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Abstract
Daily cone beam computed tomography (CBCT) imaging during the course of fractionated
radiotherapy treatment can enable online adaptive radiotherapy but also expose patients to a non-
negligible amount of radiation dose. This work investigates the feasibility of low doseCBCT imaging
capable of enabling accurate prostate radiotherapy dose calculationwith only 25%projections by
overcoming under-sampling artifacts and correcting CTnumbers by employing cycle-consistent
generative adversarial networks (cycleGAN). Uncorrected CBCTs of 41 prostate cancer patients,
acquiredwith∼350 projections (CBCTorg), were retrospectively under-sampled to 25%dose images
(CBCTLD)with only∼90 projections and reconstructed using Feldkamp–Davis–Kress.We adapted a
cycleGAN including shape loss to translate CBCTLD into planningCT (pCT) equivalent images
(CBCTLD_GAN). An alternative cycleGANwith a generator residual connectionwas implemented to
improve anatomical fidelity (CBCTLD_ResGAN). Unpaired 4-fold cross-validation (33 patients)was
performed to allow using themedian of 4models as output. Deformable image registrationwas used
to generate virtual CTs (vCT) forHounsfield units (HU) accuracy evaluation on 8 additional test
patients. Volumetricmodulated arc therapy planswere optimized on vCT, and recalculated on
CBCTLD_GAN andCBCTLD_ResGAN to determine dose calculation accuracy. CBCTLD_GAN,
CBCTLD_ResGAN andCBCTorg were registered to pCT and residual shifts were analyzed. Bladder and
rectumweremanually contoured onCBCTLD_GAN, CBCTLD_ResGAN andCBCTorg and compared in
terms ofDice similarity coefficient (DSC), average and 95th percentileHausdorff distance (HDavg,
HD95). Themean absolute error decreased from126HU forCBCTLD to 55HU for CBCTLD_GAN and
44HU forCBCTLD_ResGAN. For PTV, themedian differences ofD98%,D50% andD2% comparing both
CBCTLD_GAN to vCTwere 0.3%, 0.3%, 0.3%, and comparingCBCTLD_ResGAN to vCTwere 0.4%,
0.3% and 0.4%.Dose accuracywas highwith both 2%dose difference pass rates of 99% (10%dose
threshold). Compared to theCBCTorg-to-pCT registration, themajority ofmean absolute differences
of rigid transformation parameters were less than 0.20mm/0.20°. For bladder and rectum, theDSC
were 0.88 and 0.77 for CBCTLD_GAN and 0.92 and 0.87 for CBCTLD_ResGAN compared toCBCTorg,
andHDavgwere 1.34mmand 1.93mm for CBCTLD_GAN, and 0.90mmand 1.05mm for
CBCTLD_ResGAN. The computational timewas∼2 s per patient. This study investigated the feasibility
of adapting two cycleGANmodels to simultaneously remove under-sampling artifacts and correct
image intensities of 25%doseCBCT images.High accuracy on dose calculation,HU and patient
alignmentwere achieved. CBCTLD_ResGAN achieved better anatomical fidelity.
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1. Introduction

Inmodern image-guided radiotherapy (IGRT), cone beam computed tomography (CBCT) is used as a routine
in-room imaging technique.Most radiotherapy centers havemedical linear accelerators equippedwith a
kilovoltage CBCT (kV-CBCT) scanner, which provides full three-dimensional (3D) information about the
patient’s anatomy at every treatment fraction. In the presence of inter-fractional anatomical changes between
acquisition of the planningCT (pCT) and the treatment day, CBCT imaging datawould be suitable for
treatment adaptation and enabling accurate dose delivery (de Jong et al 2021,Moazzezi et al 2021, Sibolt et al
2021, Byrne et al 2022).

One primary problemwhich arises in using CBCT for treatment adaptation is that CBCT image quality is
typically insufficient to infer and adapt the applied daily dose (Kurz et al 2015). Typically, CBCT intensity
correction techniques on a standard full dose scan have been investigated in current literature. Thewide range of
techniques include look-up-table based solutions (Kurz et al 2015), the use of pCT-to-CBCT virtual CT (vCT)
(Peroni et al 2012, Landry et al 2014, 2015, Veiga et al 2015, 2016,Wang et al 2016) yielding a so-called virtual CT
(vCT) and the application ofMonte-Carlo (MC) basedmethods (Mainegra-Hing andKawrakow 2010, Thing
et al 2016, Zöllner et al 2017) for scatter correction.While some of thesemethods have demonstrated accurate
CBCT-based dose calculation in different treatment sites (Ding et al 2007, Fotina et al 2012,Niu et al 2012, Veiga
et al 2014), there are limitations corresponding to themethods. For instance, DIR based approaches that enabled
good dose calculation accuracy in head and neck (HN) (Kurz et al 2015, Landry et al 2015), might struggle in the
pelvic region owing to themore pronounced and complex inter-fractional changes in anatomy.While theDIR
inaccuracies could be improved bymeans of using vCT as prior for projection based intensity correction (Niu
et al 2010, 2012, Park et al 2015, Kurz et al 2016), the time for generating corrected images, which takes several
minutes, hinders the use of the obtained correctedCBCT images for online treatment adaption. Similarly,MC
basedmethodswhich take up to several hours are not suitable.

Recently, the use of deep convolutional neural network (CNN) to speed upCBCT correction has received
substantial interest. TheU-Net architecture (Ronneberger et al 2015) has been employed to translate images
across domains and correct CBCT intensities. InKida et al (2018), a U-Netwas trained usingCBCT and vCT as
input and target to translate theCBCT into a pCT equivalent image.OtherU-Nets were trained for projection
based image correction usingMC simulated scatter distributions (Maier et al 2018, 2019) or corrected
projections retrievedwith a previously validated algorithmbased on a vCTprior (Hansen et al 2018, Landry et al
2019). Apart from theU-Net, generative adversarial networks (GAN) (Goodfellow et al 2014) have been applied
to translate CBCT into pCT images. In particular, the cycle-consistent GAN (cycleGAN) (Zhu et al 2017)
architecture has seen considerable attention for unpaired training. For example, in the brain and the pelvic
region (Harms et al 2019) (however using an additional paired loss term), in theHN region (Liang et al 2019) and
the pelvic region (Kida et al 2019, Kurz et al 2019), dosimetric analysis of the cycle-consistent generative
adversarial networks (cycleGAN) based corrected CBCT images were included, highlighting high dose
calculation accuracy for photon therapy. Themajority of deep learning based correctionmethods take less than
aminute.

Using CBCT in IGRT increases the precision of the treatment, but also adds to the dose delivered to healthy
tissues. One additional concern is thus that the imaging dose received from repeatedCBCT scans at 20–35
fractionsmight be considerable and increase the risk of secondarymalignancies. Kan et al (2008)measured, with
thermoluminescent dosimeters, the dose fromCBCT in a female anthropomorphic phantom and reported the
effective and absorbed doses to 26 organswith standard and low-dose imagingmodes. Effective doses to the
whole body from standardmodeCBCT for imaging of the pelvis were 22.7mSv per scan. They concluded that
CBCTon a daily basis could add an additional 2%–4% to the absolute secondary cancer risk. The radiation-
induced cancer risk due to organ doses fromkV-CBCTwas also estimated byKim et al (2013). Absorbed dose
measurements in a cylindrical and in an anthropomorphic phantom yielded 170–187mGy for the pelvic scan
protocol, for which they concluded that 70%of additional secondary cancer risk from radiotherapy treatment of
prostate patients can be attributed toCBCT imaging. Therefore, the excess radiation-induced cancer risk from
CBCT is not negligible.

According to the Report of the AmericanAssociation of Physicists inMedicine (AAPM)Therapy Physics
Committee TaskGroup 180 (Ding et al 2018), imaging dose should be considered in the treatment planning
process if larger than 5%of the therapeutic target dose, and in general the principle of ‘as low as reasonably
achievable’ (ALARA) for imaging should be pursued. In the current clinical practice, radiation oncologists
typically use the lowest possible dose of radiation to obtain theCBCT images, or try to to limit the frequency of
CBCT imaging during treatment to reduce the risk of secondary cancers from cumulative CBCTdose. Lower
dose CBCT at equivalent image quality could thus be favourable as it offers a higher flexibility of in terms of pre-
treatment imaging frequency. Reducing dose, however, could be challenging since theCBCT image quality is
further degraded, leading among others to potential loss of anatomical information.
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Prior research has thoroughly investigatedCBCT correction, however it remains to be investigatedwhether
advances in deep learning can be leveraged to substantially reduce CBCTdosewhile jointly correctingCBCT
image intensity and retaining therapeutic dose calculation accuracy. To address the needs of (1)CBCTdose
reduction and (2) improving image quality for dose adaptation, our study investigates a cycleGAN-based low
dose CBCT approach that translates a CBCT from a reduced number of projections (approximately 90), namely
CBCTLD, to a pCT equivalent image, referred to as CBCTLD_GAN, by simultaneously removing under-sampling
artifacts and correcting image intensities while preserving anatomy fidelity. In parallel to CBCTLD_GAN, we also
implemented an alternative cycleGANwith a generator residual connection to improve anatomical fidelity,
referred to as CBCTLD_ResGAN.

2.Materials andmethods

2.1. Patient data
2.1.1. Data acquisition
In this study, pCT andCBCT imaging datasets of 41 prostate cancer patients who received volumetric
modulated arc therapy (VMAT) treatment to a total dose of 70–76 Gy in 2 Gy fractions at theDepartment of
RadiationOncology of the LMUMunichUniversityHospital were collected. All patients were advised to follow
an in-house bladder and rectum filling protocol. The pCTswere acquiredwith a Toshiba Acquilion LBCT
scanner (CanonMedical Systems, Japan). Tube voltagewas set to 120 kV. An image grid of 1.074mm× 1.074
mm× 3.000 mmwas used in combinationwith a 55 cm lateral ield of view (FOV). No contrast agent was used.

To prevent the saturation of the detector panel and body outline artifacts, all retrospectively selectedCBCT
imageswere acquired in treatment positionwith a scan protocol of 120 kV tube voltage, exposure time of 20ms
and x-ray tube current of 20 mAper projection using the XVI system (version 5.52) of a Synergymedical linear
accelerator (Elekta, Sweden). This is the lowest dose pelvic protocol at our institution. The lateral FOVwas
increased by using a laterally-shifted detector panel inMposition and a bowtiefilter. Imageswith body outline
truncation in spite of the increased fovwere excluded from the study. Around 350 projections [346, 357]were
acquired in each 360° scan.

2.1.2. Data preparation
To generate a lowdose CBCTLD from the full dose CBCTorg, CBCTprojection datawere uniformly under-
sampled by a factor of 4 (keeping 25%of the projections) from about 350 to 90 projections, followed by a
reconstruction using the Feldkamp–Davis–Kress (FDK) implementation of Reconstruction ToolKit (RTK) (Rit
et al 2014)with 410× 410× 264 voxels on an isotropic 1.0mm3 grid. By thresholding andmorphological
masking, the patient couchwas removed from theCBCT image, whichwas then converted to an image size of
512× 512 by zero paddingwith the pixel intensity in the attenuation coefficient value (μ) range [0, 0.04] (values
above 0.04were set to 0.04). Thefirst and last 35 image slices in superior-inferior directionwith partial FOV
cone truncationwere excluded. pCTswere re-sampled to the same grid and image size using a linear interpolator
from the SimpleITK library. The table was also removed from the images. The pixel intensity of the CT images
was empirically converted to the range of theCBCT images ((HU+ 1024)/65536) (Park et al 2015). The
resulting intensities weremapped to the range [0, 0.05] (values above 0.05were set to 0.05). Patients were
instructed to laywith arms down and forearms folded up during acquisition. Since pCT slices showing limbs
were excluded, the data used for training covered the pelvis and lower abdomen. To incorporate patient outline
information in the training, a binarymask of each pCT andCBCT imagewas created by thresholding. All images
were stored in 16 bit format before training. The data pre-processing workflow is illustrated infigure 1.

2.2. CycleGANarchitecture and training
2.2.1. Forward and backward cycles and loss function
To correct the intensity of low doseCBCTLD, we adapted a cycleGAN architecture (Zhu et al 2017, Ge et al 2019)
to learn the image translation between lowdose CBCTLD (input) and pCT equivalent images (output)with
unpaired patient data (planning and fraction images). The framework chains two sets of a generator and
discriminator networks. The generator aims to obtain themost efficient representation of CBCTLD fromwhich a
synthetic pCT can be generated slice by slice in the forward cycle. The discriminator is used to distinguish
synthetic pCTwith output label 0 and true pCTwith label 1 in the forward cycle. In the backward cycle, outputs
of the generator and discriminator are reversed. The loss function for both generators and discriminators
consists of the terms described below.

Infigure 2 (panel (a)), a generatorGpCT learns amapping fromCBCTLD to pCT such that the distribution of
images fromGpCT(CBCTLD) is indistinguishable from the distribution of pCTby a discriminatorDpCT using an
adversarial loss in the forward cycle:
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= - + L log 1 D G CBCT log D pCT , 1pCT CBCT pCT pCT LD pCT pCTLD[ ( ( ( )))] [ ( )] ( )

whereGpCT aims tominimize the first term - log 1 D G CBCTCBCT pCT pCT LDLD
[ ( ( ( )))]by generating synthetic

imagesGpCT(CBCTLD) that closely resemble pCT, whileDpCT aims tomaximize both terms and become as good
as possible in distinguishing between synthetic images GpCT(CBCTLD) and real pCTs.

Infigure 2 (panel (b)), the second generator GCBCTLD
was trained to establish the inversemapping frompCT

toCBCTLDwith the help of the second discriminator DCBCTLD
in the backward cycle:

Figure 1.The pre-processing workflow for theCBCT andCTpatient images.

Figure 2.The cycleGANarchitecture is used to generate pCT equivalent CBCTLD_GAN images fromCBCTLD images in (a) forward
cycle, and to generate CBCTLD frompCT in (b) backward cycle. Themask of CBCTLD_GAN is calculated by a shape extractor in the
forward cycle.
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= - + L log 1 D G pCT logD CBCT . 2CBCT pCT CBCT CBCT CBCT CBCT LDLD LD LD LD LD
[ ( ( ( )))] [ ( )] ( )

With the above adversarial loss, the generatorsGpCT and GCBCTLD
are encouraged to generate realistic images

of the target domain in order to fool the discriminatorsDpCT and DCBCTLD
.

To stabilize the training and ensure the inverse-consistentmappings with respect to the two image domains,
a cycle consistency loss Lcyc is introduced to enforce GCBCTLD

(GpCT(CBCTLD))≈CBCTLD andGpCT(
GCBCTLD

(pCT))≈pCT. In the forward cycle, Lcyc computes the L1 normof the output from GCBCTLD
with the

generated synthetic pCT as input and the input lowdose CBCTLD:

 = -L CBCT G G CBCT . 3cyc
for

CBCT LD CBCT pCT LD 1LD LD[ ( ( )) ] ( )

In the backward cycle, the roles of CBCTLD and pCT are again swapped and the corresponding cycle
consistency loss function is:

 = -L pCT G G pCT . 4cyc
back

pCT pCT CBCT 1LD[ ( ( )) ] ( )

The cycle consistency loss, however, does not directly enforce the structural similarity between the input
CBCTLD and the generated CT images. A previousCBCT-to-CT study has shown that there aremeasurable
deviations in the patient body outline (Kurz et al 2019). To incorporate patient outline information and
geometrically constrain the generator, we have adapted a shape loss as suggested inGe et al (2019). AU-Net
shape extractor (SE)was first trained for 5 epochswith paired pCT as input and the corresponding binarymasks
as the ground truth output. During the cycleGAN training, the shape extractor segments the patient outline of
the generatedCBCTLD_GAN image fromGpCT and computes the L1 loss between this newmask and its
corresponding ground truthmask from the input low dose CBCTLD:

=L L CBCT _ , SE G CBCT . 5shape 1 LD mask pCT LD( ( ( ))) ( )

Therefore the total loss usedwas:

l l= + + + +L L L L L L_ . 6LD GAN pCT CBCT 1 cyc
for

cyc
back

2 shapeLD ( ) ( )

whereλ1 andλ2 are hyperparameters that were empirically set to 25 and 1 in this study. The objective function to
be solvedwas

=G LG , arg min max _ G , G , D , D . 7pCT CBCT
G ,G D ,D

LD GAN pCT CBCT CBCT pCTLD
pCT CBCTLD CBCTLD pCT

LD LD( ) ( )

Since thismin-max optimization aims tofind themodel parameters that could describe the distribution of
the image domain instead of using pixel-wise comparison, unpaired datasets could be used for this study.

We additionally trained a cycleGANvariant where a residual skip connectionwas used for the generator (see
figure 3). This approach has been reported to improve geometric fidelity to the input image in the field of
histopathology (de Bel et al 2021) and used in a previous CBCT-to-CT study (Deng et al 2022). Since anatomical
fidelity is critical in our application, we have adopted this approach. As shown in figure 3, GpCT

GAN was trained to

convert CBCTLD directly toCBCTLD_GAN in panel (a). For CBCTLD_ResGAN, GpCT
ResGAN was trained to convert

Figure 3. (a) In theCBCTLD_GAN approach, the generator GpCT
GAN is trained to directlymap fromCBCTLD to thefinal CBCTLD_GAN

images. (b) In contrast, the input and the intermediate output from the generator GpCT
ResGAN are addedwith equal weight to obtain the

final output CBCTLD_ResGAN.
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CBCTLD to an intermediate image, which has reversed intensities that suppress the streak artifacts from the
CBCTLD input image as shown in panel (b). In the backward cycle, the other generator GCBCTLD

in the
CBCTLD_ResGAN approachwas also trained to obtain the final outputwith the addition of the pCT input.
Hyperparametersλ1 andλ2 were empirically set to 25 and 0 for CBCTLD_ResGAN. It was observed that the shape
loss did not improve the performance of CBCTLD_ResGAN, as opposed toCBCTLD_GAN. Supplementary figure S1
and supplementary figure S2 illustrate theλ2 experiments for one exemplary ensemblemodel validation patient
(section 2.2.2) for CBCTLD_GAN andCBCTLD_ResGAN, respectively.

2.2.2. Network training
In a geometric augmentation pipeline, we employed two-dimensional (2D) horizontal flipping and affine
transformations including rotation of [−5°, 5°] and scaling by [0.9, 1.1]with a bicubic interpolation over 4× 4
neighboring pixels to theCBCT and pCT inputs and theirmasks to enhance the generalisability of themodel.

For the generator, the encoder contains two convolutional layers with stride 2 and the decoder contains two
deconvolutional layers with stride 2.Nine residual blocks between encoding and decoding operations were used
(Johnson et al 2016). For the discriminator, 70× 70 PatchGAN (Isola et al 2017)was employedwith a
downsampling scheme from256× 256 to 32× 32 by applying four series of 2D convolutional layers followed by
instance normalization (Ulyanov et al 2016), except for thefirst and last layer, and LeakyReLUwith a slope of 0.2
as nonlinearity, except for the last layer. The receptive field of the networkwas 70× 70 and each pixel in the
outputwas evaluated as a scalar in the range [0, 1]. The networks were implemented in PyTorch (v1.12.0).

Trainingwas performed starting from the pre-trainedmodel provided byGe et al (2019). Results from
trainingwithout the pre-trainedmodel did not show convergence at the same number of epochs as for the pre-
trainedmodel. The adamoptimizer was used for both generator and discriminator. The learning rate was set to
0.0002 during thefirst 100 epochs, and gradually reduced to zero over the next 100 epochs. For input to the
network, the image patchwas resampled to 256× 256 pixels for the data augmentation. The batch size was set to
one. ARTXA6000 graphics processing unit (GPU) (NVIDIA, CaliforniaUSA)was used.

Among a total of 41 patient datasets, a subset of 30 patients using four single folds, each containing 25
patients were used to perform the trainingwith unpaired datasets. Three patient datasets were used as an
ensemblemodel validation set and eight were used as a final test set. After the training, the generators GpCT

GAN and

GpCT
ResGAN were used to correct CBCTLD intensity by translating CBCTLD slice-by-slice into pCT equivalent

images, labelledCBCTLD_GAN andCBCTLD_ResGAN. As illustrated infigure 4, since four different folds were used
for training the cycleGAN, four GpCT

GAN and GpCT
ResGAN with identical training hyper-parameters were obtained and

applied to the ensemblemodel validation set. Themedian of the fourmodels was used as the final output. For
every 10th epoch, we computed themean absolute error (MAE) andmean error (ME) for the three ensemble
model validation cases in comparison to the reference vCT (section 2.3.1) and compared the appearance of soft
tissues, bones, air cavities and body outline visually tofind the optimal stopping epoch.

2.3.Data evaluation
2.3.1. Reference vCT and scatter corrected CBCT
Since there could be substantial anatomical differences between pCT andCBCTLD due to changes in bladder and
rectumfilling, as well as in patient positioning, the obtained images were not directly compared to the pCT for
determining the accuracy of CBCTLD_GAN orCBCTLD_ResGAN. Instead, we generated a vCTbymapping the pCT
to the daily CBCT via a dedicatedDIR approach. As described inHofmaier et al (2017), we aim for (1) image
similarity which is computed by normalized gradientfields, and (2) deformation regularity which is computed

Figure 4.An illustration of themodel ensemblemethod. Four independentmodels were trainedwith a four-fold split of the dataset.
Then the fourmodels were applied to the ensemblemodel validation set and themedian of the four outputswas evaluated to find the
bestmodel, whichwas then applied to the final testing set in evaluation.
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by curvature regularization. The optimization problem is solved in a discretize-then-optimize scheme using a
quasi-Newton L-BFGS optimizer.

ACBCT correction technique that had been validated in Park et al (2015) andKurz et al (2016)was employed
as an alternative reference for evaluating the network results and their comparison to vCT for the eight test cases.
This reference correction approachwas fully described in the original publications ofNiu et al (2010) andNiu
et al (2012) and in follow-up studies fromHansen et al (2018) and Landry et al (2019).Wefirst forward project
theVCT according to the geometry of theCBCT scanner to retrieve primary beamprojections (Ipri). The scatter
and other low frequency deviations (Isca) are calculated as the difference between a scaled original CBCTorg

projection (Iorg)with ntensity scaling factor (ISF) and (Ipri) followed by a generous smoothing function f. The
scatter corrected projection (Icor)was estimated by subtracting the scatter contribution from the original
measuredCBCTorg projections.With Icor, we could reconstruct a scatter-correctedCBCT, in the following
referred to as CBCTcor withHUvalues equivalent to the pCT, andwith ideally the same anatomy asCBCTorg. In
linewithCBCTLD, CBCTcor was reconstructed using the FDK algorithmwith the same reconstruction settings.

2.3.2. CT number accuracy
For the eight test cases, CBCTLD, CBCTLD_GAN andCBCTLD_ResGANwere compared to vCT in terms of theMAE
andME inHU. All pixel intensities were scaled frommodel output inμ toHUusing the inverse empirical scaling
used for the pCT. Pixels outside the joint body outline of vCT andCBCTLD_GAN/CBCTLD or
CBCTLD_ResGAN/CBCTLDwere excluded.

2.3.3. Dosimetric analysis
Todetermine dosimetric accuracy, we generated and recalculatedVMATplans on vCT,CBCTLD_GAN and
CBCTLD_ResGAN for the eight test patients in a research version of a commercial treatment planning system
(TPS) (RayStation, version 10.01, RaySearch, Sweden). Contours of target structures and organs-at-risks (OARs)
were transferred viaDIR frompCT to vCT, onwhichVMATplans using one arc were optimized on an isotropic
dose grid of 3.0 mmusing a collapsed-cone dose engine. These planswere then recalculated onCBCTLD_GAN

andCBCTLD_ResGAN. The generic Elekta Synergy beammodel with Agilitymulti-leaf-collimator in the TPSwas
employed. The prescriptionwas 74 Gy in 37 fractions andwe aimed at clinical target volume (CTV)V95% of
100%, and planning target volume (PTV)V95% better than 95%of the prescription dose.We aimed at fulfilling
the dose-volume histogram (DVH) constraints that are given in theQUANTEC report (Marks et al 2010) for the
rectum and the bladder. Identical generic CTnumber to electron density conversion tables were employed for
vCT, CBCTLD_GAN andCBCTLD_ResGAN in all cases. The dose distributions on vCT,CBCTLD_GAN and
CBCTLD_ResGANwere then compared in terms of a 1%, 2% and 3%dose difference criterion. Voxels with less
than 10%of the prescribed dosewere excluded. In addition, theVMATdose distributions for vCT,
CBCTLD_GAN andCBCTLD_ResGANwere comparedwith regard toDVHparameters of clinically relevant target
structures andOARs. CTV andPTVD98% andD2%, togetherwith PTVD50% andV95%were analyzed. For the
rectumV50/60/65 Gy and for the bladderV60/65 Gywere analyzed.

To evaluate the robustness of the dosimetric results to the reference image, theVMATplanswere
additionally recalculated onCBCTcor and the dose distribution compared to the one fromvCTwith a 1%dose
difference criterion.

2.3.4. Positioning accuracy
Daily patient positioning is one of the primary purposes of in-roomCBCT. To evaluate registration accuracy
when usingCBCTLD_GAN andCBCTLD_ResGAN, we rigidly registered these images to the pCTusing the research
TPS. The transformations were compared to the one obtained from registering CBCTorg to the pCT. Automated
gray level rigid registrationwas usedwith six degrees of freedom.

2.3.5. Anatomical fidelity
To evaluate the networks’ capability for preserving the anatomy correctly, we evaluated the shapes of organs
geometrically. TwoOARs, bladder and rectum,were segmentedmanually using the research TPS onCBCTorg,
CBCTLD_GAN andCBCTLD_ResGAN for this purpose. All contours were thoroughly validated by a radiation
oncologist with expertise in prostate cancer radiotherapy. Dice similarity coefficient (DSC), average and 95th
percentileHausdorff distance (HDavg,HD95) of the contours onCBCTLD_GAN andCBCTLD_ResGANwere
computed to determine the fidelity of the organ shape in the network output, using CBCTorg as ground truth.

7

Phys.Med. Biol. 68 (2023) 105014 YChan et al



3. Results

3.1.Model selection based on ensemble validation
Themodel of epoch 50 for CBCTLD_GAN and themodel of epoch 60 for CBCTLD_ResGANwhich had the lowest
MAE andME and high soft-tissue geometric fidelity upon visual inspection of the validation cases were selected.
Infigure 5, the output images from the four trained GpCT

GAN and GpCT
ResGAN are shown for an exemplary ensemble

model validation patient (panel (a)–(d) and panel (g)–(j)), together with the calculatedmedian images (panel (e)
and (k)) and the pixel-wise difference betweenmaximumandminimumHUvalues (panel (f) and (l)). For
CBCTLD_GAN, deviations between the four differentmodels weremost pronounced at the edges of the bony
anatomy, aswell as at the patient body outline.We also observed variations in the bowels with occasional
generation of air pockets (panel (c)). ForCBCTLD_ResGAN, deviationswere generally less pronounced as in
CBCTLD_GAN, and no random large air pocket was generated. In the following analysis, only themedian images
were considered.

3.2. Computational details
The training to the bestmodel at epoch 50 of a single fold took about 9 h for CBCTLD_GAN, and at epoch 60 took
about 10.5 h for CBCTLD_ResGAN. The average time to convert a complete 3DCBCTLD of one patient with 195
slices intoCBCTLD_GAN orCBCTLD_ResGANwas about 2 s (about 10ms per slice) on aGPU.

Figure 5.The outputs of the four trained (a)–(d) GpCT
GAN and (g)–(j) GpCT

ResGAN models, themedian of (e)CBCTLD_GAN, (k)
CBCTLD_ResGAN, and the pixel-wisemaximumminusminimum for (f) GpCT

GAN and (l) GpCT
ResGAN outputs for one representative ensemble

model validation patient. All values are inHU.
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3.3. Image analysis
WeevaluatedCBCTLD_GAN andCBCTLD_ResGAN on eight test patients. CBCT images of test patient 36 and their
HUdifferences are shown infigure 6. InCBCTLD (panel (c)), streaks and undersampling artifacts are clearly
observedwhen compared toCBCTorg (panel (f)). In panel (d) and (e), CBCTLD_GAN andCBCTLD_ResGAN have
successfully removed these artifacts. Figure 6 also shows theHUdifferences of all CBCT results with respect to
vCT. CBCTLD (panel (g)) andCBCTorg (panel (j)) show larger underestimated regions and larger overestimated
regions, as well as pronounced deviations in the bony structures. As seen from the reduced differences to vCT,
CBCTLD_GAN (panel (h)) andCBCTLD_ResGAN (panel (i)) improved image intensities compared toCBCTorg. The
remaining differences betweenCBCTLD_GAN andCBCTLD_ResGANwith respect to vCT are observed at the
patient body outline and bone interfaces. In addition, figure 6 also shows theHUdifferences of all CBCT results
with respect toCBCTcor. All HUdifferences toCBCTcor are similar to the differences to vCTbutwith remaining
increased noise.

To quantify the image quality, we computed the averageME andMAE inHUofCBCTLD_GAN,
CBCTLD_ResGAN andCBCTLD compared to vCT for training, validation and test patients as shown infigure 7. In
panels (a) to (c), theMEofCBCTLD had positive values in almost all patients while CBCTLD_GAN had negative
values in themajority of datasets. CBCTLD_ResGAN had slightlymore negative values than positive ones. TheMEs
of all datasets were comparable within the correctionmethod. In panels (d) to (f), CBCTLD_GAN and
CBCTLD_ResGAN showed a substantially reducedMAE for all datasets compared toCBCTLD.

Table 1 reports the quantitative results in terms of the averageME andMAEof all patient images in training,
validation and testing datasets. For the testing datasets, the averageME changed from20HU for CBCTLD to−6
HU forCBCTLD_GAN and−2HU forCBCTLD_ResGAN. The averageMAE reduced from126HU for CBCTLD to
55HU forCBCTLD_GAN and 44HU forCBCTLD_ResGAN.

3.4.Dosmetric analysis
The quantitative results of the dose difference analysis of theVMATplans comparing CBCTLD_GAN and
CBCTLD_ResGAN to vCT are given in table 2 for all test datasets and the investigated dose difference (DD) levels.
ForCBCTLD_GAN, the average 1%DDpass-rate was 95.9%,with a value range from87.3% to 98.7%. For
CBCTLD_ResGAN, the average 1%DDpass-rate was 97.0%,with a value range from92.0% to 98.6%. This shows
that a high agreement of CBCTLD_GAN andCBCTLD_ResGAN to the reference vCTwas found. In addition, the
average 1%DDpass-rate comparing vCT toCBCTcor for all test datasets was 98.4%, indicating excellent
dosimetric agreement between the two benchmark images.

Figure 6.CBCTdata for test patient 36: (a) vCT, (b)CBCTcor, (c)CBCTLD, (d)CBCTLD_GAN, (e)CBCTLD_ResGAN, (f)CBCTorg. HU
differences of (g)CBCTLD, (h)CBCTLD_GAN, (i)CBCTLD_ResGAN, (j)CBCTorg and vCT are shown.HUdifferences of (k)CBCTLD, (l)
CBCTLD_GAN, (m)CBCTLD_ResGAN, (n)CBCTorg andCBCTcor are shown in the bottom row. The colorbars are inHU.
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The dose distribution and difference of test patient 38 are depicted infigure 8.Onlyminor dose differences
in the planning target volume (PTV) region betweenCBCTLD_GAN, CBCTLD_ResGAN and vCTwere found. The
dose difference for CBCTLD_ResGAN has smallermagnitude than for CBCTLD_GAN.

Figure 9 shows target andOARDVHparameter differences with respect to vCT as boxplots over all patients.
Formost of the considered parameters in bothCBCTLD_GAN andCBCTLD_ResGAN, differences werewithin
1.5 Gy for doseDVHparameters (Dx) and below 1.5% for volumeDVHparameters (Vx). All deviationswere

Figure 7. (Top)MEand (bottom)MAEper patient for the comparison of vCT and (a), (d)CBCTLD, (b), (e)CBCTLD_GAN or (c), (f)
CBCTLD_ResGAN. The data are labeled as belonging to the training (blue), validation (red) and testing (green) datasets.

Table 1.AverageHUME andMAEof all patient images in training, validation and testing datasets for the comparison of CBCTLD,
CBCTLD_GAN andCBCTLD_ResGANwith vCT, respectively. The number in square brackets represent [min,max] values among all patients in
the corresponding groups.

Dataset MECBCTLD MECBCTLD_GAN MECBCTLD_ResGAN

Training 21 [−1, 39] −12 [−32, 5] 5 [−8, 21]
Validation 19 [1, 30] −13 [−15,−12] −10 [−18,−1]
Test 20 [−5, 33] −6 [−18, 5] −2 [−17, 8]

Dataset MAECBCTLD MAECBCTLD_GAN MAECBCTLD_ResGAN

Training 125 [112, 134] 55 [46, 67] 45 [40, 55]
Validation 123 [118, 126] 60 [52, 68] 49 [42, 55]
Test 126 [119, 134] 55 [49, 62] 44 [38, 50]

Table 2.DoseDifferences (DD) of the eight test patients for the VMATplans recalculated on
CBCTLD_GAN andCBCTLD_ResGANwith respect to vCT . All values are in percent.

CBCTLD_GAN CBCTLD_ResGAN

Test patient 1%DD 2%DD 3%DD 1%DD 2%DD 3%DD

34 92.7 98.1 98.8 92.0 98.3 98.9

35 97.1 98.9 99.5 97.2 99.0 99.6

36 97.4 99.1 99.8 98.0 99.4 99.8

37 98.3 99.5 99.8 98.4 99.6 99.9

38 87.3 97.1 98.4 95.7 97.8 98.8

39 97.4 99.1 99.6 97.8 99.2 99.7

40 98.7 99.7 99.9 98.6 99.7 99.9

41 97.9 99.2 99.7 98.0 99.2 99.7

Average 95.9 98.8 99.4 97.0 99.0 99.5
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below 2 Gy/2%. Particularly in the target DVHcomparison, themedian differences ofD98%,D50% andD2%

comparing CBCTLD_GANwith respect to vCTwere 0.3%, 0.3% and 0.3% for the PTV. InCBCTLD_ResGAN, the
median differences ofD98%,D50% andD2%with respect to vCTwere 0.4%, 0.3% and 0.4% for the PTV.

3.5. Positioning accuracy
With respect toCBCTorg-to-pCT, themean absolute difference of rigid transformation parameters were
0.07 mm (right–left) (RL), 0.05 mm (inferior–superior) (IS), 0.01 mm (posterior–anterior) (PA), 0.17° (pitch),
0.15° (roll) and 0.24° (yaw) for CBCTLD_GAN-to-pCT, and similarly, themean absolute differences were
0.03 mm (RL), 0.05 mm (IS), 0.04 mm (PA), 0.16° (pitch), 0.19° (roll) and 0.26° (yaw) for
CBCTLD_ResGAN-to-pCT. Themajority of differences were thus less than 0.20 mmor 0.20°, except the pitch of
patient 34was 0.32° for CBCTLD_GAN, the yaw of patient 38was 0.82° for CBCTLD_GAN and 0.77° for
CBCTLD_ResGAN, the roll of patient 39was−0.60° for CBCTLD_GAN and−0.79° for CBCTLD_ResGAN, the yaw of

Figure 8.VMATdose distributions of the test patient 38. Dose distributions optimized on (a) vCT and recalculated on (b)
CBCTLD_GAN and (d)CBCTLD_ResGAN are shown together with (c), (e) their corresponding differences. The PTV is shown inmagenta.
Dose differences below 0.4%are not shown for better visualization.

Figure 9.Clinically relevantDVHparameter differences of CBCTLD_GAN andCBCTLD_ResGANwith respect to vCT for (a), (c) target
and (b), (d)OAR structures. Each data point represents a test patient.Whiskers correspond to the 5th–95th percentile. All dose values
correspond to the total dose of the fractionated treatment.
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patient 39was−0.42° for CBCTLD_GAN and−0.69° for CBCTLD_ResGAN and the pitch of patient 41was−0.65°
for CBCTLD_ResGAN.

3.6. Anatomical fidelity
As shown in table 3, the averageDSCof bladderwas 0.88 for CBCTLD_GAN and 0.92 for CBCTLD_ResGANwith
respect toCBCTorg. HDavg andHD95 of bladderwere 1.34 mmand 6.03 mm forCBCTLD_GAN, and 0.90 mm
and 4.05 mm forCBCTLD_ResGAN. As shown in table 4, the averageDSCof rectumwas 0.77 for CBCTLD_GAN

and 0.87 for CBCTLD_ResGANwith respect toCBCTorg. HDavg andHD95 of rectumwere 1.93 mmand 6.43 mm
forCBCTLD_GAN, and 1.05 mmand 3.89 mm forCBCTLD_ResGAN. In both bladder and rectum,CBCTLD_ResGAN

had a higherDSC and lowerHDavg andHD95 thanCBCTLD_GAN. In addition, bladder had generally higherDSC
and lowerHD than rectum in bothCBCTLD_GAN andCBCTLD_ResGAN. Figure 10 illustrates that the contour of
the rectum inCBCTLD_GAN (panel (b) and (e)) had a larger shape deviation than inCBCTLD_ResGAN (panel (c)
and (f))with respect toCBCTorg (panel (a) and (d)) due to a small incorrect air pocket generated, whichwould
also be contoured as part of the rectum in clinical practice.

4.Discussion

The daily use of CBCT imaging during a fractionated radiotherapy course could deliver a considerable amount
of radiation dose to patients. Due to the insufficient image quality, CBCT also cannot be used for daily dose
calculation and adaptation. To address these problems, our study aimed at addressing dose reduction and
intensity correction simultaneously.We generated synthetic low dose CBCTLD to train two cycleGAN
architectures to tackle the tasks of (1) removing the under-sampling artifacts and (2) correcting the intensity of
CBCTLD, and evaluated both approaches on a cohort of prostate cancer patients. The keyfinding of this study is

Table 3.The anatomical fidelity results of bladder in terms ofDice similarity coefficient (DSC), average and
95th percentile Hausdorff distance (HDavg,HD95) in the test patients fromCBCTLD_GAN and
CBCTLD_ResGAN.

CBCTLD_GAN CBCTLD_ResGAN

Test patient DSC HDavg (mm) HD95 (mm) DSC HDavg (mm) HD95 (mm)

34 0.83 1.68 7.39 0.93 0.65 3.86

35 0.90 1.27 5.79 0.93 0.83 3.29

36 0.91 1.12 6.11 0.93 0.81 4.42

37 0.84 1.46 4.42 0.85 1.43 6.10

38 0.94 0.78 4.42 0.94 0.69 3.67

39 0.83 1.82 6.40 0.90 1.08 3.79

40 0.91 1.52 4.45 0.94 1.04 3.37

41 0.89 1.06 6.82 0.94 0.65 3.90

Average 0.88 1.34 6.03 0.92 0.90 4.05

Table 4.The anatomical fidelity results of rectum in terms ofDice similarity coefficient (DSC), average and
95th percentile Hausdorff distance (HDavg,HD95) in the test patients fromCBCTLD_GAN and
CBCTLD_ResGAN.

CBCTLD_GAN CBCTLD_ResGAN

Test patient DSC HDavg (mm) HD95 (mm) DSC HDavg (mm) HD95 (mm)

34 0.75 2.55 8.67 0.83 1.32 6.17

35 0.72 2.17 7.52 0.85 0.98 3.56

36 0.80 2.01 6.83 0.82 1.91 7.11

37 0.85 1.11 4.03 0.90 0.68 2.12

38 0.89 1.10 4.06 0.92 0.84 3.15

39 0.74 1.98 6.68 0.90 0.63 2.12

40 0.62 2.86 8.12 0.87 0.89 3.15

41 0.79 1.62 5.56 0.85 1.15 3.70

Average 0.77 1.93 6.43 0.87 1.05 3.89
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that it was possible to reduce theCBCT imaging dose by 75%and enable VMATdose calculation accurately with
the use of cycleGAN.

To obtain CBCTLD, the number of projections was subsampled by a factor of four, which led to severe
streaking in the reconstructed images. The proposedCBCTLD_GAN andCBCTLD_ResGAN techniques successfully
removed all streak artifacts, by training the generators GpCT tomap theCBCTLD input to the pCTdomainwhich
has no under-sampling noise. In addition, the cycle consistency loss regularized the body structures between
CBCTLD andCBCTLD_GAN, and betweenCBCTLD andCBCTLD_ResGAN. The hyperparameterλ1 was increased
froma default value of 10 to 25, as the relative importance of preserving the anatomical content in the loss
functionwas previously demonstrated inKurz et al (2019) and confirmed in our study. Furthermore, the shape
loss was added to incorporate patient body outline information as suggested inGe et al (2019). The
hyperparameterλ2 was adjusted from a default value of 10 to 1 for CBCTLD_GAN. Compared to the default value
10, the smallerλ2 tends to output soft tissue and organswithmore correct shapes in our experiments. For
CBCTLD_GAN,λ2 of 1was empirically found beneficial in comparison to using no shape loss as shown in the
supplementary figure S1. For CBCTLD_ResGAN,λ2 of 0 gives the least variation in themin-max plots and thus a
higher stability of themodel outputs, as shown in supplementary figure 2.

Compared to previous unpairedCBCT-to-CT correctionworks using cycleGAN in pelvic scans, ourmodel
has achieved a slightly higherMAE reduction. This could be explained by the fact that the input CBCTLD has
more noise than the usual standard full dose CBCT input in other studies. TheMAE in comparison to vCTwas
substantially reduced from126HU forCBCTLD to 55HU forCBCTLD_GAN and to 44HU forCBCTLD_ResGAN.
Liu et al (2022) proposed a two-stepmethodwith phantom-based and patient-basedmodels, and reducedMAE
ofwell-matched slices from67 to 32HUwith respect to a deformably registered reference CT. InDeng et al
(2022), themodel that had a similar generator residual connection reducedMAE from29 to 18HU.Harms et al
(2019) trained a cycleGANmodel with pairedCBCT and pCTdatasets and reducedMAE from56 to 18HU. In
another studywith a similar patient cohort, Kurz et al (2019) reducedMAE from103 to 87HUwith respect to
CBCTcor (Kurz et al 2016) as reference, which has higher anatomical fidelity toCBCTorg butmore noise
than vCT.

In terms of dose calculation accuracy, good results were achieved for VMATwhen comparing CBCTLD_GAN

andCBCTLD_ResGAN to vCT. For a 2%dose difference criterion, amean pass-rate of 99%was determined for the
test patients for both proposed approaches. Despite the additional under-sampling artifacts in the low dose
CBCT input, the CBCTLD_GAN andCBCTLD_ResGAN dosimetric results are still comparable to the previous work
byKurz et al (2019)which used a fully sampled prostate dataset with a similar cycleGANarchitecture (without
shape loss or a generator residual connection). In line with this, formost cases a very good agreement of
CBCTLD_GAN andCBCTLD_ResGANwith respect to vCT in terms of clinically relevantDVHparameters was
achieved. For VMAT, a trend ofmarginally overestimated doses onCBCTLD_GAN andCBCTLD_ResGANwas
found in the target structures andOARs, with deviations below 1 Gy for doseDVHparameters (Dx) and below
1.5% for volumeDVHparameters (Vx) for 7 out of 8 test cases.

In order to investigate the anatomicalfidelity, twoOARs in the network-generated imageswere contoured
and compared to a ground truth contour onCBCTorg. TheDSC in rectumwas lower than in bladder, possibly
due to the higher variability of the rectum shape and the randomnatural occurrence of air pockets in the rectum.

Figure 10.The contours of rectum in (a)CBCTLD, (b)CBCTLD_GAN and (c)CBCTLD_ResGAN, and ((d)–(f)) the corresponding zoom-
in contours for the test patient 41.
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In addition, it ismore difficult to segment the rectum, thus increasing the uncertainties for rectum contours. It is
notable that CBCTLD_ResGAN still yielded generally higherDSC and lowerHDavg andHD95 thanCBCTLD_GAN in
the twoOARs. This demonstrated that CBCTLD_ResGAN can achieve improved geometrical accuracy, and
indicated a positive effect from a generator residual connection.

While having high treatment dose calculation accuracy and enhanced anatomical fidelity, the proposed low
dose CBCT techniques could deliver at least 75% lower dose in a pelvic scan. To estimate the reduced patient
dose, we have chosen the cone beamdose index (CBDI) valuewhich provides a single number that represents the
mean volumetric dose in theCTdose index (CTDI) phantom as reported in (Hyer andHintenlang 2010). They
reported aCBDI value (table 2 inHyer andHintenlang (2010), chest protocol) for the same configuration as our
protocol (M20protocol with 120 kV and a bowtie filter at an Elekta XVI scanner) of 1.62 mGy/100 mAs. By
selecting only 90 out of 350 projection frames, ourCBCTLD has thus reduced the patient dose from2.27 to
0.57 mGy (from a total exposure of 140 mAs to 36 mAs) per scan. For reference, another Elekta XVICBCT-to-
CTwork using cycleGANwith a regular full dose scan in prostate cancer reported a total exposure of 288 mAs
without providing complete acquisition details such as kV collimator type or the use of a bowtiefilter (Kida et al
2019). In a recent deep learning CBCT low-dose study using aU-Net, Yuan et al (2020) used a clinicalHN
protocol with 182 projections over 205°, whichwould correspond to 319 projections over 360°, and thus to a
considerably higher sampling rate than our approach by a factor of 3.5.

The computational time of the investigated low doseCBCT techniques for correcting a 3Dpelvic scan per
patient was shorter when compared to vCTor the projection-based scatter correction approachCBCTcor in
Kurz et al (2016), which have correction times in the order of 6–10min per patient. The correction time per slice
of 10 ms inCBCTLD_GAN orCBCTLD_ResGAN is identical to the other prostate CBCT-to-CTworks by Landry et al
(2019) using aU-Net, and byKurz et al (2019) using a similar cycleGAN. It should be noted that there are also
iterative reconstructionworks using compressed sensing, e.g. in Choi et al (2010), Lee et al (2012) and Park et al
(2012) or total variation in Song et al (2014) to remove under-sampling artefacts inCBCT images. However, one
more prior scatter correction stepwould be required to convert the CBCT image intensities toCTdiagnostic
intensities. Since the proposedCBCTLD_GAN orCBCTLD_ResGAN techniques allow fast image correctionwithin 2
s per patient (195 slices), they have the potential to be applied for CBCT-based online treatment plan adaptation.

There are some limitations in this study. First, the evaluation of theHUand dose calculation accuracy rely on
vCT. The advantage of using vCT as a reference is that it has correct intensity and ideally identical anatomy to
CBCTLD.However, vCTmight not be a perfect ground truth due to uncertainties inDIR. Thismight be one of
the potential causes for the small deviation found in the patient body outline infigure 6 panel (h) and (i), and in
the dose differencemaps infigure 8 panel (c) and (e). This is also the reasonwhywe compared the network
results with an alternative ground truthCBCTcor for inspecting the deviations thatmight have been caused by
theDIR uncertainties. As shown in (figure 6 panel (l) and (m)), similar deviations in the patient body outline
were also found in the comparison toCBCTcor, which implies that the uncertainties inDIR did not affectHU
accuracy analysis. In addition, the average 1%DDpass-rate comparing vCT toCBCTcor was 98.4% as reported
in section 3.4, which also implies that employing either vCT orCBCTcor as ground truth has onlyminimal
impact on the dosimetric comparison for the network results.

Second, it is observed that the prediction from some singlemodels before ensembling can be geometrically
unstable, especially for CBCTLD_GAN.Our approach is to stabilize the output by taking themedian of the 4
model outputs. Yet this does not control variability of each individualmodel. InCBCTLD_ResGAN, the variability
has been reduced due to the generator residual connection.

In future work, wewould like to investigate the feasibility of further reducingCBCTdose and explore under-
sampling schemes thatmight provide the opportunity to selectively avoid irradiating critical organs. Besides, we
would extend the proposed low dose CBCT imaging technique to other anatomical locations.

5. Conclusion

This study showed that it is possible to reduce theCBCT imaging dose by 75% in pelvic scanswhile enabling
accurate VMATdose calculationwith the use of a cycle-consistent generative adversarial network. The network
was successfully trained to simultaneously remove streaking artifacts and translate low doseCBCTLD toCT
equivalent images using unpaired training data. The resulting low dose CBCTLD_GAN andCBCTLD_ResGAN

images resemble planningCTs inHUaccuracy and the daily in-roomCBCTorg in anatomy. Clinically relevant
DVHparameters were accurately predicted. CBCTLD_ResGAN has improved the anatomicalfidelity in
comparison toCBCTLD_GAN. Compared to the reference technique (vCT), CBCTLD_GAN andCBCTLD_ResGAN,
which allow substantially faster correction and are not affected byDIR uncertainties in the presence of
pronounced inter-fractional changes, have thus the potential to be applied for online treatment adaptation.
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