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Abstract

Daily cone beam computed tomography (CBCT) imaging during the course of fractionated
radiotherapy treatment can enable online adaptive radiotherapy but also expose patients to a non-
negligible amount of radiation dose. This work investigates the feasibility of low dose CBCT imaging
capable of enabling accurate prostate radiotherapy dose calculation with only 25% projections by
overcoming under-sampling artifacts and correcting CT numbers by employing cycle-consistent
generative adversarial networks (cycleGAN). Uncorrected CBCTs of 41 prostate cancer patients,
acquired with ~350 projections (CBCT ), were retrospectively under-sampled to 25% dose images
(CBCTyp) with only ~90 projections and reconstructed using Feldkamp—Davis—Kress. We adapted a
cycleGAN including shape loss to translate CBCTy p into planning CT (pCT) equivalent images
(CBCT1p_gan)- Analternative cycleGAN with a generator residual connection was implemented to
improve anatomical fidelity (CBCT | p_resgan)- Unpaired 4-fold cross-validation (33 patients) was
performed to allow using the median of 4 models as output. Deformable image registration was used
to generate virtual CTs (vCT) for Hounsfield units (HU) accuracy evaluation on 8 additional test
patients. Volumetric modulated arc therapy plans were optimized on vCT, and recalculated on
CBCT1p ganand CBCTyp resgan to determine dose calculation accuracy. CBCT1p gan»
CBCTLp_gesgan and CBCT ., were registered to pCT and residual shifts were analyzed. Bladder and
rectum were manually contoured on CBCTp_gan> CBCT 1 p_gesgan and CBCT g and compared in
terms of Dice similarity coefficient (DSC), average and 95th percentile Hausdorff distance (HD,yg,
HDys). The mean absolute error decreased from 126 HU for CBCTp, to 55 HU for CBCT1p gan and
44 HU for CBCTp _resgan- For PTV, the median differences of Dogo,, D500, and Do, comparing both
CBCT1p_gan to vCT were 0.3%), 0.3%, 0.3%, and comparing CBCT1p_gresgan to vVCT were 0.4%,
0.3% and 0.4%. Dose accuracy was high with both 2% dose difference pass rates of 99% (10% dose
threshold). Compared to the CBCT,,5-to-pCT registration, the majority of mean absolute differences
of rigid transformation parameters were less than 0.20 mm/0.20°. For bladder and rectum, the DSC
were 0.88 and 0.77 for CBCTp_ganand 0.92 and 0.87 for CBCTyp_resgan compared to CBCT,,
and HD,, were 1.34 mm and 1.93 mm for CBCT;p_gan,and 0.90 mmand 1.05 mm for
CBCT1p_resgan- The computational time was ~2 s per patient. This study investigated the feasibility
of adapting two cycleGAN models to simultaneously remove under-sampling artifacts and correct
image intensities of 25% dose CBCT images. High accuracy on dose calculation, HU and patient
alignment were achieved. CBCTyp resgan achieved better anatomical fidelity.

© 2023 The Author(s). Published on behalf of Institute of Physics and Engineering in Medicine by IOP Publishing Ltd
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1. Introduction

In modern image-guided radiotherapy (IGRT), cone beam computed tomography (CBCT) is used as a routine
in-room imaging technique. Most radiotherapy centers have medical linear accelerators equipped with a
kilovoltage CBCT (kV-CBCT) scanner, which provides full three-dimensional (3D) information about the
patient’s anatomy at every treatment fraction. In the presence of inter-fractional anatomical changes between
acquisition of the planning CT (pCT) and the treatment day, CBCT imaging data would be suitable for
treatment adaptation and enabling accurate dose delivery (de Jong et al 2021, Moazzezi et al 2021, Sibolt et al
2021, Byrne et al 2022).

One primary problem which arises in using CBCT for treatment adaptation is that CBCT image quality is
typically insufficient to infer and adapt the applied daily dose (Kurz et al 2015). Typically, CBCT intensity
correction techniques on a standard full dose scan have been investigated in current literature. The wide range of
techniques include look-up-table based solutions (Kurz et al 2015), the use of pCT-to-CBCT virtual CT (vCT)
(Peronietal 2012, Landry eral 2014, 2015, Veiga et al 2015, 2016, Wang et al 2016) yielding a so-called virtual CT
(vCT) and the application of Monte-Carlo (MC) based methods (Mainegra-Hing and Kawrakow 2010, Thing
etal 2016, Zollner et al 2017) for scatter correction. While some of these methods have demonstrated accurate
CBCT-based dose calculation in different treatment sites (Ding et al 2007, Fotina et al 2012, Niu etal 2012, Veiga
etal2014), there are limitations corresponding to the methods. For instance, DIR based approaches that enabled
good dose calculation accuracy in head and neck (HN) (Kurz et al 2015, Landry et al 2015), might struggle in the
pelvic region owing to the more pronounced and complex inter-fractional changes in anatomy. While the DIR
inaccuracies could be improved by means of using vCT as prior for projection based intensity correction (Niu
etal2010,2012, Park etal 2015, Kurz et al 2016), the time for generating corrected images, which takes several
minutes, hinders the use of the obtained corrected CBCT images for online treatment adaption. Similarly, MC
based methods which take up to several hours are not suitable.

Recently, the use of deep convolutional neural network (CNN) to speed up CBCT correction has received
substantial interest. The U-Net architecture (Ronneberger et al 2015) has been employed to translate images
across domains and correct CBCT intensities. In Kida et al (2018), a U-Net was trained using CBCT and vCT as
inputand target to translate the CBCT into a pCT equivalent image. Other U-Nets were trained for projection
based image correction using MC simulated scatter distributions (Maier et al 2018, 2019) or corrected
projections retrieved with a previously validated algorithm based on a vCT prior (Hansen et al 2018, Landry et al
2019). Apart from the U-Net, generative adversarial networks (GAN) (Goodfellow et al 2014) have been applied
to translate CBCT into pCT images. In particular, the cycle-consistent GAN (cycleGAN) (Zhu et al 2017)
architecture has seen considerable attention for unpaired training. For example, in the brain and the pelvic
region (Harms et al 2019) (however using an additional paired loss term), in the HN region (Liang et al 2019) and
the pelvic region (Kida et al 2019, Kurz et al 2019), dosimetric analysis of the cycle-consistent generative
adversarial networks (cycleGAN) based corrected CBCT images were included, highlighting high dose
calculation accuracy for photon therapy. The majority of deep learning based correction methods take less than
aminute.

Using CBCT in IGRT increases the precision of the treatment, but also adds to the dose delivered to healthy
tissues. One additional concern is thus that the imaging dose received from repeated CBCT scans at 20-35
fractions might be considerable and increase the risk of secondary malignancies. Kan et al (2008) measured, with
thermoluminescent dosimeters, the dose from CBCT in a female anthropomorphic phantom and reported the
effective and absorbed doses to 26 organs with standard and low-dose imaging modes. Effective doses to the
whole body from standard mode CBCT for imaging of the pelvis were 22.7 mSv per scan. They concluded that
CBCT on a daily basis could add an additional 2%—4% to the absolute secondary cancer risk. The radiation-
induced cancer risk due to organ doses from kV-CBCT was also estimated by Kim et al (2013). Absorbed dose
measurements in a cylindrical and in an anthropomorphic phantom yielded 170-187 mGy for the pelvic scan
protocol, for which they concluded that 70% of additional secondary cancer risk from radiotherapy treatment of
prostate patients can be attributed to CBCT imaging. Therefore, the excess radiation-induced cancer risk from
CBCT is not negligible.

According to the Report of the American Association of Physicists in Medicine (AAPM) Therapy Physics
Committee Task Group 180 (Ding et al 2018), imaging dose should be considered in the treatment planning
process if larger than 5% of the therapeutic target dose, and in general the principle of ‘as low as reasonably
achievable’ (ALARA) for imaging should be pursued. In the current clinical practice, radiation oncologists
typically use the lowest possible dose of radiation to obtain the CBCT images, or try to to limit the frequency of
CBCT imaging during treatment to reduce the risk of secondary cancers from cumulative CBCT dose. Lower
dose CBCT at equivalent image quality could thus be favourable as it offers a higher flexibility of in terms of pre-
treatment imaging frequency. Reducing dose, however, could be challenging since the CBCT image quality is
further degraded, leading among others to potential loss of anatomical information.
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Prior research has thoroughly investigated CBCT correction, however it remains to be investigated whether
advances in deep learning can be leveraged to substantially reduce CBCT dose while jointly correcting CBCT
image intensity and retaining therapeutic dose calculation accuracy. To address the needs of (1) CBCT dose
reduction and (2) improving image quality for dose adaptation, our study investigates a cycleGAN-based low
dose CBCT approach that translates a CBCT from a reduced number of projections (approximately 90), namely
CBCTp, toa pCT equivalent image, referred to as CBCTyp_gan, by simultaneously removing under-sampling
artifacts and correcting image intensities while preserving anatomy fidelity. In parallel to CBCT1p_gan, we also
implemented an alternative cycleGAN with a generator residual connection to improve anatomical fidelity,
referred to as CBCTp _gescan-

2. Materials and methods

2.1. Patient data
2.1.1. Data acquisition
In this study, pCT and CBCT imaging datasets of 41 prostate cancer patients who received volumetric
modulated arc therapy (VMAT) treatment to a total dose of 70-76 Gy in 2 Gy fractions at the Department of
Radiation Oncology of the LMU Munich University Hospital were collected. All patients were advised to follow
an in-house bladder and rectum filling protocol. The pCTs were acquired with a Toshiba Acquilion LB CT
scanner (Canon Medical Systems, Japan). Tube voltage was set to 120 kV. An image grid of 1.074 mm x 1.074
mm x 3.000 mm was used in combination with a 55 cm lateral ield of view (FOV). No contrast agent was used.
To prevent the saturation of the detector panel and body outline artifacts, all retrospectively selected CBCT
images were acquired in treatment position with a scan protocol of 120 kV tube voltage, exposure time of 20 ms
and x-ray tube current of 20 mA per projection using the XVI system (version 5.52) of a Synergy medical linear
accelerator (Elekta, Sweden). This is the lowest dose pelvic protocol at our institution. The lateral FOV was
increased by using a laterally-shifted detector panel in M position and a bowtie filter. Images with body outline
truncation in spite of the increased fov were excluded from the study. Around 350 projections [346, 357] were
acquired in each 360° scan.

2.1.2. Data preparation

To generate alow dose CBCT |, from the full dose CBCT,,, CBCT projection data were uniformly under-
sampled by a factor of 4 (keeping 25% of the projections) from about 350 to 90 projections, followed by a
reconstruction using the Feldkamp—Davis—Kress (FDK) implementation of Reconstruction ToolKit (RTK) (Rit
etal2014) with 410 x 410 x 264 voxels on an isotropic 1.0 mm® grid. By thresholding and morphological
masking, the patient couch was removed from the CBCT image, which was then converted to an image size of
512 x 512 by zero padding with the pixel intensity in the attenuation coefficient value (1) range [0, 0.04] (values
above 0.04 were set to 0.04). The first and last 35 image slices in superior-inferior direction with partial FOV
cone truncation were excluded. pCTs were re-sampled to the same grid and image size using a linear interpolator
from the SimpleITK library. The table was also removed from the images. The pixel intensity of the CT images
was empirically converted to the range of the CBCT images (HU + 1024)/65536) (Park et al 2015). The
resulting intensities were mapped to the range [0, 0.05] (values above 0.05 were set to 0.05). Patients were
instructed to lay with arms down and forearms folded up during acquisition. Since pCT slices showing limbs
were excluded, the data used for training covered the pelvis and lower abdomen. To incorporate patient outline
information in the training, a binary mask of each pCT and CBCT image was created by thresholding. All images
were stored in 16 bit format before training. The data pre-processing workflow is illustrated in figure 1.

2.2. CycleGAN architecture and training
2.2.1. Forward and backward cycles and loss function
To correct the intensity of low dose CBCT} p, we adapted a cycleGAN architecture (Zhu eral 2017, Ge et al 2019)
to learn the image translation between low dose CBCT} , (input) and pCT equivalent images (output) with
unpaired patient data (planning and fraction images). The framework chains two sets of a generator and
discriminator networks. The generator aims to obtain the most efficient representation of CBCTy, from which a
synthetic pCT can be generated slice by slice in the forward cycle. The discriminator is used to distinguish
synthetic pCT with output label 0 and true pCT with label 1 in the forward cycle. In the backward cycle, outputs
of the generator and discriminator are reversed. The loss function for both generators and discriminators
consists of the terms described below.

In figure 2 (panel (a)), a generator Gpcrlearns a mapping from CBCTp to pCT such that the distribution of
images from G,cr(CBCT\p) is indistinguishable from the distribution of pCT by a discriminator D, using an
adversarial loss in the forward cycle:
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Figure 1. The pre-processing workflow for the CBCT and CT patient images.
(a) Forward cycle
CBCTLp_mask v
X Gpct —* Adversarial loss Lpct <~ Dpct
Shape Loss L1 i A
A
Cycle consistency loss Leyc CBCTwo
r'y
SE(CBCTLo_caN) GceeetwGper(CBCTLwo) Gpct(CBCTLb)
t Shape Extractor
Shape Extractor (b) Backward cycle
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CT.
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SE Geectie —* Adversarial loss Leect < Dcectio
A
v v pEt
Cycle consistency loss Leyc
+ >
G pCT =
SE(pCT)
GpcrGeecto(pCT) Gceeerwo(pCT)
Figure 2. The cycleGAN architecture is used to generate pCT equivalent CBCT|p_gan images from CBCT} p images in (a) forward
cycle, and to generate CBCT p from pCT in (b) backward cycle. The mask of CBCTyp_gan is calculated by a shape extractor in the
forward cycle.
Lpctr = Eepernpllog(l — Dper(Gper(CBCTip)))] + Epcrllog Dyper (pCT)I, (1)

where G,cr aims to minimize the first term Ecpcr,[log(1 — Dper(Gper(CBCTip)))] by generating synthetic
images G,cr(CBCTp) that closely resemble pCT, while Dy, aims to maximize both terms and become as good
as possible in distinguishing between synthetic images G,r(CBCTp) and real pCTs.

In figure 2 (panel (b)), the second generator G¢pcr;,, was trained to establish the inverse mapping from pCT
to CBCTyp with the help of the second discriminator Dcpcy,, in the backward cycle:
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4 Generator G

CBCTiwp CBCTLp_can
(b)

4 Generator Gio™" g

CBCTw Intermediate image CBCTLD_ResGAN

Figure 3. (a) In the CBCTyp_gan approach, the generator Gg’é%l is trained to directly map from CBCT}p to the final CBCTyp_gan

images. (b) In contrast, the input and the intermediate output from the generator G}EESTGAN are added with equal weight to obtain the

final output CBCTyp_Resgan-

Legeny, = Eperllog(l — Deperip(Gepenn(PCTNI + Ecper,[logD cper,, (CBCTp)]- 2

With the above adversarial loss, the generators Gt and Gegcr,y, are encouraged to generate realistic images
of the target domain in order to fool the discriminators Dcr and Depcr -

To stabilize the training and ensure the inverse-consistent mappings with respect to the two image domains,
a cycle consistency loss L. is introduced to enforce Geper,(Gper(CBCTp)) &*CBCTp and Gper(
Geaer,(PCT)) ~pCT. In the forward cycle, Lo, computes the L; norm of the output from Gepcr;,, with the
generated synthetic pCT as input and the input low dose CBCTp:

LY = Bepern, [[CBCTip — Geseny(Gper(CBCT))|| 1. 3)

In the backward cycle, the roles of CBCT| p and pCT are again swapped and the corresponding cycle
consistency loss function is:

LY = Bperl|[pCT — Gper(Geser,, (PCT)|1]- 4)

The cycle consistency loss, however, does not directly enforce the structural similarity between the input
CBCTyp and the generated CT images. A previous CBCT-to-CT study has shown that there are measurable
deviations in the patient body outline (Kurz et al 2019). To incorporate patient outline information and
geometrically constrain the generator, we have adapted a shape loss as suggested in Ge et al (2019). A U-Net
shape extractor (SE) was first trained for 5 epochs with paired pCT as input and the corresponding binary masks
as the ground truth output. During the cycleGAN training, the shape extractor segments the patient outline of
the generated CBCTp_gan image from Gp,cr and computes the L; loss between this new mask and its
corresponding ground truth mask from the input low dose CBCT' p:

Lshape = L1(CBCT.p_masks SE(GpCT(CBCTLD))) %)
Therefore the total loss used was:
Lip_can = Lpcr + Leseny, + >\1(ch;£ + chyafk) + X Lhape- (6)

where A; and ), are hyperparameters that were empirically set to 25 and 1 in this study. The objective function to
be solved was
Gpers Geperp, = arg— min max  Lip_cgan(Gpers Gepenps Desenps Dper)- (7)
Gyer,Geperyp Deserpp Dpcr

Since this min-max optimization aims to find the model parameters that could describe the distribution of
the image domain instead of using pixel-wise comparison, unpaired datasets could be used for this study.

We additionally trained a cycleGAN variant where a residual skip connection was used for the generator (see
figure 3). This approach has been reported to improve geometric fidelity to the input image in the field of
histopathology (de Bel et al 2021) and used in a previous CBCT-to-CT study (Deng et al 2022). Since anatomical

fidelity is critical in our application, we have adopted this approach. As shown in figure 3, GECA%I was trained to

convert CBCTy p directly to CBCTyp_gan in panel (a). For CBCT1p_rescans GEESTGAN was trained to convert
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Figure 4. An illustration of the model ensemble method. Four independent models were trained with a four-fold split of the dataset.
Then the four models were applied to the ensemble model validation set and the median of the four outputs was evaluated to find the
best model, which was then applied to the final testing set in evaluation.

CBCTyp to an intermediate image, which has reversed intensities that suppress the streak artifacts from the
CBCTp input image as shown in panel (b). In the backward cycle, the other generator Gepcry, in the
CBCT'p_rescan approach was also trained to obtain the final output with the addition of the pCT input.
Hyperparameters \; and A\, were empirically set to 25 and 0 for CBCTp_resgan- It was observed that the shape
loss did not improve the performance of CBCT1p_gesgan, as opposed to CBCT 1 p_gan. Supplementary figure S1
and supplementary figure S2 illustrate the A, experiments for one exemplary ensemble model validation patient
(section 2.2.2) for CBCTp ganand CBCTip resgan, respectively.

2.2.2. Network training

In a geometric augmentation pipeline, we employed two-dimensional (2D) horizontal flipping and affine
transformations including rotation of [—5°, 5°] and scaling by [0.9, 1.1] with a bicubic interpolation over 4 x 4
neighboring pixels to the CBCT and pCT inputs and their masks to enhance the generalisability of the model.

For the generator, the encoder contains two convolutional layers with stride 2 and the decoder contains two
deconvolutional layers with stride 2. Nine residual blocks between encoding and decoding operations were used
(Johnson et al 2016). For the discriminator, 70 x 70 PatchGAN (Isola et al 2017) was employed with a
downsampling scheme from 256 x 256 to 32 x 32 by applying four series of 2D convolutional layers followed by
instance normalization (Ulyanov et al 2016), except for the first and last layer, and LeakyReLU with a slope of 0.2
as nonlinearity, except for the last layer. The receptive field of the network was 70 x 70 and each pixel in the
output was evaluated as a scalar in the range [0, 1]. The networks were implemented in PyTorch (v1.12.0).

Training was performed starting from the pre-trained model provided by Ge et al (2019). Results from
training without the pre-trained model did not show convergence at the same number of epochs as for the pre-
trained model. The adam optimizer was used for both generator and discriminator. The learning rate was set to
0.0002 during the first 100 epochs, and gradually reduced to zero over the next 100 epochs. For input to the
network, the image patch was resampled to 256 x 256 pixels for the data augmentation. The batch size was set to
one. ARTX A6000 graphics processing unit (GPU) (NVIDIA, California USA) was used.

Amonga total of 41 patient datasets, a subset of 30 patients using four single folds, each containing 25
patients were used to perform the training with unpaired datasets. Three patient datasets were used as an
ensemble model validation set and eight were used as a final test set. After the training, the generators Gg(‘?%\I and
GEESTGAN were used to correct CBCTYp intensity by translating CBCT} p slice-by-slice into pCT equivalent
images, labelled CBCT1p_gan and CBCTp resgan- Asillustrated in figure 4, since four different folds were used
for training the cycleGAN, four Gg’é}q and GgESTGAN with identical training hyper-parameters were obtained and
applied to the ensemble model validation set. The median of the four models was used as the final output. For
every 10th epoch, we computed the mean absolute error (MAE) and mean error (ME) for the three ensemble
model validation cases in comparison to the reference vCT (section 2.3.1) and compared the appearance of soft
tissues, bones, air cavities and body outline visually to find the optimal stopping epoch.

2.3.Data evaluation

2.3.1. Reference vCT and scatter corrected CBCT

Since there could be substantial anatomical differences between pCT and CBCT} p due to changes in bladder and
rectum filling, as well as in patient positioning, the obtained images were not directly compared to the pCT for
determining the accuracy of CBCT 1 p_gan 0r CBCT1p gescan- Instead, we generated a vCT by mapping the pCT
to the daily CBCT via a dedicated DIR approach. As described in Hofmaier et al (2017), we aim for (1) image
similarity which is computed by normalized gradient fields, and (2) deformation regularity which is computed

6
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by curvature regularization. The optimization problem is solved in a discretize-then-optimize scheme using a
quasi-Newton L-BFGS optimizer.

A CBCT correction technique that had been validated in Park et al (2015) and Kurz et al (2016) was employed
as an alternative reference for evaluating the network results and their comparison to vCT for the eight test cases.
This reference correction approach was fully described in the original publications of Niu et al (2010) and Niu
etal (2012) and in follow-up studies from Hansen et al (2018) and Landry et al (2019). We first forward project
the VCT according to the geometry of the CBCT scanner to retrieve primary beam projections (I,,;). The scatter
and other low frequency deviations (I,,) are calculated as the difference between a scaled original CBCT,,
projection (I,,g) with ntensity scaling factor (ISF) and (I,,,;) followed by a generous smoothing function f. The
scatter corrected projection (I.,) was estimated by subtracting the scatter contribution from the original
measured CBCT,,, projections. With I, we could reconstruct a scatter-corrected CBCT, in the following
referred to as CBCT,, with HU values equivalent to the pCT, and with ideally the same anatomy as CBCT .. In
line with CBCTp, CBCT,,, was reconstructed using the FDK algorithm with the same reconstruction settings.

2.3.2. CT number accuracy

For the eight test cases, CBCTLp, CBCTp gan and CBCTLp resgan were compared to vCT in terms of the MAE
and ME in HU. All pixel intensities were scaled from model output in 1 to HU using the inverse empirical scaling
used for the pCT. Pixels outside the joint body outline of vCT and CBCTyp_gan/CBCTrpor

CBCT1p_resgan/ CBCTrp were excluded.

2.3.3. Dosimetric analysis
To determine dosimetric accuracy, we generated and recalculated VMAT plans on vCT, CBCT p_gan and
CBCTp_rescan for the eight test patients in a research version of a commercial treatment planning system
(TPS) (RayStation, version 10.01, RaySearch, Sweden). Contours of target structures and organs-at-risks (OARs)
were transferred via DIR from pCT to vCT, on which VMAT plans using one arc were optimized on an isotropic
dose grid of 3.0 mm using a collapsed-cone dose engine. These plans were then recalculated on CBCTyp_gan
and CBCTp_grescan- The generic Elekta Synergy beam model with Agility multi-leaf-collimator in the TPS was
employed. The prescription was 74 Gy in 37 fractions and we aimed at clinical target volume (CTV) V50, of
100%, and planning target volume (PTV) Vyso, better than 95% of the prescription dose. We aimed at fulfilling
the dose-volume histogram (DVH) constraints that are given in the QUANTEC report (Marks et al 2010) for the
rectum and the bladder. Identical generic CT number to electron density conversion tables were employed for
vCT, CBCTp gan and CBCTp gesgan in all cases. The dose distributions on vCT, CBCTp_ganand
CBCTp_resgan Were then compared in terms of a 1%, 2% and 3% dose difference criterion. Voxels with less
than 10% of the prescribed dose were excluded. In addition, the VMAT dose distributions for vCT,
CBCTp_cgan and CBCTp_resgan Were compared with regard to DVH parameters of clinically relevant target
structures and OARs. CTV and PTV Dago, and D,q, together with PTV Dsgo, and Vgse, were analyzed. For the
rectum Vs 60,65 Gy and for the bladder Ve 65 Gy were analyzed.

To evaluate the robustness of the dosimetric results to the reference image, the VMAT plans were
additionally recalculated on CBCT,,, and the dose distribution compared to the one from vCT with a 1% dose
difference criterion.

2.3.4. Positioning accuracy

Daily patient positioning is one of the primary purposes of in-room CBCT. To evaluate registration accuracy
when using CBCTp ganand CBCT1p gresgan, We rigidly registered these images to the pCT using the research
TPS. The transformations were compared to the one obtained from registering CBCT,, to the pCT. Automated
gray level rigid registration was used with six degrees of freedom.

2.3.5. Anatomical fidelity

To evaluate the networks’ capability for preserving the anatomy correctly, we evaluated the shapes of organs
geometrically. Two OARs, bladder and rectum, were segmented manually using the research TPS on CBCT .,
CBCTp_cgan and CBCT | p resgan for this purpose. All contours were thoroughly validated by a radiation
oncologist with expertise in prostate cancer radiotherapy. Dice similarity coefficient (DSC), average and 95th
percentile Hausdorff distance (HD,,g, HDys) of the contours on CBCTp_gan and CBCTyp_resgan Were
computed to determine the fidelity of the organ shape in the network output, using CBCT,,, as ground truth.
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3. Results

3.1. Model selection based on ensemble validation

The model of epoch 50 for CBCTp_gan and the model of epoch 60 for CBCT1p gesgan Which had the lowest
MAE and ME and high soft-tissue geometric fidelity upon visual inspection of the validation cases were selected.
In figure 5, the output images from the four trained Ggé%\l and GII;ESTGAN are shown for an exemplary ensemble
model validation patient (panel (a)—(d) and panel (g)—(j)), together with the calculated median images (panel (e)
and (k)) and the pixel-wise difference between maximum and minimum HU values (panel (f) and (1)). For
CBCTyp_cans deviations between the four different models were most pronounced at the edges of the bony
anatomy, as well as at the patient body outline. We also observed variations in the bowels with occasional
generation of air pockets (panel (¢)). For CBCTp_rescan, deviations were generally less pronounced as in
CBCTp_can»and no random large air pocket was generated. In the following analysis, only the median images
were considered.

3.2. Computational details

The training to the best model at epoch 50 of a single fold took about 9 h for CBCT1p_gan, and at epoch 60 took
about 10.5 h for CBCT1p_gresgan. The average time to convert a complete 3D CBCT , of one patient with 195
slicesinto CBCT1p_gan 0r CBCT1p resgan Was about 2 s (about 10 ms per slice) on a GPU.
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3.3.Image analysis

We evaluated CBCT 1 p_ganand CBCTyp_resgan On eight test patients. CBCT images of test patient 36 and their
HU differences are shown in figure 6. In CBCTyp, (panel (c)), streaks and undersampling artifacts are clearly
observed when compared to CBCT o, (panel (f)). In panel (d) and (e), CBCT1p_gan and CBCTp_resGan have
successfully removed these artifacts. Figure 6 also shows the HU differences of all CBCT results with respect to
vCT. CBCTp (panel (g)) and CBCT,,g (panel (j)) show larger underestimated regions and larger overestimated
regions, as well as pronounced deviations in the bony structures. As seen from the reduced differences to vCT,
CBCT1p_gan (panel (h)) and CBCT| p_gesgan (panel (i)) improved image intensities compared to CBCT,,,. The
remaining differences between CBCTyp_gan and CBCT}p resgan With respect to vCT are observed at the
patient body outline and bone interfaces. In addition, figure 6 also shows the HU differences of all CBCT results
with respect to CBCT,,,. Al HU differences to CBCT ., are similar to the differences to vCT but with remaining
increased noise.

To quantify the image quality, we computed the average ME and MAE in HU of CBCT; p_gan»
CBCTp_resgan and CBCT p compared to vCT for training, validation and test patients as shown in figure 7. In
panels (a) to (c), the ME of CBCT| , had positive values in almost all patients while CBCT;,_gan had negative
values in the majority of datasets. CBCTp_resgan had slightly more negative values than positive ones. The MEs
of all datasets were comparable within the correction method. In panels (d) to (f), CBCT p_ganand
CBCT1p_resgan showed a substantially reduced MAE for all datasets compared to CBCTyp.

Table 1 reports the quantitative results in terms of the average ME and MAE of all patient images in training,
validation and testing datasets. For the testing datasets, the average ME changed from 20 HU for CBCT, to —6
HU for CBCTp_gan and —2 HU for CBCT1p_gesgan- The average MAE reduced from 126 HU for CBCTyp to
55HU for CBCTLD_GAN and 44 HU for CBCTLD_ReSGAN'

3.4. Dosmetric analysis

The quantitative results of the dose difference analysis of the VMAT plans comparing CBCT; p_gan and
CBCTyp Rresgan to VCT are given in table 2 for all test datasets and the investigated dose difference (DD) levels.
For CBCTp_gans the average 1% DD pass-rate was 95.9%, with a value range from 87.3% to 98.7%. For
CBCTLp_Rresgan, the average 1% DD pass-rate was 97.0%, with a value range from 92.0% to 98.6%. This shows
that a high agreement of CBCT1p_gan and CBCTp resgan to the reference vCT was found. In addition, the
average 1% DD pass-rate comparing vCT to CBCT,,, for all test datasets was 98.4%, indicating excellent
dosimetric agreement between the two benchmark images.
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CBCTLp_rescan- The data are labeled as belonging to the training (blue), validation (red) and testing (green) datasets.

Table 1. Average HU ME and MAE of all patient images in training, validation and testing datasets for the comparison of CBCTp,
CBCTp_ganand CBCTp resgan With vCT, respectively. The number in square brackets represent [min, max] values among all patients in
the corresponding groups.

Dataset MECBCTp MECBCTip can MECBCTip ResGAN
Training 21[-1,39] —12[-32,5] 5[-8,21]
Validation 19[1,30] —13[—15,—12] —10[—18,—1]
Test 20[-5,33] —6[-18,5] —2[-17,8]
Dataset MAE CBCT,p, MAECBCTip can MAECBCT1p ResGAN
Training 125[112,134] 55 [46, 67] 45[40, 55]
Validation 123[118,126] 60[52,68] 49[42,55]

Test 126119, 134] 5549, 62] 44138, 50]

Table 2. Dose Differences (DD) of the eight test patients for the VMAT plans recalculated on
CBCTip_ganand CBCTp resgan With respect to vCT . All values are in percent.

CBC’I‘LDi(;AN CBCTLDiResGAN
Test patient 1%DD 2%DD 3%DD 1%DD 2%DD 3%DD
34 92.7 98.1 98.8 92.0 98.3 98.9
35 97.1 98.9 99.5 97.2 99.0 99.6
36 97.4 99.1 99.8 98.0 99.4 99.8
37 98.3 99.5 99.8 98.4 99.6 99.9
38 87.3 97.1 98.4 95.7 97.8 98.8
39 97.4 99.1 99.6 97.8 99.2 99.7
40 98.7 99.7 99.9 98.6 99.7 99.9
41 97.9 99.2 99.7 98.0 99.2 99.7
Average 95.9 98.8 99.4 97.0 99.0 99.5

The dose distribution and difference of test patient 38 are depicted in figure 8. Only minor dose differences
in the planning target volume (PTV) region between CBCT1p gan> CBCTLp rescan and vCT were found. The
dose difference for CBCT1p gesgan has smaller magnitude than for CBCT1p_gan-

Figure 9 shows targetand OAR DVH parameter differences with respect to vCT as boxplots over all patients.
For most of the considered parameters in both CBCTp_gan and CBCTp rescans differences were within
1.5 Gy for dose DVH parameters (D,) and below 1.5% for volume DVH parameters (V). All deviations were
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Figure 9. Clinically relevant DVH parameter differences of CBCTp ganand CBCTyp gresgan With respect to vCT for (a), (¢) target
and (b), (d) OAR structures. Each data point represents a test patient. Whiskers correspond to the 5th—95th percentile. All dose values

Y Chan et al

correspond to the total dose of the fractionated treatment.

below 2 Gy/2%. Particularly in the target DVH comparison, the median differences of Dggos, Dsgo, and Dy,
comparing CBCTp _gan With respect to vCT were 0.3%, 0.3% and 0.3% for the PTV. In CBCTp_gescans the
median differences of Dgggs, Dsgo, and Do, with respect to vCT were 0.4%, 0.3% and 0.4% for the PTV.

3.5. Positioning accuracy

With respect to CBCT ,-to-pCT, the mean absolute difference of rigid transformation parameters were

0.07 mm (right-left) (RL), 0.05 mm (inferior—superior) (IS), 0.01 mm (posterior—anterior) (PA), 0.17° (pitch),
0.15° (roll) and 0.24° (yaw) for CBCTp_gan-to-pCT, and similarly, the mean absolute differences were

0.03 mm (RL), 0.05 mm (IS), 0.04 mm (PA), 0.16° (pitch), 0.19° (roll) and 0.26° (yaw) for

CBCTLp resgan-to-pCT. The majority of differences were thus less than 0.20 mm or 0.20°, except the pitch of
patient 34 was 0.32° for CBCTp_gan, the yaw of patient 38 was 0.82° for CBCTyp,_ganand 0.77° for
CBCTyp_resgans the roll of patient 39 was —0.60° for CBCTp_gan and —0.79° for CBCTyp_resgan» the yaw of
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Table 3. The anatomical fidelity results of bladder in terms of Dice similarity coefficient (DSC), average and
95th percentile Hausdorff distance (HD,,,, HDys) in the test patients from CBCTyp_gan and

CBCTLp_RresGAN-

CBCTip_can CBCTip_resGan
Test patient DSC HD, 4 (mm) HDgys5 (mm) DSC HD, g (mm) HDys5 (mm)
34 0.83 1.68 7.39 0.93 0.65 3.86
35 0.90 1.27 5.79 0.93 0.83 3.29
36 0.91 1.12 6.11 0.93 0.81 4.42
37 0.84 1.46 4.42 0.85 1.43 6.10
38 0.94 0.78 4.42 0.94 0.69 3.67
39 0.83 1.82 6.40 0.90 1.08 3.79
40 0.91 1.52 4.45 0.94 1.04 3.37
41 0.89 1.06 6.82 0.94 0.65 3.90
Average 0.88 1.34 6.03 0.92 0.90 4.05

Table 4. The anatomical fidelity results of rectum in terms of Dice similarity coefficient (DSC), average and
95th percentile Hausdorff distance (HD,,, HDys) in the test patients from CBCTyp_gan and

CBCTLp_RresGAN-

CBCTip_can CBCTip_resGan
Test patient DSC HD, ¢ (mm) HDys (mm) DSC HD,g (mm) HDys (mm)
34 0.75 2.55 8.67 0.83 1.32 6.17
35 0.72 2.17 7.52 0.85 0.98 3.56
36 0.80 2.01 6.83 0.82 1.91 7.11
37 0.85 1.11 4.03 0.90 0.68 2.12
38 0.89 1.10 4.06 0.92 0.84 3.15
39 0.74 1.98 6.68 0.90 0.63 2.12
40 0.62 2.86 8.12 0.87 0.89 3.15
41 0.79 1.62 5.56 0.85 1.15 3.70
Average 0.77 1.93 6.43 0.87 1.05 3.89

Y Chan et al

patient 39 was —0.42° for CBCTp ganand —0.69° for CBCTp gesgan and the pitch of patient 41 was —0.65°

for CBCTp_resGan-

3.6. Anatomical fidelity

As shown in table 3, the average DSC of bladder was 0.88 for CBCTp gan and 0.92 for CBCTLp resgan With
respect to CBCT opg. HD g and HDos of bladder were 1.34 mm and 6.03 mm for CBCTp_gan,and 0.90 mm
and 4.05 mm for CBCTLp gesgan- As shown in table 4, the average DSC of rectum was 0.77 for CBCT1p_gan
and 0.87 for CBCTp_gesgan With respect to CBCT . HD,yg and HDgs of rectum were 1.93 mm and 6.43 mm
for CBCT1p_gan»and 1.05 mm and 3.89 mm for CBCTp_gresgan- In both bladder and rectum, CBCTp resgan
had a higher DSC and lower HD,; and HDys5 than CBCT ,_gan- In addition, bladder had generally higher DSC
and lower HD than rectum in both CBCTp_ganand CBCT1p_gresgan- Figure 10 illustrates that the contour of
the rectum in CBCTp_gan (panel (b) and (e)) had alarger shape deviation than in CBCTp_gescan (panel (c)
and (f)) with respect to CBCT , (panel (a) and (d)) due to a small incorrect air pocket generated, which would
also be contoured as part of the rectum in clinical practice.

4. Discussion

The daily use of CBCT imaging during a fractionated radiotherapy course could deliver a considerable amount
of radiation dose to patients. Due to the insufficient image quality, CBCT also cannot be used for daily dose
calculation and adaptation. To address these problems, our study aimed at addressing dose reduction and

intensity correction simultaneously. We generated synthetic low dose CBCTy py to train two cycleGAN

architectures to tackle the tasks of (1) removing the under-sampling artifacts and (2) correcting the intensity of
CBCT\p, and evaluated both approaches on a cohort of prostate cancer patients. The key finding of this study is
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Figure 10. The contours of rectum in (a) CBCTp, (b) CBCTp_ganand (¢) CBCTp_gescan, and ((d)—(f)) the corresponding zoom-
in contours for the test patient 41.

that it was possible to reduce the CBCT imaging dose by 75% and enable VMAT dose calculation accurately with
the use of cycleGAN.

To obtain CBCT p, the number of projections was subsampled by a factor of four, which led to severe
streaking in the reconstructed images. The proposed CBCT| p_gan and CBCT p_gresgan techniques successfully
removed all streak artifacts, by training the generators G, to map the CBCT p input to the pCT domain which
has no under-sampling noise. In addition, the cycle consistency loss regularized the body structures between
CBCTrp and CBCTp gan, and between CBCT pand CBCT1p resgan- The hyperparameter A; was increased
from a default value of 10 to 25, as the relative importance of preserving the anatomical content in the loss
function was previously demonstrated in Kurz et al (2019) and confirmed in our study. Furthermore, the shape
loss was added to incorporate patient body outline information as suggested in Ge et al (2019). The
hyperparameter \, was adjusted from a default value of 10 to 1 for CBCTp_gan. Compared to the default value
10, the smaller ), tends to output soft tissue and organs with more correct shapes in our experiments. For
CBCTp_cans A2 of 1 was empirically found beneficial in comparison to using no shape loss as shown in the
supplementary figure S1. For CBCT|p_gesgan, A2 0f 0 gives the least variation in the min-max plots and thus a
higher stability of the model outputs, as shown in supplementary figure 2.

Compared to previous unpaired CBCT-to-CT correction works using cycleGAN in pelvic scans, our model
has achieved a slightly higher MAE reduction. This could be explained by the fact that the input CBCT', has
more noise than the usual standard full dose CBCT input in other studies. The MAE in comparison to vCT was
substantially reduced from 126 HU for CBCTp to 55 HU for CBCTp ganandto 44 HU for CBCTp resgan-
Liu et al (2022) proposed a two-step method with phantom-based and patient-based models, and reduced MAE
of well-matched slices from 67 to 32 HU with respect to a deformably registered reference CT. In Deng et al
(2022), the model that had a similar generator residual connection reduced MAE from 29 to 18 HU. Harms et al
(2019) trained a cycleGAN model with paired CBCT and pCT datasets and reduced MAE from 56 to 18 HU. In
another study with a similar patient cohort, Kurz et al (2019) reduced MAE from 103 to 87 HU with respect to
CBCT.,, (Kurz et al 2016) as reference, which has higher anatomical fidelity to CBCT,,, but more noise
than vCT.

In terms of dose calculation accuracy, good results were achieved for VMAT when comparing CBCT1p_gan
and CBCTp_gresgan to VCT. For a 2% dose difference criterion, a mean pass-rate of 99% was determined for the
test patients for both proposed approaches. Despite the additional under-sampling artifacts in the low dose
CBCT input, the CBCTp_gan and CBCTp_rescan dosimetric results are still comparable to the previous work
by Kurz et al (2019) which used a fully sampled prostate dataset with a similar cycleGAN architecture (without
shapeloss or a generator residual connection). In line with this, for most cases a very good agreement of
CBCT1p_canand CBCTp gesgan With respect to vCT in terms of clinically relevant DVH parameters was
achieved. For VMAT, a trend of marginally overestimated doses on CBCTyp_gan and CBCTLp_resgan Was
found in the target structures and OARs, with deviations below 1 Gy for dose DVH parameters (D,) and below
1.5% for volume DVH parameters (V) for 7 out of 8 test cases.

In order to investigate the anatomical fidelity, two OARs in the network-generated images were contoured
and compared to a ground truth contour on CBCT,,,. The DSC in rectum was lower than in bladder, possibly
due to the higher variability of the rectum shape and the random natural occurrence of air pockets in the rectum.
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In addition, it is more difficult to segment the rectum, thus increasing the uncertainties for rectum contours. It is
notable that CBCTp_gesan still yielded generally higher DSC and lower HD g and HDgs than CBCTp_gan in
the two OARs. This demonstrated that CBCT | p_resgan can achieve improved geometrical accuracy, and
indicated a positive effect from a generator residual connection.

While having high treatment dose calculation accuracy and enhanced anatomical fidelity, the proposed low
dose CBCT techniques could deliver at least 75% lower dose in a pelvic scan. To estimate the reduced patient
dose, we have chosen the cone beam dose index (CBDI) value which provides a single number that represents the
mean volumetric dose in the CT dose index (CTDI) phantom as reported in (Hyer and Hintenlang 2010). They
reported a CBDI value (table 2 in Hyer and Hintenlang (2010), chest protocol) for the same configuration as our
protocol (M20 protocol with 120 kV and a bowtie filter at an Elekta XVI scanner) of 1.62 mGy/100 mAs. By
selecting only 90 out of 350 projection frames, our CBCTy p has thus reduced the patient dose from 2.27 to
0.57 mGy (from a total exposure of 140 mAs to 36 mAs) per scan. For reference, another Elekta XVI CBCT-to-
CT work using cycleGAN with a regular full dose scan in prostate cancer reported a total exposure of 288 mAs
without providing complete acquisition details such as kV collimator type or the use of a bowtie filter (Kida et al
2019). In a recent deep learning CBCT low-dose study using a U-Net, Yuan et al (2020) used a clinical HN
protocol with 182 projections over 205°, which would correspond to 319 projections over 360°, and thus to a
considerably higher sampling rate than our approach by a factor of 3.5.

The computational time of the investigated low dose CBCT techniques for correcting a 3D pelvic scan per
patient was shorter when compared to vCT or the projection-based scatter correction approach CBCT, in
Kurz et al (2016), which have correction times in the order of 6-10 min per patient. The correction time per slice
of 10 ms in CBCTyp_gan 0r CBCT p_gresgan is identical to the other prostate CBCT-to-CT works by Landry et al
(2019) using a U-Net, and by Kurz et al (2019) using a similar cycleGAN. It should be noted that there are also
iterative reconstruction works using compressed sensing, e.g. in Choi et al (2010), Lee et al (2012) and Park et al
(2012) or total variation in Song et al (2014) to remove under-sampling artefacts in CBCT images. However, one
more prior scatter correction step would be required to convert the CBCT image intensities to CT diagnostic
intensities. Since the proposed CBCT1p gan 0r CBCTp rescan techniques allow fast image correction within 2
s per patient (195 slices), they have the potential to be applied for CBCT-based online treatment plan adaptation.

There are some limitations in this study. First, the evaluation of the HU and dose calculation accuracy rely on
vCT. The advantage of using vCT as a reference is that it has correct intensity and ideally identical anatomy to
CBCTyp. However, vCT might not be a perfect ground truth due to uncertainties in DIR. This might be one of
the potential causes for the small deviation found in the patient body outline in figure 6 panel (h) and (i), and in
the dose difference maps in figure 8 panel (c) and (e). This is also the reason why we compared the network
results with an alternative ground truth CBCT ., for inspecting the deviations that might have been caused by
the DIR uncertainties. As shown in (figure 6 panel (1) and (m)), similar deviations in the patient body outline
were also found in the comparison to CBCT ., which implies that the uncertainties in DIR did not affect HU
accuracy analysis. In addition, the average 1% DD pass-rate comparing vCT to CBCT ., was 98.4% as reported
in section 3.4, which also implies that employing either vCT or CBCTL,, as ground truth has only minimal
impact on the dosimetric comparison for the network results.

Second, it is observed that the prediction from some single models before ensembling can be geometrically
unstable, especially for CBCT1p_gan. Our approach is to stabilize the output by taking the median of the 4
model outputs. Yet this does not control variability of each individual model. In CBCT1p_gesgan the variability
hasbeen reduced due to the generator residual connection.

In future work, we would like to investigate the feasibility of further reducing CBCT dose and explore under-
sampling schemes that might provide the opportunity to selectively avoid irradiating critical organs. Besides, we
would extend the proposed low dose CBCT imaging technique to other anatomical locations.

5. Conclusion

This study showed that it is possible to reduce the CBCT imaging dose by 75% in pelvic scans while enabling
accurate VMAT dose calculation with the use of a cycle-consistent generative adversarial network. The network
was successfully trained to simultaneously remove streaking artifacts and translate low dose CBCTp to CT
equivalent images using unpaired training data. The resultinglow dose CBCTp_gan and CBCT1p gresgan
images resemble planning CTs in HU accuracy and the daily in-room CBCT,,, in anatomy. Clinically relevant
DVH parameters were accurately predicted. CBCT 1 p_gresgan has improved the anatomical fidelity in
comparison to CBCTp_gan. Compared to the reference technique (vCT), CBCT 1 p_ganand CBCTp_resgan»
which allow substantially faster correction and are not affected by DIR uncertainties in the presence of
pronounced inter-fractional changes, have thus the potential to be applied for online treatment adaptation.
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