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Abstract
Motivated by the Penrose–Onsager criterion for Bose–Einstein condensation we propose a
functional theory for targeting low-lying excitation energies of bosonic quantum systems through
the one-particle picture. For this, we employ an extension of the Rayleigh–Ritz variational
principle to ensemble states with spectrum w and prove a corresponding generalization of the
Hohenberg–Kohn theorem: the underlying one-particle reduced density matrix determines all
properties of systems of N identical particles in their w-ensemble states. Then, to circumvent the
v-representability problem common to functional theories, and to deal with energetic
degeneracies, we resort to the Levy–Lieb constrained search formalism in combination with an
exact convex relaxation. The corresponding bosonic one-body w-ensemble N-representability
problem is solved comprehensively. Remarkably, this reveals a complete hierarchy of bosonic
exclusion principle constraints in conceptual analogy to Pauli’s exclusion principle for fermions
and recently discovered generalizations thereof.

1. Introduction

A comprehensive understanding of quantum matter requires both the knowledge of the respective ground
state properties and the accurate description of excitations. In the case of bosonic quantum systems,
particularly prominent examples are collective phenomena in ultracold Bose gases such as excitations in
Bose–Einstein condensates (BECs) [1–5], superfluids [6–8] or quantum magnetism [9–12]. Although wave
function based methods allow for an exact treatment, at least in principle, they are only practically feasible
for relatively small system sizes due to the exponential growth of the underlying Hilbert space. Conversely,
Gross–Pitaevskii theory [13] and methods based on mean-field approximations in general fail to describe
strong correlation effects. To this end, accurate approaches to strongly correlated many-particle systems with
an affordable computational cost are of particular demand.

To motivate and put forth such an approach we recall the Penrose and Onsager criterion [14]: a system
exhibits BEC whenever the maximum eigenvalue of the one-particle reduced density matrix (1RDM) is
proportional to the total particle number. From a conceptual point of view, this clearly identifies 1RDM
functional theory (RDMFT) as a promising novel approach to BEC. Actually, its scope would even extend to
arbitrary strongly correlated bosonic quantum systems since the 1RDM provides direct insights into the
correlation strength through its degree of mixedness. Despite all these points, the foundation for a bosonic
ground state RDMFT was proposed only very recently [15, 16]. This is even more remarkable, since its
fermionic counterpart is enjoying an intensive ongoing development [17–37].

In order to describe many-body quantum systems comprehensively, an extension of ground RDMFT to
excited states is imperative. It is the main goal of this work to propose exactly such an RDMFT for calculating
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bosonic excitations energies. For this, we resort in section 2 to a generalization of the Rayleigh–Ritz
variational principle to w-ensemble states. By proving in this framework a generalization of the
Hohenberg–Kohn [38] and Gilbert theorem [39], we confirm the existence of a corresponding universal
functional. To turn this abstract result into a more practical one, we then extend in section 3 the formalism
by resorting to the Levy–Lieb constraint search in combination with an exact convex relaxation scheme. This
then yields a variational expression for the universal functional. To solve the underlying one-body
N-representability problem we adapt in section 3 a general methodology that has recently been used for
solving the corresponding fermionic problem [40, 41]. This in turn reveals a remarkable hierarchy of bosonic
exclusion principles which we derive and discuss in section 5. Finally, we comment on the implications of the
bosonic exclusion principles for bosonic lattice density functional theory (DFT) in section 6.

2. RDMFT for excited states

2.1. Motivation of functional theories
To first motivate RDMFT from a general perspective for both bosons and fermions, we observe that different
subfields of the quantum sciences are typically characterized by a fixed interaction Ŵ. For instance, in
quantum chemistry one considers Coulomb interaction, in condensed matter physics the Hubbard on-site
interaction and in the field of ultracold gases the contact interaction. Accordingly, each scientific field refers
to a corresponding set of Hamiltonians Ĥ of interest which is parameterized by the one-particle Hamiltonian
ĥ according to

RDMFT: Ĥ(ĥ)≡ ĥ+ Ŵ . (1)

Here, ĥ= t̂+ v̂ consists of both a kinetic energy t̂ and an external potential v̂, and a possible coupling
constant in front of Ŵ would be absorbed into ĥ through a rescaling of the energy. Effectively, the motivation
behind RDMFT is to solve, at least in principle, the ground state problem of Ĥ(ĥ) for the full class {ĥ} of
one-particle Hamiltonians ĥ. From a heuristic point of view, this identifies the 1RDM γ̂ as the natural
variable since it is conjugate to the one-particle Hamiltonian ĥ according to the Riesz representation
theorem. Fixing in addition also the kinetic energy t̂ would reduce the space of Hamiltonians of interest to an
affine subspace,

DFT: Ĥ(v̂)≡ v̂+ t̂+ Ŵ , (2)

which is then parameterized by the external potential only. Since the corresponding natural variable would
be the simpler particle density this reasoning would motivate DFT. In our work, however, we consider a fully
variable one-particle Hamiltonian due to the following reasons. First, as it has been noted already in Gilbert’s
seminal work on ground state RDMFT, absorbing inactive core orbitals in molecular systems leads to
additional non-local terms in the one-particle Hamiltonian [39]. Second, recent advances in the field of
ultracold gases make possible the variation of the kinetic energy operator [42, 43]. Third, by involving the
full 1RDM, RDMFT is better suited than DFT for dealing with strongly correlation systems. For instance,
according to the nonfreeness [44–47] for pure states Γ̂,

N (Γ̂)≡ min
Γ̂ ′∈Mfree

S(Γ̂||Γ̂ ′)

=

{
S(γ̂)+ S(1− γ̂) , for fermions

S(γ̂)− S(1+ γ̂) , for bosons
(3)

the 1RDM γ̂ quantifies in terms of the quantum relative entropy S(Γ̂||Γ̂ ′)≡ Tr
[
Γ̂
(
ln(Γ̂)− ln(Γ̂ ′)

)]
the

‘distance’ of a quantum state Γ̂ to the manifoldMfree of free states [44–50]. The latter include for fermions
(in their closure) the Slater determinants, f †φ1

. . . f †φN
|0 〉, and S(γ̂)≡−Tr1[γ̂(ln(γ̂)] denotes in (3) the von

Neumann entropy.

2.2. Generalized variational principle
The heuristic argument about (affine) spaces of Hamiltonians of interest and emerging natural variables is
turned into a concise statement through the Hohenberg–Kohn theorem and generalizations thereof. To
explain this, we focus directly on RDMFT for exited states, also since it contains ground state DFT and
RDMFT as special cases. Similar to the latter two also our w-ensemble RDMFT for excited states will be
based on a suitable variational principle. In 1988, Gross, Oliviera, and Kohn (GOK) proposed the following
generalization of the Rayleigh–Ritz variational principle in order to extend DFT to excited states [51–53]: let
Ĥ denote a Hamiltonian on a D-dimensional Hilbert spaceH with increasingly ordered eigenenergies
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E1 ⩽ E2 ⩽ . . .⩽ ED and corresponding eigenstates |Ψj〉. Furthermore, let w ∈ RD be a vector with

decreasingly ordered entries w1 ⩾ w2 ⩾ . . .⩾ wD ⩾ 0, and normalization
∑D

i=1wi = 1. EN(w) shall denote

the set of all density operators with fixed decreasingly ordered spectrum spec↓(Γ̂) = w. Then, the weighted
sum of the eigenvalues Ej follows as [51–53]

Ew ≡
D∑
j=1

wjEj = min
Γ̂∈EN(w)

Tr
[
Γ̂Ĥ

]
, (4)

where the minimizer is given by

Γ̂w =
D∑
j=1

wj|Ψj〉〈Ψj| . (5)

This variational principle shall now be applied to the class (1) of Hamiltonians of interest. Accordingly, each
energy eigenvalue Ej ≡ Ej(ĥ) becomes a function of the variable one-particle Hamiltonian ĥ. The same holds

for the corresponding eigenstates |Ψj(ĥ)〉 as long as they are unambiguously defined. This is the case

whenever the energies Ej(ĥ) with non-vanishing weights wj are non-degenerate. Furthermore, to determine
the lowest r energies it is sufficient to restrict to weight vectors w= (w1,w2, . . . ,wr,0, . . .) with only r
non-zero weights. Indeed, by considering then r such linearly independent w, one would obtain r averaged
energies Ew and any energy Ej with 1⩽ j⩽ r could be obtained from a suitable linear combinations thereof.
Since realistic electronic systems exhibit often symmetries a few comments are in order here: in applications
of w-ensemble RDMFT and the variational principle (4) in general one restricts the sum on the right side
in (4) to just a few (r many) weights, i.e. one considers w with w1 ⩾ . . .⩾ wr > wr+1 = . . .= wD = 0. Having
access to the averaged energy function Ew would then allow one to extract the energies of the r energetically
lowest eigenstates of Ĥ(ĥ), e.g. by taking the derivative with respect to wj or subtracting averages Ew for
different choices w from each other. Moreover, the GOK variational principle and the entire formalism
presented in the following can be applied for Hamiltonians with obvious symmetries (giving rise to some
good quantum number Q),

Ĥ(ĥ)≡
⊕
Q

ĤQ(ĥ)≡
⊕
Q

(
ĥQ + ŴQ

)
, (6)

to each symmetry sectorHQ separately. For instance, in the context of quantum chemistry, this would mean
to exploit the spin-symmetries and simplify w-RDMFT by dealing with the different spin sectors Q≡ S or
Q≡ (S,M) separately. Initial approaches contributing to this direction were established in ground state
RDMFT in [23, 29, 33, 34, 54–58]. Accordingly, the most relevant applications of w-ensemble RDMFT from
a practical point of view refer to r⩽ 3. To be more specific, r= 1 corresponds to ground RDMFT, whereas
r= 2 and r= 3 would provide access to the lowest two and lowest three energies, respectively.

2.3. Generalized Hohenberg–Kohn theorem
In order to prove a generalization of the Hohenberg–Kohn [38] and Gilbert theorem [39] for w-ensembles
we assume that the first r eigenstates of Ĥ(ĥ) are non-degenerate. In that case we have for every w with at
most r non-vanishing weights the following sequence of three consecutive maps,

w−RDMFT : ĥ
(I)7−→ Ĥ(ĥ)

(II)7−→ Γ̂w(ĥ)
(III)7−→ γ̂w(ĥ) , (7)

where γ̂w(ĥ)≡ NTrN−1[Γ̂w(ĥ)] denotes the 1RDM of the w-minimizer Γ̂w(ĥ) of the Hamiltonian Ĥ(ĥ). We
call a 1RDM γ̂w w-ensemble v-representable [59] if there exists a corresponding ĥ such that γ̂w follows from
the corresponding sequence (7), i.e. γ̂w = γ̂w(ĥ).

To discuss the possible validity of a generalized Hohenberg–Kohn theorem in w-ensemble RDMFT, we
observe that the map (I), ĥ 7→ ĥ+ Ŵ, is apparently invertible. In the context of DFT, the three consecutive
maps are given by

DFT: v̂
(i)7−→ Ĥ(v̂)

(ii)7−→ Γ̂(v̂)
(iii)7−→ ρ(v̂) . (8)

Then, the Hohenberg–Kohn theorem proves also the invertibility of the maps (ii) and (iii) [38], and thus we
have in particular Γ̂≡ Γ̂(ρ). Since the N-particle quantum state Γ̂ determines all properties of its quantum
system, already the particle density ρ alone determines, at least in principle, various physical properties of the
system with Hamiltonian Ĥ(v̂) in its ground state. The analogous statement can also be proven in the context
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of ground state RDMFT, i.e. for (7) with w= w0 ≡ (1,0, . . . ,0), with the 1RDM γ̂ rather than the density ρ as
natural variable [39]. Yet, map (II) cannot be inverted anymore since it is a many-to-one map. For instance,
this can be deduced from finite fermionic or bosonic lattice systems with t̂= 0: the respective eigenstates are
given by the configuration states, where each particle occupies a lattice site. Accordingly, the ordering of the
energy eigenvalues is insensitive to a sufficiently small change of the external potential (see also, e.g. [15])
and thus each configuration state appears as ground state for multiple one-particle Hamiltonians.

Since ground state RDMFT is contained in our w-ensemble RDMFT, or by generalizing the previous
argument to w-ensembles, we conclude that map (II) will not be invertible in w-ensemble RDMFT. In
contrast, map (III) is still invertible which we prove in the following by reductio ad absurdum. For this, we

assume that there existed two different w-ensemble minimizers Γ̂(1,2)
w with the same 1RDM γ̂w. Since this

assumption refers to the framework (7) of w-ensemble RDMFT, there would then exist two different ĥ(1,2)

such that Γ̂(1,2)
w would be the unique minimizer (5) for Ĥ(ĥ(1,2)) in (4). Hence, we would have

Ew(ĥ
(1)) = TrN

[
Ĥ(ĥ(1))Γ̂(1)

w

]
< TrN

[
Ĥ(ĥ(1))Γ̂(2)

w

]
= TrN

[
Ĥ(ĥ(2))Γ̂(2)

w

]
+Tr1

[(
ĥ(1) − ĥ(2)

)
γ̂w

]
. (9)

Repeating the same derivation for interchanged indices, 1↔ 2, and then adding the two inequalities (9)
would yield the contradiction Ew(ĥ(1))+ Ew(ĥ(2))< Ew(ĥ(1))+ Ew(ĥ(2)). Accordingly, in the context (1) of
Hamiltonians of interest and for any w there exists a corresponding one-to-one correspondence between
w-ensemble minimizer states Γ̂w and w-ensemble v-representable 1RDMs γ̂w. This also implies that the
expectation value of any observable of a system in a w-ensemble minimized state can be understood as a
functional of the underlying 1RDM. In particular, this applies to the w-ensemble energy Ew and its one- and
two-particle interaction contributions. If the restriction to non-degenerate energy eigenstates is removed,
one can prove the analogue of the so-called weak Hohenberg–Kohn theorem [60, 61] by following the same
arguments as in [61]. To explain this, we assume that Ĥ(1,2) share a common γ̂w. As a result, the strict
inequality in equation (9) is replaced by a non-strict inequality. Interchanging the indices 1↔ 2 then implies
that

Ew(ĥ
(1))− Ew(ĥ

(2)) = Tr1[(ĥ
(1) − ĥ(2))γ̂w] (10)

which leads to TrN[Ĥ(ĥ(2))Γ̂
(1)
w ] = Ew(ĥ(2)). Then, the analogue of the weak Hohenberg–Kohn theorem for

w-ensembles states that if two Hamiltonians Ĥ(ĥ(1,2)) in equation (4) share the same γw there also exists a
common minimizer state Γw.

In order to prove the analogue of the second and third part of the Hohenberg–Kohn theorem [38, 62, 63]
we observe, as a direct consequence of the variational principle (4),

Ew(ĥ) = TrN[Ĥ(ĥ)Γ̂w(ĥ)]⩽ TrN[Ĥ(ĥ)Γ̂w(ĥ
′)] (11)

for any possible w-ensemble minimizer Γ̂w(ĥ ′) (5). Exploiting then for w-ensemble v-representable 1RDMs
γ̂w their one-to-one correspondence to w-ensemble minimizers Γ̂w yields (with γ̂w ≡ γ̂w(ĥ))

Ew(ĥ) = Tr1[ĥγ̂w] +Fw(γ̂w)⩽ Tr1[ĥγ̂
′
w] +Fw(γ̂

′
w) , (12)

where Fw(γ̂w)≡ TrN[Ŵ Γ̂w(γ̂w)] is the universal functional, defined on the domain of w-ensemble
v-representable 1RDMs. Equation (12) means nothing else than that the w-weighted energy Ew(ĥ) of Ĥ(ĥ)
can be obtained variationally, namely by minimizing Tr1[ĥγ̂ ′

w] +Fw(γ̂
′
w). Moreover, the minimum is

attained for the true physical 1RDM γ̂w(ĥ). We would like to stress that the generalized Hohenberg–Kohn
theorem for w-ensembles derived in this section is concerned with the original perspective on functional
theories by Hohenberg–Kohn and Gilbert, respectively. In particular, it includes Gilbert’s ground state
RDMFT [39] as the special case w= (1,0, . . .). We illustrate the extension from ground states to
w-ensembles for both DFT and RDMFT in figure 1. The extensions of the two further approaches by Levy
and Valone [64, 65] to w-RDMFT for bosons will be discussed in section 3 below.

We conclude this section, by presenting an equation for calculating indirectly the universal functional. It
refers to the sequence (7): for any w-ensemble v-representable 1RDM γ̂w ≡ γ̂w(ĥ), the generalized
Hohenberg–Kohn theorem implies

Fw(γ̂w) = Ew(ĥ)−Tr1[ĥγ̂w] . (13)

Due to the prospects of machine learning techniques and big data science, this relation is gaining relevance.
For instance, the analogue of equation (13) in ground state DFT has been used recently to determine a rather
accurate approximation to the exchange-correlation functional for one-dimensional systems. For this, the
ground state problem was solved for numerous external potentials with the help of the density matrix
renormalization group ansatz and this data has then be exploited in some fitting scheme [66].
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Figure 1. Several variants of DFT and RDMFT which differ in the domains of their universal functionals. In our work we establish
three variants of w-RDMFT for targeting excited states through a twofold generalization of ground state DFT. First, in the spirit
of Gilbert’s work [39], we extend the scope to variable non-local external potentials and second we consider N-particle density
operators with arbitrary (fixed) spectrum w. For each choice, DFT versus RDMFT and ground state versus excited state approach,
there are three variants. The first one is always based on a Hohenberg–Kohn/Gilbert-like theorem, the second one on the
Rayleigh–Ritz variational principle or a generalization thereof, while the third one follows from the second one through an exact
convex relaxation.

3. Constrained search formalism forw-ensembles

The results of section 2 establish w-ensemble RDMFT on a rather abstract level. It is not clear yet how this
approach based on the generalization of the Hohenberg–Kohn theorem could be realized in practice. In
particular, one would first need to solve the corresponding intricate w-ensemble v-representability problem
to determine the functional’s domain. Moreover, restricting to spin-symmetry sectors does not necessarily
remove all energy degeneracies of realistic systems and thus our generalized Hohenberg–Kohn theorem
would not always be applicable. To deal with these caveats, we work out in the following the same ideas that
were quite effective for the development of DFT and RDMFT for ground states.

3.1. Notation and constrained search for ground states
We first introduce some notation and briefly recap some key results on ground state RDMFT. These concepts
will reappear in the following sections in a modified form, adapted to the description of excited states. Since
we are interested in describing N-particle quantum systems, we first introduce the N-particle Hilbert space
HN and denote byH1 the underlying d-dimensional one-particle Hilbert space. For identical fermions, all
states inHN are antisymmetric under the exchange of two particles,HN ≡ ∧N[H1], whereas for bosons they
are symmetric,HN ≡ SN[H1]. Moreover, we denote by EN the set of all ensemble N-particle density
operators Γ̂. Then, the extremal elements of EN form the set PN of pure states Γ̂≡ |Ψ〉〈Ψ|. By tracing out
N − 1 particles from a state Γ̂ ∈ EN, we obtain the one-particle reduced density operator γ̂,

γ̂ ≡ NTrN−1[Γ̂] =
d∑

i=1

λi|i〉〈i| , (14)

where the eigenvalues λi are the so-called natural occupation numbers and |i〉 the corresponding natural
orbitals.

According to Levy [64] and Lieb [67], the ground state energy E(ĥ) and the ground state 1RDM then
follow from the Rayleigh–Ritz variational principle as

E(ĥ) = min
Γ̂∈PN

TrN
[
(ĥ+ Ŵ)Γ̂

]
≡ min

γ̂∈P1
N

[
Tr1[ĥγ̂] +F(γ̂)

]
. (15)

The pure ground state universal functional F(γ̂) in this so-called constrained search formalism follows from
the minimization of the expectation value TrN[Ŵ Γ̂] over all Γ̂ ∈ PN,

F(γ̂)≡ min
PN3Γ̂7→γ̂

TrN[Ŵ Γ̂] . (16)

In its original formulation by Levy [64], the minimization in equation (15) is performed over all pure states
Γ̂ ∈ PN and thus the domain of F consists of all pure state N-representable 1RDMs γ̂ ∈ P1

N = NTrN−1[PN].
However, the non-convex set P1

N is in general unknown for fermions, a fact which is due to the too
complicated generalized Pauli constraints [68–70]. Justified by the observation that an exact convex
relaxation [71] of the non-convex optimization problem (15) does not change the outcome of the
minimization, Valone [65] proposed to extend the domain of F to all ensemble N-representable
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γ̂ ∈ E1
N = N,TrN−1[EN]. Indeed, both sets EN and E1

N are convex and in particular EN
1 = conv(PN

1 ), where
conv(·) denotes the convex hull (see [71]). Moreover, the corresponding ensemble ground state functional F̄
is equal to the lower convex envelope of F [22],

F̄(γ̂) = conv(F(γ̂)) . (17)

For fermions, Valone’s [65] formulation of RDMFT is the crucial step which turned RDMFT into a
practical method since the set E1

N is only restricted through the well-known Pauli exclusion principle
0⩽ λi ⩽ 1. In the case of bosons, the natural occupation numbers are only restricted through 0⩽ λi ⩽ N
and there are no additional constraints as the generalized Pauli constraints for fermions. Therefore, the pure
state N-representability constraints for bosons are known and, in particular, E1

N = P1
N [15, 24]. Nevertheless,

relaxing the minimization in equation (15) to a convex one is also advantageous for bosons, at least from a
numerical point of view. It namely removes potential local minima in which the 1RDMmay get stuck while
minimizing the energy functional.

3.2. Extension of constrained search tow-ensembles
The GOK variational principle (4) applied to the N-particle Hamiltonian Ĥ(ĥ) (1) in combination with the
constrained search leads to an w-ensemble functional in a straightforward manner:

Ew(ĥ) = min
Γ̂∈EN(w)

TrN[(ĥ+ Ŵ)Γ̂]

= min
γ̂∈E1

N(w)

[
min

EN(w)3Γ̂7→γ̂
TrN[(ĥ+ Ŵ)Γ̂]

]
= min

γ̂∈E1
N(w)

[
Tr1[ĥγ̂] +Fw(γ̂)

]
, (18)

where

Fw(γ̂)≡ min
EN(w)3Γ̂7→γ̂

TrN[Ŵ Γ̂] . (19)

It is worth noticing that for w0 ≡ (1,0, . . .) we recover ground state RDMFT and (18) reduces indeed to (15).
Moreover, equation (18) defines the universal w-ensemble functional Fw(γ̂) in a similar fashion as
equation (15) defines the universal ground state functional F . The domain of Fw is given by those 1RDMs
γ̂ ∈ E1

N(w) which follow from an N-boson density operator Γ̂ ∈ EN(w) by tracing out N − 1 particles. Thus,
an w-ensemble N-representability problem arises. Due to the nonlinear spectral restriction of EN to EN(w),
both sets EN(w) and E1

N(w) are not convex in striking contrast to EN and E1
N, respectively. In analogy to

Levy’s ground state RDMFT, the description of E1
N(w) would involve for any w highly involved additional

constraints on the natural occupation numbers.

3.3. Convex relaxation of w-ensemble RDMFT
Since the w-ensemble N-representability problem is too intricate, the excited state RDMFT introduced in
section 3.2 is not feasible from a practical point of view: without knowing the functional’s domain E1

N(w),
the process of deriving functional approximations cannot be initiated. Yet, any non-convex minimization
problem can be turned into a corresponding convex one, at least in principle [71]. This crucial observation
from convex analysis allows us to circumvent the too involved w-ensemble N-representability constraints in
the same way as Valone’s approach circumvented the generalized Pauli constraints (recall section 3.2).
Applied to the constrained search formalism in equation (18), this means to replace the universal
w-ensemble functional Fw(γ̂) by its lower convex envelope,

F̄w(γ̂)≡ conv(Fw(γ̂)) , (20)

whose domain follows as the convex hull of E1
N(w),

Ē1
N(w)≡ conv

(
E1
N(w)

)
. (21)

Since the partial trace map TrN−1[·] is linear, it commutes with the convex hull operation conv(·). This allows
us to obtain a more concrete characterization of the convex hull of E1

N(w) (the proof is identical to the one of
the same statement for fermions as presented in [41])

Ē1
N(w) = NTrN−1[ ĒN(w)] =

⋃
w ′≺w

E1
N(w

′) . (22)

6
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Here, a vector w ′ ∈ RD is majorized by a vector w ∈ RD, w ′ ≺ w, if and only if

w ′↓
1 + . . .+w ′↓

k ⩽ w↓
1 + . . .+w↓

k ∀1⩽ k⩽ D , (23)

with equality for k=D. The arrow ↓ indicates that (23) refers to the vector entries arranged in decreasing
order. In the following, we can always omit this superscript since the entries of weight vectors w are already
ordered decreasingly by definition. According to equation (22), the set Ē1

N(w) contains all those 1RDMs
which can emerge from an N-particle state with spectrum majorized by the weight vector w. This implies
that the set Ē1

N(w) is of purely kinematic nature in the sense that it does not depend on the Hamiltonian of
the system but just on w and to a smaller degree also on the number N of bosons and the dimension d of the
one-particle Hilbert spaceH1. Moreover, the last equality in equation (22) leads to the following inclusion
relation,

w ′ ≺ w ⇔ Ē1
N(w

′)⊂ Ē1
N(w) . (24)

Hence, the smaller the weight vector w with respect to majorization, the smaller will be the set of relaxed
w-ensemble N-representable 1RDMs, i.e. the domain of F̄w. We will illustrate this inclusion relation for
several weight vectors w in figure 5, where the shrinking volume of the respective domains is in evidence.

Clearly, the convex relaxation does not change the outcome for the energy Ew and, in particular,

Ew = min
γ̂∈Ē1

N(w)

[
Tr1[ĥγ̂] + F̄w(γ̂)

]
. (25)

It is worth noticing that the same relaxed w-ensemble RDMFT can be obtained by starting at the N-boson
level, where ĒN(w) = conv(EN(w)). Thus, replacing the set EN(w) by its convex hull in the constrained
search formalism (18) immediately leads to a more concrete expression for the relaxed w-ensemble
functional

F̄w(γ̂) = min
ĒN(w)3Γ̂7→γ̂

TrN[Γ̂Ŵ] . (26)

The importance of the constrained search expression (26) of the relaxed w-ensemble functional F̄w can
hardly be overestimated. It will namely serve as the starting point for the construction of functional
approximations. For instance, the first promising route would be to restrict the set ĒN(w) to a manifold of
variational states similarly to the derivation of the Bogoliubov functional in ground state RDMFT [16]. As a
second option, the analogy of equation (26) to the Lieb variational principle in DFT [67] might be exploited
through a Legendre–Fenchel transformation of the energy Ew. We illustrate these two directions for two
model systems, the symmetric Hubbard dimer and the homogeneous BEC, in our follow-up work [72].
Nonetheless, it will be one of the crucial long-term challenges to develop more advanced strategies for
calculating more and more sophisticated functional approximations.

3.4. Determining the functional’s domain
A formal definition of the set Ē1

N(w) as in section 3.3 without a constructive approach to characterize it is
apparently not sufficient for practical purposes. It would be unclear how to derive approximations of F̄w and
how to minimize then the total energy functional Tr1[hγ] + F̄w (26) over the set Ē1

N(w). Hence,
equation (26) only leads to a viable w-ensemble RDMFT if a compact description of the functional’s domain
is found. In the following, we derive the vertex representation of the functional’s domain which takes
effectively the form of a polytope. To this end, we will exploit a fruitful analogy between the mathematical
problem of determining the set Ē1

N(w) and the description of non-interacting bosons. In particular, this will
allow us to resort to our physical intuition about non-interacting bosons, leading to a better understanding
of the boundary of Ē1

N(w).
According to a duality principle [71], every compact convex set can be characterized equivalently either

through all its points or all its supporting hyperplanes. In the following, as it is illustrated in figure 2, we
apply this to our compact convex set Ē1

N(w). First, since Tr1[ĥγ̂]≡ 〈ĥ, γ̂〉1 defines an inner product, a notion
of geometry exists on the underlying space of 1RDMs. Accordingly, any one-particle Hamiltonian ĥ defines a
direction within this space. Minimizing 〈ĥ, γ̂〉1 over all 1RDMs γ̂ ∈ Ē1

N(w) corresponds to shifting the
hyperplane of constant value 〈ĥ, γ̂〉1 in direction−ĥ until it touches the boundary of Ē1

N(w). Performing this
minimization for all one-particle Hamiltonians ĥ determines Ē1

N(w) entirely. Since the spectral vector w
refers primarily to the N-boson level, we lift the minimization to the N-boson level through

min
γ̂∈Ē1

N(w)
Tr1[ĥγ̂] = min

Γ̂∈ĒN(w)
TrN[ĥΓ̂] . (27)

7
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Figure 2. Illustration of the duality correspondence. Left: schematic illustration of the minimization of Tr1[h(·)] over a compact
convex set Ē1

N(w). Right: performing the minimization for all possible ‘directions’ h determines the boundary of Ē1
N(w).

Furthermore, we observe that the set Ē1
N(w) is invariant under unitary transformations,

û Ē1
N(w)û

† = Ē1
N(w) , (28)

for all unitaries û acting on the one-particle Hilbert spaceH1. To prove equation (28), we need to show that
γ̂ ∈ Ē1

N(w) implies γ̂ ′ ≡ ûγ̂u† ∈ Ē1
N(w) for any unitary û. First, as a consistency check, we observe that γ̂

′ is
indeed still a 1RDM since û does not change the eigenvalues of γ̂. Second, since γ̂ ∈ Ē1

N(w) there exists
Γ̂ ∈ ĒN(w) with NTrN−1[Γ̂] = γ̂. The properties of the partial trace TrN−1[·] directly imply

NTrN−1[Γ̂
′] = γ̂ ′ for Γ̂ ′ ≡ û⊗

N
Γ̂
(
û†
)⊗N

. Since û⊗
N
is a unitary operator on the N-particle space, Γ̂ ′ has the

same eigenvalues as Γ̂ and thus Γ̂ ′ ∈ ĒN(w) which completes the proof.
Accordingly, we can restrict our procedure of characterizing Ē1

N(w) through supporting hyperplanes to

one-particle Hamiltonians ĥ with an arbitrary but fixed eigenbasis, ĥ=
∑d

i=1 hi|i〉〈i|, and h1 ⩽ h2 ⩽ . . .⩽ hd.
Equivalently, the knowledge of the spectrum of a 1RDM γ̂ is sufficient to determine whether γ̂ belongs to the
set Ē1

N(w) or not. Accordingly, we are interested in describing the set of all admissible spectra λ≡ spec(γ̂),

Σ(w)≡ spec
(
Ē1
N(w)

)
. (29)

As our following derivation reveals, Σ(w) takes the form of a polytope, i.e. it is the convex hull of a finite
number of vertices v(l). Furthermore, in agreement with (28), the spectral polytope Σ(w)⊂ Rd is invariant
under permutations of the Cartesian coordinates. Without loss of generality we therefore focus for a moment
on the set Σ↓(w) of decreasingly ordered vectors

Σ↓(w) = Σ(w)∩∆ , (30)

where∆ denotes the set

∆= {λ↓ ∈ Rd |N⩾ λ↓
1 ⩾ λ↓

2 ⩾ . . .⩾ λ↓
d ⩾ 0} . (31)

In contrast to the fermionic case [40], the natural occupation numbers λ↓
i in the set∆ do not obey the Pauli

exclusion principle. This in turn results in a different underlying combinatorial structure leading to a
qualitative different characterization of Σ↓(w) than in the fermionic case [41]. Before presenting the general
procedure for calculating Σ↓(w), we illustrate in the left panel of figure 3 relation (30) between the three sets
Σ(w) (grey), Σ↓(w) (overlap between grey and blue) and∆ (blue) for (N,d) = (2,3). Due to the
normalization of λ to the total particle number, we can omit the third natural occupation number λ3, and
focus solely on λ1 and λ2. The spectral polytope Σ↓(w) is restricted through the two equalities on the natural
occupation numbers λ1 and λ2 indicated by the dashed lines (see section 5.2 for their derivation). The red
point marks the position of the single independent vertex v (the other five vertices follow from v by
permutation of its entries). We provide a systematic derivation of Σ↓(w) and the vertex v in the following. To
illustrate the differences to the fermionic case discussed in [40, 41], we show in the right panel of figure 3 the
spectral polytopes for N = 2 fermions in d= 3 orbitals and the same choice of the weight vector w.

To calculate the vertices v(l) of the bosonic spectral polytope Σ↓(w), we start by determining for every set
of energy levels h≡ h↑ ≡ (h1, . . . ,hd) the sequence

h 7→ Γ̂ 7→ γ̂ 7→ v . (32)

8
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Figure 3. Left: illustration of the bosonic spectral polytopesΣ(w) (grey) andΣ↓(w) (overlap between grey and blue) and∆
(blue) for (N,d) = (2,3). (See text for more explanations.) Right: illustration of the fermionic spectral polytopes for the setting
(N,d) = (2,3) introduced in [40, 41]. Note that the different length of the weight vector w is due to the different dimension of
the two particle Hilbert space for bosons and fermions.

Here, Γ̂ denotes the minimizer state of the right side of equation (27) and v= spec(γ̂) the spectrum of the
resulting 1RDM γ̂. The eigenstates of a one-particle Hamiltonian ĥ, represented by the vector h, on the
N-boson Hilbert space are given by the configuration states |i〉 ≡ |i1, . . . , iN〉. To determine in a systematic
manner all distinct vertices v in equation (32), we first introduce a partial ordering of configurations i, where
a configuration is an element of the set

IN,d ≡ {i≡ (i1, . . . , iN)|1⩽ i1 ⩽ i2 ⩽ . . .⩽ iN ⩽ d} . (33)

Furthermore, we can assign an energy to every configuration through h and thus order different
configurations according to their energy. Then, for any two configurations i and j we define the partial
ordering

i⩽ j :⇔
N∑

k=1

hik ⩽
N∑

k=1

hjk ∀h≡ h↑

⇔ ik ⩽ jk ∀1⩽ k⩽ N . (34)

Hence, the partial order of configurations in IN,d is completely characterized by the eigenenergies of a chosen

one-particle Hamiltonian ĥ. The partial ordering (34) leads for each choice of h to a corresponding lineup l,

i1 → i2 → . . .→ ir , (35)

of the energetically lowest configurations ij. Due to reasons that become clear in the following, the length of
those lineups is restricted to the number r of non-vanishing weights wj in the weight vector w. As an
illustration, we show in the left panel of figure 4 the structure of this ‘excitation spectrum’ for N = 3 bosons
following from the partial ordering of configurations in equation (34). For r= 1, the lineup (35) consists of
only one configuration (1,1,1). For r= 2, we have again a single lineup (1,1,1)→ (1,1,2) now consisting of
two configurations. Note that according to (4), w-RDMFT with r= 2 is already sufficient for calculating the
ground state energy and its gap to the first excited state. For r= 3 there are now two choices of the second
excitation leading to two lineups. Furthermore, for larger values r⩽ 4, both configurations (1,1,3) and
(1,2,2)must appear before (1,2,3), a pattern which can be easily continued to derive all distinct lineups (35)
required to calculate the vertex representation of Σ(w). The right panel of figure 4 shows the structure of the
excitation spectrum for N = 3 fermions discussed in detail in [40, 41] to highlight the differences between
the fermionic and bosonic settings.

Determining all possible lineups l (35) is absolutely essential because each of them defines one resulting
N-boson minimizers Γ̂ in (32) and in that sense gives rise to one vertex of Σ(w). According to the GOK
variational principle (4), the density operator corresponding to (35) reads

9
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Figure 4. Illustration of the structure of the ‘excitation spectrum’ for N= 3 bosons (left) and N= 3 fermions (right). See text for
more details.

Γ̂ =
r∑

j=1

wj|ij〉〈ij| . (36)

Using the spectrum of the corresponding 1RDM γ̂ in (32) we eventually obtain the d-dimensional vertex

v(l) =
r∑

j=1

wjnij , (37)

where nij ≡ spec
(
NTrN−1

[
|ij〉〈ij|

])
is an occupation number vector corresponding to the configuration ij.

The kth entry of nij equals the number of k’s contained in ij. Thus, by referring to the partial ordering (34),
e.g. the lowest configuration (1,1, . . . ,1) corresponds to the occupation number vector n(1,1,...,1) =
(N,0, . . . ,0).

Finally, the spectral polytope Σ(w) follows as the convex hull of all possible permutations of the entries of
all vertices v(l) (recall (30)),

Σ(w) = conv
({

π(v(l))
∣∣ l= 1, . . . ,R,π ∈ Sd

})
, (38)

where Sd denotes the permutation group of a set of d elements (here the entries v(l)) and R the number of
independent vertices v(l). Hence, Σ(w) takes indeed the form of a polytope as anticipated above.

In figure 5, as a further illustration of the spectral polytopes, we demonstrate the important inclusion
relation equation (24) for the setting (N,d) = (2,3). Indeed the six spectral polytopes Σ(w) (and Σ↓(w)) are
contained in each other since the six respective weight vectors w are related by majorization.

So far, we developed a general strategy for determining the vertex representation of the spectral polytope
Σ(w) for a given total particle number N and a d-dimensional one-particle Hilbert spaceH1. Since
experiments and theoretical studies are often performed for different particle numbers, we next comment on
the relation between the spectral polytopes for different settings (N, d). For N⩾ r− 1, increasing the particle
number to N ′ > N just means to add to each configuration ij in the lineups (35) another N ′ −N bosons in
the lowest orbital |1 〉. Consequently, this does not change the number of lineups and their structure. Instead,
it only alters the first entry of the corresponding natural occupation number vectors v(l) which indeed
depends explicitly on N. This also implies that for fixed d⩾ r the vertices v(l) for N and N ′ > N are related
through

v(l)N ′ = v(l)N + δe1 , (39)

where δ = N ′ −N and e1 = (1,0, . . .). Note that the polytope of a higher dimensional setting (N ′,d ′) with
d ′ > d can be obtained from ΣN(w) by the following two steps. First, one extends the d-dimensional vector

v(l)N to a d′-dimensional vector by adding zero entries and afterwards uses the relation (39) to increase the
particle number. Yet, for the sake of simplicity we compare in the following spectral polytopes ΣN(w) and
ΣN ′(w) only for fixed d. By applying a generalization of Rado’s theorem [41] (see also equation (57)) and
using equation (39), we find that ΣN ′(w) and ΣN(w) are related through (see appendix)

ΣN ′(w)≡ ΣN(w)+ C , (40)

where C is a rescaled simplex with edge length δ,

C ≡ conv({π(δe1) |π ∈ Sd}) . (41)

10
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Figure 5. For (N,d) = (2,3) we illustrate the inclusion relation (24) of the spectral polytopes Σ(w) (grey and blue) and Σ↓(w)
(blue) for several weight vectors w.

The sum of the two sets in equation (40) is nothing else than the Minkowski sum of two permutation
invariant polytopes which means that ΣN ′(w) = ΣN(w)+ C = {λ+ c |λ ∈ ΣN(w),c ∈ C}. Clearly, the sum
of two convex sets is also convex. Also, every µ ∈ ΣN ′(w) is correctly normalized since all λ ∈ ΣN(w) are
normalized to N and all c ∈ C are normalized to δ. In figure 6 we illustrate the Minkowski sum in
equation (40) for d= 3 and the two particle numbers N ′ = 5 and N = 3. The spectral polytope Σ5(w) (grey)
is obtained by adding the elements of Σ3(w) (green) and the rescaled simplex C (dashed). Due to the
normalization of all occupation number vectors in Σ5(w) and Σ3(w) to the respective total particle number
N ′ or N, we can omit the value of λ3.

4. Bosonic exclusion principle

For practical purposes, using the vertex representation of the spectral polytope Σ(w) to check whether a
natural occupation number vector λ belongs to Σ(w) or not is highly inefficient. Yet, every polytope can
equivalently be described through its halfspace representation [71]. Then, testing the membership of λ
reduces to checking only finitely many linear conditions Dk(λ

↓)⩾ 0. A simple procedure for translating the
vertex representation of Σ(w) into a halfspace representation is presented for r⩽ 3 in section 5, while a more
general mathematical procedure applicable to arbitrary r can be found in [73]. These anticipated linear
constraints represent a bosonic analogue of the Pauli exclusion principles since they restrict the way bosons
can multiply occupy orbitals. Their existence might be surprising at first sight. This is due to the fact that the
solution of the pure state N-representability problem for bosons is trivial, i.e. there are no constraints on
occupation numbers beyond normalization and positivity [15, 24]. This also relates to the fact that the

11



New J. Phys. 25 (2023) 013009 J Liebert and C Schilling

Figure 6. The spectral polytopeΣ5(w) (grey) for (N,d) = (5,3) follows from the Minkowski sum of the set C (dashed) and
the spectral polytope Σ3(w) (green) for (N,d) = (3,3). The green polytope is contained in the grey one since 0 ∈ C.

Table 1. Number of generating vertices v( j) and number of exclusion principle constraints definingΣ(w) for r ⩽ 12. These numbers are
independent of N and d, provided (42) is respected.

r 1 2 3 4 5 6 7 8 9 10 11 12

#v( j) 1 1 2 4 8 17 37 82 184 418 967 2278
#ineq. 1 2 3 5 8 13 22 36 59 99 171 299

complete hierarchy of Pauli exclusion principles [41] has its origin in both the exchange symmetry and the
enforced mixedness of the N-particle state while the bosonic constraints emerge primarily from the latter.
Furthermore, it is worth emphasizing here that the scope of these bosonic exclusion principle constraints is
not restricted to the natural orbital basis. According to the Schur–Horn theorem [74, 75] they namely apply
to the occupation numbers of any orthonormal basis. As it is explained in section 6), they are thus potentially
relevant in GOK-DFT applied to bosonic lattice models.

There are two particularly noteworthy additional structural aspects concerning the bosonic exclusion
principle. First, the linear inequalities Dk(λ

↓)⩾ 0 are effectively independent of the total boson number N
and the dimension d of the one-particle Hilbert space. The only requirement for this statement to be valid is
that N and d are large enough such that

N⩾ r− 1 , d⩾ r , (42)

which can generally be assumed. This independence of the inequalities of N and d is in striking contrast to
the generalized Pauli constraints for fermions in ground state RDMFT for pure states [22]. There, different N
and d give rise to different inequalities which in turn makes their derivation tremendously complicated
[68–70, 76, 77] and their application practically impossible. Second, there is even a hierarchy of bosonic
exclusion principle constraints. To be more specific, all constraints derived for a value r are still contained in
the minimal hyperplane representation for any r ′ > r, i.e. they remain facet-defining. Or in other words, the
constraints for r′ are given by those for r ′ − 1, complemented by a few additional new ones. A concrete
illustration of this hierarchy is presented in section 5 for small r. To demonstrate the above statement, we
provide in table 1 the number of vertices v( j) and the corresponding number of inequalities for r⩽ 12. The
comprehensive derivation of those halfspace conditions from the vertex representation of Σ(w) for arbitrary
r is presented in [73].

5. Derivation of inequalities for small numbers of non-vanishing weights

In this section, also as an illustration of sections 3.4, 4, we derive for r⩽ 3 the bosonic exclusion principle
constraints. This means to first determine the vertex representation of Σ(w) and then to turn it into a
halfspace representation by using the elegant concept of vector majorization. We also explain how possible
redundant inequalities can be identified in order to obtain a minimal halfspace representation of Σ(w).
Throughout this section, we consider arbitrary N and d. This then also demonstrates how the resulting
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facet-defining inequalities can be extended to settings of larger N ′ and d′, including the important complete
basis set limit d ′ →∞.

5.1. r= 1 non-vanishing weight
We start by deriving the hyperplane representation of the spectral polytope Σ(w) for r= 1 and verify as a
consistency check that we recover the trivial solution of the bosonic one-body pure N-representability
problem. As discussed in the context of figure 4, there is only one lineup (35) and it consists of the single
configuration (1, . . . ,1). According to (32), this yields one w-minimizer,

Γ̂ = |1, . . . ,1〉〈1, . . . ,1| (43)

leading through (32) to the single vertex v= (N,0, . . .). We have thus obtained the vertex representation of
Σ(w) introduced in equation (38). Hence, Σ(w) is the permutohedron

Σ(w) = conv({π(v) |π ∈ Sd}) , (44)

which is nothing else than the convex hull of all possible permutations of the entries of the vertex v. By
Rado’s theorem [78], (44) is equivalent to

Σ(w) = {λ ∈ Rd |λ≺ v} . (45)

In particular, we have

Ē1
N(w) = {γ̂ ∈ E1

N | spec(γ̂)≺ v} . (46)

It is exactly the majorization condition λ≺ v which defines the sought-after hyperplane representation of
Σ(w), i.e. the bosonic exclusion constraints. Here, λ≺ v implies that

λ↓
1 ⩽ N ,

λ↓
1 +λ↓

2 ⩽ N ,

...

d∑
i=1

λ↓
i = N . (47)

Assuming λ↓
i ⩾ 0, all inequalities (47) are satisfied as a direct consequence of the normalization and are

therefore redundant. Thus, we indeed recover the solution of the one-body pure N-representability problem
with the well-known trivial constraints 0⩽ λi ⩽ N.

5.2. r= 2 non-vanishing weights
Next, we consider r= 2 non-vanishing weights with w1 +w2 = 1. By referring to the excitation spectrum in
figure 4, we have only one lineup (35) which reads

(1, . . . ,1︸ ︷︷ ︸
N

)→ (1, . . . ,1︸ ︷︷ ︸
N−1

,2) . (48)

The corresponding minimizer Γ̂ is given by

Γ̂ = w1|1, . . . ,1〉〈1, . . . ,1|+w2|1, . . . ,1,2〉〈1, . . . ,1,2| (49)

and according to (32) and (37) we obtain the vertex

v= (N− 1+w1,w2,0, . . .) . (50)

Since there exists only one v as for r= 1, we can again apply Rado’s theorem [78] to obtain a minimal
hyperplane representation of Σ(w) and it follows that

Ē1
N(w) = {γ̂ ∈ E1

N | spec(γ̂)≺ v} . (51)

Then, the majorization condition λ≡ spec(γ̂)≺ v enforces the constraints
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λ↓
1 ⩽ N− 1+w1 ,

λ↓
1 +λ↓

2 ⩽ N ,

...

d∑
i=1

λ↓
i = N . (52)

Hence, all constraints except the first and last one are redundant, and we arrive at the minimal hyperplane
representation

λ↓
1 ⩽ N− 1+w1 ,

d∑
i=1

λ↓
i = N . (53)

Moreover, in agreement with table 1 there is only one additional constraint in the first line of equation (53)
compared to r= 1. In particular, the inequalities of a minimal hyperplane representation for r= 1 and r= 2
represent the first two levels of the hierarchy of bosonic exclusion principles.

5.3. r= 3 non-vanishing weights
According to the excitation spectrum in figure 4, there exist two lineups

(1) : (1, . . . ,1︸ ︷︷ ︸
N

)→ (1, . . . ,1︸ ︷︷ ︸
N−1

,2)→ (1, . . . ,1︸ ︷︷ ︸
N−1

,3) ,

(2) : (1, . . . ,1︸ ︷︷ ︸
N

)→ (1, . . . ,1︸ ︷︷ ︸
N−1

,2)→ (1, . . . ,1︸ ︷︷ ︸
N−2

,2,2) . (54)

These two lineups correspond to the two vertices (recall that w1 +w2 +w3 = 1)

v(1) = (N− 1+w1,w2,1−w1 −w2,0, . . .) ,

v(2) = (N− 2+ 2w1 +w2,2− 2w1 −w2,0, . . .) . (55)

Since there are now two vertices v(1) and v(2), Rado’s theorem used for r= 1,2 to obtain the hyperplane
representation of Σ(w) in (38) does not apply anymore. Instead, we can make use of a generalization of
Rado’s theorem introduced in [41]. It states that for vectors v(1), . . . ,v(R) ∈ Rd, the polytope

P = conv
({

π(v( j))
∣∣∣ j= 1, . . . ,R,π ∈ Sd

})
(56)

is equivalent to

P =
{
λ
∣∣∣∃ conv. comb.

R∑
j=1

pjv
( j) ≡ v : λ≺ v

}
. (57)

Applied to the spectral polytope Σ(w) (38) with R= 2, this implies that λ ∈ Σ(w) if and only if there exists a
convex combination u= qv(1) +(1− q)v(2) such that λ≺ u. This majorization condition leads to the
constraints

λ↓
1 ⩽ N− 2+ 2w1 +w2 + q(1−w1 −w2) ,

λ↓
1 +λ↓

2 ⩽ N− q(1−w1 −w2) ,

λ↓
1 +λ↓

2 +λ↓
3 ⩽ N ,

...

d∑
i=1

λ↓
i = N . (58)

Here, all inequalities except the first two are redundant since they are automatically satisfied due to the
normalization of λ. To derive a minimal hyperplane representation, we need to eliminate the parameter q.
Therefore, we first notice that the upper bound on λ↓

1 can vary between N− 2+ 2w1 +w2 and N− 1+w1
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since q is restricted to q ∈ [0,1]. Moreover, the upper bound on λ↓
1 +λ↓

2 can vary between N and
N− 1+w1 +w2. Thus, it must always hold that λ↓

1 ⩽ N− 1+w1 which requires to adjust the value of q
according to

q⩾ λ↓
1 −N+ 2− 2w1 −w2

1−w1 −w2
. (59)

This inequality is then used to tighten the upper bound on λ↓
1 +λ↓

2 to 2(N− 1)+ 2w1 +w2 −λ↓
1 . Thus, our

linear constraints determining a minimal hyperplane representation of the spectral polytope are given by

λ↓
1 ⩽ N− 1+w1 ,

2λ↓
1 +λ↓

2 ⩽ 2(N− 1)+ 2w1 +w2 ,

d∑
i=1

λ↓
i = N . (60)

Thus, the second inequality is the only additional new one compared to r= 2. This illustrates again the
hierarchy of exclusion principle constraints for bosons introduced and explained in section 4.

The mathematical formalism to derive systematically the halfspace representation of the spectral
polytopes for larger values of r is presented in [73].

6. DFT for excitations in lattice boson systems

In this section we explain how and why the bosonic exclusion principle constraints discussed in section 4
apply also to bosonic lattice for excitations (GOK-DFT). A detailed review about GOK-DFT can be found in
[79]. In the following, we refer to the diagonal entries of the 1RDM in any orthonormal basis as ‘occupation
numbers’ and for the specific choice of the natural orbital basis as ‘natural occupation numbers’. Let us start
by recalling from a general perspective the relation and main difference between RDMFT and DFT:
compared to RDMFT, DFT restricts the class (1) of Hamiltonians of interest further to Ĥ(v̂)≡ v̂+ t̂+ Ŵ by
fixing also the kinetic energy, i.e. only the external potential v̂ is variable. Thus, the resulting universal
functional Ḡw in DFT depends on both the fixed kinetic energy t̂ and fixed interaction Ŵ and it is universal
in the sense that it is independent of v̂. For discrete lattice systems, Ḡw is a functional of the vector n≡ (ni) of
the lattice site occupancies ni, Ḡw ≡ Ḡw(n). Then, the domain of Ḡw(n) is the set of all vectors n which follow
from a 1RDM γ̂ which is (relaxed) w-ensemble N-representable. Since the elements of the vector n are
nothing else than the diagonal elements of the 1RDM γ̂ in the lattice site basis {|i〉}, all concepts presented in
section 2 can easily be translated to define the universal w-functional Ḡw(n) and determine its domain.
According to a fundamental theorem by Schur and Horn [74, 75], the vector of diagonal elements of a matrix
is majorized by the vector of its eigenvalues. Hence, the occupation number vector n is majorized by the
natural occupation number vector λ, i.e.

n≡
(
〈i|γ̂|i〉

)
≺ λ≡ spec(γ̂) . (61)

Then, using a generalization of Rado’s theorem [41] (see also equation (57)) it follows immediately from the
transitivity of the majorization that nmust obey the same non-trivial constraints as λ. In GOK-DFT, the
weight dependence of the functional’s domain was detected by means of an explicit functional derivation for
the Hubbard dimer [80, 81]. In summary, our work in particular provides the first constructive derivation of
the weight dependence of the functional’s domain in w-ensemble lattice DFT. Despite the combinatorial
differences in the derivation of the bosonic exclusion principle constraints, this result on lattice DFT is not
specific to bosons and also applies to the fermionic case as already emphasized in [41].

7. Summary and conclusions

We proposed and worked out a novel method for calculating excitation energies in quantum systems of
correlated bosons. Motivated by the Penrose–Onsager criterion for BEC, the exponentially complex
many-boson wave function was substituted by the simpler 1RDM γ̂: by exploiting a variational principle for
density matrices with spectrum w [51–53] we proved a corresponding generalization of the
Hohenberg–Kohn [38] and Gilbert theorem [39]. In that sense, we confirmed on a more formal level for
both bosons and fermions the existence of a universal w-ensemble functional. This functional theory
provides access to the energies of low-lying states and their differences—including the important ground
state gap—through the variation of the weight distribution w of the excited states. Accordingly, w-ensemble

15



New J. Phys. 25 (2023) 013009 J Liebert and C Schilling

RDMFT constitutes a potentially ideal framework for describing quantum phase transitions. In particular, it
will be an instructive challenge to explore the nonanalytical structural features that the universal functional
needs to possess in order to correctly describe quantum phase transitions. Yet, to first establish w-RDMFT as
a practically useful method we had to circumvent the underlying v-representability problem that has also
hampered the development of DFT and RDMFT for ground states. In order to achieve this we resorted to the
Levy–Lieb constrained search formalism [64, 67] followed by an exact convex relaxation scheme. The latter
was absolutely vital since solving the one-body w-ensemble N-representability problem is impossible for
realistic systems sizes [68, 69, 77]. It is therefore one of the main achievements of our work (see sections 3–5)
to circumvent the computational complexity of the respective N-representability problem. Inspired by the
seminal work [65] by Valone on fermionic ground state RDMFT and in analogy to fermionic w-RDMFT [40,
41], we achieved this by applying an exact convex relaxation to w-RDMFT. Then, in a second step we
resorted to concepts from convex analysis to derive a systematic and efficient characterization of the
functional’s domain Ē1

N(w). Eventually, this revealed a hierarchy of bosonic exclusion principle constraints
parameterized by the number r of finite weights wj. In analogy to Pauli’s famous exclusion principle for
fermionic pure states, these new constraints are effectively independent of the total particle number N and
the dimension d of the one-particle Hilbert space. Our comprehensive derivation also demonstrates that the
boundary of the prescribed set of admissible 1RDMs contains the entire information about the excitation
spectrum of non-interacting bosons. It follows from perturbation theoretical arguments that this statement
remains approximately true for weakly interacting systems. We demonstrate the application of w-RDMFT
for bosons by deriving first-level functional approximations and further investigate the significance of the
boundary for the universal functional in the follow-up work [72]. Moreover, the bosonic exclusion principle
constraints may have some broad physical relevance beyond functional theory. For instance, they could be
used to dissect the statistical uncertainty of bosonic occupation numbers according to its origin to entropic
thermal contributions and the interaction between the particles. An alternative prospective application is to
monitor the time-evolution of open-quantum systems with an emphasis on the effect of thermalization.
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Appendix. Relating spectral polytope for different particle numbers

In this section, we prove that every natural occupation number vector µ ∈ ΣN ′(w) corresponding to a
system with N ′ bosons can be related to a λ ∈ ΣN(w) with N ′ > N⩾ r− 1 in a unique way. A main tool to
establish the sought-after relation between the spectral polytopes for N and N ′ > N is the following
generalization of Rado’s theorem [41] stating that for finitely many vectors v(1), . . . ,v(R) ∈ Rd, the
permutation-invariant polytope

P = conv
({

π(v( j))
∣∣∣ j= 1, . . . ,R,π ∈ Sd

})
(A1)

is equivalent to

P =
{
λ
∣∣∣∃ conv. comb.

R∑
j=1

pjv
( j) ≡ v : λ≺ v

}
. (A2)

Also recall that the vertices v( j) of the two spectral polytopes ΣN(w) and ΣN ′(w) are related through

v( j)N ′ = v( j)N + δe1 , (A3)

where δ = N ′ −N and e1 = (1,0,0, . . . ,0) is a unit vector.
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In the following, we consider an arbitrary but fixed number R of vertices v( j). According to two main
theorems in convex analysis by Hardy et al [82] and Birkhoff and von Neumann [83, 84], every µ ∈ ΣN ′(w)
can be written as

µ=
R∑

i=1

∑
π∈Sd

qi,ππ(v
(i)
N ′) , (A4)

where
∑R

i=1

∑
π∈Sd qi,π = 1 and Sd denotes the set of all permutations π of d elements. Combining this

with (A2) and (A3) leads to

µ=
R∑

i=1

∑
π∈Sd

qi,ππ
(
v(i)N ′

)

=
R∑

i=1

∑
π∈Sd

qi,ππ
(
v(i)N + δe1

)

=
R∑

i=1

∑
π∈Sd

qi,π
(
π(v(i)N )+π(δe1)

)

≡ λ+ δ
R∑

i=1

∑
π∈Sd

qi,ππ(e1) , (A5)

where λ ∈ ΣN(w). The argument in (A5) can be simply reverted to derive for any λ ∈ ΣN(w) a unique
corresponding µ ∈ ΣN ′(w). It follows that

µ ∈ ΣN ′(w) = ΣN(w)+ C ,
= {λ+ c |λ ∈ ΣN(w),c ∈ C} (A6)

where the set

C ≡ conv({π(δe1) |π ∈ Sd}) (A7)

is a rescaled simplex with edge length δ = N ′ −N. Thus, according to equation (A6), ΣN ′(w) is given by the
Minkowski sum of ΣN(w) and C.
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