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Abstract
Coupling dynamical charges to gauge fields can result in highly non-local interactions with a linear
confining potential. As a consequence, individual particles bind into mesons which, in one
dimension, become the new constituents of emergent Luttinger liquids (LLs). Furthermore, at
commensurate fillings, different Mott-insulating states can be stabilized by including
nearest-neighbour (NN) interactions among charges. However, rich phase diagrams expected in
such models have not been fully explored and still lack comprehensive theoretical explanation.
Here, by combining numerical and analytical tools, we study a simple one-dimensional Z2 lattice
gauge theory at half-filling, where U(1) matter is coupled to gauge fields and interacts through NN
repulsion. We uncover a rich phase diagram where the local NN interaction stabilizes a Mott state
of individual charges (or partons) on the one hand, and an LL of confined mesons on the other.
Furthermore, at the interface between these two phases, we uncover a highly frustrated regime
arising due to the competition between the local NN repulsion and the non-local confining
interactions, realizing a pre-formed parton plasma. Our work is motivated by the recent progress
in ultracold atom experiments, where such simple model could be readily implemented. For this
reason we calculate the static structure factor which we propose as a simple probe to explore the
phase diagram in an experimental setup.

1. Introduction

Recently, quantum simulation based on cold atomic gases has allowed to make significant progress in the
exploration of many-body quantum physics. This has opened a new venue for the study of lattice gauge
theories (LGTs) [1, 2] where numerical calculations are notoriously difficult in many situations, especially
when doping is finite. For instance, we have seen remarkable success in implementing U(1) LGT models with
tunable parameters [3–7]. Significant progress has also been made in simulating Z2 LGT models by using
Floquet schemes [8], with experimentally realized building blocks which have potential to be scaled to bigger
system sizes [9, 10]. Furthermore, it has also been shown that the Z2 LGTs could be implemented using
superconducting qubits [11, 12]. More recently, a Rydberg tweezer array implementation [13] which utilizes
the so called local-pseudo-generators [14, 15] has been proposed. In addition, digital schemes have been put
forward [11, 16–18], and during the time of writing this manuscript, a realization of a Z2 LGT Hamiltonian
was achieved on a digital quantum computer [19]. All these accomplishments have paved the way towards
successful experimental simulation of Z2 LGTs and show that tremendous advancement has been made in
this field, which has long been limited to mostly theoretical considerations [10]. Here we explore a phase
diagram of a realistic Z2 LGT model where U(1) matter is coupled to a Z2 gauge field, by using analytical
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arguments and large-scale density-matrix renormalization group (DMRG) simulations [20, 21]. We use the
SYTEN toolkit [22, 23] for finite DMRG calculations and TeNPy [24] for infinite DMRG (iDMRG)
calculations. The system features an interesting interplay of bare nearest-neighbour (NN) interactions of the
conserved and mobile Z2 charges (partons) on one hand, and non-local interactions mediated by the gauge
field on the other hand, which induce linear confining potential of particle pairs. We focus on the filling of
one-half, where we reveal a parton-plasma like phase in a strongly frustrated regime, where the two types of
interactions have opposite effects.

Previous theoretical studies of the system we consider focused on liquid phases at generic fillings and
without the NN repulsion [25], near-full filling [26], and it has been shown that the NN repulsion leads to
mesonic Mott insulating states at two-thirds filling [27]. At this commensurate filling, n= 2/3, the
gauge-mediated confining potential and the NN repulsion act in concert without creating frustration, which
results in a phase diagram with three different regimes: deconfined partons in the absence of the confining
field, dimers (mesons) consisting of pairs of confined partons [25], and a Mott state of crystallized dimers
[27]. The model is in fact confining for any nonzero value of the Z2 electric field term, as shown in
references [25, 27]. Interestingly, the deconfined and confined partons both exhibit Luttinger liquid (LL)
behaviour in the absence of the NN interactions or for generic fillings, with gapless deconfined collective
excitations. However, the constituents of such LL drastically change when the partons become confined,
which is reflected in a change of Fermi momentum and can be detected by measuring Friedel oscillations at a
sharp edge of the system [25].

In this work we study the case of half-filling n= 1/2, where the NN repulsion and the confining force
have opposite effects, thus giving rise to quantum frustration. In the absence of the gauge-mediated
confining potential we obtain deconfined partons, which can crystallize into a Mott state by applying strong
enough repulsive NN interaction. On the other hand, partons become confined for any non-zero value of the
gauge mediated confining potential, thus forming an LL of confined mesons. Hence the Mott state is
destabilized by the increasing value of the confining Z2 electric field term. At the transition from the Mott
regime to the LL regime the system becomes highly frustrated and realizes a parton-plasma behaviour on
short-to-intermediate length scales. There the parton correlation length exceeds the typical distance between
partons, which results in an apparent screening of the confinement potential on short length scales. However
the partons still remain confined, which is reflected in the behaviour on longer length scales. These
aforementioned regimes at half-filling are summarized in the phase diagram in figure 1.

The model we discuss in this work can be simulated experimentally by the setups mentioned in the
beginning. A particularly suitable approach would be to use the Rydberg tweezer setup with
local-pseudo-generators [14, 15]. We propose the static structure factor as a simple probe which could be
used in such experiments, since it could be readily obtained from snapshots. Recent developments in
advanced state tomography reconstruction schemes [28] could also be used to gain even better insights into
our model within existing experiments.

This article is organized as follows: we start with the introduction of the model. We continue with
analytical considerations of different tractable analytical limits. To do so we use different mappings of the
original model to more descriptive effective models. In the next section we complement the analytical
considerations with state of the art DMRG calculations and map out the complete phase diagram at
half-filling. Next, we discuss a peculiar regime of degenerate dimer states which correspond to maximum
frustration. To this end we consider the parton Green’s function and the pair–pair correlation function.
Finally we draw conclusions and offer an outlook in the last section.

2. Model

We consider a Z2 LGT with NN interactions among Z2-charged U(1) matter particles [25, 27]

Ĥ=−t
∑
⟨i,j⟩

(
â†i τ̂

z
⟨i,j⟩âj + h.c.

)
− h

∑
⟨i,j⟩

τ̂ x⟨i,j⟩ +V
∑
⟨i,j⟩

n̂in̂j. (1)

Here â† is the hard-core boson creation operator and τ̂µ,µ ∈ {x,z} are Pauli matrices representing the Z2

gauge (µ= z) and electric (µ= x) fields defined on the links between lattice sites. In addition we consider
the Gauss law [29]

Ĝj = (−1)n̂j τ̂ xj−1,jτ̂
x
j,j+1 =±1, (2)

which divides our Hilbert space into different physical sectors. We chose the sector where Ĝj = 1,∀j. Such
construction ensures that the Z2 electric field has to change its sign across an occupied lattice site which gives
us a convenient physical interpretation, where we consider the pairs of particles to be connected with Z2
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Figure 1. A sketch of the phase diagram of the Z2 LGT model (1) at half-filling together with the Gauss law constraint. The
tractable analytical limits of our model are: (A) hard-core bosons with NN interaction h= 0,V ⩾ 0; (B) tightly confined dimers
h→∞; and (C) fluctuating dimers h,V≫ t. From these limits we can identify the region of confined meson Luttinger liquid
(LL) (green), the Mott state consisting of individual partons (red), and the pre-formed parton-plasma region along the 2h= V
line (blue stripes).

electric strings (τ̂ x =−1) and anti-strings (τ̂ x =+1), see figure 1. These reflect the orientation of the Z2

electric field. Hence the first term in the Hamiltonian (1) is the usual hopping term with an additional Z2

gauge operator τ̂ z, which ensures the string attachment to the particle. The second term introduces a linear
confining potential of the pairs with string tension 2h, and the third term is an NN interaction between the
hard-core bosons.

In the absence of the electric field term h and NN interaction V, the system can be mapped into a free
fermion model via an extension of the Jordan–Wigner transformation [29]. For nonzero values of the Z2

electric field the model exhibits confinement of the particle pairs [25] which is a consequence of the
translational symmetry breaking in the so called string-length basis [27].

Throughout this paper we will focus on a half-filled chain, n= 1/2 unless stated otherwise.

3. Analytical limits

We first discuss the one-dimensional (1D) Z2 LGT model (1) in three tractable limits highlighted in figure 1.
This will allow us to identify individual regions in the phase diagram and help us benchmark the numerical
results in the next section.

3.1. Zero electric field term
The original model (1) reduces to a hard-core bosonic model with NN repulsion in the absence of the Z2

electric field term h= 0,V⩾ 0, see figure 1(a). Absence of the electric field term means that there are no
fluctuations in the Z2 gauge field (no string tension), which can thus be eliminated by attaching the Z2

strings to charge operators [25] reminiscent of the Jordan–Wigner transformation [30]. Hence the model
can be rewritten as

Ĥc =−t
∑
⟨i,j⟩

(
ĉ†i ĉj + h.c.

)
+V

∑
⟨i,j⟩

n̂in̂j, (3)

where ĉ†i (̂cj) is the dressed hard-core boson creation (annihilation) operator. Note that we obtain a free
particle model when also V = 0.

The bosonic hard-core model with NN interactions, equation (3), can be mapped into a XXZ spin-1/2
chain [30]. Such model undergoes a transition to the antiferromagnetic state for half-filling at V= 2t, which
corresponds to a gapped Mott state of the original model [30]. Hence our original model (1) undergoes a
transition to a Mott state when h= 0 and V> 2t, (see also appendix A for details).

3.2. Tightly confined dimers
Next, we consider the limit where the Z2 electric field term is much greater than the other parameters in our
model h≫ t,V. In such regime the dimers are tightly confined and can be considered as individual hard-core
bosons. Such mapping can be performed e.g. via the so-called squeeze construction, where one defines the
new hard-core boson as d̂†j = â†j τ̂

z
j,j+1â

†
j+1 [25]. By performing second order perturbation theory, where

hopping t is considered to be a small perturbation, the original model (1) can be mapped to hard-core
bosons with NN interaction [25]

3
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Figure 2. (a) Tightly confined dimers l= 0 which are energetically favourable when 2h> V. (b) Energy cost of extending the
tightly confined dimer to an extended dimer l= 1. (c) Extended dimer configuration when V> 2h.

Ĥd =−t̃
∑
⟨i,j⟩

(
d̂†i d̂j + h.c.

)
+ Ṽ

∑
⟨i,j⟩

n̂in̂j, (4)

where n̂j = d̂†j d̂j, t̃=
t2

2h and Ṽ= 2̃t+V. Note that we included the NN interactions which can be considered
as small perturbation since V≪ h. An important detail in such mapping is also the fact, that the effective
filling is modified since a pair of particles on two lattice sites is squeezed into one single particle on one
lattice site. Hence the filling changes as nd =

1
2
n−1

, where nd is the filling in the effective model (4) [27].

This is effectively the same Hamiltonian as in the case where the string tension is zero and we only
consider NN interactions in the original model, which we discussed in the previous section 3.1. However, the
effective particles considered here are tightly confined dimers, or mesons, which is in stark contrast to the
individual partons considered in model equation (3).

The effective NN interaction in such model can be tuned by modifying the value of V. Although one is
limited to the regime where V≪ h, the effective NN interaction strength Ṽ can nevertheless be tuned to
rather strong values in comparison to hopping t̃. In fact, any nonzero value of the NN repulsion V > 0 results
in Ṽ> 2̃t, while staying in the limit where t,V≪ h, since Ṽ= 2̃t+V.

The effective model can also be mapped to the XXZ spin-1/2 chain in the same way as the hard-core
bosonic model in section 3.1. As already discussed before, the XXZ spin-1/2 chain undergoes a transition to
the gapped antiferromagnetic state when Ṽ> 2̃t, and when the magnetization of the chain is zero, i.e. when
the effective filling of the hard-core bosonic model equals to nd = 1/2 [30]. However, the system remains an
LL of confined dimers for half-filling in the original model, since this corresponds to nd = 1/3 in the effective
model. Hence we have an LL of confined dimers for h≫ V, t which is depicted as region (B) in figure 1.

3.3. Fluctuating dimers
Finally we consider a regime where the Z2 electric field term and the NN repulsion are comparable, but
much greater than the hopping parameter V≈ 2h≫ t.

3.3.1. Absence of hopping
We start by first considering a very simple limit where we set t= 0. Here the interplay of the confining
electric field term and the NN interaction results in two different types of dimers which are energetically
favourable for different values of the parameters h and V. We first note that when a dimer gets longer by one
lattice site the energy cost associated with the electric field is∆E+1 =+2h. Hence we would expect that the
dimers tend to be as short as possible, meaning that we have tightly confined pairs where particles are sitting
next to each other as depicted in figure 2(a). However, since we also have the NN repulsion a tightly confined
dimer, where particles are sitting next to each other, will have an extra energy cost of∆ENN =+V. Hence the
energy of an isolated dimer in a regime where h,V> 0 can be written as

El = Vδ0,l + 2h(l+ 1), (5)

where l is the number of empty sites between particles in a dimer and δ0,l is the Kronecker delta function. By
considering the energy difference between dimers of length l= 1 and l= 0 we define

δ = E1 − E0 = 2h−V. (6)

We thus obtain two different types of meson configurations: the tightly confined dimer l= 0, will be
favourable when 2h> V and the extended dimer l= 1, will be favourable when V> 2h, see figure 2(b).

4
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Figure 3.Mapping of the Z2 LGT model (a) to an effective spinful model (b). (c) The definition of the squeezed space
construction for 2h= V and V,h≫ t. (d) Extended dimer l= 1 where the bent arrows represent hypothetically allowed hoppings
of the particles in the dimer. (e) Configuration when the right particle in (d) hops to the left. (f) Configuration when the left
particle in (d) hops to the right. Corresponding configurations in the squeezed space are depicted on the right, where the red
spheres with arrows represent the pseudospin-up and pseudospin-down respectively.

Longer dimers (l> 1) will always be unfavourable since any additional link between confined partons costs
additional energy 2h. We therefore obtain a clear boundary between two different regimes on the line
2h= V. For 2h> V we expect tightly confined dimers, which at half-filling can be placed rather freely on the
lattice. This can be done as long as there is at least one free site between adjacent dimers. As a result we get an
extensive degeneracy and we expect an LL like behaviour of confined dimers when t is added as perturbation.
On the other hand when V> 2h we get a simple Mott state of partons, see figure 2(c), which only has a
two-fold overall degeneracy.

3.3.2. Hopping as perturbation
Next, we include hopping which we consider to be weak in comparison to the other two parameters h,V≫ t.
Having strong Z2 electric field terms h, means that long dimers are energetically penalized and we restrict
our Hilbert space to dimers of length l< 2. This means that we only consider the tightly confined dimers
(l= 0), where the particles are NNs, and the extended dimers (l= 1), where there is one empty lattice site
between two particles which make up the dimer. Such constraint allows us to squeeze the two types of dimers
into two different types of mesons which we can consider to be of pseudospin-up (extended dimers) or
pseudospin-down (tightly confined dimers) type, see figures 3(a)–(c). Note that we always squeeze three
lattice sites into one site in the effective model. It does not matter if the dimer is short or extended, see
figure 3(c). Our new spinful particles also have a hard-core property since having two pseudospins on the
same lattice site does not represent any physical configuration.

Combining all of these considerations allows us to write a new effective Hamiltonian for the squeezed
particles

Ĥs = P̂

−t
∑
j

(
ĉ†↑,jĉ↓,j+1 + ĉ†↑,jĉ↓,j + h.c.

)
+

t2

2(δ+V)

∑
j

n̂↓,jn̂↑,j+1

+
t2

δ+V

∑
j

n̂↓,jn̂↓,j+1 + δ
∑
j

n↑,j

 P̂, (7)

where ĉ†↑ is the pseudospin-up creation operator, ĉ†↓ is the pseudospin-down creation operator, n̂↓,j = ĉ†↓,jĉ↓,j,

and n̂↑,j = ĉ†↑,jĉ↑,j. In addition, P̂ is a projector to a subspace with no double occupancy, and into a subspace
excluding configurations which are highly energetically penalized due to the NN repulsion, due to the fact
that V≫ t. More precisely, the configurations which we project out are those where an up-particle is a left
neighbour to any other particle since no NN configurations of particles from different dimers are allowed
(see appendix B for details). The first terms in the Hamiltonian come directly from the hopping of the
individual particles in the dimer. In the pseudospin language this results in a spin-flip plus hopping to an NN
term and an on-site spin-flip term, see figures 3(d) and (f). These are all direct consequences of our
construction and the restriction of dimers to be shorter than l< 2 (see appendix B). The NN terms are
second order processes and come from restricted virtual hopping of the spins when two particles are sitting
next to each other. The last term is the energy contribution δ, which sets in when we are slightly away from
the 2h= V regime and comes directly from equation (6).

From the considerations written above we thus expect strong fluctuations between tightly confined and
extended dimers close to 2h= V. Such fluctuations are interesting in the highly doped regime which is
exactly the case at half-filling. Although the particles are overall confined, strong fluctuations in the lengths
of such dimers between l= 0 and l= 1 are energetically allowed. This means that such particles effectively do
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not feel the linear confinement on short length scales comparable to their average spacing. In other words we
expect short-range plasma-like fluctuations of partons in this regime.

On the other hand, the situation becomes clearer when one of the parameters becomes dominant. For
example when 2h≫ V, we regain the LL of tightly confined dimers as discussed in section 3.2 since δ > 0
would penalize the extended dimers. Conversely, when 2h≪ V we get a Mott insulating state of individual
partons â, as discussed in section 3.1.

3.4. Summary of the analytical results
We can now distinguish different regions in the phase diagram at half-filling as a function of h and V which
we sketch in figure 1. In the absence of the Z2 field term h, and when V> 2t we have a 1/2-parton Mott
insulating state. Such state remains stable even for weak values of the Z2 electric field term 2h< V. On the
other hand, when the Z2 electric field term is dominant, the individual particles are confined and form the
meson LL. The third regime of fluctuating dimers, the parton-plasma like regime, is concentrated around the
2h= V line when h,V≫ t.

4. Phase diagram

In this section we complete the phase diagram of the model. In the previous section we already uncovered
some of the features in specific limits where analytical results are known and sketched the overall phase
diagram in figure 1. Here we complement these results with numerical calculations. In particular we rely on
the calculations of charge gap and static structure factor which allows us to distinguish different phases.

4.1. Charge gap
We considered the charge gap defined as

∆(N,L) =
E(N− 2,L)+ E(N+ 2,L)− 2E(N,L)

2
, (8)

in order to map out the Mott insulating state, where E(N,L) is the ground state energy of a system with N
particles on L lattice sites. Note that we consider E(N± 2,L) states due to the Gauss law constraint where we
make sure that every particle is part of a pair. Odd particle number would result in peculiar edge effects
where a particle would stick to the edge.

The ground state energies are calculated using SYTEN [22, 23], a DMRG toolkit [20, 21] (see also
appendix C). We fix the filling to one-half, n= N/L= 1/2, and calculate the ground state energies at
different chain lengths in order to extrapolate the gap to the thermodynamic limit,∆= limL→∞∆(N,L)
(see appendix D). By scanning the values of parameters h and V we map out the phase diagram which is
presented in figure 4(a).

We obtain a Mott state, which is stabilised by the NN interactions for V> 2t on the h= 0 line. This is in
agreement with the analytical considerations in section 3.1. Moreover we find an exponential opening of the
gap which signals a Berezinskii-Kosterlitz-Thouless (BKT)-like transition (see appendix D). The Mott state is
also observed for weak values of the electric field term relative to the NN interaction strength. It is clearly
destabilized by stronger electric field term h. The gap disappears approximately at 2h= V which is again in
agreement with our discussion on the fluctuating dimers in section 3.3.

4.2. Static structure factor
Motivated by the possible experimental implementation and to complement the charge gap results we also
consider the static structure factor defined as [31]

S(k) =
1

N
∑
j,l

e−i( j−l)k
⟨
n̂jn̂l

⟩
. (9)

By using SYTEN we calculated the structure factor by scanning through different values of h and V (see
appendix E). We observe two different types of peaks: at half-integer and integer multiples of π. These peaks
depend on the values of our parameters h and V, see figures 4(b) and (c).

The peaks at k= π show similar behaviour as the charge gap. They grow with the increasing value of V
and decrease by applying the Z2 electric field term, see figures 5(a) and (b). This is in agreement with our
predictions, namely that the peak at k= π reflects the parton Mott state, where we expect that the
configuration of the charges is an alternation of occupied and empty lattice sites (see appendix E).

On the other hand, the structure factor peaks at k= π/2 show the exact opposite behaviour to the peaks
at k= π, see figure 5(b). The height of the peaks rises with increasing value of the electric field term h,

6
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Figure 4. (a) Phase diagram of the charge gap extrapolated in the thermodynamic limit as a function of h and V. A substantial
charge gap develops for V> 2t which is again destabilised for 2h> V. The cutoff for the colour scale was chosen to be at
∆c =∆(h/t= 0,V/t= 2). In (b) and (c) we show the height of the peaks of the structure factor equation (9) for different
momenta k≈ π/2 (b) and k≈ π (c).

Figure 5. The static structure factor equation (9) for different values of parameters h and V. (a) In the absence of the electric field
term h= 0, the peaks at k= π rise significantly for V> 2t signalling a Mott state. (b) For zero value of the NN repulsion V = 0,
the peaks at k= π/2 and k= 3π/2 become visible for the non-zero electric field term h> 0. (c) At a finite value of the NN
repulsion V= 4t, the peak at k= π decreases with the increasing value of h, in contrast to the peaks at k= π/2 and k= 3π/2
which rise with the increasing strength of h. The height of both type of peaks are similar for 2h= V.

whereas no peaks at half-integer values of π can be seen in the region where we expect a Mott state. Peaks at
half-integer values of π in combination with our earlier findings, where we observed no gap in that
parameter regime, suggests that we observe the expected LL of confined dimers. Exponentially localized
peaks at k= π/2 would generally mean that we have order with period of four lattice sites. However, the fact
that we do not observe the charge gap in that parameter regime suggests that these are short-length
correlations and the peaks are only algebraically localized. Hence, we do not observe a new Mott insulating
state but an LL where the doubling of the period of Friedel oscillations in comparisons to h= 0 means that
the constituents of the LL are confined mesons.

5. Pre-formed parton-plasma

As already discussed in section 3 we can have energetically degenerate meson states at 2h= V in the absence
of hopping. These two meson configurations still dominate the physics when weak hopping is introduced as
perturbation. Due to the degeneracy at 2h= V, t= 0, the exact relation between the two competing
interactions is important and results in a very different overall behaviour. Since we consider the
commensurate filling of n= 1/2 we obtain a rather simple Mott state of alternating filled and empty lattice
sites for V≫ h. This is reflected in the values of the charge gap as well as in the structure factor peak at k= π
discussed in the previous sections. On the other hand, when h≫ V we obtain an LL of confined dimers
where the NN interactions play a minor role. While these limits can be interpreted in terms of an LL of
confined partons and a Mott state of individual partons respectively, the exact nature of the transition and
the behaviour around the transition line is not that clear. This is due to the fact that the interplay of the Z2

electric field and the NN interaction results in the already mentioned frustrated state at 2h= V and the high
level of doping. We witness a very interesting behaviour of individual Z2-charged particles which is hard to
capture only in terms of the well known behaviour of the Mott state or the LL.

Now we investigate this regime more closely. The Mott transition occurs close to the line where 2h= V
and V⩾ 2t, as we already discussed in section 3.3. This is also reflected in the charge gap and in the static
structure factor, see figure 4. Near the transition line the confined mesons are able to fluctuate between
length l= 0 and l= 1 configurations. The charge pairs are overall confined due to the non-zero value of the

7



New J. Phys. 25 (2023) 013035 M Kebrič et al

Figure 6. (a) Green’s function equation (10), results calculated with SYTEN in the Mott state (red x’s), around the transition line at
2h= V= 8t (black dots), above the transition line 2h= 5t,V= 8t (green diamonds) and below the transition line
2h= 3t,V= 8t in the Mott state (blue squares). We observe strong exponential decay when 2h> V and a slower exponential
decay when 2h< V. This is contrasted by the case when 2h= V where the initial, slow, power-law decay eventually turns into a
uniform exponential decay for longer distance. On the other hand a steady exponential decay is observed deep in the Mott state
when V= 8t and h= 0. (b) Distance xa where the Green’s function behaviour changes from algebraic to exponential decay as a
function of h, for V= 8t.

Z2 electric field term h ̸= 0 [25, 27]. However, due to the high commensurate filling of n= 1/2 and the fact
that fluctuations between the extended and tightly confined configuration are energetically almost
equivalent, the particles effectively behave deconfined on short length scales in a sense specified below. Hence
we label the region around the 2h= V line as a pre-formed parton-plasma region.

5.1. Green’s function
In order to probe the confinement in the Z2 LGT model we consider the Z2 gauge-invariant parton Green’s
function [25, 27]

G(i− j) =

⟨
â†j

 ∏
j⩽l<i

τ̂ z⟨l,l+1⟩

 âi

⟩
. (10)

At long distances this Green’s function decays exponentially for any non-zero value of the Z2 electric field
term and algebraically for deconfined charges [25].

On intermediate length-scales, in contrast, before the asymptotic long-distance behaviour is established,
the parton Green’s function can behave differently. In the strongly frustrated regime, 2h≈ V, we can find
power-law scaling on short-to-intermediate length scales resembling a parton plasma phase on length scales
significantly exceeding the inter-particle spacing, see figure 6.

To analyse this behaviour more closely, we calculated the Green’s function for different values of
parameters h and V by using SYTEN. The data was then fitted with a function containing a power-law decay,
which reflects the deconfined behaviour on intermediate scales, and exponential decay which reflects
confinement on long scales,

ff = Af x
−αfe−βfx. (11)

Here x= |i− j| as defined in the Green’s function, αf denotes the strength of the power law decay and βf is a
parameter which reflects the strength of the exponential decay. By considering the value of αf and βf we
quantify the character of the Green’s function and distinguish between highly confined behaviour and
deconfined behaviour.

In order to perform the fit we took the logarithm of the data and the distance x in order to capture the
low values of the exponential decay better. As a result, we also had to transform the fitting equation (11)
accordingly (see appendix F). The results of the fit can be seen in figure 7. For low values of h the values of βf

are very low and almost equal to zero. The values of αf are substantially larger suggesting power-law decay
consistent with the deconfined phase. On the other hand, when h becomes larger the values of βf start to rise
and the value of αf starts to decrease. The increase of βf appears to follow the 2h= V line which is in
agreement with our previous numerical data (the charge gap and the structure factor) as well as our
analytical arguments, that the particles become strongly confined into tight dimers. The fact that we can
successfully extract two different parameters, which gradually change their values, already gives us the
promising result that two different types of behaviour can be observed at the same time on different length
scales. This can be clearly observed in figure 6, where we compare the Green’s function results close to 2h= V
line. The exponential decay prevails on the longer length scale whereas the initial decay appears to be
power-law like (see appendix F for more details).

8



New J. Phys. 25 (2023) 013035 M Kebrič et al

Figure 7. Heat maps of parameters αf (a) and βf (b) obtained by fitting the DMRG data (white dots) of the parton Green’s
function with the fitting function for different values of parameters h and V. (c) Estimated value of the transition between the
power-law decay and the exponential decay of the parton Green’s function.

Next, we determine the approximate position where the crossover from the algebraic to the exponential
behaviour occurs by fitting the data only with a power-law function. In order to increase the precision of our
fits we took the logarithm of our DMRG data which we then fitted with the appropriate logarithmic function
that only captures the power-law decay

fc = Ac −αc log(x). (12)

We fitted the above function to different number of data points x for every parameter set h,V. In other
words, we varied the number of data points xa considered in the fit (1⩽ x⩽ xa) from the minimum of
xa = 3 up to xa = 80 (see appendix F). We extracted the fit with the lowest sum of the absolute value of the
covariance matrix elements which we determined as the best value of xa. We then took this value as the
position where the Green’s function behaviour changes from power law decay to the exponential decay. The
results deep in the Mott state at V= 8t can be seen in figure 6(b), where the algebraic behaviour is most
prominent at around h≈ 3.5t. This is slightly below the 2h= V= 8t line, however still consistent with our
claim, since the exponential closure of the Mott gap occurs also slightly below the 2h= V line.

Results for general values of parameter h and V can be seen in figure 7(c). The cutoff close to xa ≈ 3
means that the nature of the function is mostly exponential, signalling strong confinement on all length
scales. This is indeed the case when h≫ t as expected. On the other hand, the cutoff at large values xa ≳ 30,
signals a completely power-law behaviour, consistent with the deconfined phase. As can be seen in figure 7(c)
this is indeed the case for h= 0 and V⩽ 2t where the system is a deconfined LL which is again consistent
with our previous claims.

The most interesting behaviour occurs when the cutoff value is on the intermediate length scale, i.e. when
15≲ xa ≲ 25. Such cutoff values would mean that the particles behave as if they were deconfined on short
length scales x≲ 10. However on longer length scales, when x≳ 30, the exponential decay prevails, which
means that the particles are confined on longer length scales. Cutoff values in the range 15≲ xa ≲ 25
therefore signal pre-formed plasma-like behaviour. We extract such values of the cutoff close to the line
where 2h= V, which supports our previous analytical claims and numerical results, that we get plasma-like
fluctuations on intermediate length scales.

We also briefly comment on the oscillation visible in the Green’s function, see e.g. figure 6. Such
oscillations are in fact predicted by the LL theory and depend on the effective filling of the chain [30]. We
tried different fitting functions where we included the oscillations. The fits were generally successful deep in
the confined LL regime and in the completely deconfined regime. However when the interplay between the
electric field and NN interactions became stronger the quality of the fit became worse. Since we were not
interested in the oscillations but in the general nature of the decay on different length scales we decided to
exclude the oscillations in our fitting functions. As a result the quality of the fits became better and more
reliable for a broader range of parameters. This is another hallmark of beyond-LL behaviour on
short-to-intermediate length scales.

5.2. Pair–pair correlators
As discussed above, due to the confining nature of the Z2 electric field it is convenient in some regimes to
consider the tightly bound mesons as the appropriate constituents. It is therefore useful to analyse the
behaviour of the gauge-invariant meson Green’s function, which reads

⟨b̂†i b̂j⟩= ⟨â†i τ̂
z
i,i+1â

†
i+1âjτ̂

z
j,j+1âj+1⟩. (13)
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Figure 8. Pair–pair correlators at a fixed value of h= 2t (a) and on the 2h= V line (b), for several values of V. In the first case, the
crossover from power-law to exponential decay indicates that the system becomes a Mott insulator for large enough V. In the
second case, the correlators exhibit a power-law decay on the whole line, with an exponent α= 1

2K
that increases monotonically

with h as shown in (c). The same behaviour is also observed if we consider extended dimers of length two (l= 1). This hints at a
gapless Luttinger liquid phase with strong repulsive interactions.

We start by fixing h to a fixed value, and evaluate the correlator (13) numerically for different values of V, see
figure 8(a). Consistent with our expectations, it initially exhibits a power-law behaviour but transitions to an
exponential decay at a quantum critical point in the vicinity of V= 2h. On one side of the transition we have
a gapless LL, while on the other side the system becomes a Mott insulator and all the excitations are gapped.

We then focus of the line 2h= V which, as explained in section 5, is of particular interest due to the
classical degeneracy between dimers of lengths one and two. In figure 8(b) we observe that the correlators
appear to exhibit a power law behaviour on the whole line, with an exponent α that grows to large values as h
is increased, see figure 8(c). We also calculated the same pair–pair correlations but for extended dimers, l= 1
(length-two dimers), where results are the same as for the tightly confined dimers l= 0 (length-one dimers)
for stronger values of h. If we stick to the LL paradigm, this corresponds to a very small Luttinger parameter
K= 1

2α , which indicates strong repulsive interactions between the elementary constituents of the system
[30]. Such result is surprising but can be possibly understood from the fact that at large h the system is highly
constrained, since the mesons cannot overlap. Similar systems, which are integrable, studied in [32] exhibit
power law decays with similarly large exponents.

6. Conclusion and outlook

We mapped out the phase diagram of a half-filled 1D Z2 LGT model, where dynamical U(1) matter with
repulsive NN interactions is coupled to a Z2 gauge field. We used analytical considerations and state of the
art DMRG calculations and uncovered an interesting interplay between the confining non-local interaction,
induced by the Z2 gauge field, and the NN repulsion.

The former exhibits a linear confining potential for parton pairs, which get effectively confined into
mesons. They form a vast region of LL which remains stable even for small values of NN interaction. On the
other hand we established a vast region where individual partons form a Mott insulating state induced by
NN repulsive interaction alone. The Z2 electric field is able to destabilize the Mott insulating state due to the
formation of tightly bound mesonic states. This happens once the field strength exceeds a threshold of
2h≈ V where two specific meson configurations are degenerate.

It is close to this line that the confined mesons are allowed to fluctuate under NN interaction, and give
rise to a pre-formed parton-plasma region. Here, individual partons are still confined but the mesons are
allowed to fluctuate to a dimer where there is an empty lattice site between two partons. This is allowed due
to the NN interaction which compensates for the linear confining potential of the Z2 electric field term.
Combining this effect with high doping at one-half filling we obtain an apparent absence of confinement on
short-to-intermediate length scales. This causes plasma like behaviour of individual partons. However, on
longer length-scales the partons are still confined. This behaviour is observed in the parton Green’s function
and in the pair–pair correlation function.

The remaining question which is yet to be answered is the precise nature of such transition. For this, our
effective squeezed model might be utilized. An interesting extension would also be to reconsider the
dynamical charges as spinful particles, or consider our model in higher dimensions, and at non-zero
temperature.

Moreover it would be desirable to compare our results to experiments. In particular the Rydberg dressing
scheme where the model maps exactly to a t− Jz model [27] is a promising approach which could be
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implemented in a cold atom experiment in addition to the already mentioned Floquet scheme [8–10],
superconducting qubits [11, 12] and recent Rydberg tweezer array proposals [14, 15].
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Appendix A. Mapping to the XXZmodel

The hard-core bosonic model (3) can be mapped to the XXZ spin-1/2 chain by a simple mapping where the
bosonic creation and annihilation operators are replaced with spin raising and lowering operators
b̂†j → Ŝ+j , b̂j → Ŝ−j , b̂

†
j b̂j − 1/2→ Ŝzj [30]. Such mapping gives us the XXZ model up to constant factors [30]

ĤXXZ =
∑
j

[
Jxy

(
Ŝxj+1Ŝ

x
j + Ŝyj+1Ŝ

y
j

)
+ JzŜ

z
j+1Ŝ

z
j

]
. (A1)

The parameters in the XXZ model are directly related to the parameters in the original Z2 LGT model as
2t= Jxy and V= Jz [30]. Due to the mapping, b̂†j b̂j − 1/2→ Ŝzj , the magnetization in the z-direction of the
XXZ model is directly related to the filling in the bosonic model (3). Hence a magnetic field term in the
z-direction in the XXZ model is related to the chemical potential term in the bosonic model.

The diagram for generic values of the parameters (Jxy and Jz) and filling can be calculated via the Bethe
ansatz [30, 33–35]. For zero magnetization it can be calculated analytically. There the model is known to
have an antiferromagnetic transition point at Jz = Jxy, meaning that the system is in the gapped
antiferromagnetic phase for Jz > Jxy and forms an LL for Jz < Jxy [30]. The half-filling of the original
model (3) corresponds to zero magnetization in the XXZ spin-1/2 chain since there are equal number of up
and down spins which corresponds to the equal number of occupied and empty sites. Hence we expect a
transition to the gapped Mott state in the bosonic model (3) at V= 2t, since 2t= Jxy and V= Jz. There is no
transition when the system is away from zero magnetization for any value of Jxy and Jz [30]. Hence,
considering the same parameter regime, but slightly away from half-filling, would result in the system
remaining an LL and there would be no transition to a Mott state.

Appendix B. Details on the fluctuating dimers

In this section we present more details on the derivation of the effective model (7) via the squeeze of the two
different types of dimers into spinful particles. For simplicity we first consider 2h= V and h,V≫ t. The first
condition means that there is energetically no difference between tightly confined and extended dimer. In the
end we will comment what happens when we relax the condition to 2h≈ V, but still keep h,V≫ t.

B.1. Hopping term
We first focus on the hopping of the dimers. We consider an extended dimer depicted in figure 3(d). Due to
our imposed restriction, l< 2, we realize that the left particle of such dimer can hop to the right and that a
right particle can hop to the left. In other words: such dimer can only become shorter, since the only allowed
hopping is for one of the particles in the dimer to hop towards the other particle in the same dimer. In the
first case we obtain the configuration depicted in figure 3(f) and in the later case we get the configuration
sketched in figure 3(e). We observe how is such hopping reflected in the squeezed spin language, sketched
next to the original Z2 LGT configurations, in figures 3(d)–(f). Contraction of the extended dimer to the
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Figure 9. Two states where dimers are allowed to occupy nearest neighbour sites. However any hopping of the particle in the left
dimer to the right is forbidden in case (a) and either hopping of a particle towards the neighbouring dimers is forbidden in case
(b). Both of these states contribute to additional terms, equation (B3).

right means that a pseudospin-up flips to a pseudospin-down on the same site and a contraction to the left
means that a pseudospin-up hops to the right and flips to a pseudospin-down. Opposite processes are of
course equivalent. On the other hand, any other hopping is forbidden since it does not correspond to any
allowed physical configuration, where the dimer remains l< 2. Summarizing all of the above allows us to
write the hopping term in the spinful language as

Ĥt
s = P̂d

−t
∑
j

(
ĉ†↑,jĉ↓,j+1 + ĉ†↑,jĉ↓,j + h.c.

) P̂d, (B1)

where the operator P̂d projects on the subspace where there are no double occupancy on the same lattice site.

B.2. Potential terms
Since we consider V≫ t we exclude all NN configurations of particles which are not part of the same dimer.
This does not include particles in the same dimer, where we have the competition between the Z2 electric
string tension and the NN repulsion. The energy difference between the extended dimer and the tightly
confined dimer equals to δ = 2h−V as was already defined in the main text. Since we will generally consider
2h≈ V, this means that δ ≪ 2h,V and we therefore allow NN configurations in the same dimer.

Some of the NN configurations are already restricted by our construction. For example two
neighbouring pseudospins-down or pseudospin-down followed by any other particle has an empty site
between charges per our construction. Hence only configurations for which we still need to impose high
energy penalty are configurations of a pseudospin-up followed by any other pseudospin

ĤV
s = P̂d

V∑
j

n̂↑,jn̂j+1

 P̂d. (B2)

As already stated before, such states are energetically heavily penalised and we can project them out by
promoting the P̂d → P̂ where P̂ projects to the subspace where also the configurations contributing to terms
in equation (B2) are projected out in addition to the projection to the subspace where there are no double
occupancy on the same lattice site.

B.3. Perturbative terms
Finally, we consider the perturbative corrections due to restricted hopping, see figure 9. Both of the depicted
configurations in figure 9 are allowed and are not penalized by any NN interaction. However such
configurations have restricted hopping. As a result we have to add additional NN interactions which are
second order perturbation corrections in hopping

Ĥ2nd
s =

t2

2V

∑
j

n̂↓,jn̂↑,j+1 +
t2

V

∑
j

n̂↓,jn̂↓,j+1. (B3)

Combining all terms together gives us the effective model for fluctuating dimers

Ĥs = P̂

−t
∑
j

(
ĉ†↑,jĉ↓,j+1 + ĉ†↑,jĉ↓,j + h.c.

)
+

t2

2V

∑
j

n̂↓,jn̂↑,j+1 +
t2

V

∑
j

n̂↓,jn̂↓,j+1

 P̂. (B4)
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We once again note that we considered V= 2hmeaning that the two dimers are energetically equivalent. We
can relax such condition to 2h≈ V while still being in the limit where h,V≫ t. In such case the equation
acquires one extra term, which comes directly from the energy difference between the two types of dimers

Ĥs = P̂

−t
∑
j

(
ĉ†↑,jĉ↓,j+1 + ĉ†↑,jĉ↓,j + h.c.

)
+

t2

2(δ+V)

∑
j

n̂↓,jn̂↑,j+1 +
t2

δ+V

∑
j

n̂↓,jn̂↓,j+1 + δ
∑
j

n↑,j

 P̂.

(B5)

For δ > 0 we expect a spin imbalance meaning that most of the dimers are short. In addition we also have

a second order NN interaction. This interaction is always smaller than the hopping amplitude t2

δ+V = t2

2h ≪ t
since h,V≫ t. This would suggest that the ground state could not enter a Mott state of alternating empty
sites and down spins, which in the Z2 language means a state where two empty sites are followed by two
occupied sites. However we note that also the hopping amplitude would have to be corrected due to the
occupational imbalance of the up and down particles. On the other hand increase of the Z2 electric field
h→∞, also diminishes the effect of NN interactions and gives us the LL of confined dimers.

The dimers will energetically favour the extended state when considering the opposite case δ < 0. We are
thus getting close to a simple Mott state of alternating occupied and empty lattice sites. This is consistent
with the opening of the charge gap in the thermodynamic limit and the peaks in the structure factor at k= π,
see figure 4 in the main text.

Appendix C. Details on the numerical calculations

Numerical calculations of the charge gap, static structure factor, and the Z2 parton Green’s function were
performed using SYTEN [22, 23], which is a DMRG toolkit. More specifically we used the pytenmodule of the
SYTEN [22]. In order to carry out the calculations we map the original model equation (1) to a spin-1/2
model by using the Gauss law constraint [25, 27, 28]. More precisely, we use the constraint Ĝj =+1 in order

to write n̂j =
1
2

(
1− 4Ŝxj Ŝ

x
j+1

)
, which allows us to rewrite the original model entirely with spin-1/2 variables

[25, 27, 28]

Ĥs = t
L̃−1∑
j=2

(
4Ŝxj−1Ŝ

x
j+1 − 1

)
Ŝzj − 2h

L̃∑
j=1

Ŝxj +V
L̃−1∑
j=2

1

2

(
1− 4Ŝxj−1Ŝ

x
j

) 1

2

(
1− 4Ŝxj Ŝ

x
j+1

)
+ 2µ

L̃−1∑
j=1

Ŝxj Ŝ
x
j+1. (C1)

Here L̃ is the number of Z2 gauge and electric fields—link variables. Such mapping was already implemented
in references [25, 27, 28]. Similar model was also considered to study quantum scared states [36–38]. We
added the chemical potential term in order to control the filling. We consider open boundary conditions and
therefore start and end our lattice with a link variable. Hence, we simulate L̃= L+ 1 spins. The same trick
was used also for the calculations of the correlation function; i.e. the Green’s function and the density
correlations for the static structure factor. Convergence was determined by comparing energy difference
between two consecutive sweeps, which had to be lower than∼2× 10−15. In addition we also checked that
the variance of the Hamiltonian was low in order to confirm that the state is an eigenstate.

The pair–pair correlations in figure 8 were calculated using the iDMRG algorithm, implemented through
the tensor network package TeNPy [24]. In this case we simulate directly the model (1), enforcing the Gauss
law energetically. By employing the charge conservation library of TenPy the system can be kept exactly at
half-filling with no need to tune the chemical potential. This is crucial for the study of gapless phases,
especially in the large h limit.

Appendix D. Details on the charge gap calculations

D.1. Finite size scaling
In order to extract the charge gap in the thermodynamic limit we extrapolate the charge gap values to infinite
system lengths,∆= limL→∞ =∆(N,L). This was done by plotting the charge gap, equation (8), as a
function of the inverse system length, 1/L, and fitting it with a quadratic function. Some typical examples of
the extrapolation for different parameters together with the fits can be seen in figure 10(a). The value of the
quadratic function at 1/L= 0 was taken as the charge gap in the thermodynamic limit. Typically, we took the
system lengths of L= 40,60,80,120. For higher values of h lower system sizes had to be taken in order to
ensure convergence of the DMRG. For h= 4t convergence became challenging already for L= 60. This is
because large electric field value h also means that the value of the corresponding chemical potential µ had to
be increased in order to remain at half-filling.
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Figure 10. (a) Typical plots of the finite size scaling of the charge gap with a quadratic function. (b) Charge gap opening as a
function of h for the constant value of the NN interactions V= 5t. The inset in (b) shows the gap closing for h> 2.5t. (c) BKT
opening of the charge gap (8) in thermodynamic limit as a function of V for h= 0.

D.2. Gap closing at 2h= V
As can be seen in figure 4(a) the charge gap generally closes when 2h> V. This is in agreement with our
analytical considerations in section 3. In figure 10(b) we show details on the gap closing as a function of the
Z2 electric field term h, when the NN interactions are fixed at a substantial value V= 5t. The inset in
figure 10(b) shows that the gap opens for h> 2.5t supporting our claim that the Mott state is destabilized for
2h> V.

D.3. BKT gap opening at h= 0
When the Z2 electric field term is zero h= 0, the LGT model (1) maps to a hard-core bosonic model which
undergoes a Mott transition for V> 2t, see the main text and the supplementary material section A for
details. We verified our numerical results by fitting the gap opening as a function of V with the BKT
exponential function [30, 33]

∆BKT = C1e
−C2√
V−Vc , (D1)

where V c is the transition point. We had to fix the value of V c by hand and fitted the function equation (D1)
where C1 and C2 were free parameters. The result of the best fit can be seen in figure 10(c). The value of the
transition point for which we obtained the best fit was Vc/t= 1.83± 0.03. This is less than 9% off from the
analytically expected value at Vc = 2t, which means that our numerical calculations are consistent with
analytical results. The reason for a slightly lower value for V c comes from the very nature of the fitting
function which we used. Since some small errors accumulated during the finite size scaling it was very hard
to determine when exactly does the gap open since we were dealing with very small values, which had to be
fitted with an exponential function in equation (D1).

Appendix E. Details on the static structure factor

Typically we calculated the ground state of a chain with L= 120 sites. In order to avoid edge effects we only
consider sites in the middle, 30< j, l⩽ 91. Hence k is the discretized momentum defined as k= s

L̃
π, where

s ∈ Z and L̃ is the number of considered data points (L̃= 61 for L= 120 since we discarded first 30 and last
29 data points. As a result the normalization factor in the main text takes the valueN = L̃2.

In our numerical results of the finite DMRG we always observe strong peaks at the origin which also
repeat with the period 2π, see figure 11(a), where the structure factor for extended values of k is plotted. We
associate such peaks to the fact that we consider the non-connected density–density correlations when doing
the Fourier transformation for the static structure factor.

In addition to that, we also observe peaks at k= π
2 , k= π, and k= 3π

2 for different set of parameters h
and V. We estimate the height of these peaks and compare it to the charge gap diagram in figure 4(a). We
note that the discretization of k is connected to the number of data points in our structure factor. Hence our
values of k are not exactly k= π

2 , k= π and k= 3π
2 . However in the chains with length L= 120 the number

of considered data points was L̃= 61 and the values of k for which we have the available value of the
structure factor are rather close to the exact value. Although a systematic error is made in such procedure we
are interested in the qualitative change of the height of the peaks. Such qualitative behaviour is thus not
spoiled since we always take the same k≈ π

2 ,π,
3π
2 for different parameters. Hence by extracting the values of

the structure factor at such k, we can plot a phase diagram for different parameters of h and V. The results
can be seen in figures 4(b) and (c) in the main text.

In the following we consider the numerical results for different parameter regimes separately.
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Figure 11. (a) Structure factor for different values of V for zero field h= 0 for the Hamiltonian (1). (b) A prominent peak is
obtained for V ⩾ 2t at k= π consistent with the Mott state expected in such regime. (c) Details on amplitude of the peaks at
k= π/2 and k= π (c) as a function of V for h= 0.

Figure 12. (a) Structure factor for different values of h and constant V = 0 for the Hamiltonian (1). A prominent peaks are
obtained for h> 0, V = 0 at k= π

2
and k= 3π

2
. (b) The height of the peak as a function of h at V = 0 at k= π/2 and k= π

respectively.

E.1. Zero electric field term
In the case when the Z2 electric field term is set to zero h= 0 and V⩾ 0, we observe strong peaks at k= π,
and no peaks at k= π

2 ,
3π
2 , see figures 4(b) and (c). Detailed plots of the static structure factor as a function

of k for different values of V are also presented in figure 11. The amplitude of the peak rises significantly for
V/t> 2, which is presented in figure 11(c). Such behaviour points to a long range staggered charge
configuration where every other lattice site is occupied. This agrees perfectly with the Mott insulating state,
which was already established by calculating the charge gap (see figure 4(a)) and our analytical
considerations in section 3.1.

E.2. Tightly confined dimers
Next, we consider the structure factor where the NN interactions are set to zero and we vary the Z2 electric
field term strength. The results can be seen in figure 12. In such regime we observe somehow modest peaks at
k= π/2 and no peaks at k= π which would signal Mott state as in the case when V> 2t. The observed
peaks, however, indicate that the periodicity of the charge–charge correlations doubled. This is in agreement
to the observations that the Friedel oscillations double for any nonzero value of the Z2 electric field term
[25]. However the peaks are not very high and we expect them to become even less prominent in the
thermodynamic limit for h≫ t, where we expect LL of confined dimers and thus no true long-range
correlations.

E.3. Fluctuating dimers
We also consider the structure factor when we include both the NN interaction and the Z2 electric field term.
In particular we set the NN interaction to V= 4t deep in in the Mott state and varied h. As can be seen in
figure 13(a) substantially high peaks at k= π start to decrease with the increasing value of h. On the other
hand peaks at k= π/2 and k= 2π/3 appear already for very small values of h and their amplitude increases
with increasing value of h. The change of the amplitude of the peaks is best seen in figure 13. We see that the
amplitudes of both peaks are approximately the same at 2h= V. Such crossover in peak behaviour is once
again in agreement with the closing of the Mott gap at 2h= V. The coexistence of the peaks signals a very
interesting regime.
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Figure 13. (a) Structure factor for different values of h and constant NN repulsion V= 4t for the Hamiltonian (1). Peaks at
k= π/2 and k= 3π/2 appear when we include the Z2 electric field term. High peaks at k= π start to decrease with the
increasing value of h and the peaks at half-integer k increase with the increasing value of h. Both peak types appear to be of the
same magnitude as the integer peaks at 2h= V. (b) Height of the peak at different values of k as a function of h at V= 4t.

Figure 14. Structure factor for different chain lengths L and different parameters h and V.

E.4. Finite size effects in S(k)
Finally, we also check the importance of the finite size effects in our numerical calculation. We calculated the
structure factor for smaller system sizes and compared the results. The results for L= 60, L= 80 and L= 120
can be seen in figure 14. Generally, the height of the peaks are slightly lower for larger system sizes. However
it appears that the amplitudes of the peaks are also sensitive to the discretization of the momenta k and how
close the values are to the exact value k= π

2 ,π,
3π
2 . This effect might be even more important than the system

size.
We also observe that the width of the peaks changes with the system size. This is clearly a consequence of

the system size L, and the discretization effect plays a minor role in this case. The peaks at k= π are less wide
with larger values of L, however they appear to saturate to a finite width, see figures 14(a)–(c). On the other
hand, the width of the peaks at half-integer values of π do not appear to have strong system size dependence.
Such observation supports our claim that the integer peaks indicate a Mott state whereas the half-integer
peaks signal short-range correlations and represent the LL of confined mesons.

Appendix F. Details on Green’s function fits

F.1. Full fits
The fit with equation (11) was actually performed by taking the logarithm of the data and the distance x in
order to capture the low values of the exponential decay better. This means that we also had to use the
logarithmic version of equation (11) which equals to:

f ′f = A ′
f −αfx

′ −βfe
x ′, (F1)

where f ′f = log( ff) and x
′ = log(x). A typical fit can be seen in figure 15.
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Figure 15. Green’s function, equation (10), at V= 2h= 4t calculated using SYTEN (blue points). The solid line is the result of
fitting the DMRG data with equation (F1).

Figure 16.DMRG data of the Z2 invariant Green’s function for V= 2h= 4t and the fit with the power law function equation (F2)
(a) and exponential function equation (F3) (b). (a) The first few data points nicely agree with the algebraically decaying fit
function equation (F2) (red). (b) On the other hand, for longer distances, the strong exponential decay agrees nicely with the
exponentially decaying fit function equation (F3) (red), thus signalling confinement of particle pairs into tight dimers. (c) Heat
map of the parameter αa, indicating the strength of the power law decay, for different parameter values h,V. (d) Heat map of the
parameter βe indicating the strength of the exponential decay for different parameter values h,V. Note that all fits and plots are in
the log-linear plot.

F.2. Separate fits
We also address the power law and exponential decay separately by fitting the data with algebraic and
exponential function respectively. For the intermediate distances we were able to fit the data with an
algebraically decaying function

fa = Aax
−αa , (F2)

where Aa, is a free fitting parameters and αa is reminiscent of the LL parameter. For the long distance
behaviour, on the other hand, we fit our data with an exponentially decaying function

fe = Aee
−βex, (F3)

where similarly as before Ae is the free fitting parameter and βe is a simple parameter which quantifies the
strength of the exponential decay. In both cases we took the logarithm of the DMRG data and then
performed the fit with the logarithmic versions of equations (F2) and (F3).

Typical fit results can be seen in figures 16(a) and (b) for 2h= V= 4t where a clear exponential tail can
be seen. The fit with equation (F2) nicely coincides with the first few data points on the intermediate
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length-scales. On the other hand the fit with the exponentially decaying function, equation (F3) nicely
captures the data points on the longer-length scale. The extracted results of αa and βe for different parameter
values h,V are presented in figures 16(c) and (d). The results are qualitative similar to those in the main text
where the full function was fitted.

An important quantity is also the LL parameter K, which appears in many long-distance correlation
functions. For free fermions the LL parameter is equal to one, K = 1, while for repulsive interactions it takes
values smaller than one K < 1 [30]. At the Mott transition point the Luttinger parameter equals to K= 1/2
and drops to K= 1/4 in the crystalline Mott state, for details see [30].

The parameter αa =
1

2K∗ could be related to an inverse parameter K∗ which somewhat resembles the LL
parameter. Our values for h= V= 0 equals to K∗ = 0.95± 0.02 which is close to the LL parameter for free
fermions K = 1 [30].

On the other hand, the K∗ drops to the values close to K∗ = 1/4 for V⩾ 2t which is once again similar to
the behaviour of the Luttinger parameter at the transition point of the Mott state [30]. K∗ also decreases for
h> 0 however in such regime the fits with the algebraic function became more challenging, since the
increasing value of h results in stronger exponential decay. This is reflected in βe which increases significantly
with increasing values of h, see figure 16(d). The increase of the parameter βe is offset by increased value of
V. The line front of constant βe appears to be proportional to 2h= V. This is once again in agreement with
our numerical data of the charge gap and the structure factor, as well as our analytical arguments.

The chain lengths used for Green’s function calculations were L= 120 and the starting point of our lattice
was chosen to be away from the edge of the chain at i0 = 30 in order to avoid strong edge effects. The distance
x is thus to be understood as x= j− i0 where j> i0.
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