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A B S T R A C T   

Climate change poses a serious threat to human health worldwide, while aging populations increase. However, 
no study has ever investigated the effects of air temperature on epigenetic age acceleration. This study involved 
1,725 and 1,877 participants from the population-based KORA F4 (2006–2008) and follow-up FF4 (2013–2014) 
studies, respectively, conducted in Augsburg, Germany. The difference between epigenetic age and chronological 
age was referred to as epigenetic age acceleration and reflected by Horvath’s epigenetic age acceleration 
(HorvathAA), Hannum’s epigenetic age acceleration (HannumAA), PhenoAge acceleration (PhenoAA), GrimAge 
acceleration (GrimAA), and Epigenetic Skin and Blood Age acceleration (SkinBloodAA). Daily air temperature 
was estimated using hybrid spatiotemporal regression-based models. To explore the medium- and long-term 
effects of air temperature modeled in time and space on epigenetic age acceleration, we applied generalized 
estimating equations (GEE) with distributed lag non-linear models, and GEE, respectively. We found that high 
temperature exposure based on the 8-week moving average air temperature (97.5th percentile of temperature 
compared to median temperature) was associated with increased HorvathAA, HannumAA, GrimAA, and Skin
BloodAA: 1.83 (95% CI: 0.29–3.37), 11.71 (95% CI: 8.91–14.50), 2.26 (95% CI: 1.03–3.50), and 5.02 (95% CI: 
3.42–6.63) years, respectively. Additionally, we found consistent results with high temperature exposure based 
on the 4-week moving average air temperature was associated with increased HannumAA, GrimAA, and Skin
BloodAA: 9.18 (95% CI: 6.60–11.76), 1.78 (95% CI: 0.66–2.90), and 4.07 (95% CI: 2.56–5.57) years, respec
tively. For the spatial variation in annual average temperature, a 1 ◦C increase was associated with an increase in 
all five measures of epigenetic age acceleration (HorvathAA: 0.41 [95% CI: 0.24–0.57], HannumAA: 2.24 [95% 
CI: 1.95–2.53], PhenoAA: 0.32 [95% CI: 0.05–0.60], GrimAA: 0.24 [95%: 0.11–0.37], and SkinBloodAA: 1.17 
[95% CI: 1.00–1.35] years). In conclusion, our results provide first evidence that medium- and long-term ex
posures to high air temperature affect increases in epigenetic age acceleration.   

1. Introduction 

Climate change poses a serious threat to human health worldwide. 
There is accumulating evidence that higher air temperatures are asso
ciated with increased risks for many diseases, especially age-related 

disease (Chen et al., 2018; Khraishah et al., 2022). The 2021 report of 
the Lancet Countdown on health and climate change showed that 
compared to the annual averages of the 1986–2005 baseline, the record 
temperatures in 2020 were related to a new high of 3.1 billion more 
person-days of heatwave exposure among people older than 65 years 
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(Romanello et al., 2021). A global study found that 37.0% (global range 
from 20.5% to 76.3%) of warm-season heat-related deaths can be 
attributed to man-made climate change from 1991 to 2018 based on 
data from 732 locations in 43 different countries (Vicedo-Cabrera et al., 
2021). Furthermore, exposure to high temperature can lead to physio
logic dysfunction across some pathways, which possibly includes ageing 
ones, e.g. cholesterol (Madaniyazi et al., 2020); although this has not 
been extensively explored. 

A further aspect to consider is that the average age of the population 
is increasing globally. The world’s population aged 60 years and more is 
estimated to increase to more than 2 billion by 2050 (Chatterji et al., 
2015); which brings unprecedented challenges. Therefore, a better un
derstanding of the effects of non-optimal environmental conditions on 
aging is crucial (Peters et al., 2021). Epigenetic age predictors, also 
defined as epigenetic clocks or DNA methylation ages, are emerging 
robust biomarkers of biological aging and have been suggested as novel 
DNA methylation-based biomarkers for the aging process in humans 
(Simpson and Chandra, 2021). Epigenetic age predictors are based on 
methylation levels of genome-wide selected CpG sites and are coupled 
with regression models to compute an estimate of biological age (Nor
oozi et al., 2021). There are two generations of epigenetic age pre
dictors. The first-generation clocks, Horvath’s epigenetic age and 
Hannum’s epigenetic age, were developed to predict chronological age 
in 2013 and are the most widely used clocks (Horvath, 2013; Hannum 
et al., 2013). The next-generation clocks, which evolved to combine 
aging-related features (physiological or cellular aging) to define com
posite epigenetic age metrics, including PhenoAge and GrimAge, were 
subsequently developed to better capture changes in biological aging, 
and predict lifespan and healthspan (Levine et al., 2018; Lu et al., 2019). 
Furthermore, Horvath et al. developed another novel epigenetic age 
predictor, the Epigenetic Skin and Blood Age, which has been shown to 
provide more accurate estimates of chronological age when applied to 
blood-derived samples compared to the original Horvath’ and Hannum’ 
epigenetic age predictors (Horvath et al., 2018). 

Epigenetic age acceleration is defined as the discrepancy between 
DNA methylation-based biological age and chronological age. A positive 
epigenetic age acceleration value indicates accelerated epigenetic aging, 
while a negative value of epigenetic age acceleration indicates decel
erated epigenetic aging (Noroozi et al., 2021). Epigenetic age acceler
ation has been associated with increased risks of chronic diseases, such 
cardiovascular disease, diabetes, and mortality (Wang et al., 2021; 
Perna et al., 2016; Simpson and Chandra, 2021; Oblak et al., 2021). 
Previous studies have shown that epigenetic age acceleration is influ
enced by lifestyle and environmental factors (Oblak et al., 2021); 
including tobacco smoking (Wu et al., 2019); and air pollution (Ward- 
Caviness et al., 2020). These suggest that epigenetic age acceleration 
may capture perturbations in biological processes triggered by envi
ronmental exposures, which can then lead to adverse health outcomes. 
So far, no study has yet investigated the effects of air temperature on 
epigenetic age acceleration. 

Therefore, the goal of this population-based study was to investigate 
the impact of medium- and long-term air temperature exposure (tem
poral-spatial variation of 4-week and 8-week averages of air tempera
ture and the spatial variation of annual average air temperature) on 
epigenetic age acceleration using a longitudinal study design. The 4- 
week and 8-week exposure windows allow for the examination of tem
perature exposures over a period of several weeks, which aligns with the 
timescales of physiological and biological responses to changing tem
perature conditions. By focusing on these medium-term exposures, we 
aimed to investigate the delayed responses and adaptation mechanisms 
of individuals to shifting temperature patterns, which are often man
ifested over weeks rather than days or years. Moreover, the annual 
average temperature provides a representative measure of the long-term 
climatic conditions experienced by individuals. This enables us to assess 
the sustained exposure to temperature over an extended period, which 
may have a more pronounced impact on human health and aging 

processes. Importantly, it also captures sustained changes in tempera
ture associated with climate change over time. 

2. Materials and methods 

2.1. Study population 

This study was based on data from the Cooperative Health Research 
in the Region of Augsburg (KORA) studies F4 (2006–2008) and FF4 
(2013–2014). Both studies were follow-up examinations of the 
population-based KORA S4 study (1999–2001) conducted in the city of 
Augsburg, Southern Germany, and two adjacent counties (Holle et al., 
2005). Participants underwent physical examinations and standardized 
interviews assessing sociodemographic characteristics and medical his
tory. Detailed information on the KORA cohort design, measurement, 
and data collection have been described elsewhere (Holle et al., 2005; 
Rathmann et al., 2009; Wawro et al., 2020). The present study included 
1,725 participants from KORA F4 and 1,877 participants from KORA 
FF4, who underwent genome-wide DNA methylation measurements 
using the Illumina 450 K Infinium Methylation BeadChip for KORA F4 
and Infinium MethylationEPIC BeadChip for KORA FF4. 

The study was approved by the ethics board of the Bavarian Chamber 
of Physicians (Munich, Germany) in adherence to the declaration of 
Helsinki. All participants gave written informed consent. 

2.2. Exposure assessment 

High-resolution (1 × 1 km) daily mean air temperature data were 
derived for the whole country of Germany using hybrid spatiotemporal 
regression-based models (Young Virtual Conference and Basel, 2021). 
These included satellite-based land surface temperature data, ground- 
based air temperature measurements, and spatial predictors datasets. 
Three-stage models were trained to achieve air temperature predictions 
with comprehensive temporal and spatial coverage. The satellite- 
derived land surface temperature and spatial predictors were modeled 
as linear mixed effects models with daily random intercepts and slopes 
using the combinations of days and grid cells where air temperature 
measurements and satellite-derived land surface temperature were 
available. A second stage was carried out using the first-stage model to 
predict air temperature for grid cells with no air temperature measure
ments but with available satellite-derived land surface temperature 
data. In cases where neither satellite-derived land surface temperature 
data nor air temperature measurements were available, the second stage 
air temperature predictions were regressed against thin-plate spline 
interpolated air temperature values to achieve full air temperature 
coverage in the country. The prediction accuracy of our models was 
quantified using internal and external 10-fold cross-validation. All 
models performed well (0.91 ≤ R2 ≤ 0.98), and all models had low er
rors (1 ◦C < Root Mean Square Error < 2 ◦C). In this study, the resi
dential address of each participant was effectively linked to the nearest 
exposure grid centroid, facilitating the integration of individual partic
ipant data with daily exposure data characterized by high spatial reso
lution (1 × 1 km). This linkage was established through the utilization of 
pseudonymized participant IDs and exposure grid IDs, thereby ensuring 
privacy and confidentiality. 

We measured the daily concentrations of relative humidity (RH), 
ozone (O3), particulate matter with an aerodynamic diameter of ≤ 2.5 
µm (PM2.5) and nitrogen dioxide (NO2) by fixed monitoring sites in 
Augsburg, Germany (Wolf et al., 2015; Chen et al., 2019). RH and O3 
were measured at the official urban background monitoring site located 
approximately 5 km south of the city center. PM2.5 and NO2 were 
measured at an urban background monitoring site located approxi
mately 1 km south of the city center, and approximately 2 km north of 
the city center, respectively. Annual average concentrations of O3, PM2.5 
and NO2 were estimated using land-use regression (LUR) models (Wolf 
et al., 2017). Briefly, three 2-week measurement campaigns were 
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conducted at 20 locations in the KORA study area between March 6, 
2014, and April 7, 2015. These measurements were taken at each 
location during the warm, cold, and intermediate seasons. LUR models 
were then developed by regressing the annual average concentrations 
measurement at monitoring sites against spatial predictors derived from 
geographic information systems. Based on the fitted models, we calcu
lated the level of residential exposure for KORA study participants. 

2.3. Epigenetic age acceleration 

We uploaded normalized DNA methylation data to the online New 
DNA Methylation Age Calculator (https://dnamage.genetics.ucla.edu/ 
new) according to the recommended guidelines to estimate epigenetic 
age. Horvath’s epigenetic age and Hannum’s epigenetic age were 
calculated using 353 age-related CpGs and 71 age-related CpGs, 
respectively (Horvath, 2013; Hannum et al., 2013). PhenoAge was 
developed using 513 phenotypic age-related CpGs; which were DNA 
methylation surrogate of nine clinical biomarker (alkaline phosphatase, 
albumin, C-reactive protein, red cell distribution width, creatinine, 
lymphocyte percent, glucose, mean cell volume, and white blood cell 
count) (Levine et al., 2018). GrimAge was developed as a function of 
mortality risk by combining chronological age, sex, and 1030 unique 
CpGs sites, which were DNA methylation surrogate of cigarette pack- 
years and DNA methylation surrogates for seven plasma protein 
markers (growth differentiation factor-15, adrenomedullin, plasmin
ogen activator inhibitor-1, cystatin C, leptin, beta-2-microglobulin, and 
tissue inhibitor metalloproteinases 1) (Lu et al., 2019). Epigenetic Skin 
and Blood Age was developed using 391 age-related CpGs (Horvath 
et al., 2018). In this study, differences between these epigenetic age 
biomarkers and chronological age (epigenetic age – chronological age) 
were referred to as epigenetic age acceleration. Therefore, we obtained 
five epigenetic age acceleration biomarkers: Horvath’s epigenetic age 
acceleration (HorvathAA), Hannum’s epigenetic age acceleration 
(HannumAA), PhenoAge acceleration (PhenoAA), GrimAge acceleration 
(GrimAA), and Epigenetic Skin and Blood Age acceleration (Skin
BloodAA). Details of measures of genome-wide DNA methylation are 
given in Supplementary material. 

2.4. Statistical analysis 

We reported the characteristics of participants as mean and standard 
deviation (SD) for continuous variables and frequencies and percentages 
for categorical variables. 

We applied generalized estimating equations (GEE) with distributed 
lag non-linear models (DLNMs) (Gasparrini et al., 2010) and GEE to 
explore the medium- and long-term effects of air temperature on 
repeatedly assessed epigenetic age acceleration, respectively. In our 
analysis, we used all available measures of epigenetic age accelerations, 
including both repeated and non-repeated measures from the KORA F4 
and FF4 cohorts, to maximize statistical power. Repeated measures 
allow for within-person comparisons over time, while non-repeated 
measures provide additional data points. To calculate the medium- 
term exposures to air temperature, we used 4-week and 8-week mov
ing averages of daily air temperature before the blood draw. Moreover, 
as a surrogate for long-term exposure to air temperature, we used the 
365-day moving average of daily air temperature (annual average 
temperature) before the blood draw. First, we conducted generalized 
additive mixed models with a spline (four degrees of freedom) to assess 
deviations of the temperature-response relationship from linearity 
(supplementary, Figure S1). As there were no significant deviations from 
linearity for annual average temperature on all markers, the annual 
average temperature was included linearly in the GEE for these out
comes, and effects were estimated as a 1 ◦C increase in annual average 
temperature. However, there were non-linear exposure–response func
tions of 4-week and 8-week moving averages of temperature and 
epigenetic age acceleration markers, except for PhenoAA. To make the 

results more comparable between epigenetic age acceleration bio
markers, we included the medium-term exposure parameters non- 
linearly in the GEE with DLNMs. For these non-linear models (GEE 
with DLNMs), a natural cubic spline for the exposure–response function 
with internal knots (30th and 70th percentile of temperature) was 
selected. In addition, the median temperature value (9.7 ◦C) was 
selected as the reference value. We calculated the high temperature ef
fect as the 97.5th percentile of air temperature distribution (18.5 ◦C and 
18.3 ◦C for 4-week and 8-week moving averages of temperature, 
respectively) relative to the median temperature, and the low temper
ature effect as the 2.5th percentile of air temperature distribution (1.5 ◦C 
and 1.4 ◦C for 4-week and 8-week moving averages of temperature, 
respectively) relative to the median temperature. 

All models were adjusted for a priori selected covariates according to 
previous literature (Kresovich et al., 2021; Zhao et al., ; Oblak et al., 
2021) and our own experience: chronological age (years), sex (male, 
female), education (years), body mass index (BMI, kg/m2), alcohol 
consumption (g/day), smoking status (never, former, current), physical 
activity (low: no exercise at all; medium: occasionally or regularly 
approximately one hour per week; high: at least two hours per week 
regularly), season of blood draw (warm: April-September vs. cold: 
October-March), estimated cell types (monocytes, B Cells, CD4 T cells, 
CD8 T cells, and natural killer cells). Additionally, to account for po
tential technical effect, we adjusted for the chip as a covariate in all 
models. For medium-term temperature effects, we additionally adjusted 
for day of the week, time trend (natural cubic spline with five degrees of 
freedom per year), and relative humidity (with the same lag period as 
the air temperature). 

We included an interaction term between air temperature and po
tential effect modifier in the effect modification analysis. The examined 
modifiers included sex (male vs. female), obesity (BMI < 30 kg/m2 vs. ≥
30 kg/m2), cardiovascular disease (defined as a history of hypertension, 
myocardial infarction, angina pectoris, or stroke [yes vs. no]), diabetes 
(yes vs. no), and areas (urban vs. rural). 

We performed several sensitivity analyses to assess the robustness of 
our results. First, to control for potential confounding from air pollution, 
we additionally adjusted for O3, PM2.5, and NO2, separately. Second, we 
excluded participants who moved throughout the study period to reduce 
exposure misclassification. Third, instead of epigenetic age acceleration, 
we used epigenetic age and the residuals computed by linearly 
regressing chronological age on epigenetic age to explore the air tem
perature effects. Fourth, we excluded values that deviated beyond 1.5 
times the interquartile range from either the lower quartile or the upper 
quartile to avoid the effects of extreme outliers of outcomes. Fifth, we 
included only participants with repeated measurements of epigenetic 
age acceleration (985 participants with 1,970 observations) in the 
analysis. Sixth, to avoid overestimation, for non-linear exposur
e–response functions (medium-term effects), the effects were estimated 
for high temperature as 97.5th percentile of air temperature distribution 
compared to the 75th percentile (14.5 ◦C and 14.3 ◦C for 4-week and 8- 
week moving averages of temperature, respectively) and for low tem
perature as 2.5th percentile of air temperature distribution compared to 
the 25th percentile (4.1 ◦C and 4.2 ◦C for 4-week and 8-week moving 
averages of temperature, respectively). Seventh, we incorporated season 
into the model as a four-factor category consisting of spring (March - 
May), summer (June - August), fall (September - November), and winter 
(December - February), rather than treating season as a dichotomous 
variable. Finally, 4- and 8-week moving averages of temperature were 
included as a linear term in the GEE model for PhenoAA. 

For the long-term effects (linear associations), we quantified the ef
fect estimates as the change in epigenetic age acceleration per 1 ◦C in
crease in air temperature with corresponding 95% confidence intervals 
(CIs). For the medium-term effects (non-linear associations), the effect 
estimates indicate changes in epigenetic age acceleration per increase or 
decrease in air temperature from the median to the 97.5th and 2.5th 
percentiles, respectively, with 95% (CIs). Additionally, to facilitate 
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comparisons of the effects across different epigenetic age acceleration 
markers, we expressed the effect estimates as percent changes relative to 
the standard deviation (SD). The multiple tests were adjusted using 
Benjamin-Hochberg false discovery rate (FDR) methods, and adjusted p 
< 0.05 was considered for the significance. All statistical analyses were 
done with R (version 4.1.2). 

3. Results 

3.1. Study population, epigenetic age acceleration, and exposure data 

There were 3,602 observations from 2,617 participants of KORA F4 
(1,725) and FF4 (1,877) included in this analysis. Of these 2,617 par
ticipants, 985 (37.6%) completed two examinations. Table 1 presents 
the characteristics of the study population in KORA F4 and KORA FF4. 
The mean chronological age was 61.0 years in KORA F4 and 58.6 years 
in KORA FF4. The mean BMI in KORA F4 and FF4 was 28.1 kg/m2 and 
27.8 kg/m2, respectively. 48.9% and 47.7% of the participants were 
male in KORA F4 and FF4, respectively. Of the participants, 31.4% and 
27.2% had low physical activity in KORA F4 and FF4, respectively. 

The levels of epigenetic age acceleration are presented in Table 2. 
The mean was − 2.3 years, 0.6 years, − 9.7 years, − 0.2 years, and − 2.7 
years for HorvathAA, HannumAA, PhenoAA, GrimAA, SkinBloodAA, 
respectively. There were weak correlations between epigenetic age ac
celeration biomarkers (r: 0.34–0.44), except for HannumAA and Skin
BloodAA (r = 0.81). The levels of epigenetic age acceleration at each 
examination are presented in Supplementary Table S1. 

Table 3 shows the distributions of meteorological variables and air 
pollutants. The mean of the 4-week moving average temperature was 
9.4 ◦C, the 8-week moving average temperature was 9.5 ◦C, and the 
annual average temperature was 9.3 ◦C for all 3,602 observations. The 
distributions of meteorological variables and air pollutants at each ex
amination are presented in Supplementary Table S2. 

3.2. Effects of air temperature on epigenetic age acceleration 

We found significant medium-term effects of high temperature for 
the 4-week (Fig. 1. A) and the 8-week moving average of air temperature 
(Fig. 1. B) on HorvathAA, HannumAA, GrimAA, and SkinBloodAA. For 
an increment in the 4-week moving average air temperature from the 
median (9.7 ◦C) to the 97.5th percentile (18.5 ◦C, high temperature 
exposure), HannumAA, GrimAA, and SkinBloodAA significantly 
increased by 9.18 (95% CI: 6.60–11.76), 1.78 (95% CI: 0.66–2.90), and 
4.07 (95% CI: 2.56–5.57) years, respectively. HorvathAA showed a 
borderline significant association (1.36 years, 95% CI: − 0.005–2.73). In 
addition, for an increment in the 8-week moving average air tempera
ture from the median (9.7 ◦C) to the 97.5th percentile (18.3 ◦C, high 
temperature exposure), HorvathAA, HannumAA, GrimAA, and Skin
BloodAA significantly increased by 1.83 (95% CI: 0.29–3.37), 11.71 
(95% CI: 8.91–14.50), 2.26 (95% CI: 1.03–3.50), and 5.02 (95% CI: 
3.42–6.63) years, respectively. No significant effects were found for low 
temperature for the 4-week or 8-week moving averages. 

Regarding the long-term effects of annual average temperature 
(Fig. 2), we found a 1 ◦C increase in annual average temperature to be 
significantly associated with an increase in HorvathAA, HannumAA, 
PhenoAA, GrimAA, and SkinBloodAA (0.41 [95% CI: 0.24–0.57], 2.24 
[95% CI: 1.95–2.53], 0.32 [95% CI: 0.05–0.60], 0.24 [95% CI: 
0.11–0.37], and 1.17 [95% CI: 1.00–1.35] years, respectively). 

Furthermore, effect estimates expressed as percent changes of the SD 
of outcomes with 95% CIs are shown in Figure S2 (Supplementary). The 
effect estimates for potential demographic and lifestyle confounders are 
presented in Figure S3 (Supplementary). 

3.3. Effect modification 

Fig. 3 shows that the long-term effects of annual average temperature 
were slightly stronger for female participants for most of the biomarkers, 
with a significant difference between women and men for HovathAA 
and SkinBloodAA only. Also, obese participants showed slightly stronger 
effects with a significant difference compared to the non-obese partici
pants only for GrimAA. A slight indication of stronger effects could also 
be found for participants with cardiovascular disease, but none of the 
biomarkers showed a significant difference compared to participants 
without cardiovascular disease. Moreover, participants with diabetes 
demonstrated significantly stronger effects than those without diabetes 
for HannumAA, PhenoAA, and SkinBloodAA. There were no significant 
effect modifications for 4- and 8-week moving averages of air temper
ature (Supplementary Figure S4 and S5). Finally, there were no effect 
modifications with urban and rural areas, except that participants living 
in rural areas showed a significantly stronger effect of annual average 
temperature on HannumAA (data not shown). 

3.4. Sensitivity analysis 

In general, associations between medium- and long-term exposure to 
air temperature and epigenetic age acceleration were robust to a series 
of sensitivity analyses (Supplementary Figures S6 and S7, and Table S3). 
We found similar effect estimates when additionally adjusting for air 
pollutants, except for medium-term effects on HannumAA and Skin
BloodAA, which was slightly decreased. Secondly, the observed associ
ations remained robust when restricting the analyses to the 
subpopulation that did not move throughout the study period and after 
excluding outliers. Thirdly, alternative outcome metrics (epigenetic age 
and epigenetic age acceleration: residuals) also showed similar effects. 
Additionally, the restriction to participants with repeated measurements 
of epigenetic age acceleration did not affect most of our results, expect 
for effects of the annual average temperature on GrimAA were 
decreased. Fifth, when we used the 25th and 75th percentile of the air 
temperature distribution as reference values, the effect estimates still 
showed significant associations, although the effect estimates values 

Table 1 
Descriptive statistics of participant characteristics and epigenetic age accelera
tion at each examination.   

KORA F4 (n = 1,725) KORA FF4 (n = 1,877) 

Chronological age (years) 61.0 (8.9) 58.6 (11.6) 
Sex (male) 843 (48.9%) 895 (47.7%) 
Body mass index (kg/m2) 28.1 (4.78) 27.8 (5.12) 
Education (years) 11.5 (2.64) 12.0 (2.66) 
Smoking status   
Never 721 (41.8%) 770 (41.0%) 
Former smoker 754 (43.7%) 796 (42.4%) 
Current smoker 248 (14.4%) 311 (16.6%) 
Physical activity   
Low 542 (31.4%) 511 (27.2%) 
Medium 736 (42.7%) 863 (46.0%) 
High 445 (25.8%) 503 (26.8%) 
Alcohol consumption (g/day) 15.5 (20.5) 14.6 (19.4) 
History of diseases   
Cardiovascular diseases (yes) 814 (47.2%) 701 (37.3%) 
Diabetes (yes) 158 (9.2%) 162 (8.6%) 
Season   
Cold 1147 (66.5%) 785 (41.8%) 
Warm 578 (33.5%) 1092 (58.2%) 
Areas   
Urban 763 (44.2%) 734 (39.1%) 
Rural 959 (55.6%) 1139 (60.7%) 
Estimated cell types, %   
CD8 + T lymphocytes 5.9 (6.3) 5.0 (3.8) 
CD4 + T lymphocytes 16.3 (6.7) 18.6 (5.9) 
Natural killer cells 4.3 (3.1) 6.5 (3.8) 
B cells 5.0 (3.0) 5.4 (3.0) 
Monocytes 14 (2.8) 7.0 (2.2) 

Note: Data are reported as mean (SD) or n (%). KORA: Cooperative Health 
Research in the Region of Augsburg. F4: first follow-up examination of KORA S4. 
FF4: second follow-up examination of KORA S4. 
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decreased for the medium-term effects on HannumAA and SkinBloodAA. 
Sixth, when we incorporated season into the model as a four-factor 
category consisting of spring, summer, fall and winter, the results 
were consistent with the main analyses. Finally, there were also no 
significant medium-term effects of air temperature on PhenoAA when 
the 4- and 8-week moving averages of temperature were included as a 
linear term in the GEE model (Supplementary Table S3). 

4. Discussion 

To our knowledge, this study, for the first time, explores the impact 
of temporal-spatial variation of 4-week and 8-week -averages of air 
temperature and the spatial variation of annual average air temperature 
on epigenetic age acceleration. In this study, we found significant as
sociations between medium-term exposures to high temperature and 
increased HorvathAA, HannumAA, GrimAA, and SkinBloodAA. 
Furthermore, higher annual average temperature exposure was signifi
cantly associated with an increase in HorvathAA, HannumAA, PhenoAA, 
GrimAA, and SkinBloodAA. 

Aging involves the accumulation of biological changes in an indi
vidual over time that increase the risk for disease and death. Epigenetic 
clocks provide an opportunity to assess the biological age and general 
health of individuals (Noroozi et al., 2021; Oblak et al., 2021). Impor
tantly, there has been increasing recognition of the association of 
epigenetic age acceleration with multiple clinical traits, morbidity, and 
mortality (Noroozi et al., 2021; Simpson and Chandra, 2021; Oblak 
et al., 2021; Roberts et al., 2021). We firstly found medium- and long- 
term effects of higher air temperature on increased epigenetic age ac
celerations. Our study provides new insights that fill an important 

knowledge gap in the context of a changing climate and, simultaneously, 
a worldwide aging population (Peters et al., 2021). Furthermore, our 
findings suggest that implementing policies to slow the rate of climate 
change may contribute in part to prolonging lifespans and decreasing or 
delaying health risks associated with aging. 

We observed that HannumAA and SkinBloodAA appeared to be the 
most sensitive biomarkers to high temperature exposures. However, 
high temperatures also affected three other epigenetic age acceleration 
metrics: HorvathAA, PhenoAA, and GrimAA. These five clocks seem to 
capture different aspects of aging based on how they are constructed 
(Simpson and Chandra, 2021). HannumAA is a first-generation blood- 
specific age predictor designed to improve the accuracy of blood age 
estimation (Simpson and Chandra, 2021). Previous studies have shown 

Table 2 
Descriptive statistics and Spearman correlation coefficients of epigenetic age acceleration across all observations.   

Mean SD 25% Median 75%  Correlation coefficients  

HorvathAA HannumAA PhenoAA GrimAA SkinBloodAA 

HorvathAA (years)  − 2.3  5.1  − 5.5  − 2.1  1.1   –     
HannumAA (years)  0.6  10.1  − 7.7  − 0.9  8.9   0.34  –    
PhenoAA (years)  − 9.7  6.8  − 14.3  − 10.1  − 5.5   0.40  0.41  –   
GrimAA (years)  − 0.2  5.2  − 3.7  − 0.7  2.6   0.41  0.43  0.37  –  
SkinBloodAA (years)  − 2.7  5.2  − 6.3  − 2.9  1.1   0.44  0.81  0.43  0.36 – 

Note: HorvathAA: Horvath’s epigenetic age acceleration. HannumAA: Hannum’s epigenetic age acceleration. PhenoAA: PhenoAge acceleration. GrimAA: GrimAge 
acceleration. SkinBloodAA: Epigenetic Skin and Blood Age acceleration. SD: standard deviation. 

Table 3 
Descriptive analysis of meteorological variables and air pollutants.   

Mean SD 2.5% 25% Median 75% 97.5% 

Medium-term        
4-week moving average of temperature 
Tmean (◦C)  9.4 5.6 1.5 4.1 9.7  14.5 18.5 
RH (%)  74.8 7.4 59.3 69.2 75.5  80.7 85.9 
PM2.5 (μg/m3)  12.7 4.7 6.2 8.9 12.2  16.2 21.5 
O3 (μg/m3)  41.5 17.2 18 26.4 37  58.4 70.1 
NO2 (μg/m3)  29.2 5.5 20.6 24.5 28.5  33.6 39.8 
8-week moving average of temperature 
Tmean (◦C)  9.5 5.3 1.4 4.2 9.7  14.3 18.3 
RH (%)  74.8 6.6 63.2 69.1 76.1  80.7 84.3 
PM2.5 (μg/m3)  12.9 3.8 7.7 9.5 12.7  15.9 20.1 
O3 (μg/m3)  41.2 16.2 18.6 26.1 37  57.2 66.8 
NO2 (μg/m3)  29.3 4.8 20.7 25 29.5  33.7 36.8 
Long-term        
Annual average temperature 
Tmean (◦C)  9.3 0.8 8 8.6 9.2  9.9 11 
PM2.5 (μg/m3)  11.8 1 9.6 11.1 11.9  12.5 13.6 
O3 (μg/m3)  39.1 2.4 34.6 37.4 39.2  40.9 43.4 
NO2 (μg/m3)  14.1 4.4 7 10.6 13.7  17.4 23 

Note: Tmean: mean temperature. RH: relative humidity. PM2.5: particulate 
matter with an aerodynamic diameter of ≤ 2.5 µm. O3: ozone; NO2: nitrogen 
dioxide. SD: standard deviation. 

Fig. 1. Medium-term effects of 4- and 8-weeks moving average of air temper
ature on epigenetic age acceleration. 
Note: Low temperature: effects of low temperature exposure, 2.5th percentile of 
temperature compared to median temperature. High temperature: effects of high 
temperature exposure, 97.5th percentile of temperature compared to median 
temperature. The median temperature was 9.7 ◦C; 2.5th percentile of temper
ature was 1.5 ◦C and 1.4 ◦C for 4-week and 8-week moving averages of tem
perature, respectively; 97.5th percentile of temperature was 18.5 ◦C and 
18.3 ◦C for 4-week and 8-week moving averages of temperature, respectively. 
HorvathAA: Horvath’s epigenetic age acceleration. HannumAA: Hannum’s 
epigenetic age acceleration. PhenoAA: PhenoAge acceleration. GrimAA: 
GrimAge acceleration. SkinBloodAA: Epigenetic Skin and Blood Age 
acceleration. 
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that Hannum’s clock indicates immune system aging (Stevenson et al., 
2018; Gibson et al., 2019; Jonkman et al., 2022; Dhingra et al., 2018). 
For example, a meta-analysis of genome-wide association studies of 
epigenetic age acceleration showed that genes associated with Han
num’s clock, which several involved in innate immune system pathways 
(such as TRIM46 and MUC1) or with metabolic and immune system 
functions (MANBA, UBE2D3) (Gibson et al., 2019). Therefore, this 
suggests that HannumAA may be particularly associated with environ
mental exposures, e.g., higher air temperature. SkinBloodAA and Hor
vathAA are both multi-tissue age predictors, and the novel SkinBloodAA 
is considered to be a more accurate age estimator of blood methylation 
data (Horvath, 2013; Horvath et al., 2018). To date, few studies are 
available about the effect of environmental exposures on SkinBloodAA. 
A previous study showed that SkinBloodAA was the most sensitive to 
occupational benzene and trichloroethylene exposure (van der Laan 
et al., 2022). Given these findings and the higher accuracy of Skin
BloodAA, it is suggested that SkinBloodAA, which is not yet widely used, 
maybe a suitable biomarker to explore the association between envi
ronmental exposures and biological aging. PhenoAA is optimized to 
predict physiological dysregulation across multiple systems and predict 
physical functioning more accurately than previous epigenetic clocks 
(Levine et al., 2018). GrimAA is a powerful mortality predictor, and 
strongly predicts lifespan and healthspan (Lu et al., 2019; McCrory et al., 
2021). Our results suggest that epigenetic age acceleration may reflect 
processes that contribute to the often observed associations between 
high air temperature and mortality and risk of age-related diseases 
(Chen et al., 2018; Khraishah et al., 2022; Gasparrini et al., 2022); 
opening up a potentially new pathophysiological pathway in the field of 
weather, climate, and health research. 

We used two exposure window definitions (4- and 8-week moving 
averages) to assess the medium-term effects of air temperature modeled 
in space and time on epigenetic age acceleration. We found heat effects 
for both exposure windows on epigenetic age acceleration. The results of 
the two time periods were almost identical, indicating our findings’ 

robustness. The medium-term effects of high air temperature on epige
netic age acceleration may be thought to be short lived, as 4- and 8-week 
high air temperature exposure may not be expected to permanently 
accelerate epigenetic aging. However, epigenetic age acceleration may 
be a potential mechanism between air temperature and cardiovascular 
disease and cerebrovascular disease, as a previous study has revealed 
that medium-term high air temperature exposures are associated with 
increased cardiovascular disease and cerebrovascular disease mortality 
(Wang et al., 2015). Importantly, by using 4- and 8-week moving 
average temperatures, we can capture the broader temporal context and 
identify potential cumulative effects that may be missed when focusing 
solely on long-term exposures. Furthermore, medium-term tempera
tures encompass both temporal and spatial variability, diverging from 
capturing to such an extent day-to-day changes of temperature (short- 
term effects) as well as the climate-related patterns observed in annual 
assessments. Instead, it captures the variability resulting from distinct 
weather classes that bring specific weather types to a region and typi
cally dominate the weather for durations longer than days but shorter 
than a full year. Additionally, as climate change progresses, individuals 
and communities implement various adaptation strategies to cope with 
shifting temperature patterns. Investigating medium-term effects helps 
us understand the delayed responses and adaptation mechanisms of 
individuals to changing temperature conditions, which often operate on 
timescales of weeks to months. 

In addition to the medium-term effects, we also found significant 
long-term effects of air temperature on all five epigenetic age acceler
ation metrics. This implies that spatial variability in annual average 
temperature strongly affects epigenetic age acceleration and shows a 
high stability of our results across the different biomarkers. In other 
research contexts, it is often observed that results are rather inconsistent 
between the different epigenetic age acceleration metrics (Xu et al., 
2021; van der Laan et al., 2021). Hence our study is affirming to see 
consistent effects of air temperature across the different biomarkers. 
More importantly, long-term air temperature exposure may have a more 

Fig. 2. Long-term effects of annual average temperature per 1 ◦C increase on epigenetic age acceleration. 
Note: HorvathAA: Horvath’s epigenetic age acceleration. HannumAA: Hannum’s epigenetic age acceleration. PhenoAA: PhenoAge acceleration. GrimAA: GrimAge 
acceleration. SkinBloodAA: Epigenetic Skin and Blood Age acceleration. 
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pertinent and clinically relevant health effect, given that individuals are 
exposed to non-optimal temperatures over longer periods at their resi
dential addresses. And the long-term effects may reflect more long-term 
stable alterations in accelerated aging as well as physiologic dysfunction 
that may affect health over an extended period of time. Furthermore, 
long-term effects help elucidate the relationship between climate- 
related temperature changes and epigenetic age acceleration. As 
climate change involves long-term shifts in temperature patterns, 
studying the long-term effects provides valuable insights into the po
tential consequences of ongoing climate change on human health and 
aging. 

Spatial variability of annual averages temperature had stronger ef
fects on epigenetic age acceleration in women, participants with obesity 
or diabetes, compared to men, participants without obesity or diabetes. 
This suggests that certain subpopulations may be more susceptible to 
high temperature and need more protection than others. Some studies 

also found higher mortality risks associated with exposure to higher 
temperatures among women (Chen et al., 2018; Achebak et al., 2019; 
Petkova et al., 2021). This may be related to the fact that females have a 
lower thermosensitivity in their response to temperature stimuli and a 
lower sweating capacity, which causes a greater increase in body tem
perature (Gagnon et al., 2013; Gagnon and Kenny, 2011; Gagnon and 
Kenny, 2012). Further, it has been observed that women have a higher 
threshold for activating their sweating mechanisms at high temperatures 
(Bittel et al., 1975). Participants with certain pre-existing health con
ditions, including obesity or diabetes, may also be more susceptible to 
high temperature. People with diabetes often have impaired endothelial 
function or poor blood flow to the skin, which can compromise their 
thermoregulation and affect the mechanisms of heat dissipation at high 
temperatures (Petrofsky, 2011). In addition, the increased insulation in 
obese adults increases thermal resistance between the core and the skin, 
thereby reducing heat dissipation from the core to the skin (Zhang et al., 

Fig. 3. Long-term effects of annual average temperature per 1 ◦C increase on epigenetic age acceleration modified by sex, obesity, cardiovascular disease, and 
diabetes. 
Note: Red error bars show significantly different effect estimates between subgroups (P-value for the interaction term < 0.05). HorvathAA: Horvath’s epigenetic age 
acceleration. HannumAA: Hannum’s epigenetic age acceleration. PhenoAA: PhenoAge acceleration. GrimAA: GrimAge acceleration. SkinBloodAA: Epigenetic Skin and 
Blood Age acceleration. 
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2016). 
There are several strengths of the present study. Firstly, this is the 

first study to explore the association between air temperature and 
epigenetic age acceleration with a relatively large sample size of 3,602 
observations. Secondly, we used satellite, meteorological, and terrestrial 
data to estimate the temperature at each participant’s residence for each 
calendar day by a novel hybrid spatiotemporal regression-based model. 
Thereby, we were able to capture the temporal-spatial variability in 
monthly averages of temperatures. In contrast, temperature data ob
tained through one or two fixed monitoring sites would only assess the 
temporal variation and ignore differences within a region. The novel 
model gave us sufficient spatial and temporal variability of the analyzed 
air temperature and reduced exposure misclassification. Thirdly, we 
used multiple biomarkers of epigenetic clocks to define epigenetic age 
acceleration. The robust associations across all used biomarkers make us 
confident that our associations were not observed by chance only. 

However, our study also has several limitations. First, this study was 
performed in a single study center in Augsburg, Germany, which limits 
the generalizability of our findings and may not reflect individuals from 
other regions due to potential ethnic, climatic, and geographic differ
ences. Secondly, as an observational study, the possibility of residual 
confounding and/or unmeasured confounders could not be excluded, 
although we already adjusted for a large set of covariates. Thirdly, the 
genome-wide DNA methylation in KORA FF4 was analyzed using the 
Infinium MethylationEPIC BeadChip, which lacked 19 CpG and 6 CpG 
sites used to calculate the Horvath’ and Hannum’ epigenetic age. This 
may lead to inaccurate estimates of these two epigenetic ages, so results 
from these should be interpreted with caution. Fourth, we used ambient 
area-level air temperatures rather than personal exposures to air tem
perature (including, e.g., also indoor temperatures), which may result in 
exposure misclassification. Finally, a limitation is that different DNA 
methylation profiling platforms were used for the two cohorts, which 
could introduce some technical discrepancy despite adjustments. Re
sidual biases likely remain due to the challenges of fully correcting for 
different array types. 

5. Conclusion 

In conclusion, our results provide the first evidence that medium- 
and long-term exposures to high air temperature affect increases in 
epigenetic age acceleration. Providing this new pathophysiological 
pathway could be an important step in preventing the health effects of 
heat, especially for susceptible population subgroups - particularly when 
considering the predicted future increases in the number of hot days and 
more intense heat waves in times of climate change. 
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