in Log498, and the SD values are larger
too, which one could explain by the reduced number of boundaries in each stratum.

As a consequence of the analysis in this chapter, the boundaries from the Log998
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BS model will be used in future analyses. This can be justified by the fact that this
model appears to compensate for the unequal income distribution and is more detailed
than the Log498 BS model. Another reason is that the poverty curves are on the whole
domain comparable with the poverty curves of the Basic BS model. Finally, one can
better examine the strata statistics as the x-axis in all plots is logarithmically scaled,
resulting in equal-spaced boundaries that do not lie within each other.

The following chapter presents the BS models RobGLM and two models resulting
from Bootstrap. The goal is to find out if an alternative binary prediction model can
reduce the fluctuation between the limits.

7.7 Comparison of Binary Prediction Models

One can add complexity to BS by changing the binary prediction model one fits on each
data set Dt, t = 1, . . . , T , but this impacts the fluctuation of the poverty curves. To see
if one can reduce the fluctuation of the poverty curves between L and U with another
model, the same variables and boundaries are used in the following models so that the
same conditions apply. Before the poverty curves are compared, Bootstrap and the Robust
generalised linear model (GLM) are briefly introduced.

7.7.1 Bootstrap

Bootstrap can be used to estimate the precision of statistics by repeatedly drawing ran-
domly with replacement from a data set (Liew, 2008, p. 2). This can be used in BS too.
Randomly drawing with replacement means, in the context of BS, that from each data
set Dt, B ∈ N Bootstrap samples Db

t , where b = 1, . . . , B, are randomly drawn with
replacement. The resulting Bootstrap samples Db

t have the same amount of observation
but contain duplicate observations.

Bootstrapping in BS is used to calculate the mean estimated coefficient β̂
mean

(zt) and

the median estimated coefficient β̂
median

(zt) from the estimated coefficients of logistic re-
gressions that are performed on each Bootstrap sample. There are 100 Bootstrap samples

Db
t used to obtain the estimated coefficients β̂

b
(zt). Since β̂

mean
(zt) and β̂

median
(zt) is

calculated, there are two different Bootstrap BS models, MeanBoot and MedianBoot.

7.7.2 Robust GLM

According to Ronchetti (2010), the primary goal of robust statistics is the development
of procedures which are still reliable and reasonably efficient under small deviations from
the model when for example, the underlying distribution lies in a neighbourhood of the
assumed model. If the fluctuations in the poverty curves are due to outliers, using a robust
binary prediction model could be beneficial because distributional robust and outlier
resistant, although conceptually distinct, are practically synonymous terms (Huber and
Ronchetti, 2009, p. 4). The binary prediction model used in the following is called the
Robust GLM. In this model, robust estimations are made based on quasi-likelihood. The
procedure itself will not be explained. Instead, more information about Robust GLM is
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Figure 14: Below the lower limit L and above the upper limit U , one can see some
differences between the poverty curves, but the poverty curves are very similar between
the limits. Close to the L, one can notice a heavy fluctuation in the MeanBoot BS model’s
SE curves due to extreme SE values in some Bootstrap samples.

given by Cantoni and Ronchetti (2001). The BS model that uses Robust GLM at each
boundary will be named RobGLM.

The next chapter compares the four BS models, RobGLM, MeanBoot, MedianBoot
and Log998.

7.7.3 Comparison

The difference to the previous chapter is that the same boundaries are used in all models.
This makes the poverty curves and the strata more comparable. The first comparison
of the models is a visual comparison of the poverty and SE curves. They are shown in
Figure 14. Again, each column of plots corresponds to a model. Further, a horizontal
line is drawn in Plots a)-d) for comparability. The poverty curves of the MedianBoot
BS model are visually very similar to the ones of the Log998 BS model. The poverty
curves of the MeanBoot BS model are not similar to those, as the patterns of the poverty
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curves change below L and above U . For boundaries close to the maximum income, one
can see that the intercept and the washing machine poverty curves are higher than the
corresponding poverty curves of the Log998 BS model. For the variable washing machine,
the poverty curve is even above zero, which means that owning one or more washing
machines increases the odds of being poor. Below the lower limit L, one can observe some
jumps in the poverty curves of the Log998 BS model that are now in the MeanBoot BS
model a bit smoothed out.

The poverty curves of the RobGLM BS model end approximately at the lower limit
since the Robust GLM only estimates the coefficients for another four boundaries below
L and then issues an error message. For two out of these four boundaries, the SE values,
and other statistics that depend on it, are not calculated. Instead, NaN (Not a Number)
is returned. In computer Science, NaNs can occur, according to Goos (1995, p. 365), from
invalid operations. For the boundaries where the coefficients are not estimated at all, the
Robust GLM algorithm leads to an error due to a singular matrix. A singular matrix
is a square matrix that does not have a matrix inverse (Weisstein, n.d.). I would argue
that the error messages and the NaNs are returned due to quasi-complete separation in
the data sets. This will not be proven, but a justification for this statement is that the
singularity error occurs right below L.

Above L and close to the maximum income, one can see that the washing machine
poverty curve is above zero. Also, the intercept poverty curve is for high boundaries lower
than the intercept poverty curves of other models.

Plots e)-h) of Figure 14 show the poverty curves between the limits. One can only
notice slight differences. For example, the MeanBoot BS model plot shows a noticeable
jump in the poverty curve of the variable washing machine. Another difference is that the
intercept poverty curve of the RobGLM BS model lies lower than the intercept poverty
curves of the other models. However, these are just small differences.

Before it is looked at the SE curves, it has to be mentioned how these curves are
derived in the Bootstrap BS models. The SE values in the MeanBoot or MedianBoot

BS models for boundary zt are not calculated from the estimated coefficients β̂
b
(zt),

b = 1, . . . , B with the unbiased estimator for the SD. Instead, the mean and median of
the SE values that result from estimating the coefficients of each Bootstrap sample are
used. This means that the SE values of the associated coefficients of the MeanBoot BS
model are calculated with

SE
Ä
β̂j(zt)

ä
=

1

B

B∑
b=1

SE
Ä
β̂b
j(zt)
ä
, (44)

where SE
Ä
β̂b
j(zt)
ä
the SE value of the corresponding estimated coefficient of the Bootstrap

sample Db
t at boundary zt is. The SE values of the Median Boot BS model are calculated

analogously with the median formula.

The SE curves are very different. Beginning with the MeanBoot BS model, the SE
curves from this model look similar to those of the MedianBoot BS model and Log998 BS

54



Sensitivity of Binary Prediction Models to Boundary Shifts

model. Just close to the lower limit L, the intercept, refrigerator and washing machine SE
curves heavily fluctuate. This might be due to an unfortunate choice of Bootstrap samples
having extremely large outliers as a consequence. Figure 26 in the appendix shows the
maximum SE values out of the SE values derived from each Bootstrap sample. At lower
boundaries, the maximum SE value is for some estimated coefficients above 200, which
confirms that the large mean SE values are due to an unfortunate choice of Bootstrap
samples.

The SE curves of the MedianBoot BS model in Figure 14 look like the ones of the
Log998 BS model. That there are not such high SE values as seen in the MeanBoot
BS model is attributed to the fact that the median is more robust to extreme values
(Fahrmeir et al., 2016, p. 53). The SE curves resulting from the RobGLM model seem
to be above the corresponding SE curves of other models for lower boundaries. However,
the SE curves do not fluctuate as much as the SE curves of the MeanBoot BS model.

In the following, the boundaries between the limits are divided into strata again, and
the strata mean, median and SD values are calculated. The results are displayed in Figure
15. The plots in the first row of the figure show the strata mean values of the different
models. Looking at the strata close to the lower limit, one can see that the intercept-
related strata mean values of the Log998 BS model are below those of the other models.
One can notice the largest strata mean values of the intercept in the MeanBoot BS model,
followed by the Median BS model. The strata mean value of the lowest strata exceeds the
coordinate system since it is 0.45. The washing machine related strata mean in the same
BS model is also very large, with a value of 0.50. This is conspicuous since the washing
machine related strata mean values are not that large in the other BS models. Mentioning
the RobGLM BS model, close to L, the strata mean values are also slightly larger than
those of the Log998 BS model. For middle to high strata, the strata mean values are in
all BS models similar, so one can not identify a model that has lower mean values.

In all BS models, the strata medians follow a similar pattern as the strata mean.
In general, the strata median values are a bit below the strata mean values which again
shows that there are outlier differences diffj. One can see something different for the strata
SD values in low strata. In the lowest strata, the strata SD values of the MedianBoot
and MeanBoot BS models are a bit different compared to those of the other models.
Further, large strata SD values are present in the RobGLM BS model. As far as I am
concerned, this contradicts the expected outcome that the outlier robust estimations of
neighbouring coefficients are similar. A look at the estimated coefficients of the variable
washing machine shows that the estimated coefficient jumps from -1.46 to -0.61 at one
point. This is a single large absolute difference diffj in this stratum which causes this
large strata SD value.

But apart from the first stratum, the strata SD values in the RobGLM BS model
are low compared to those of the other BS models. They are sometimes even lower than
those of the Log998 BS model. The strata above the income 100,000 have comparable SD
values in all models.

In summary, the least fluctuation in the poverty curves occurs in the Log998 BS

55



Sensitivity of Binary Prediction Models to Boundary Shifts

Figure 15: One can observe comparable strata mean, median and SD values. One can
still notice differences for strata close to the lower limit L. The Log998 BS model seems
to achieve the best results together with the RobGLM BS model.

model, as the strata mean values are lower or equal compared to those of the other BS
models. Also, there are no larger diffj differences inside the strata since the strata median
values are comparable to the mean values and the strata SD values are always fairly small.

Statistics of the absolute differences diffj are now calculated without stratification
but still between the limits. In addition to the mean, the median and the SD value of the
absolute differences, the mean and the amount of the negative differences are calculated.
The results are shown in Figure 16. The bar plots in the same column correspond to the
same coefficient, and bar plots in the same row correspond to the same statistic. Starting
with the mean values of the absolute differences, one can see that the Log998 BS model
has the smallest for every coefficient. Excluding the variable food expenditure, RobGLM
has the second smallest mean values. The mean values of the two Bootstrap models
are mostly slightly larger, but for the variable washing machine, the mean value of the
MeanBoot BS model is almost twice as large as the second largest mean value.
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Figure 16: The Log998 BS model has the least fluctuation of the poverty curves between
the limits. The small mean, median and SD values of the absolute differences indicate
this. Further, it is striking that one can notice in the Log998 BS model the least negative
differences of neighbouring intercept estimations. Also, the few negative differences that
exist are low compared to those of other models. The statistics indicate that the RobGLM
has the second lowest fluctuation in the poverty curves.

The median values of the BS models Log998 and RobGLM are overall the smallest
again. This time the MedianBoot BS model has larger median values than the MeanBoot
BS model. The ranking of the SD values is similar to the ranking of the absolute means,
which again shows that there is less fluctuation in the poverty curves of the Log998 BS
model, as there are no extreme differences diffj leading to an increasing SD.

The mean value and number of negative differences are new statistics that were not
used before. Note that the absolute values of the negative differences are used. Except
for the intercept mean values, the mean negative differences are comparable to the mean
absolute differences, so this statistic does not provide new information. But the intercept
mean values of the negative differences are interesting since the intercept poverty curve
is overall monotonously increasing, and therefore, negative differences should be rare and
small. The Log998 BS model has the smallest mean value of the negative differences,
followed by the RobGLM BS model. The mean value of the negative differences of the
MedianBoot BS model is twice as large, and the value of the MeanBoot BS model is
even larger. Since the number of negative differences is also the lowest in the Log998 BS
model, it seems like this model is the best at modelling the intercept poverty curve in
terms of fluctuation if it is assumed that the intercept poverty curve is supposed to be
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strictly monotonically increasing.

To conclude the results of Figure 16 and this chapter, the Log998 BS model has the
least fluctuating poverty curves between the limits. This model corresponds most closely
to the desire for smooth poverty curves. One could observe the second least fluctuation for
the RobGLM BS model. One could notice the largest fluctuations in absolute differences
in both Bootstrap BS models, whereby some large absolute differences in the MeanBoot
BS model are due to outlier coefficient estimations of some Bootstrap samples. I would
argue that with a larger number of Bootstrap samples B one could achieve similar results
as with Log998.

To reduce the fluctuation of the poverty curves to a minimum, a new binary prediction
model is introduced in the following chapter.
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8 Penalised BS

If the fluctuation of a poverty curve is measured in terms of the differences of the neigh-
bouring estimated coefficients, one has to reduce the differences to reduce the fluctuation.
The Penalised BS model reduces the differences by shrinking the coefficients towards
the estimated coefficients of the previous boundaries. The Penalised BS model uses the
self-developed binary prediction model logistic neighbour penalisation inspired by the
lasso regression.

Instead of forcing the absolute sum of the coefficients to be less than a specific value
as in Equation 29, the squared L2-norm of the difference between the (k+1)-dimensional
parameter vector β and another vector θ of the same dimension, must be less than a
certain value. This is achieved again by adding a penalty term to the log-likelihood
function. Analogous to the log-likelihood function of the logistic lasso regression from the
Formula 30, the resulting log-likelihood function of the logistic neighbour penalisation is
defined as

ℓ(β0, . . . , βk) =
1

n

n∑
i=1

yi ln

Ç
exp(xt

iβ)

1 + exp(xt
iβ)

å
+ (1− yi) ln

Ç
1− exp(xt

iβ)

1 + exp(xt
iβ)

å
− λ∥β − θ∥22,

(45)

where λ ≥ 0 is still the tuning parameter that controls the amount of shrinkage. Note
here that the intercept β0 is penalised too. The coefficients are then estimated as it has
already been explained in Chapter 4.1 just with a modified log-likelihood function.

In the Penalised BS model, the vector θ contains the estimated coefficients of the
neighbouring boundary above, β̂(zt+1), or below β̂(zt−1) to get β̂(zt). Exactly which
depends on whether the boundary is shifted up or down.

Because of this special relation, the estimated coefficients depend on all previous
estimations. The initial coefficients for θ are the estimated coefficients resulting from
the boundary placed at the median income. This boundary results in a balanced poor,
non-poor data split. The SE values of the estimated coefficients are therefore low. Start-
ing from the median boundary, the boundary is shifted upwards to the upper limit U ,
downwards to the lower limit L, and then upwards again to the upper limit. This is the
minimum amount of boundary shifts in this model. One downward and upward shift
of the boundary is called a cycle. Any number of cycles can be added to the minimum
number of boundary shifts, and five cycles are added in the following analysis. The coeffi-
cients are not estimated for boundaries above U and below L due to the already observed
large jumps and the inertia of the Penalised BS model. The consequences of adding the
boundaries outside the limits would be, that depending on the downward or upward shift
of the boundary the estimated coefficients at the same boundary are very different.

The impact of the tuning parameter is now analysed. The three Penalised BS models
with the tuning parameters λ1 = 0.1, λ2 = 0.001 and λ3 = 0.0001 are compared. The

59



Sensitivity of Binary Prediction Models to Boundary Shifts

Figure 17: The poverty curves of the λ1 BS model deviate strongly from the poverty
curves of the Log998 BS model due to strong penalisation. Due to weak penalisation, the
poverty curves of the λ3 BS model and the Log998 BS model look nearly identical. A
suitable degree of penalisation seems to be present in the λ2 BS model.

boundaries that are used are those of the Log998 BS model between L and U .

Figure 17 displays poverty curves. Each plot in the figure corresponds to a coefficient.
The poverty curves of the three models are drawn in the same plot together with the
poverty curve from the Log998 BS model in red for comparison. The plots contain just the
poverty curves resulting from the last cycle for clearness, whereby the doted poverty curves
result from shifting the boundary upwards and the solid line from shifting downwards.
Since the poverty curves of the same coefficients are in the same plot, each plot used a
different scale. Therefore, seemingly large differences in the refrigerator, washing machine
and mobile plots should not be over-interpreted.

It can be seen in the plots that all poverty curves, resulting from shifting upwards
and shifting downwards, are connected at the start and end points. This shows that an
equilibrium point has been found after five cycles, and further cycles are not needed. Two
other striking features are that, first, the poverty curves resulting from the downward and
upward shifts diverge more sharply as the lambdas decrease. And secondly, the poverty
curves at the lower and upper limits deviate more from the poverty curves of the Log998
BS model.

My theory is that both findings are related to each other. The increasing deviation
from the trend of the unpenalised poverty curve of the BS model is due to the penalisation
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term that forces neighbouring estimated coefficients to be close together. When there is
now a strong penalisation, it is more important that the estimated coefficients are close to
the previously estimated coefficients. This pulls the poverty curves away from the trend
of the Log998 poverty curve when the penalisation is too strong. Examples of that are
the intercept and food expenditure poverty curves of the λ1 BS model with the strongest
penalisation. When the boundary is shifted downwards, the poverty curves deviate further
from the trend. The result is that when the lowest boundary at L is reached, and the
boundaries are shifted upwards again, the poverty curves still have a downward trend
until they approximately cross the poverty curves of the Log998 BS model. This applies
in the same way to the upwards shifts of the intercept and the downward shifts of the
mobile coefficients.

In the plots where the estimated coefficients do not differ too much, i.e. washing
machine, refrigerator and mobile, another behaviour is remarkable for the poverty curves
of the λ1 BS model with the strongest penalisation. For downward shifts, the poverty
curves rise while the trends of the Log998 BS model decrease; for upward shifts, the
opposite is true. A hypothesis for this behaviour, which will not be proven, is that this is
due to the L2-norm and the relation to the remaining part of the log-likelihood function.
The L2-norm has the property that larger vector elements have a greater influence on the
resulting norm due to the squaring of the elements. It is thus important to reduce the
larger differences to reduce the norm. One could observe this for the intercept poverty
curve where the λ1 BS model forced the intercept estimations that would be further apart
from each other, to be closer. Suppose the log-likelihood function is now disassembled
into two parts. In this case, for the penalty term and the remainder, an estimate for β
is optimal that both maximises the log-likelihood function without the penalty term and
minimises the penalty term. Since, as far as I am concerned, this is only possible if θ is
equal to β, a compromise has to be made. A possible compromise is to minimise larger
coefficient differences, like the intercept and food expenditure while increasing smaller
coefficient differences of the remaining variables. This could lead to a relatively small
penalty term and a relatively large log-likelihood function without a penalty term to
get the largest log-likelihood function overall. But this is just speculation and requires
further analysis. Whether or not this speculation is correct, one could conclude that the
divergence from the trend of the poverty curves of the Log998 BS model is a sign of too
much penalisation, as too much attention is placed on minimising the penalty term.

The following continues with the λ2 Penalised BS model. For lower boundaries, the
intercept and food expenditure poverty curves resulting from upward and downward shifts
diverge much less than the corresponding poverty curves in the λ1 Penalised BS model.
For the poverty curves of the variables washing machine, refrigerator and mobile, the non-
intuitive deviations from the poverty curves of the Log998 BS model are still noticeable
but now at a lower level. Therefore, for the λ2 Penalised BS model, one can conclude
that it is an improvement compared to the λ1 model in terms of the course of the poverty
curves.

The λ3 Penalised BS model has nearly identical upward and downward shift poverty
curves that nearly perfectly correspond to the poverty curves of the Log998 BS model.
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Figure 18: Looking at the statistics confirms that the fluctuation decreases with increasing
penalisation. However, the effect of too much penalisation is that the poverty curves
deviate from those of the Log998 BS model and have a different trend. One can notice
this by looking at the number of negative differences in the intercept estimations, which
should be small but is not because the poverty curve of the intercept is not monotonically
increasing on the whole range.

This means that the fluctuation from the Log998 BS model, which should be reduced, is
now present again to some degree in the λ3 Penalised BS model.

The differences of neighbouring estimated coefficients are compared to measure if the
fluctuation in the poverty curves of both models is comparable. Also, the differences from
the λ1 and λ2 Penalised BS models are added to this comparison. From the Penalised
BS models, the estimated coefficients resulting from downward shifts will be used to
calculate the differences since Figure 17 has shown that the poverty curves from downward
shifts look more like the ones from the Log998 BS model, which makes the results more
comparable.

Figure 18 shows bar plots corresponding to the statistics calculated on the absolute
differences diff j of the estimated coefficients between the limits. The mean, the median
and the SD of the absolute differences are calculated, as well as the mean and the number
of negative differences of the different estimated coefficients. Looking at the statistics cal-
culated on the positive and negative absolute differences, one can see that the fluctuation
increases with decreasing penalisation. The ranking of the largest mean values of the ab-
solute negative differences only differs for the intercept since the mean absolute negative
differences of the λ2 BS model are below those of the λ1 BS model. One can explain this
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with the earlier observation in Figure 17. In the intercept plot, one could observe that the
poverty curve resulting from shifting the boundaries upwards increasingly deviates from
the poverty curve of the Log998 BS model. The consequence of this deviation was that the
poverty curve initially continued to rise for decreasing boundaries until the poverty curve
approximately crossed the poverty curve of the Log998 BS model. Since the differences
are calculated by subtracting the lower boundary’s estimated coefficients from the upper
boundary’s estimated coefficients, negative differences result for the initial boundaries.

Returning to Figure 18 to analyse the number of negative differences. The rankings
in the intercept, refrigerator and washing machine plots are different too. The λ1 BS
model has the largest number of negative differences out of the BS models. In the case
of intercept, this is again due to the initial rise in the poverty curve as the boundaries
are shifted downwards. The number of negative differences is large for the other two
coefficients due to the non-intuitive increase explained by the L2-norm and the relation to
the remaining part of the log-likelihood function. Still, although there are larger amounts
of negative differences, the mean values of the absolute negative differences are small for
all coefficients.

One can conclude that Penalised BS is a good way to reduce fluctuation and get
smoother poverty curves. As expected, the larger the value of the tuning parameter λ is,
the smaller the fluctuation gets. However, with increasing penalisation, the poverty curves
resulting from the upward and downward shifts increasingly diverge from the poverty
curves of the non-penalised model. Therefore, choosing too large a value for lambda is
not recommended.

This was the last chapter that dealt with the fluctuations of the poverty curves. In
the following chapter, poverty indices for individuals are calculated in different ways using
the Log988 BS mode. Subsequently, the poverty indices are compared with those of other
selected fuzzy poverty measurement methods from Chapter 3.2.
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9 Poverty Prediction

This final chapter establishes a link to the fuzzy poverty measurement methods from
Chapter 3.2. The fuzzy poverty measurement methods had in common that they were
used to calculate a poverty index for each household. From BS models, poverty indices
can be derived in various ways, too, and the procedure of deriving the poverty indices is
explained in the following.

First, it is shown how poverty is predicted for households at each boundary. Af-
terwards, the predictions are combined into a single poverty index. Lastly, the poverty
indices are compared to the variable income and the poverty indices of other fuzzy poverty
measurement methods.

9.1 Prediction Curves

Logistic regression has been used in the previous chapters to analyse the influence of
the independent variables x1, . . . , xk on the binary dependent variable y and therefore,
the coefficients β were estimated. One can use the estimated coefficients to predict the
probability of an object belonging to a class because

̂f(x1, . . . , xk) =
exp(β̂0 + β̂1x1 + . . .+ β̂kxk)

1 + exp(β̂0 + β̂1x1 + . . .+ β̂kxk)
, (46)

applies and one can see the function ̂f(x1, . . . , xk) as an estimator for ̂E(y | x1, . . . , xk)
(Fahrmeir et al., 2009, p. 22). For given values x the prediction of y will be referred to
as ŷ.

In BS, at each boundary zt, one can predict poverty for each household with the
attributes x to get the predictions ŷ(zt,x). Similar to the poverty curves, if the predictions
with the corresponding boundaries are drawn as points in a coordinate system, nearby
predictions can be connected. The resulting curve is called the prediction curve of a
particular household.

Figure 19 shows the prediction curves for some households of the Filipino household
data set with incomes that correspond to the income percentiles. The boundaries and
estimated coefficients of the Log998 BS model have been used to get the prediction curves.
The colours of the prediction curves indicate the income rank, which means that the
household with the lowest income has a very dark magenta-coloured prediction curve and
the one with the highest income a yellow-coloured one. All the prediction curves are s-
shaped, and due to the logarithmically scaled x-axis, they seem to be parallel. Although
the prediction curves are seemingly monotonically increasing, there are counterexamples
where the probability of being poor for a household is slightly lower at a higher boundary.
A connection with the variable income can be assumed since the prediction curves become
more yellow with increasing household incomes. At this position, one must note that
the prediction curves are predicted with the values of the variables food expenditure,
refrigerator, washing machine and mobile. The variable income itself is not a predictor
variable; therefore, household income is not used when predictions are made.
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Figure 19: The plot shows the prediction curves corresponding to 100 households. The
prediction curves are s-shaped and, as the colour of the curves shows, approximately
ordered by income. The prediction curves appear to be completely parallel due to the
logarithmic scaling of the x-axis.

One interprets the prediction curves as follows: For an increasing boundary, it is more
likely that a household is poor, i.e. if the boundary is placed at 100,000, the household
corresponding to the very dark magenta-coloured prediction curve has an expected prob-
ability of nearly one to be poor. But the household corresponding to the yellow prediction
curve has an expected probability of approximately zero to be poor at this boundary.

Since the prediction curves are impracticable for fuzzy poverty measurement, as they
can not be compared to the poverty indices of other fuzzy poverty measurement ap-
proaches, the information of each prediction curve must be summarised in a single value.
One could see this single value as the poverty index. Therefore the whole process of BS,
in addition to deriving the prediction curve and summarising it into a single poverty in-
dex, one could see as the membership function µ that is known from the fuzzy poverty
measurement approaches. This means that BS is a fuzzy poverty measurement approach
that assigns each household a poverty index.

The following chapter presents different approaches to combining the prediction curves
into a single value.

9.2 BS Poverty Index

There are different approaches for getting poverty indices from the prediction curves. One
could come up with the four procedures

• Mean,

• Median,

• Above50,
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• Maxslope.

In the Median and Mean approaches, the statistics of the same name are calculated from
the estimated probabilities of all boundaries for each household to get µMedian

i and µMean
i .

As a result, the Median poverty index is equal to the predicted probability at the median
boundary. Therefore, having many boundaries would not be required since only the
predictions at a single boundary are used to get the poverty indices. The Above50 method
returns the boundary as the poverty index µAbove50

i , where the predictions are greater
than or equal to 0.5 for the first time. In the fourth approach, Maxslope, the slopes mt,
t = 1, . . . , T − 1 of the lines, between the two points

(
zt, ŷ(zt,xi)

)
and

(
zt+1, ŷ(zt+1,xi)

)
are calculated. The maximum slope max

1≤t<T
(mt) is then used as the poverty index µmax

i .

The poverty indices from the Median and Mean approaches are subject to the condi-
tion µMedian

i , µMean
i ∈ (0, 1) since the poverty indices are calculated from expected prob-

abilities. This differs from the poverty indices resulting from the Above50 and Maxslope
methods as for these methods µAbove50

i ∈ {zt | i = 1, . . . , t} and µmax
i ∈ {x | x > 0}

applies.

The poverty index µAbove50
i will be brought on the 0 to 1 scale with the formula

µ∗
i =

(1− lg(µi))− min
1≤l≤n

(1− lg(µl))

max
1≤l≤n

(1− lg(µl))− min
1≤l≤n

(1− lg(µl))
. (47)

This modified normalisation makes the poverty indices of the different fuzzy poverty
measurement approaches comparable. Using the logarithm of the poverty index results
in a preferable relation to the logarithmic income, as seen in the following chapter. Since
wealthy households have a high poverty index before normalisation, the poverty index
must also be subtracted from one during normalisation.

For the poverty indices resulting from Maxslope, it is not required to subtract them
from one since households with lower incomes have steeper poverty curves than the ones
with higher incomes. But there is still a favourable relationship between the logarithmic
Maxslope poverty indices and logarithmic income, and therefore, the formula

µ∗
i =

lg (µi)− lg

Å
min
1≤l≤n

(µl)

ã
lg

Å
max
1≤l≤n

(µl)

ã
− lg

Å
min
1≤l≤n

(µl)

ã , (48)

is used for scaling the Maxslope poverty indices.

One could expect that all approaches depend on the underlying boundaries. I would
argue that the approach Mean is especially dependent on the placement of the boundaries.
Because the Log998 BS model will be used for the predictions, the boundaries are not
distributed according to income. Instead, the neighbouring boundaries for lower income
values are closer than those for higher income values. One could speculate that this leads
to poverty indices that are biased towards zero if one assumes that the poverty indices
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in the Basic BS model are unbiased. To note here, one could further speculate that the
poverty indices of the Permilles BS model would be unbiased, but this will not be proven.

The poverty indices of the Above50 model correspond before normalisation to the
boundary values, and therefore, the poverty indices are also dependent on the boundary
placement. The consequence is that even after normalisation, only T unique poverty
indices are achievable for the 41,544 households in the case of the Filipino data set. Since
T ≤ n − 1 always applies, there are at least two households with the same poverty
index which means that one can never strictly order the households according to the
poverty index. Equal poverty indices are unlikely to occur in the Mean and Median
approaches. The only two scenarios I can think of are either that two households have
identical attributes or the unlikely case that the mean or median values calculated from
the predictions ŷ(zt,xi) are indeed the same.

One could expect that the Maxslope poverty indices depend on the boundaries because
the prediction curves are approximately s-shaped and not linear increasing. Consequently,
the slope mt for t = 1, . . . , T − 1 of the line between two points changes if zt or zt+1 is
different.

Next, the different poverty indices derived from BS poverty measurement are com-
pared. Also, they are compared with the variable income and poverty indices of non-BS
poverty measurement methods.

9.3 Comparison

This chapter compares the poverty measurement methods Mean, Median, Above50, Maxs-
lope, TFR and VW. The BS poverty indices will be calculated for each method in two
ways. One is to calculate the poverty indices from predictions of boundaries between the
limits. The other is to calculate them from the predictions of all boundaries, resulting in
eight BS poverty measurement methods. The TFR and VW poverty indices will also be
derived in two ways. In the first, the variable income is used in addition to the variables
food expenditure, refrigerator, washing machine and mobile. In the second, the variable
income is not added to the models to see if the results are similar. Both approaches are
implemented as described in Chapter 3.2. One should note that the methods are directly
addressed by their names, meaning that the BS methods with poverty indices calculated
from boundaries between the limits are named limited BS methods. The same applies
to the non-BS methods, which are addressed as income non-BS methods and non-BS
methods.

9.3.1 Comparison to Income

First, the poverty indices are compared with income. Figure 20 shows the income and
poverty index pairs drawn as points in a coordinate system. The x-axis of the plots is
again logarithmically scaled. The strong relationship between the various poverty indices
and income stands out. A decreasing trend is visible in all plots, even in the VW and TFR
plots where the variable income has not been used. One can notice a linear downward
trend in the limited and unlimited Mean and Above50 plots. The trend is s-shaped in the
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Figure 20: Poverty index and income of households drawn as points in a coordinate
system. One can see a linear decreasing trend for the methods Mean and Above50. The
poverty indices calculated with the limited Maxslope method are mostly larger than 0.5.
The poverty indices of the non-BS methods decrease with increasing income too. Even
when income has not been used in the calculation.

Median plots, and one can describe the trend in the unlimited Maxslope plot with the
function f(x) = 1

x
on the domain {x ∈ R | x > 0}. An explanation for this special trend

can not be given. The trend in the limited Maxslope plot is decreasing but not as steep,
resulting in most poverty indices being in the range of 0.5 to 1. Just 46 households have a
poverty index below 0.5. Moreover, households with very low incomes have poverty indices
below one, while some households with slightly higher incomes have poverty indices close
to one.

It follows a possible explanation for the different poverty indices of the limited and
unlimited Maxslope method. One can assume that the prediction curves that were defined
in the previous chapter are s-shaped and therefore have commonalities with the Sigmoid
function

sig(x) =
1

1 + e−x
(49)
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where x ∈ R. The Sigmoid function is a strictly monotonic increasing function with its
steepest slope at the inflexion point. Assuming that each prediction curve is a function
with its inflexion point, then the slope at the inflexion point is the resulting poverty index
from the Maxslope method. Now, if the x-coordinate of a prediction curve’s inflexion
point is below the lower limit or above the upper limit, the slope at this point can no
longer be the poverty index. Instead, the steepest slope of a point on the prediction
curve with an x-coordinate between the limits has to be used. Because the slope of the
prediction curve increases until the inflexion point and decreases afterwards again, the
x-coordinate of the point with the steepest slope corresponds to the limit that is closer to
the inflexion point’s x-coordinate. This means for the limited Maxslope’s poverty indices
that, if the x-coordinate of the steepest slope is below the lower limit or above the upper
limit, the steepest slope of the prediction curve is not taken. Instead, the slope of the
prediction curve at the upper or lower limit is returned as the poverty index.

The consequence is that for extremely poor households, which have most likely very
low incomes, the normalised limited Maxslope poverty index is below one, as households
with more income have a steeper slope. For non-poor households, where the steepest
slopes are not so steep, the steepest slope reduces even further.

One can hardly see any difference in the Median plots because the trend is the same.
A property of the median is that if the i with i < n

2
largest and, simultaneously, the i

smallest values of a sample with n observations are removed, the median of the reduced
sample stays equal. Since there are approximately the same number of boundaries above
the limit as below the limit, the median boundary changes slightly when the boundaries
outside the limits are removed. As the Median poverty indices correspond to the poverty
predictions at the median boundary, the consequence of limiting is that the predicted
probabilities at a boundary close to the initial boundary are taken. These predictions at
this slightly different boundary should not differ that much.

Heading to the methods Mean and Above50. Most of the poverty indices from the
unlimited models are larger than zero and smaller than one, but poverty indices close to
zero or one are rare. The poverty indices calculated with the methods limited Mean and
limited Above50 are more evenly distributed between zero and one. One could explain the
more even distribution in the limited Mean plot with the fact that for boundaries below
the lower limit and above the upper limit for many households, respectively, the expected
probability of being poor is approximately zero and one. But for example, some predicted
probabilities might already be larger than zero for very poor households at boundaries
right below the lower limit. Suppose now the expected probabilities for boundaries outside
the limits are not used. In that case, the poverty index is calculated in both methods
with mostly probabilities of approximately one and just a few below one resulting in a
poverty index close to one. One can explain this in the same way for richer households.

The seemingly better spread of poverty indices in the limited Above50 plot can not
be explained, but that there are many households with a poverty index of exactly zero
or one can be explained. The situation is that there are poorer households, where the
estimated probability of being poor is above 0.5 at a boundary below the lower limit, or,
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in the opposite case, wealthier households, where the estimated probability of being poor
is the first time above 0.5 at a boundary above the upper limit. To be able to assign a
value to these households, it has been decided to assign the poorer households the lower
limit as the poverty index and the wealthier households the upper limit.

Figure 27 in the appendix shows the prediction curves that lead to a poverty index of
zero or one when the method limited Above50 is used. One can see that some prediction
curves cross the horizontal line at 0.5 below the lower limit, and some cross the horizontal
line above the upper limit. The upper and lower limit are visualised as vertical lines.
The colour of the prediction curves indicates if a household has an income above 500, 000.
This shows that the prediction curve is very high for a few households with an income
below 500, 000. However, the exact reason for this is not being researched.

Heading to the plots resulting from non-BS methods, one can notice a s-shaped trend
in the TFR plots. A trend that corresponds to the function f(x) = 1

x
on the domain

{x ∈ R | x > 0}, one can see in the VW plots. An explanation for the trends can
not be given. Both TFR plots show that most poverty indices are below approximately
0.6. Since the points in the plot that displays the result of the TFR approach without
income are a bit more spread than in the plot of the TFR approach with income, one can
see that there is, as expected, a weaker relation to income. One can conclude the same
for the VW plots. It is conspicuous in the VW plot where income is used that a curve
seemingly limits the points in the plot, meaning that there are no points below a certain
curve. To explain this, one should remember that in the VW method, the information
on all variables is used from the beginning to determine the proportion of households
that are at least as poor as the household itself. Since the VW income poverty indices
are drawn with the corresponding income value in the coordinate system, one can say at
each observed income that the poverty index of a household with less income has to be
larger since the proportion of households that are at least as poor as the individual itself
is smaller. Due to calculating the deprivation indicator and normalisation as explained in
Chapter 3.2.4, the downward limitation with the falling trend occurs. Finally, mentioning
the poverty index range of the VW approaches, one can see that the poverty indices range
from zero to one, but most poverty indices are below approximately 0.8.

Table 4 shows the correlation between the poverty indices resulting from the different
methods and income. The correlation between the poverty indices and the logarithmic
income is also given.

The poverty indices of all methods are extremely negatively correlated with the log-
arithmic income. With income itself, the poverty indices are less negatively correlated.
One can observe the least negative correlation with income, of approximately -0.46, for
the VW method without income and the second least for the VW method with income.
The highest negative correlations with income of approximately -0.65 are observable for
the Above50 and Mean methods. The remaining correlation values are not conspicuous.
The correlations with the logarithmic income range from -0.76 for the VW without income
to -0.87 for the methods TFR with income, Mean and Above50. This is a surprise as the
method income TFR had the fifth highest correlation with income. This is a sign that
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Method Income Correlation Log Income Correlation
Mean -0.65 -0.87
Median -0.61 -0.80
Above50 -0.65 -0.87
Maxslope -0.59 -0.84
Mean Limited -0.64 -0.87
Median Limited -0.60 -0.81
Above50 Limited -0.64 -0.87
Maxslope Limited -0.62 -0.84
TFR -0.58 -0.81
TFR Income -0.62 -0.87
VW -0.46 -0.76
VW Income -0.49 -0.83

Table 4: Correlation between the different poverty indices and income or logarithmic in-
come. The correlation with logarithmic income is higher for all methods. Furthermore, all
methods have a more similar correlation with logarithmic income. The non-BS methods,
which do not include income, show the lowest correlation with logarithmic income.

income is highly weighted in the income TFR approach.

One can summarise from Figure 20 and Table 4 that there is a strong relationship
between the different poverty indices and income. For the non-BS methods, the rela-
tionship is stronger if the variable income is used to calculate the poverty indices. One
could observe this in the figure by the greater dispersion of the points and in the table
by the stronger correlation. For the non-BS methods, where income has not been used
in the poverty index calculation, it could further be seen that the TFR approach has
a stronger relation to the logarithmic income than the VW approach. The Mean and
Above50 poverty indices have a very similar and strong relationship with logarithmic
income, although the methods differ.

Suppose the aim is to identify the extremely income poor or income rich. In that
case, the Median method is probably not good since only households with medium to
high or medium to low incomes have poverty indices ranging from zero to one. With this
method, most households will have a poverty index of zero or one. The Above50 approach
has the favourable property that the poverty indices linearly decrease with logarithmic
income and that the extremely income poor or rich have one or zero poverty indices.
Although the poverty indices of the limited Maxslope approaches are strongly negatively
correlated with income, it seems like this approach is unpractical since the majority of
poverty indices are between approximately 0.5 and 0.9, which is due to extreme values
that occur because of the limitation.

This has now shown that the BS methods have a generally high relation to income
and can therefore be good at identifying income poor. Regarding correlation, the BS
and non-BS methods are similarly correlated with the logarithmic income. Whether a
strong relation to income is good in fuzzy poverty measurement is questionable. It was
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said at the beginning that fuzzy poverty measurement should overcome the issue of seeing
poverty as a one-dimensional problem. If the logarithmic income now corresponds to the
poverty indices, one could come up with two conclusions in my view. Firstly, contrary
to the opinion of many experts, using just income as an indicator of poverty is sufficient
to determine if a household is poor. Secondly, the fuzzy poverty measurement method
can not capture all dimensions of poverty. Since the correlations of poverty indices of the
BS methods with the logarithmic income is not that much higher than the correlation of
the non-BS methods, where the variable income has not been used, with income, I would
argue that BS can capture more dimensions than just one.

The following chapter continues by comparing the poverty indices of the methods.

9.3.2 Comparison Between Methods

The correlations of the poverty indices resulting from the different methods are analysed
to see if there are extreme differences in the ordering of the households according to the
poverty indices between the methods.

The correlations are displayed in the heat map in Figure 21. As expected, the methods
limited Mean, limited Above50, unlimited Mean and unlimited Above50 are perfectly
pairwise correlated. The other two BS methods, Maxslope and Median, are just with
their limited counterparts nearly perfectly correlated. The same counts for the non-BS
methods as they are nearly perfectly correlated with their counterparts where the variable
income has not been used. One can see low correlations between the VW methods and the
remaining methods. The lowest correlations of 0.71 to 0.74 are apparent between the VW
and Median methods. The pairwise correlations between both VW methods and the other
eight methods range from 0.80 to 0.93. The correlation between the Maxslope methods
and the Median methods is, compared to the correlations with the other methods, not too
high as the correlations range from 0.89 to 0.91. On average, the Maxslope methods, with
correlations ranging from 0.97 to 0.98, are highly pairwise correlated with the Mean and
Above50 methods. The remaining pairwise correlations that have not been mentioned
range from 0.92 to 0.95.

In terms of correlation, the heat map has shown that using the limited BS methods
or including income in the non-BS method has just a small impact. Further, the ordering
of the households according to the poverty indices of the methods Mean and Above50 is
nearly the same. The correlation between other methods is a bit lower. As the correlation
is not a good indicator for similar ranking of the households according to the poverty
index, if there is no linear relation between the poverty indices, the poverty indices of the
methods are pairwise plotted.

The results are shown in Figure 22. The limited BS and non-BS methods with income
are excluded from this comparison due to the similar poverty indices of the methods’
counterparts. One can perceive a gradual arrangement of points in the plots where non-
BS methods are compared to other methods. This is probably due to the integer values of
the variables mobile, refrigerator and washing machine, which cause a step-wise increase
in the poverty index. It will not be confirmed if this is the actual reason. As already
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Figure 21: The poverty indices calculated with the same method but slightly different
assumptions regarding using income or excluding boundaries outside the limits are nearly
perfectly correlated.

concluded from the heat map, there is a nearly perfect linear relationship between the
poverty indices of the Mean and Above50 methods. Although the pairwise correlation
between the Median methods and the Mean methods and also Above50 were not too high,
one can still see that the rankings of the households according to the poverty indices are
more similar than expected. Just the scaling is very different, resulting in an s-shaped
trend. The points in the plot that shows the Median versus Maxslope poverty indices are
s-shaped arranged too, but not as clearly. That indicates a stronger relationship between
the two approaches than one might have thought of after looking at the correlation.

The high correlation between the poverty indices of the methods Above50 and Maxs-
lope, which one could notice in the heat map, can also be seen here. One can see something
similar in the Mean versus Maxslope and the Above50 versus Maxslope plots, but not as
clear. In these two plots, the points are gradually arranged, resulting in seemingly shifted
lines of points.
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Figure 22: The poverty indices of the methods Mean and Above50 are nearly identical.
Between the poverty indices of Mean or Above50 and other BS methods is still a non-
linear relationship. In the plots where BS and non-BS methods are compared, the points
are not properly spread around a line, showing that the different modelling approaches
tend to return different poverty indices.

In the remaining plots, the poverty indices of at least one non-BS method are drawn
against the poverty indices of another method, and as previously mentioned, one can
perceive gradual arrangements of points. Suppose one sees these plots as a total. In that
case, it is obvious that the correlations with non-BS methods poverty indices were smaller
compared to other correlations since the points are just approximately spread around a
non-horizontal straight line. This suggests that the same households’ poverty indices differ
for BS and non-BS methods. But this is not a big surprise since it was already mentioned
in the fuzzy poverty measurement discussion in Chapter 3.3 that research has shown that
the approaches VW and TFR categorised different households as poor. Therefore, it was
certain that BS could also classify different households as poor. One can still see that the
poverty indices of the VW and BS approaches are more similar than those of the TFR
approach. Examples are the Mean versus VW and the Maxslope versus VW plot, as one
can see an increasing trend. One can observe the increasing trend in the Mean versus
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TFR plot too, but not as clearly.

For interpretation, there are now the following consequences. Firstly, suppose there
is a linear relationship between the poverty indices of two different methods, which is
present when the pairs of poverty index values lie on a straight line. In that case, poverty
index values from one method can easily be transformed into poverty index values of other
methods, and relative poverty index differences can be interpreted similarly. Secondly,
suppose the pairs of poverty indices lie on a curved line. In that case, relative poverty
index differences can not be directly compared between the methods but the rank of
households according to the poverty index is still comparable. Therefore, one could use
any method to determine which of the two randomly chosen households is poorer, as the
methods produce similar rankings.

It was shown in this chapter that although the poverty indices are differently derived,
some are still highly pairwise correlated and very correlated with income. For the BS
methods, it could be established that the order of the households according to the poverty
indices of the BS methods is comparable. The poverty indices of the methods Mean and
Above50 are even nearly identical. Comparing non-BS methods poverty indices with other
BS or non-BS methods poverty indices has shown that the derived poverty index differs
between models. Nevertheless, the VW methods tend to produce more similar poverty
indices to the BS methods than the TFR methods.
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10 Conclusion

Various fuzzy poverty measurement-related topics were covered. Firstly, poverty itself was
analysed to understand that fuzzy poverty measurement methods can be an alternative
to conventional poverty measurement approaches as they can deal with the vagueness and
multidimensional nature of poverty. Afterwards, fuzzy sets were introduced to understand
the fuzzy poverty measurement methods TFA, TFR and VW, and their issues. The main
issues with fuzzy poverty measurement were that many decisions must be made when
these methods are applied. In some methods, decisions are arbitrary. The consequence
is that the poverty indices of the models can be very different, meaning that different
individuals are considered poor depending on the method.

Subsequently, logistic regression analysis was briefly introduced to refresh knowledge
on estimating the coefficients. In addition, logistic lasso regression was introduced to
perform variable selection and better understand a later chapter. In the Boundary Shifts
chapter, the procedure of defining boundaries, splitting the data set according to the
boundaries and performing logistic regression to get the boundary-dependent coefficients
was described.

Afterwards, the data set was introduced, standardised and cleaned. In the subse-
quent exploratory data analysis, it was found that expenditure-related variables, vari-
ables describing the number of goods and income, are pairwise moderately correlated.
Furthermore that the categories in categorical variables are very unbalanced.

The first BS model revealed that in the case of data sets with many variables, a
variable selection is required to get clear results. Therefore, the data set was reduced
using logistic lasso regression to end up with the data set containing the variables food
expenditure, mobile, refrigerator, and washing machine in addition to income.

In the first BS model, it was also observed that there are jumps in the poverty curves of
categorical and count variables. It was found that these jumps occur due to quasi-complete
separation, which has been handled by not using categorical variables and removing the
boundaries that cause it. As BS by design is affected by data imbalance, causing larger
Standard Errors, even more boundaries have been removed.

The Basic BS model, where boundaries are placed at all meaningful incomes, showed
that the variables’ poverty curves fluctuate and that the relative importance of the vari-
ables decreases the higher the boundaries are set. Because placing boundaries at each
meaningful income value can be time-consuming, subsequent sensitivity analyses were
performed to determine how boundary placement affects the fluctuation of the poverty
curves. It was observed that a logarithmic placement is preferable as it can account for the
distribution of income, but other placements can also have their advantages. Using other
binary prediction models in BS than the logistic regression model was also investigated.
However, other binary prediction models could not reduce the fluctuation in the poverty
curves.

To still reduce fluctuation, Penalised BS was introduced. In this binary prediction
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model, a penalty term is added to the log-likelihood function to shrink the coefficients
towards the estimated coefficients of the previous boundary. This BS model was indeed
able to reduce the fluctuation of the poverty curves. Still, strong penalisation caused a
strong deviation from the trend of the poverty curves of the unpenalised BS model.

Subsequent pairwise comparisons of the BS and non-BS fuzzy poverty measurement
methods showed that the poverty indices determined from the methods correlate strongly
with the variable income. A strong relationship between the BS poverty indices was also
found. A strong relationship with the non-BS methods was not observable. This showed
that the poverty indices of the BS methods deviate from those of other methods.

It was seen that BS could be an alternative to other methods, which offers the added
value of being able to see which variables play a major role in the separation of poor
and non-poor at different boundaries. Firstly, this could enable the government or other
organisations to determine what distinguishes those with a low income from those with
a higher income in order to provide specific goods to compensate for the income deficit.
And secondly, the possibility of identifying the poorest individuals based on the poverty
index and then compensating them.

BS is also practical because no variable selection is required to get a poverty index.
It is only advised for the interpretation of the relative importance. This makes BS less
arbitrary, and each individual’s situation can be recorded as accurately as possible. Nev-
ertheless, arbitrary decisions still have to be made regarding the number and placement of
the boundaries, the binary prediction method and the method of deriving a single poverty
index from the poverty predictions.

One issue that has not been addressed is whether the poverty indices of the households
change if the boundaries are placed according to an expenditure variable and not income.
Further research could examine how the number and location of boundaries affect the
poverty index or whether using another binary prediction model in BS adds value. Further
work could also investigate whether the use of a norm other than the L2-norm or the
standardisation of the coefficients could improve the Penalised BS model.

To finish this thesis, a final comment and appeal. Poverty is a disease. You do not
choose to be affected by it, but if you are, you have to suffer. Since it is difficult to
escape poverty, it is our responsibility to assist those in need rather than to cause more
individuals to fall into it via selfishness.
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A Appendix

This figure corresponds to the exploratory data analysis showing the relationship between
income and rice expenditure.

Figure 23: Each point represents a household’s income and rice expenditure. With in-
creasing income, households can afford more rice, but at a certain income, households no
longer buy more rice, and the rice expenditure thus remains constant. At this certain
point, one can expect that households will buy more expensive food in addition to rice.
For income-rich households, it might even be the case that they buy more expensive food
instead of rice, and therefore, the rice expenditure slightly decreases at some point again.
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The following figure corresponds to the exploratory data analysis. It shows that the
family size increases as income increases, which could be due to the fact that the more
individuals live in a household, the more can work.

Figure 24: This figure must be interpreted as a two-dimensional histogram where the
colour of the tiles indicates how many households are in a certain income range and how
large the family size is. One can see that with increasing income, the family size increases
to an income of approximately 110,000.
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The figure shows the poverty curves of some count variables. This figure is used in
Chapter 7.3.2 to show commonalities in the variables.

Figure 25: Poverty curves of a selection of count variables. At the second red vertical line
is always a jump in the poverty curve observable. In any case, this vertical line is at the
minimum income of households that own the second least amount of goods.
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A table that contains the critical values of a few selected count variables used in
Chapter 7.3.2.

Variable Min
Television 16,137
Refrigerator 30,294

Washing Machine 36,569
Mobile 17,840

Computer 44,313

Table 5: Critical values at which jumps in the poverty curves of count variables occur.
Note here that the count variable computer has the highest critical value.
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This figure shows the SE curves of the maximum SE values from the MeanBoot BS
model.

Figure 26: For boundaries close to the lower limit, the SE values of some estimated
coefficients resulting from some bootstrap samples are very large. This results in large
mean SE values in the MeanBoot BS model.
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Prediction curves that cross the horizontal line at 0.5 below the lower or upper limit.
Consequently, the poverty indices in the limited Above50 are set to the value L or U .

Figure 27: Horizontal black line is placed at 0.5 and the vertical black lines at L and H.
As the households’ prediction curves cross the horizontal line above or below the limits,
their limited Above50 poverty index is set to the lower or upper limit.
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B Electronic Appendix

The data, code and figures are in electronic form in the folder “BS programme” provided
and can be extracted from the storage medium on the last page of the thesis. This
folder contains the sub-folders “data”, “figures”, “results” and “tables”. Further the files
“constants”, “exploratory data analysis”, “main”, “main evaluations”, “main functions”,
“penalised BS” and “read data”. The additional R Project file, “BS code”, should be used
to start the program. It is only briefly explained what the files contain, as comments are
added to the code. Technical details about the code are not given, only the purpose of
the code.

The Filipino family income and expenditure data, the figures and tables generated
by the code, are the contents of the folders “data”, “figures” and “tables”. The folder
“results” contains the estimated coefficients, poverty scores and related estimation of the
different BS and non-BS models. These results are generated in the file “main”. For
the calculation of the results in “main”, the further files “main functions”, “constants”,
“penalised BS” and “read data” are required. The R-file “main functions” contains every
function that has been defined in this programme. There are larger functions, i.e., those
used to fit the BS models, but also smaller auxiliary functions. Functions to create the
figures and calculate the statistics are defined in this file as well and, in most cases, very
general. This means that BS could be applied to other data sets in the same manner if
data is prepared. The only function that is not defined in the file “main functions” is
the one used to get the estimated coefficients of the Penalised BS model. Penalised BS
model-related functions are defined in “penalised BS”.

The file “constants” is an auxiliary file used to prepare the results of the logistic lasso
regression to get the variables used in the BS models. The file “read data” reads in the
data set from the folder “data”. Further, all required packages are loaded, variables and
their categories are renamed, and the data set is manipulated with this file.

In the file “exploratory data analysis”, the exploratory data analysis is performed,
and the acquired figures and tables are saved in the “figures” and “tables” folder. The
same applies to the file “main evaluations” as it is used to create figures and tables from
the results saved in the folder “results”. This means in the file “main evaluations” occurs
the actual data analysis. If values mentioned in the thesis are not provided in the tables
or figures, this file or the file “exploratory data analysis” must be executed to get them.
This does not take long since the models have already been calculated and saved in the
“results”. Because the analysis in this script contains short descriptions and is performed
in the same order as in the thesis, the desired values should be found quickly.
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