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Abstract

A scoring system is a simple decision model that checks a set of features, adds
a certain number of points to a total score for each feature that is satisfied, and
finally makes a decision by comparing the total score to a threshold. Scoring sys-
tems have a long history of active use in safety-critical domains such as healthcare
and justice, where they provide guidance for making objective and accurate deci-
sions. Given their genuine interpretability, the idea of learning scoring systems
from data is obviously appealing from the perspective of explainable AI. In this
paper, we propose a practically motivated extension of scoring systems called
probabilistic scoring lists (PSL), as well as a method for learning PSLs from
data. Instead of making a deterministic decision, a PSL represents uncertainty
in the form of probability distributions, or, more generally, probability intervals.
Moreover, in the spirit of decision lists, a PSL evaluates features one by one and
stops as soon as a decision can be made with enough confidence. To evaluate our
approach, we conduct a case study in the medical domain.

Keywords: machine learning, decision support, scoring systems, uncertainty
representation, calibration
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1 Introduction

Predictive models generated by modern machine learning algorithms, such as deep
neural networks, tend to be complex and difficult to comprehend, and may not be
appropriate in applications where a certain degree of transparency of a model and
explainability of decisions are desirable. Besides, depending on the situation and appli-
cation context, time and computational resources for applying decision models might
be limited. For example, a human’s resources to collect, validate, and enter data might
be scarce, or decisions must be taken quickly, in the extreme case even by the human
herself without any technical device.

So-called scoring systems provide a simple, genuinely interpretable model class as
an alternative. In a nutshell, a scoring system is a decision model that checks a set
of features, adds (or subtracts) a certain number of points to a total score for each
feature that is satisfied, and finally makes a decision by comparing the total score to a
threshold. Scoring systems have a long history of active use in safety-critical domains
such as healthcare (Six et al., 2008) and justice (Wang et al., 2023), where they
provide guidance for making objective and accurate decisions. Given their genuine
interpretability, scoring systems are appealing from the perspective of explainable
AI, which is why the idea of learning such systems from data has recently attracted
attention in machine learning.

Building on our previous work (Hanselle et al., 2023), this paper contributes to
existing methodology for scoring systems as follows:

• We propose a practically motivated extension of scoring systems called probabilistic
scoring lists (PSL), as well as a method for learning PSLs from data.

• To increase uncertainty-awareness, a PSL produces predictions in the form of
probability distributions (instead of making deterministic decisions).

• Moreover, to increase cost-efficiency, a PSL is conceptualized as a decision list : It
evaluates features one by one and stops as soon as a decision can be made with
enough confidence.

Moreover, we extend (Hanselle et al., 2023) in various ways:

• We make the PSL method amenable to continuous variables by developing dis-
cretization techniques for turning numerical attributes into binary features, either
in a preprocessing step or progressively in the course of the PSL procedure.

• In order to calibrate probability estimates, we consider beta calibration in addition
to isotonic regression.

• We propose a method for quantifying epistemic uncertainty, i.e., uncertainty about
the probability estimates in a PSL.

• Going beyond simple decisions, we propose a variant of PSL that is appropriate for
the task of ranking, i.e., sorting a set of instances from most likely positive to most
likely negative, leveraging training data in the form of relative comparisons.

• We also expand the empirical evaluation by adding additional datasets and
experimental studies.

Following a brief overview of related work in the next section, we introduce PSLs in
Section 3 and address the problem of learning such models from data in Section 4. To
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evaluate our approach, we conduct as series of experimental studies in Section 5, prior
to concluding the paper with an outlook on extensions and future work in Section 6.

2 Related Work

In a series of papers, Ustun and Rudin developed the so-called Supersparse Linear
Integer Model (SLIM) for inducing scoring systems from data, as well as an extension
called RiskSLIM (Ustun and Rudin, 2016, 2017, 2019). Their methods are based on
formalizing the learning task as an integer linear programming problem, with the
objective to find a meaningful compromise between sparsity (number of variables
included) and predictive accuracy. The problem can then essentially be tackled by
means of standard ILP solvers.

In several applied fields, one also finds methods of a more heuristic nature. Typi-
cally, standard machine learning methods such as support vector machines or logistic
regression are used to train a (sparse) linear model, and the real-valued coefficients
of that model are then turned into integers, e.g., through rounding or by taking the
sign. Obviously, approaches of that kind are rather ad-hoc, and indeed, can be shown
to yield suboptimal performance in practice (Subramanian et al., 2021). From a the-
oretical perspective, certain guarantees for the rounded solutions can nevertheless be
given (Chevaleyre et al., 2013).

A related research direction is the learning of simple decision heuristics that are
considered plausible from the perspective of cognitive psychology. Again, however,
this is a relatively unexplored field, in which only a few publications can be found
so far—Simsek and Buckmann (2017) collect and empirically compare some of these
heuristics.

Decision lists have been primarily used in inductive rule learning (Fürnkranz et al.,
2012), where each term consists of a conjunction of conditions, which are sufficient to
make a prediction in case the conditions are satisfied, or else continue with the next
rule. They have been shown to generalize both, k-term CNF and DNF expressions,
as well as decision trees with a fixed depth k (Rivest, 1987). Practically, they repre-
sent a simple way for tie-breaking in situations where multiple rules cover the same
example: in that case, the first rule in the list is given priority. They can be easily
learned, as their structure mirrors the commonly covering or separate-and-conquer
strategy (Fürnkranz, 1999), which learns one rule at a time, typically by appending
rules to the list, assuming that most important rules are tried first, but prepending
has also been tried (Webb, 1994). While rules are typically used for classification,
they may also be viewed as simple probability estimators, using the class distribution
among the covered examples as the basis for various estimation techniques (Sulzmann
and Fürnkranz, 2009). However, these are known to be overly optimistic, because the
way the conditions are selected results in a bias towards the positive examples during
learning (Možina et al., 2019). Also, in decision lists in rule learning, the probability
estimates are derived from the last rule in isolation, practically ignoring all previ-
ous rules, whereas, as will be seen later, the probability distributions in PSLs are
successively refined.
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3 Probabilistic Scoring Lists

Consider a scenario where decisions need to be made in different contexts, which are
characterized in terms of a set of variables or features F = {f1, . . . , fK}. A concrete sit-
uation is specified by a vector x = (x1, . . . , xK), where xi is the value observed for the
feature fi, and the set of all conceivable vectors of that kind forms the instance space X .
Features can be of various kinds, i.e., binary, (ordered) categorical, or numeric. Deci-
sions are taken from a decision space Y, which is normally finite, typically comprising
a small to moderate number of alternatives to choose from.

A decision model is a mapping h : X −→ Y, i.e., y = h(x) is the decision suggested
by h in the context x. Note that such models can be represented in different ways.
For the reasons already explained, we shall focus on scoring systems in this paper.
In a nutshell, scoring systems consist of a set of simple criteria (presence or absence
of certain characteristics or features) that are checked, and if satisfied, contribute a
certain number of points to a total score. The final decision is then based on comparing
this score to one or more thresholds. Formally, scoring systems can be seen as a specific
type of generalized additive models (Hastie, 2017) defined over a set of features.

Definition 1 (Scoring system). A scoring system over a set of (binary) candidate
features F and score set S ⊂ Z is a triple h = ⟨F, S, t⟩, where F = {f1, . . . , fK} ⊂ F
is a subset of the candidate features, S = (s1, . . . , sK) ∈ SK are scores assigned to the
corresponding features, and t ∈ Z is a decision threshold. For a given decision context
x = (x1, . . . , xK) ∈ {0, 1}K , i.e., the projection of an instance to the feature set F ,
the decision prescribed by h is given by

h(x) =
q
T (x) ≥ t

y
=

t
K∑
i=1

si xi ≥ t

|

, (1)

where J·K is the indicator function.1

Note that, according to this definition, scoring systems are binary classifiers
(Y = {0, 1}). In the following, we generalize such scoring systems in two ways: from
deterministic to probabilistic, and from a single decision model to a decision list.

As for the first extension, the idea is to return a probability distribution over Y
instead of a binary decision (1), i.e., to assign a probability p(y) to each decision y ∈ Y.
The latter can be interpreted as the probability that y is the best or correct decision,
which (implicitly) presupposes the existence of a kind of ground truth. Without loss
of generality, we can assume that the ground truth distinguishes between a class of
positive cases and a class of negative cases, and that the decision is a prediction of the
correct class. Therefore, we shall use the terms “decision” and “class” interchangeably.

We contextualize the distribution p, not directly with x, but rather with the
total score T (x) assigned to x. In other words, we consider conditional probabilities
p(· |T (x)) on Y. This appears meaningful and is in line with the assumption that the
total score is indicative of the class— in fact, standard scoring systems can be seen

1JP K = 1 if predicate P is true (positive decision) and JP K = 0 if P is false (negative decision).
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as a special case, returning probability 1 for the positive class when exceeding the
threshold and probability 0 otherwise.

Definition 2 (Probabilistic scoring system, PSS). A probabilistic scoring system
(PSS) over candidate features F and score set S ⊂ Z is a triple h = ⟨F, S, q⟩, where
F = {f1, . . . , fK} ⊂ F , S = (s1, . . . , sK) ∈ SK , and q is a mapping Σ −→ [0, 1], where

Σ ..=

{
T =

K∑
i=1

si xi

∣∣∣∣ s1, . . . , sK ∈ S, x1, . . . , xK ∈ {0, 1}
}

is the set of possible values for the total score that can be obtained by any instance
x ∈ X , and q(T ) = p(y = 1 | T ) is the (estimated) probability for the positive class
(y = 1) given that the total score is T (and hence 1 − q(T ) = p(y = 0 | T ) the
probability for the negative class).

Note that an increase in the total score should only increase but not decrease the
probability of the positive decision, so that probabilistic scoring systems should satisfy
the following monotonicity constraint:

∀T, T ′ ∈ Σ : (T < T ′)⇒ q(T ) ≤ q(T ′) . (2)

This property is again in line with standard scoring systems and appears to be impor-
tant from an interpretability perspective: A violation of (2) would be considered as an
inconsistency and compromise the acceptance of the decision model. Therefore, in the
remainder of the paper, we consider only monotonic probabilistic scoring systems.

Our second extension combines probabilistic scoring systems with the notion of
decision lists. The underlying idea is as follows: Instead of determining all K feature
values xi right away, these values are determined successively, one after the other, in
a predefined order. Each time a new feature is added, the total score T is updated,
and the probability q(T ) of the positive class is determined. Depending on the latter,
the process is then continued or stopped: If the probability is sufficiently high or
sufficiently low, the process is stopped, because a decision can be made with enough
confidence; otherwise, the process is continued by adding the next feature.

Table 1 depicts a PSL with four features F = {f1, f2, f3, f4}. As can be seen from
the assigned scores, all features except f1 are indicative of the positive class, i.e., the
presence of f2, f3 or f4 increases the probability of the positive class, whereas the
presence of f1 decreases the probability.

Table 1 Example of a PSL with feature set F = {f1, f2, f3, f4} and score set
S = {0,±1,±2}.

Feature Score T =−2 T =−1 T =0 T =+1 T =+2 T =+3 T =+4

− − − − 0.3 − − − −
f3 +1 − − 0.2 0.4 − − −
f1 −2 0.1 0.2 0.5 0.6 − − −
f2 +1 0.1 0.2 0.6 0.7 0.9 − −
f4 +2 0.1 0.1 0.2 0.6 0.7 0.9 0.9

5



The decision process starts with an empty feature set and a prior probability of
0.3 for the positive class. After seeing the first feature f3 with a weight s3 = +1,
the possible scores are T = 0 if the feature does not hold (the value of the feature is
x3 = 0), or T = +1, if x3 = 1. In the former case, the probability for the positive
decision decreases to 0.2, in the latter case it increases to 0.4. The next feature is f1
with a weight of s1 = −2, resulting in a total of four possible scores, ranging from
T = −2 (if x3 = 0 and x1 = 1) to T = +1 (if x3 = 1 and x1 = 0). Note that the
absence of f3, in this case, may increase the probability of a positive score to 0.6.
Adding the remaining features continues this process, until we get a diverse set of
seven probability estimates (five of which are different) corresponding to the seven
different score values we can obtain for the 24 = 16 possible instances. For example,
the instance x = (1, 1, 1, 1) would be assigned a probability of q(2) = 0.7, based on its
total score of T (x) = +2.

Note the monotonicity (2) in the scores in each row (higher score values result
in higher probabilities for the positive decision). Also note that if the final maximal
probability of 0.9 is considered to be sufficiently high for making a positive decision,
the process could already have been stopped after seeing the first three features for
any instance x = (0, 1, 1, ∗), irrespective of its value x4 for the fourth feature f4.

Formally, we can define a probabilistic scoring list as follows:

Definition 3 (Probabilistic scoring list, PSL). A probabilistic scoring list over can-
didate features F and score set S ⊂ Z is a triple h = ⟨F, S, p⟩, where F = (f1, . . . , fK)
is a list of (distinctive) features from F , S = (s1, . . . , sK) ∈ SK , and q is a mapping

q :

K⋃
k=0

(k,Σk) −→ [0, 1] (3)

such that

∀ k ∈ {0, 1, . . . ,K}, T, T ′ ∈ Σk : (T < T ′)⇒ q(k, T ) ≤ q(k, T ′) . (4)

Here, Σk is the set of possible values for the total score at stage k, i.e.,

Σk =

{
T =

k∑
i=1

si xi

∣∣∣∣ s1, . . . , sk ∈ S, x1, . . . , xk ∈ {0, 1}
}

. (5)

A value q(k, T ) is interpreted as the probability of the positive decision if the total score
at stage k is given by T .

Note that k = 0 is included in (3). This case corresponds to the empty list, where no
feature has been determined at all. The corresponding value q(0, 0) can be considered
as a default probability of the positive class.
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4 Learning Probabilistic Scoring Lists

While standard scoring systems have often been handcrafted by domain experts in the
past, more recent methods for the data-driven construction of scoring systems aim to
achieve a good trade-off between the complexity of models and the quality of their
recommendations (Ustun and Rudin, 2016). This is crucial for the successful adoption
of decision models in practice, as overly complex models are difficult to analyse by
domain experts and impede the manual application by human practitioners.

Instead of learning standard scoring systems, we are interested in the task of
learning probabilistic scoring lists, i.e., in constructing a PSL h from training data

D =
{
(xi, yi)

}N

i=1
⊂ X × Y . (6)

This essentially means determining the following components:

• the subset of features to be included and the order of these features;
• the score assigned to each individual feature;
• the probabilities for the resulting combinations of stage and total score.

A first question in this regard concerns the quality of a model h: What do we actually
mean by a “good” probabilistic scoring list? Intuitively, a good PSL allows for mak-
ing decisions that are quick and confident at the same time. Thus, we would like to
optimize two criteria simultaneously, namely, to minimize the number of features that
need to be determined before a decision is made, and to maximize the confidence of the
resulting decision. This compromise could be formalized in different ways, but regard-
less of how an overall performance measure is defined, the problem of optimizing that
measure over the space of possible PSLs will be computationally hard (Chevaleyre
et al., 2013).

4.1 A Greedy Learning Algorithm

As a first attempt, we therefore propose a heuristic learning procedure that is some-
what inspired by decision tree learning. Starting with the empty list, the next
feature/score combination (xk, sk) is added greedily so as to improve performance the
most,2 and this is continued until no further improvement can be obtained.

To this end, each (remaining) feature/score combination is tried and evaluated
as follows: Let Σk be the set of total scores T in stage k as defined in (5), and
Q = {(NT , q̂T ) | T ∈ Σk} the set of probability estimates q̂T = q̂(k, T ) for total scores
T ∈ Σk, together with the number NT of training examples being assigned this score.
The feature/score combination is then evaluated in terms of the expected entropy :

E(Q) =
∑

(NT ,q̂T )∈Q

NT

N
H
(
q̂T

)
, (7)

2As the importance of a feature xk, and hence the score sk, can only be decided relative to other
features, the choice of the score for the first feature is ambiguous; assuming this feature to be important,
we have given it the largest score possible.
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where H is the Shannon entropy

H(q) = −q · log(q)− (1− q) log(1− q) .

Thus, according to (7), the entropy of each distribution q̂T is weighted by the
probability that this distribution occurs.

4.2 Probability Estimation

As for the estimation of the probabilities q(k, T ), the most obvious idea would be a
standard frequentist approach, i.e., to estimate them in terms of relative frequencies
PT /NT , where NT is again the number of training examples with total score T , and
PT is the number of examples with total score T and class y = 1 (in stage k). However,
as these estimates are obtained independently for each score T , they may violate the
monotonicity condition (2). A better idea, therefore, is to estimate them jointly using
a probability calibration method (de Menezes e Silva Filho et al., 2023). To this end,
the original data D, or a subset Dcal specifically reserved for calibration (and not used
for training), is first mapped to the data

C ..=
{
(T (x), y) | (x, y) ∈ Dcal

}
⊂ Σk × Y , (8)

to which any calibration method can then be applied. One of the most popular tech-
niques, isotonic regression (Niculescu-Mizil and Caruana, 2005), amounts to finding
values q̂(k, T ) as solutions to the following constrained optimization problem:

minimize
∑

(T,y)∈C

(
q̂(k, T )− y

)2
s. t. ∀T, T ′ ∈ Σk : (T < T ′)⇒ (q̂(k, T ) ≤ q̂(k, T ′))

Another common calibration method is the use of a logistic regression, which,
however, assumes class-wise normally distributed scores. Kull et al. (2017) show that
this assumption does not hold for common classifiers and propose the more flexible
beta calibration, which defines a mapping [0, 1] −→ [0, 1] of the following form:

q̂(k, τ) =
1

1 +ma(1−m)−b τ−a (1− τ)b
, (9)

where a, b ≥ 0 and m ∈ [0, 1] are parameters. These parameters are fitted by min-
imizing log-loss on the calibration data (8). In our case, the τ -values are (linear)
transformations of the total scores T from Σk to [0, 1]. Both approaches, isotonic
regression and beta calibration, are illustrated in Figure 1.

Note that, from a probability estimation point of view, the estimation of one distri-
bution per total score T ∈ Σk is a meaningful compromise between a global probability
estimate (not taking any context features into account) and a per-instance estimation,
i.e., the prediction of an individual distribution p(·|x) tailored to any specific instance
x. Obviously, the former is not informative enough, while the latter is very difficult to
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q̂

Datapoints Isotonic Regression Beta Calibration

Fig. 1 Example of calibration with isotonic regression and beta calibration, using the medical dataset
introduced in Section 5. The values on the x-axis correspond to the total scores. As class labels are
either 0 or 1, the data points C are plotted with jittering for better visualization.

obtain, due to a lack of statistical information related to a single point (Foygel Barber
et al., 2021). According to our assumption, all instances with the same total score T
share the same probability. Therefore, those instances in the training data with the
same score form a homogeneous statistical subgroup

DT
..=

{
(xi, yi) ∈ D | T (x) = T

}
,

to which statistical estimation methods can be applied. While this is in line with other
local prediction methods, such as probability estimation trees (PETs) (Provost and
Domingos, 2003), the distinguishing feature here is the way in which the instance space
X is partitioned. For example, compared to PETs, PSLs appear to have a more rigid
structure, because the succession of tests (features) is fixed and can not vary depending
on the value of the features (like in trees). Moreover, the size of the partition, |Σk|,
will normally be smaller than the (up to) 2k different leaf nodes in a tree (leaves with
same scores are merged). Both factors contribute to the increased interpretability of
a single sequence of k feature tests, as opposed to up to 2k different paths through a
PET.

4.3 Feature Binarization

The features F in a PSL are assumed to be binary. However, in many practical appli-
cations, instances are also characterized by continuous attributes. To make scoring
systems amenable to these kinds of data, continuous attributes need to be turned into
binary features through binarization. This is done by selecting a threshold tj for each
feature fj ∈ F and assigning a value of 0 for values below the threshold and 1 other-
wise. Such a discretization from numerical values into binary features is unavoidably
accompanied by a loss of information. To lose as little information as possible about
the connection between the feature value and the class label, we employ the entropy
minimization heuristic (Fayyad and Irani, 1993). We can make use of this heuristic
either for preparing the data in a preprocessing step (preprocessing) or as a subroutine
that is used during the greedy construction of the PSL (in-search).
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When feature binarization is carried out as a preprocessing step, all features are
treated independently. For each (numerical) feature fj , we consider all possible bisec-
tions of the dataset when thresholding with tj , where tj is any mid-point between two
consecutive values assumed by that feature in the training data:

Y ≤
tj = {yi | (xi, yi) ∈ D, xi,j ≤ tj}

Y >
tj = {yi | (xi, yi) ∈ D, xi,j > tj}

All possible bisections are enumerated, and we finally select the threshold that leads
to the minimal expected entropy by considering the cardinality and relative frequency
of the positive class in each bisection:

t∗j = argmin
tj

E

{(
|Y >

tj |,
∑

y∈Y >
tj

y

|Y >
tj |

)
,
(
|Y ≤

tj |,
∑

y∈Y
≤
tj

y

|Y ≤
tj |

)} ,

with E defined according to (7).
Instead of finding the optimal threshold t∗j by ordering all xi,j and exhaustively

testing every candidate threshold between two consecutive values in a brute-force
manner, one can also make use of a heuristic that is computationally less costly. By
assuming quasi-convexity of the expected entropy with respect to the threshold point,
hierarchical binary search can be used instead. In practice, this assumption does not
necessarily hold, but is computationally less expensive, as only a logarithmic number
of candidate thresholds need to be considered. In the empirical evaluation in Section
5, both the heuristic and brute-force threshold selection are evaluated.

As an alternative to preprocessing, feature binarization can also be carried out
in-search, i.e., during the proposed greedy learning algorithm. Here, the features are
not treated independently, but rather sequentially. Recall that when constructing a
PSL, the greedy learning algorithm chooses a feature and an associated score in each
stage k. Alongside these choices, it now also chooses the binarization threshold for
continuous features. Thus, at construction in stage k, the features selected at stages
1, . . . , k − 1 have already been binarized. Again, binarization is done by enumerating
all candidate thresholds tk and selecting the one that minimizes expected entropy of
the resulting partitioning:

t∗k = argmin
tk

E
(
{(NT , q̂tk(k, T )) | T ∈ Σk}

)
,

with q̂tk(k, T ) the probability estimate for total score T at stage k when the kth feature
is binarized by threshold tk.

4.4 Beyond Probabilities: Capturing Epistemic Uncertainty

Going beyond standard probabilistic prediction, various methods have recently been
proposed in machine learning that seek to distinguish between so-called aleatoric and
epistemic uncertainty (Senge et al., 2014; Hüllermeier and Waegeman, 2021). Broadly
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speaking, aleatoric uncertainty refers to inherent randomness and stochasticity of the
underlying data-generating process. This type of uncertainty is relevant in our case,
because the dependence between total score T and decision/class assignment y is
presumably non-deterministic. Aleatoric uncertainty is properly captured in terms of
probabilities, i.e., by the approach introduced above.

Epistemic uncertainty, on the other side, refers to uncertainty caused by a lack of
knowledge, e.g., the learner’s uncertainty about the true distribution p = p(·|T ). In
a machine learning context, this uncertainty could be caused by insufficient or low-
quality training data. Obviously, it is relevant in our case, too: Proceeding further in
the decision list, the training data will become more and more fragmented, because the
number of possible values for the total score increases. Consequently, the estimation
q̂T of a conditional probability p(y = 1 | T ) will be based on fewer and fewer data
points, so that the epistemic uncertainty increases (even if the joint estimation of these
probabilities for all scores T alleviates this effect to some extent).

Representing this uncertainty is arguably important from a decision-making point
of view. For example, proceeding in the list and adding another variable may imply
that the (predicted) distribution becomes better in the sense of having lower entropy,
but at the same time, the prediction itself may become more uncertain. In that case,
it is not clear whether the current stage should be preferred or maybe the next one—
the answer to this question will depend on the attitude of the decision maker (toward
risk), and probably also on the application.

A natural approach to capturing epistemic uncertainty is to replace point estimates
q̂T of pT = p(y = 1 | T ) by interval estimates—epistemic uncertainty is then reflected
by the interval widths. Formally, we can view the true probability pT as the (unknown)
parameter of a Bernoulli distribution (binomial proportion). There is vast statistical
literature on estimating confidence intervals for binomial proportions, and various
constructions of such intervals have been proposed. For example, the Clopper-Pearson
interval (Clopper and Pearson, 1934) with confidence level 1− α can be expressed as
lT ≤ pT ≤ uT with

lT =

(
1 +

NT + 1

PT F [α/2; 2PT , 2(NT + 1)]

)−1

,

uT =

(
1 +

NT

(PT + 1)F [1− α/2; 2(PT + 1), 2NT ]

)−1

,

where NT is the number of negative examples, PT the number of positive examples,
and F [c; d, d′] is the c-quantile from an F-distribution with d and d′ degrees of freedom.

On the basis of individual confidence intervals of that kind, a complete confidence
band

{
[l∗T , u

∗
T ] |T ∈ ΣT

}
, i.e., a sequence of intervals for all total score values, can be

constructed as follows:

• First, one has to guarantee a simultaneous confidence of 1−α. The simplest way to
do so is to apply Bonferroni correction, i.e., to compute individual intervals [lT , uT ]
for confidence level 1− α/|Σk|.
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• Second, monotonicity constraints can be incorporated by correcting the intervals as
follows:

l∗T ← max{lV | V ∈ Σk, V ≤ T} (10)

u∗
T ← min{uV | V ∈ Σk, V ≥ T} (11)

Note that, although the correction (10–11) may lead to inconsistencies (empty inter-
vals), it still guarantees the 1−α confidence (under the assumption of monotonicity):
With probability (at least) 1−α, we have pT ∈ [lT , uT ] simultaneously for all T ∈ Σk,
which in turn implies pT ≥ pV ≥ lV for all V ≤ T and pT ≤ pV ≤ uV for all V ≥ T .

In order to assure that the confidence band covers the calibrated (point) esti-
mates q̂(k, T ), one may consider another correction step (which obviously maintains
monotonicity):

l⋆T ← min{ l∗T , q̂(k, T ) } (12)

u⋆
T ← max{u∗

T , q̂(k, T ) } (13)

4.5 Ranking

In addition to the standard probabilistic binary classification task, we also consider
PSL for the task of ranking. Instead of a model that assigns each instance to the
positive or the negative class, we now seek a model that is able to prioritize instances
from most likely positive to most likely negative— in the literature, this problem is
known as the bipartite ranking problem (Kotlowski et al., 2011). Again, models of
that kind are highly relevant and have many practical applications.

When having access to standard training data, i.e., a set of instances labelled
positive or negative, this can essentially be accomplished using the PSL as is. More
specifically, a PSL can be trained in exactly the same way as in the case of binary
classification. Then, given a set X ⊂ X of instances to be ranked, the PSL can be
used to predict a probability q̂(x) for each x ∈ X, and the ranking π̂ of X is obtained
by sorting all x ∈ X in decreasing order of their (predicted) probabilities. Indeed,
it can be shown that most common loss functions for bipartite ranking, comparing a
predicted ranking π̂ with a binary ground-truth, are minimized (in expectation) by
sorting instances in decreasing order of their probability of being positive (Kotlowski
et al., 2011). An important example of such a loss is the well-known AUC measure3

(Fawcett, 2006).
However, in the realm of ranking, training data is often given in the form of relative

comparisons x ≻ x′ between instances x,x′ ∈ X , suggesting that x is preferred to
(should be ranked higher than) x′. Then, in contrast to the first scenario, the PSL
algorithm cannot be applied in a straightforward way. In particular, the expected
entropy (7) cannot be computed as an impurity measure and selection criterion in the
greedy learning algorithm. Instead, one has to refer to a ranking loss.

3Actually, AUC in an accuracy measure, so the loss would be obtained by 1−AUC.
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Given a set of pairwise comparisons D ..= {xi ≻ x′
i}Ni=1, the pairwise soft rank loss

is defined as follows:

SRL(D) ..=
1

N

N∑
i=1

ℓ(xi,x
′
i) (14)

with

ℓ(x,x′) =


0 if q̂(x) > q̂(x′)

0.5 if q̂(x) = q̂(x′)

1 if q̂(x) < q̂(x′)

.

This loss imposes a penalty of 0 for pairs that are correctly ordered, 0.5 for ties, and
1 for incorrect orderings. It can be computed in each stage k of the PSL algorithm—
the probabilities q̂(x) are then given by q̂

(
k, T (x)

)
. The PSL algorithm itself is then

modified in the sense that, in every stage k, it finds the feature/score combination
that yields the smallest SRL instead of the smallest expected entropy.

The PSL has an interesting and intuitive interpretation in the context of ranking:
Starting with the entire set X as a single tie group, it successively refines a ranking
by splitting such groups into smaller subgroups and sorting these subgroups. In the
first stage, all instances are assigned the same probability, i.e., there are only ties, and
we start with an AUC of 0.5. As we progress throughout the stages, the set of total
scores becomes larger, and more and more ties are being resolved. The process can
then be stopped as soon as a sufficient resolution has been reached. This is particularly
useful in scenarios in which one is not interested in retrieving the complete ordering
of alternatives, but rather in eliciting the top (or bottom) m alternatives.

5 Empirical Evaluation

In this section, we present a case study in medical decision-making meant as a first
evaluation of our approach. Unless stated differently, the figures show the models’
mean performance and a 95% confidence interval of the mean, aggregated over 100
Monte Carlo cross-validation (MCCV) splits with 2/3 used for training and 1/3 used
in testing. Additionally, the score set {±1,±2,±3} was chosen. All experiments in
this section were executed on an Intel i7-9750H in less than one hour. The detailed
experimental setup and implementation is publicly available4 as is the implementation
of the learning algorithm.5

In the next sections, we will attempt to answer the following research questions:

RQ1: Is greedy search sufficient to find a good model?
RQ2: Are the probability estimates of the PSL well calibrated?
RQ3: How do the Clopper-Pearson confidence intervals reflect the increase in epis-
temic uncertainty throughout the PSL stages?
RQ4: How does binarization as preprocessing compare with in-search binarization?
Do the heuristic simplifications in the binarization hamper PSL performance?

4https://github.com/TRR318/pub-ml-psl/releases/tag/v1.0.0
5https://github.com/TRR318/scikit-psl/releases/tag/v0.7.0
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RQ5: Is the PSL applicable for ranking tasks? How well does it perform when being
trained on class labels versus preference data?

First, however, we briefly summarize the datasets used in this study.

5.1 Datasets

Coronary Heart Disease Data

The dataset for this case study has originally been used to evaluate the diagnostic
accuracy of symptoms and signs for coronary heart disease (CHD) in patients present-
ing with chest pain in primary care. Chest pain is a common complaint in primary
care, with CHD being the most concerning of many potential causes. Based on the
medical history and physical examination, general practitioners (GPs) have to classify
patients into two classes: patients in whom an underlying CHD can be safely ruled
out (the negative class) and patients in whom chest pain is probably caused by CHD
(the positive class).

Briefly, 74 general practitioners (GP) recruited consecutively patients aged ≥ 35
who presented with chest pain as primary or secondary complaint. GPs took a
standardized history and performed a physical examination. Patients and GPs were
contacted six weeks and six months after the consultation. All relevant information
about course of chest pain, diagnostic procedures and treatments had been gathered
during six months. An independent expert panel of one cardiologist, one GP and one
research staff member reviewed each patient’s data and established the reference diag-
nosis by deciding whether CHD was the underlying reason of chest pain. For details
about the design and conduct of the study, we refer to Bösner et al. (2010).

Overall, the dataset comprises 1199 (135 CHD and 1064 non-CHD) patients
described by ten binary attributes: (f1) patient assumes pain is of cardiac origin, (f2)
muscle tension, (f3) age gender compound, (f4) pain is sharp, (f5) pain depends on
exercise, (f6) known clinical vascular disease, (f7) diabetes, (f8) heart failure, (f9)
pain is not reproducible by palpation, (f10) patient has cough. Note that, by way of
domain knowledge, all these features can be encoded in such a way that the presence
of a feature does always increase the likelihood of the positive class. Therefore, scoring
systems can be restricted to positive scores. For the following experiments, the miss-
ing feature values have been imputed using the mode, representing the most frequent
value of each feature.

UCI Datasets

In addition to the CHD dataset, we also consider two datasets from the UCI reposi-
tory (Patŕıcio et al., 2018; Ramana and Venkateswarlu, 2012). The first is concerned
with the prediction of breast cancer for patients in Coimbra, Portugal. It comprises 9
features including resistin, glucose, age, and BMI. The dataset is of small size, with
only 116 instances, of which 64 are positive. The second UCI dataset is concerned
with Indian liver patients (ILP). It contains 583 instances, of which 416 are positive,
i.e., the majority of patients are positive. The dataset contains 10 features includ-
ing age, sex, total proteins. In contrast to the CHD data, the UCI datasets contain
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numeric features, which have to be binarized, e.g., by using the methods described in
Section 4.3.

5.2 RQ1: Expected Entropy Minimization

The introduced algorithm iteratively selects the feature/score pair that minimizes the
expected entropy (7) for each stage. As can be seen in Figure 2, entropy continues to
decrease, but the improvements diminish stage by stage and almost vanish after the
addition of the fifth feature. Interestingly, this result is very much in agreement with
previous studies on this data, and the top-5 features in Figure 2 exactly correspond
to those features that have eventually been included in the “Marburg Heart Score”, a
decision rule that is now in practical use.6
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Fig. 2 Evaluation of the greedy learning algorithm (blue line) on the coronary heart disease dataset.
The light blue lines show the complete search space induced by all feature permutations and possible
score assignments. The features, selected by the greedy algorithm in every stage, are also labelled on
the x-axis. The visualization was created for a score set S = {1, 2, 3}.

Fig. 3 Evaluation of the greedy algorithm on the breast cancer Coimbra dataset with a score set of
S = {−2,−1,+1,+2} (refer to Figure 2 for details).

6https://www.mdcalc.com/calc/4022/marburg-heart-score-mhs
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As our algorithm minimizes expected entropy on the training data greedily, one
may wonder to what extent expected entropy is also minimized globally, i.e., across
all stages. To get an idea, we compared the expected entropy curve produced by the
greedy algorithm with the curves produced by all other PSLs. With the score set
S = {1, 2, 3}—a complete enumeration of the resulting set of PSLs is still feasible. As
can be seen from Figure 2, the greedy approach (shown in solid blue) performs well, at
least on the CHD dataset. Figure 3 illustrates the result of the greedy parameter search
on the BCC dataset. As we can see here, the curve of the selected model is clearly
not the lower envelope, i.e. it does not achieve stagewise optimal performance. This
may be due to the greedy search approach, which acts myopically in the sense that it
irrevocably selects the locally best option and therefore could be missing out on global
optima. However, note that stagewise optimal performance may also be impossible to
achieve with a single scoring list, as the stagewise best performing models may stem
from separate lists having different prefixes of feature/score pairs.

5.3 RQ2: Investigating Probability Estimates

Next, we investigate the trustworthiness of the probability (point) estimates of our
proposed method. As already outlined in Section 4.4, the training data becomes more
and more fragmented when progressing in the PSL, as the set of possible total scores
grows. Consequently, the probability estimates for the individual instances are based
on fewer and fewer training data. While the final probabilistic predictions are based
on a joint estimation in terms of probability calibration, it is not clear how the quality
of the estimations develops throughout the PSL stages.

We evaluate this quality by computing the stagewise Brier score (Brier, 1950). Let
Tk(xi) denote the total score of some instance xi at stage k. Having access to a set of
test data Dtest

..= {(xi, yi)}Ni=1, the Brier score at stage k is given by

BS(k) ..=
1

N

N∑
i=1

(
q̂(k, Tk(xi))− yi

)2
.

Figure 4 shows the stagewise Brier score for all considered datasets when using iso-
tonic regression or beta calibration for the PSL. As a baseline, we also train a logistic
regression (LR) model, using the same features as PSL in each stage. Note that, com-
pared to PSL, LR is more flexible in the sense that scores are real-valued and not
restricted to (small) integers. Additionally, the learning algorithm of logistic regres-
sion employs L2-regularization in order to prevent the model from overfitting. For all
approaches, the features were binarized in advance (preprocessing) using the bisect
heuristic (cf. Section 4.3).

As we can see, isotonic regression and beta calibration perform quite similarly
for each of the considered datasets. On the CHD dataset, both are also on par with
the stagewise logistic regression, which is known to produce well-calibrated models.
However, on the BCC as well as the ILP dataset, the PSL variants achieve worse
Brier scores than the logistic regression baseline. Their Brier scores even increase for
higher stages, which is likely to be an overfitting effect: The dotted line indicates the
performance of an unregularized LR, whose performance is very similar to the two
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Fig. 4 Stagewise Brier Score for PSLs on the test datasets.

considered PSL variants. Recall that the BCC dataset only contains 116 instances.
The regularized LR manages to avoid overfitting the training data and achieves better
generalization performance in terms of stagewise Brier score. Although the PSL is a
quite restricted model with only a few integer weights, it tends to overfit if there is
not enough training data available, e.g., in the case of the BCC dataset. Thus, when
relying on point estimates and having only access to small amounts of training data,
PSL needs to be regularized to circumvent this problem. Another alternative is to go
from point to interval estimates, e.g., by using the Clopper-Pearson confidence intervals
introduced in Section 4.4, whose application will be examined in the following section.

5.4 RQ3: Uncertainty Quantification and Decision-Making

In the previous section, we have discussed that the probability estimates in higher
stages of the model are based on less and less data points as they get more fragmented.
In this section, we investigate the applicability of the Clopper–Pearson confidence
interval introduced in Section 4.4 in medical decision-making.

Figure 5 illustrates the point estimates as well as the confidence intervals exem-
plarily for several stages of a PSL trained on the CHD data. As expected, we observe
an increased size of the confidence intervals in higher stages. This is not only caused
by the increasingly fewer data points the relative frequency estimate is based on, but
also by the Bonferroni correction, that grows in the size of the set of total scores |Σk|.
For example, in stage 4, there is not a single data point that exhibits a total score of
7, hence the confidence bounds are fully determined by the neighbouring total scores.

Since the CHD dataset is quite imbalanced, there are fewer data points for positive
samples, hence the confidence intervals for predicting high true-class probabilities are
wider, as there are fewer data points for the respective total scores. For stage 6 and
beyond (see Figure 5) the lower confidence bound never exceeds 0.5, meaning that the
positive class can never be predicted with high confidence. Note, that the Clopper-
Pearson confidence interval is a conservative guarantee of the probability estimate,
i.e., when computing an 95% interval, the probability of the true parameter pT laying
outside the interval is at most 5%.
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Following this illustration of the Clopper-Pearson confidence intervals, we will
showcase their usefulness in the context of risk-averse decision-making in medicine.
In medical diagnosis, the consequences of a false negative prediction, i.e., not treating
an ill patient, are typically far more severe than of a false positive. This asymmetry
can be captured by a loss function that assigns a loss of 1 to a false positive and
a loss of M ≫ 1 to a false negative. In the medical domain, this also goes under
the notion of “diagnostic regret”, and various empirical methods for eliciting prefer-
ences in decision-making (i.e., the cost factor M) have been proposed in the literature
(Tsalatsanis et al., 2010; Moreira et al., 2009).

To minimize the risk of the decision, the negative class should only be predicted if
its probability (1− p̂) is M times as high as the probability for the positive p̂ class:

ŷ =

{
1 if 1− p̂ < M · p̂
0 otherwise

The (estimated) expected loss for this risk-minimizing decision is therefore E(ŷ) =
min{1 − p̂,M · p̂}. This decision boundary for M = 10 is visualized in Figure 5.
This decision strategy nicely emphasizes the importance of (accurate) probabilistic
predictions and, more generally, uncertainty-awareness, in safety-critical domains.

To incorporate risk-awareness into the decision-making process, we propose to
select not with respect to the point estimate of the probability, but the upper confi-
dence bound. Again, referring to Figure 5, we can observe that deciding with respect
to the probability point estimate, data points with score 0 at stage 0 are classified
negatively as they lay below the decision boundary. When using the upper confidence
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Fig. 5 Probability estimates of all possible total scores for the first 4 stages and stage 7 of the
PSL, trained on the full CHD dataset. The error bars show the 95% confidence interval described in
Section 4.4.
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bound instead, all data points are classified negatively, as the upper confidence bound
is slightly above the decision threshold.

Again, we compare the PSL variants to an LR model that is trained on the same
features as the PSL on each stage. Accounting for uncertainty, we do not use the
point estimate for the predicting the positive class but rather the upper bound of the
corresponding 50% Clopper-Pearson confidence interval of the PSL estimate. Figure 6
shows the loss forM = 10. The PSL has been configured with three different score sets.
For the CHD dataset, we can see that all three PSL variants perform quite similarly,
with small improvements for larger score sets. Moreover, they are all on a par with LR,
sometimes even a bit better, which is quite remarkable. For all variants, we observe a
monotonic decrease in loss until the fifth feature is added. Again, in the large majority
of cases, the five top-features correspond to the features also included in the Marburg
heart score. Adding further features leads to a slight deterioration for PSL.

As more features increase the capacity of the learner, this may look like a standard
overfitting effect. However, there is also an alternative, in a sense even opposite expla-
nation. Note that we do not observe this deterioration for LR, which can modulate
the influence of any additional feature in a very flexible way, by appropriately tun-
ing the weight coefficient—up to completely ignoring a presumably unuseful feature
by setting its weight to 0. PSL does not have this ability. Instead, it can only weight
all features in (more or less) the same way. Therefore, in cases where adding another
feature might be useful, but with a weight much smaller than the others, it might
be better to omit it completely instead of giving it the same influence as the more
important features. Seen from this perspective, the class of scoring systems is simply
not flexible enough, and the deterioration might be due to a problem of underfitting
rather than overfitting.

For the BCC and the ILP dataset, the plots look drastically different. Recall, that
at stage 0, the probability estimate is simply the relative frequency of the positive
class in the training data. Thus, all instances are classified identically. Employing the
risk-averse decision rule, we classify all patients as positive. Advancing from this is
only possible if we make true negative predictions. For each false negative prediction,
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we need to make at least M = 10 true negative predictions, otherwise the expected
loss will increase. Depending on the classification task at hand, this may be a very
difficult problem. We observe that the PSL with 50% confidence intervals refrains
from changing the initial classification, which results in a constant value of expected
loss throughout the stages. LR on the other hand acts less risk-averse and introduces
negative predictions. However, it does not introduce enough true negative predictions
in order to compensate for the false negatives, resulting in a deterioration of the
expected loss.

5.5 RQ4: Binarization

As described in Section 4.3, dealing with numerical features is of great practical impor-
tance. We compare the in-search binarization of numerical features with the case in
which the features are binarized independently in a preprocessing step. Additionally,
we evaluate our heuristic optimization method, with which only a logarithmic number
of candidate binarization thresholds need to be checked.

Figure 7 shows the comparison on the Breast Cancer and the Indian Liver Patient
datasets in terms of the stagewise expected entropy. In both datasets, the in-search
binarization is advantageous. The advantage becomes more pronounced throughout
the stages of the PSL. Intuitively, this can be explained by the fact that in preprocess-
ing, the features are binarized individually. In contrast to that, the in-search procedure
binarizes the features sequentially during the greedy construction of the PSL. Thus,
when adding a feature/score pair to the PSL, it can take into account dependencies
between already selected features and the newly chosen feature by setting the bina-
rization threshold accordingly. As discussed previously, in situations where adding
another feature with the same weight as previous (more important) features is unde-
sirable, abstaining from using a feature is a sensible option and avoids performance
deterioration. In-search binarization can enable this, by setting the threshold higher
than the maximum value of the feature, effectively ignoring it even if a non-zero score
is assigned.

For both methods, we observe that the bisecting search heuristic leads to a neg-
ligible deterioration of performance in terms of expected entropy. Consequently, we
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consider in-search binarization with the bisect search a sensible default configuration
and use it for the remaining experiments of this paper.

5.6 RQ5: Ranking

In the following, we will evaluate the ranking performance of our proposed method.
To this end, we consider the AUC (Area under the ROC Curve) (Fawcett, 2006). For
a binary scoring classifier, the AUC can be interpreted as the probability of ranking
a randomly chosen positive example before a randomly chosen negative example.

When fitting the classifier, we consider two settings: In the first one, we assume to
have a training dataset as described in the previous experiments of this paper. Here,
we use the standard greedy learning algorithm optimizing the expected entropy (7).
In the second scenario, we exclusively require access to pairwise comparisons x ≻ x′

with x, x′ ∈ X and instantiate the PSL with the pairwise soft rank loss (14).
Figure 8 shows the stagewise AUC. For the CHD dataset, we observe a mono-

tonic increase for both settings. For the other two datasets, the values increase in
the beginning until a plateau is reached at stage 4. The two settings lead to very
similar results for the BCC and ILP datasets. For the breast cancer dataset, optimiz-
ing expected entropy leads to better AUC values than the soft rank loss. However,
as already mentioned, the BCC dataset is very small. We conclude that the PSL is
generally applicable for the task of ranking.
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Fig. 8 Stagewise AUC (Area under the ROC Curve) for all datasets.

6 Summary and Conclusion

In this paper, we introduced probabilistic scoring lists, a probabilistic extension of
scoring systems. Their main advantage and intended use is that they not only allow
one to obtain probability estimates that correspond to the scores of the underlying
scoring system, but that these estimates can be gradually refined by adding more
features. This may, e.g., be important if features are expensive or time-consuming to
obtain, so that rough estimates can be obtained cheaply and quickly, and be further
refined once additional evidence comes in. In particular, it also allows one to end
the decision-making process once a certain probability threshold has been surpassed,
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thereby allowing a dynamic adjustment of the number of features needed for a positive
or negative decision.

Building on the approach presented in this paper, we plan to address the following
extensions in future work:

• Although the greedy learning algorithm proposed in this paper seems to perform
quite well, more sophisticated algorithms for learning PSLs should be developed,
including algorithms tailored to specific loss functions.

• So far, we only considered the case of binary decisions, which is common for scoring
systems; yet, an extension to decision spaces of higher cardinality (polychotomous
classification) is practically relevant.

• The Clopper-Pearson confidence intervals introduced in Section 4.4 are rather loose
and for large Σk (induced by many features or large score sets) they quickly become
dominated by Bonferroni correction. Thus, we are interested in investigating ways
for computing tighter confidence bounds.

• So far, we implicitly considered features with unit cost. In practice, the cost of fea-
ture acquisition may vary drastically for different features. For example, measuring
the temperature of a patient can be done much more easily than a sophisticated
blood test. An interesting direction for future work is to consider feature costs
explicitly and develop a learning algorithm for cost-effective PSLs (Clertant et al.,
2019).

• In practice, some features may be not available at inference time, e.g., because there
is no access to laboratory equipment in the field. Here, it would be interesting to
consider default scores for missing features and develop a more sensitive version of
the PSL that produces models that are robust to missing features.

• As discussed in Section 5.3, we observe an overfitting effect with respect to the prob-
abilities estimated by PSL when only small amounts of training data are available.
Thus, incorporating regularization in the training procedure of PSLs is an important
next step.

• So far, we have only examined the PSL from an algorithmic point of view. Con-
ducting a user study and investigating how suitable it is for the task of supporting
human decision makers is of major interest. This also involves the development of
usability features such as advanced visualizations of PSL stages.
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Patŕıcio, M., J. Pereira, J. Crisóstomo, P. Matafome, M. Gomes, R. Seiça, and
F. Caramelo. 2018. Breast Cancer Coimbra. UCI Machine Learning Repository.

Provost, F.J. and P. Domingos. 2003. Tree induction for probability-based ranking.
Machine Learning 52 (3): 199–215 .

Ramana, B. and N. Venkateswarlu. 2012. ILPD (Indian Liver Patient Dataset). UCI
Machine Learning Repository.

Rivest, R.L. 1987. Learning decision lists. Machine Learning 2: 229–246 .

Senge, R., S. Bösner, K. Dembczynski, J. Haasenritter, O. Hirsch, N. Donner-Banzhoff,
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