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Abstract

In recent years, Explainable AI (xAI) attracted a lot of attention as various countries
turned explanations into a legal right. xAI allows for improving models beyond
the accuracy metric by, e.g., debugging the learned pattern and demystifying
the AI’s behavior. The widespread use of xAI brought new challenges. On the
one hand, the number of published xAI algorithms underwent a boom, and it
became difficult for practitioners to select the right tool. On the other hand, some
experiments did highlight how easy data scientists could misuse xAI algorithms
and misinterpret their results. To tackle the issue of comparing and correctly
using feature importance xAI algorithms, we propose Compare-xAI, a benchmark
that unifies all exclusive functional testing methods applied to xAI algorithms.
We propose a selection protocol to shortlist non-redundant functional tests from
the literature, i.e., each targeting a specific end-user requirement in explaining a
model. The benchmark encapsulates the complexity of evaluating xAI methods
into a hierarchical scoring of three levels, namely, targeting three end-user groups:
researchers, practitioners, and laymen in xAI. The most detailed level provides
one score per test. The second level regroups tests into five categories (fidelity,
fragility, stability, simplicity, and stress tests). The last level is the aggregated
comprehensibility score, which encapsulates the ease of correctly interpreting the
algorithm’s output in one easy to compare value. Compare-xAI’s interactive user
interface helps mitigate errors in interpreting xAI results by quickly listing the
recommended xAI solutions for each ML task and their current limitations. The
benchmark is made available at https://karim-53.github.io/cxai/

1 Introduction

xAI algorithms are a set of approaches toward understanding black-box models. In recent years, xAI
algorithms helped debug manifold issues in ML models, such as exposing underlying wrong patterns
in classifying objects [1] or highlighting inequality and bias in decisions [2]. Moreover, given its
essential impact on society, legislation in several countries now includes the “Right to explanation” [3]
fulfilled by the various xAI tools available in the literature. It is indeed difficult to define the best xAI
solution given the number of known evaluation metrics. Moreover, the long evolutionary history of
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specific xAI methods makes it even more difficult to evaluate each version. The Shapley values are
an excellent example of this challenge. Sundararajan et al. did state that “. . . the functional forms
of the Shapley value. . . are sufficiently complex as to prevent direct understanding. . . ” [4]. Indeed,
going through the theoretical background of Shapley values [5], its multiple approximations [6, 7],
generalizations [8, 4] and final implementations [9, 10] adapted to the AI field might mislead the
end-user on the capability of the available tools.

Resulting challenges. Consequently, data scientists face considerable difficulties in accurately
evaluating each xAI algorithm and remaining up-to-date on its evolution. This issue yields a clearly
visible symptom known as the illusion of explanatory depth [11] in interpreting xAI results [12]
as it has been confirmed that data scientists are prone to misuse interpretability tools [13]. Many
researchers did address this question by stressing the importance of structuring and documenting
xAI algorithms [14, 15], i.e., by highlighting the target end-users of the algorithm, its capability,
limitations, and vulnerabilities. Finally, they recommend using quantitative metrics to make claims
about explainability.

Functional testing as a solution to stated recommendations. Functional testing aim to verify the
end-user’s requirement on the xAI algorithm by performing end-to-end tests in a black-box fashion.
In other words, every functional test apply the xAI algorithm on a frozen AI model to verify if the
output corresponds to the explanation expected by data scientists. A functional test could verify that
the explanation accurately reflect the AI model (Fidelity), that it is not sensitive to adversarial attacks
(Fragility), that it is stable to small variation in the model (Stability), etc. Functional testing remains
unfortunately sparsely used in literature and, thus, provides only a partial evaluation.

Given the unsolved burden of evaluating and correctly interpreting xAI results, we propose Compare-
xAI that mitigates these two issues (benchmark xAI results and the illusion of explanatory depth
during the interpretation of results) by addressing three research questions:

1. How to select exclusive functional tests from those proposed in the literature?

2. How to score xAI algorithms in a simple way despite the multitude of evaluation dimensions?

3. How to reduce data scientists’ potential misuse of the xAI algorithms?

The stated questions are resolved as follows: In Section 3, we propose a benchmark implementation
easily scalable to new xAI algorithms and new functional tests. In Section 3.1, we propose a selection
protocol for the quantitative evaluation of xAI algorithms. It is then applied to shortlist a selection
of exclusive tests, each targeting a distinct end-user requirement. In Section 3.2, we explain the
experiments’ protocol to mimic the end-user’s behavior. In Section 3.3, we propose an intuitive
scoring method that scales in detail with the level of expertise of the data scientist: Layman data
scientists are invited to manipulate one global score named comprehensibility. Practitioners are invited
to compare xAI algorithms given five scores representing five subcategories of the comprehensibility
metric. Finally, researchers are invited to study the detailed report (one score per test). In Section 4,
we propose a user interface that encapsulates the benchmark’s results. We seek to minimize the
potential misuse of xAI algorithms by offering quick access to the limitation of each xAI algorithm.
Finally, Section 5 is dedicated to the theoretical and practical limitations of the benchmark.

2 Related Work

This section is a survey for xAI evaluation methods. It contains examples contrasting the difference
between functional tests and portability tests. Following that, we examine some attempts to regroup
them into surveys or benchmarks.

2.1 xAI Evaluation Methods: Functional Tests vs. Portability Tests

Researcher in the xAI field often propose a new method along with a set of functional or portability
tests that outline the contrast between former work and their contribution.

Functional tests. Functional testing is a popular testing technique for software engineers. The
following definition is adapted from the software engineering field to our intended usage in machine
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learning [16]. Functional tests are created by testers with no specific knowledge of the algorithm’s
internal modules, i.e., not the developers themselves. Therefore, the algorithm is considered a
black-box and is executed from end to end. Each functional test is intended to verify an end-user
requirement on the xAI algorithm rather than a specific internal module. Thus, functional tests share
the advantage of being able to test different algorithms. On the other hand, failed tests do not inform
about the location of the errors but rather attribute it to the entire algorithm. Functional test for xAI
algorithms usually exploit tabular synthetic data and few input features, e.g., considering the “cough
and fever” test [9], The xAI algorithm is expected to detect symmetry between the two binary features.
Simple examples showcase the undeniable limit of certain xAI methods. Nevertheless, specific tests
could use real-world data. A good example is the MNIST dataset [17] used as a counterexample for
the dummy axiom [18]: Since edge pixels are always black, a multi-layer perceptron will learn not
to rely on these constant pixels. As a consequence, the xAI algorithm should confirm that the AI
does not use these pixels. Papers proposing new xAI methods remain too short to list all known tests.
Furthermore, some of the highlighted issues might be fixed without any publication.

Portability Tests. Portability tests for xAI algorithms evaluate real-word models and demonstrate
the robustness of the xAI algorithm against multiple challenges at once (noise, correlated inputs,
large inputs, etc.). They are used to claim the potential broad usage of one xAI method rather than
demonstrating the quality of the explanation. An example is the verification of the portability across
recommendation tasks [19].

Navigating the ocean of tests remains itself a huge challenge. First, many examples in the
literature are portability tests which makes comparison between xAI algorithms complex. Second,
tests could be redundant to emphasize the frequent occurrence of an issue, e.g., testing interaction
detection with different transparent models [19]. Third, researchers could argue the correctness of
specific functional tests’ ground truth, e.g., causal explanation of the Shapley values [20] has been
considered false in certain research [4].

Given the tremendous amount of xAI algorithms and dedicated metrics, surveys [21–24] have trouble
providing an in-depth analysis of each algorithm and cannot cope with ongoing implementation
updates. Nevertheless, Molnar’s online book distinguishes itself with a continuously updated survey
about xAI [25]. The initiative of a real-time survey faced great success and acceptance from the data
science community.

2.2 Benchmark for xAI Algorithms

There are specialized benchmarks in the literature, like the SVEA benchmark [26]. The latter focuses
on computer vision tasks and proposes faster evaluations based on the small mnist-1D dataset [27].
Another benchmark utilizes exclusively human evaluation to assess xAI algorithms on real-world
tasks [28]. On the one hand, benchmarking using computer vision and NLP models permits to
measure the real success of an xAI tool in helping end-users even though human evaluation could be
considered subjective and more costly to obtain. On the other hand, evaluation using real-world tasks
does not allow debugging the xAI algorithm, i.e., two algorithms might fail to explain one black-box
model for two different reasons.

xAI-Bench [29] evaluates each xAI algorithm on five metrics. Faithfulness measures the Pearson
correlation between the feature importance and the approximate marginal contribution of each feature.
Of course, one could argue that the ground truth explanation of a model could be slightly different
from the marginal contribution of each feature on the observed dataset. The same argument holds
for the monotonicity, infidelity, and GT-Shapley metrics. They define a ground truth output, that
is, a “better” xAI algorithm is the one outputting a result that is closer to the ground truth. In
contrast, functional tests discussed in previous paragraphs evaluate the correctness of the output
using a pattern (not an exact ground truth). This paper focuses on functional tests using patterns as
evaluation methods. The fifth metric used in xAI-Bench is remove-and-retrain (ROAR). It involves a
re-evaluation of the model, which could itself alter the evaluation. Another critical factor affecting
the scores and the ranking of the algorithms is the data distribution. The authors did circumvent the
issue by testing on different distributions. However, it remains difficult to decide if the algorithm
is failing this specific test or if it is generally sensitive to the data distribution. xAI-Bench is an
excellent initiative to benchmark the correctness of an xAI algorithm, except that it does not allow a
clear debugging and does not propose any final ranking of the xAI algorithm to help practitioners and
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laymen quickly pick the right tool. Following the analysis of related work, Section 3 details how our
proposed benchmark addresses the highlighted issues.

3 Compare-xAI

Compare-xAI is a quantitative benchmark based solely on functional tests. Compare-xAI is able to
evaluate any new xAI algorithm or index any new test. Current proof-of-concept evaluates more
than 16 post-hoc xAI algorithms on more than 22 functional tests. Compare-xAI outputs a series of
scores that allows a multi-dimensional analysis of comparable xAI algorithms. Figure 1 illustrates
Compare-xAI as a pipeline with three added values: First, we collect the known functional tests
reported in related literature and filter them according to a clear protocol stated in Section 3.1. As a
second step, each algorithm is tested automatically on each of the collected tests. Experiments follow
a protocol detailed in Section 3.2. Each experiment results in one score ranging from 0 (failing) to 1
(succeeding). Compare-xAI has the exclusive advantage of reporting an intermediate score (between
0 and 1) if the algorithm is partially failing the test. Obtained raw results describe an xAI algorithm
by 22 scores, and it is not easy, at this point, to compare two algorithms. Therefore, raw results are
aggregated into a hierarchical scoring method, see Section 3.3.

All unit tests in the literature

Compare-xAI benchmark

A selection of exclusive unit tests 

xAI 
algorithms

Raw
results

Hierarchical 
scoring

➀

➁ ➂

Figure 1: Compare-xAI’s pipeline

3.1 Tests Selection Protocol

A functional test consists of a dataset, a model to explain, and an assertion (e.g., an xAI algorithm is
expected to detect symmetric input features). Section 2.1 highlighted the diversity of tests used in the
literature and the importance of filtering inadequate ones. We propose the following rules to ensure a
multi-dimensional evaluation of all post-hoc xAI algorithms:

One end-user requirement per test. Selected tests should identify and debug a clear end-user re-
quirement within an xAI algorithm. This rule ensures that an algorithm will not fail multiple
tests for the same reason, and it allows researchers quickly debug the xAI algorithm. Ta-
ble 1 regroups a non-exhaustive set of unitary end-user requirements that could alter the
algorithm’s output and let it fail in explaining the model correctly. An example of tests
sharing the same end-user requirement is “The failure of the dummy axiom” [4] and “The
failure of the linearity axiom” [4]: The first test verifies that specific xAI algorithms cannot
detect dummy inputs features when the data distribution is modified. The second test verifies
linearity between two AI models’ output and their explanations. Each test explains how
its respective axiom could fail while both share the same root cause: the effect of data
distribution on the xAI algorithm. Therefore, Compare-xAI does not implement “The failure
of the linearity axiom” [4]. Nevertheless, another test could be found in the literature to
verify exactly this axiom.

Undebatable test. Explanations could target different reasoning. If 2 opposite explanations could be
considered correct given the same setup (dataset, AI model), then Compare-xAI would not
include such a test. A popular example is the causal explanation of the SHAP values [30].

No exact ground truth explanation. A test contains a scoring function that compares the xAI
output to the expected output. The expected output could be an exact set of values, e.g.,
GT-Shapley’s expected output is the Shapley values [29]. The expected output could also
be a pattern, e.g., given one specific model, feature A’s importance should be the highest,
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Table 1: Samples from the shortlisted functional tests.

Category Grouped functional tests

Fidelity Does the algorithm’s output reflect the underlying model ?
aka faithfulness [32], consistency [9]
• Counterexample for the symmetry axiom [9].
• Test whether features of different importance are represented correctly [9].
• Test the detection of feature interaction based on mathematical terms [19].
• Effect of feature product on local explanations [20].
• Test if one-hot encoded features are explained correctly [33].
• Test if main terms and interaction terms are evaluated correctly [34].

Fragility Is the explanation result susceptible to malicious corruption?
• Adversarial attacks can exploit feature perturbation-based xAI algorithms as a vulner-
ability to lower the importance of specific features [35].

Stability Is the algorithm’s output too sensitive to slight changes in the data or model?
• Effect of data distribution: Statistical dependence, non-uniform distribution [30]
• Effect of feature correlations [29, 13]
• Effect of noise in the dataset [4]
• Implementation invariance axiom

Simplicity Can users look at the explanation and easily reason about the model’s behavior?
aka Explicitness/Intelligibility [32]
• Counterexample of the dummy axiom [4]
• Counterexample of the linearity axiom [4]

Stress Can the algorithm explain models trained on big data?
• Test if the xAI algorithm is sensitive to a high number of word tokens (NLP task) [7].
• Detect dummy pixels in the MNIST dataset [18].
• Effect of data sparsity [4].

Other Remaining metrics are not integrated into the hierarchical scoring system albeit
reported in the final dataset.
• Portability [25] measures the diversity of models’ implementation that an xAI al-
gorithm can explain. Portability is tested implicitly by different tests as each one
implements a different model/dataset.
• The relative execution time is an essential factor in choosing an algorithm, and it is
mainly influenced by the stress tests.

or negative, or equal to feature B’s. Compare-xAI’s shortlisted tests rely only on patterns.
Protecting this degree of freedom makes this benchmark compatible with different xAI
approaches. For example, in the case of an adversarial attack test, it is expected that the
ranking of the feature importance does not get affected by corrupted models, regardless of
the exact ranking proposed. Another good example is the test that assesses the symmetry
axiom. Its evaluation function verifies the equality between the feature importance values
without having an exact value as a reference.

Non-redundant tests. Redundant tests emphasis the failure or the robustness of an xAI. Considering
the scoring method of Compare-xAI, redundant tests can not be included. they are manually
reported and eliminated from the selection.

Only tests proposed in the related work. The first iteration of the Compare-xAI benchmark is
limited to the tests reported in former research papers, as many have been presented,
discussed, and heavily criticized in the literature. Compare-xAI takes advantage of this
extensive research work to build a consistent benchmark. Identifying not examined end-user
requirements and proposing new tests is rewarding field of future research.

Categorizing functional tests. In order to cover a large variety of end-user requirements, we propose
to categorize shortlisted functional tests into five common groups [31], see Table 1.
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Figure 2: Hierarchical scoring

3.2 Experiments Protocol

An experiment takes one test and one xAI algorithm. First, the test environment is initialized by
loading the data and training the model. Then the xAI algorithm is asked to explain the model
(Globally or for specific data points). Finally, the explanation is compared to the correct answer, and
one final score, a real number between 0 and 1, is returned.

It might seem to end-users that the stated patterns in Table 1 are self-evident and verified for every
xAI algorithm. As a matter of fact, the public availability and wide usage of particular xAI tools
“swayed several participants to trust the tools without fully understanding them” [13]. For this reason,
we score each xAI algorithm by following the most common usage of the xAI algorithms. This policy
induces the following rules:

Experiments will only be run once. Recent research revealed “a misalignment between data sci-
entists’ understanding of interpretability tools and these tools’ intended use. Participants
misused the tools (either over- or under-used them).” [13]. Compare-xAI is intended for this
former group, that is, data scientists not running complementary experiments or repeating
the same experiment to test the effect of the noise. Targeting the remaining data scientist,
i.e., experts with advanced knowledge of the tools’ limits, is left for future work.

No fixed seed for random number generators. For the same reasons stated above, the seed is not
fixed. Shortlisted tests’ underlying noise does not hinder any xAI method from correctly
explaining a model, i.e., initialized models always learn the tested patterns independently of
the seed.

No parameter tuning. Compare-xAI evaluates algorithms using their default parameters for all
tests. Nevertheless, certain xAI algorithm adapts their parameters internally given each task
by relying on the model’s structure, the dataset size, and the ML task. Around half of the
indexed algorithms have at least one binary parameter, and the performance of some would
vary with parameter tuning. As there are no precise methods or public tools to fine-tune
parameters of xAI algorithms, we suppose the usage of default parameters, by end-users, to
be a common misuse of the xAI algorithm. It is important that Compare-xAI reproduces
this behavior in order to calculate the comprehensibility score in practice, that is, the ease of
correctly interpreting the algorithm’s output, considering common practice.

3.3 Scoring Protocol

Compare-xAI’s tests result in a set of scores per algorithm, which we call “raw” results. A complete
comparison between two algorithms A and B should consider the following four points:

(1)A‘s score for ea ch test is greater than or equal to B‘s score;
(2) For each test, A’s execution time is less than or equal to B’s execution time;
(3) B’s supported models are a subset of A’s (see the portability metric definition in Table 1); and
(4) B’s supported output explanations are a subset of A’s.

As a consequence, sorting xAI algorithms by performance is a multi-metric ranking problem. Com-
paring even two algorithms using this property is impossible, especially with a considerable number
of tests. This formulation of the challenge outlines the difficulty faced by practitioners/laymen who
are looking for a quick explanation of their models but cannot decide on which xAI algorithm to pick.
This challenge is addressed by proposing a relaxation of the scoring dimensions.
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First, let us suppose that each end-user is comparing a subset of xAI algorithms which are all able
to explain the model of his/her interest, and they all offer the type of explanation required by the
end-user (feature importance, attribution, interaction, etc.). On this account, requirements (3) and (4),
stated above, might be skipped. Second, looking at the overall distribution of the scores, There is no
state-of-the-art algorithm that succeeds in all tests. Thus, we opt to promote the “on-average better
explanation” comparison method.

Hierarchical scoring. Figure 2 explains the hierarchical scoring proposed to the end-user to
simplify the comparison between xAI algorithms. Level three, the last level in the hierarchical
scoring, represents the most detailed report (one score per test) used in the classical ranking method.
To simplify it, level two regroups tests per category to propose five scores described in Table 1.
Finally, the first level aggregates the scores into one value, which we named the comprehensibility
score.

Comprehensibility score. Comprehensibility is defined in the literature as “how much effort is
needed for a human to interpret a model correctly?” [36]. Comprehensibility was used as a qualitative
metric in related work. To quantify the Comprehensibility metric, we reformulate the definition as
follows: For an AI model and an xAI algorithm, the effort needed for an end-user to interpret a
model correctly is represented by the number of operations he should perform to obtain a correct
explanation from the xAI. An operation could be, for example, multiple runs of the xAI algorithm
to obtain a stable average explanation; a check/edition of the test dataset to adapt the distribution to
the xAI’s needs; or to perform additional checks against potential adversarial attacks exploiting the
xAI algorithm’s vulnerabilities. We quantify the Comprehensibility metric by linking the number
of operations to the number of failed functional tests. In other words, if the xAI fails a specific
test, the end-user will have to perform additional operations to obtain a correct explanation. We
calculate the Comprehensibility metric as the average over the five subcategories of the second level.
Therefore, comparing xAI algorithms becomes more accessible using the Comprehensibility score
and the average execution time.

Finally, the evaluation’s result is reduced to the comprehensibility score and the average execution
time. Remains the dilemma of choosing the fastest algorithm or the most “comprehensible” one from
the Pareto front. Depending on his/her level of expertise, the end-user is invited to consult any of the
three scoring methods made available via the web user interface.

4 Visualization of the Benchmark

For the proof of concept, we consider a small set of popular xAI methods, implement a user interface
to easily explore the benchmark results, and make the results publicly available1. Figures 3 and 4 do
not represent a final benchmark as the set of tests and xAI algorithms are constantly updated. In this
section, the demonstration will focus on feature importance. Nevertheless, the benchmark remains
adaptable to many forms of post-hoc xAI methods.

Figure 3 summarizes the performance of the considered set of xAI methods. The best algorithm has
the lowest execution time, highest score, and highest portability (bigger dot size). The Pareto front
regroups the closest algorithms to the perfect one. End-users could use the filters on the web interface
to describe a specific use case: Figure 4 is restricted to the set of model-agnostic xAI algorithms that
output (at least) global feature importance. Available filters help the end-user quickly and accurately
navigate the massive amount of undocumented properties of available xAI tools.

At this stage, the end-user picks an xAI algorithm that matches his expected performance and
execution time requirements. The detailed report is accessible by clicking on the blue dot representing
the algorithm: the end-user gets access to information about the supported AI models, the output of the
xAI algorithm, additional information required by the xAI algorithm to run correctly, and essentially
the score obtained on each test. The detailed report helps the end-user quickly understand the limit
of the xAI algorithm before using it. Finally, the end-user can compare multiple xAI algorithms
given a set of tests that reflect his usage of AI. Please keep in mind that selected screenshots are
for demonstration purposes only and we are not going to discuss individual scores, but only the
benchmark itself.

1https://karim-53.github.io/cxai/
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Figure 3: Global overview of the benchmark

Discussion Compare-xAI is a dynamic benchmark, and its results evolve with the filtered tests/xAI
algorithms. Therefore a global analysis of the results is performed without reporting any specific
number. First, considering all implemented unit tests without filtering, none of the xAI algorithms did
obtain the perfect score. Second, obtained comprehensibility scores are very close (50% of the xAI
algorithms obtained a comprehensibility score between 0.70 and 0.85). This clustering reflects the
original structure of these xAI algorithms as the majority are permutation-based algorithms. At this
level of the analysis, the end-user did save a huge amount of time by understanding which algorithms
are almost equivalent and which are relatively faster / explaining better. Same for the scores of the
second level, analyzing the five scores quickly locate the weak point of a chosen xAI algorithm, since
the average difference between the smallest and biggest score is 71.9% (±31.4%). Finally, end-users
can check the detailed report (level 3). They will mainly go through the failed tests (score < 0.05)
or partially failed tests (0.05 ≤ score < 0.95). On average, an xAI algorithm is eligible to 12.3 tests
(± 5) depending on its portability. The distribution of failed tests is skewed, see Figure 5. Thus, the
median is more representative. The median percentages of failed tests and partially failed tests are
17.6% and 38.7%, respectively. Thus, checking the detailed report is expected to be fast.

5 Limitations and Future Work

Compare-xAI’s weaknesses are classified into design-related and implementation-related limitations.

Design-related limitations. Compare-xAI is a benchmark made exclusively of quantitative metrics.
It is objective as it does not include tests based on human evaluation. A common example from is the
study of the human mental model like the investigation of users’ preferred explanation style [37]).
Another example is the study of the information overload, e.g., xAI’s additional output information
like the confidence interval [18]. Mainly, empirical studies are challenging to quantify [38] and
integrate into the comprehensibility score. These and other non-quantifiable advantages/disadvantages
will be included in the description of the xAI algorithm, in the future.

implementation-related limitations. The provided proof of concept includes, for now, 22 tests.
Currently, none of them cover RL, GAN, or unsupervised learning tasks. The tested form of output
is also limited to feature importance (global explanation). Testing feature interaction is still under
development.
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Figure 4: Benchmark of model-agnostic xAI algorithms outputting feature importance

0 20 40 60 80
Failed tests [%]

0 20 40 60 80
Partially failed tests [%]

Mean

Figure 5: Box plot of test status per xAI algorithm
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Despite the stated limitations, Compare-xAI should fulfill its primary objectives: first, helping laymen
pick the right xAI method, and second, helping researchers, practitioners, and laymen avoid common
mistakes in interpreting its output.

6 Conclusion

Explaining AI is a delicate task, and some end-users are prone to misuse dedicated tools [13]. We
propose Compare-xAI a unified benchmark indexing +16 post-hoc xAI algorithms, +22 tests, and +40
research papers. Compare-xAI reproduces experiments following a selection protocol that highlights
the contrast between the theoretical claims of the authors in a paper and the practical implementation
offered to the end-user. Selected tests measure diverse properties. The authors did not create any xAI
algorithm. Therefore, there is no conflict of interest. Compare-xAI proposes to deliver the results
using an interactive interface as a solution to mitigate human errors in interpreting xAI outputs by
making the limits of each method transparent. Compare-xAI proposes a simple and intuitive scoring
method that efficiently absorbs the massive quantity of xAI-related papers. Finally, Compare-xAI
proposes a partial sorting of the xAI methods, toward unifying post-hoc xAI evaluation methods into
an interactive and multi-dimensional benchmark.

Broader Impact

Compare-xAI is a benchmark with multiple use-cases. It can be seen as a debugging tool for
individual xAI algorithms but simultaneously as a global benchmark. Even if Compare-xAI does not
offer a total sorting per performance, still it separates comparable algorithms into the Pareto front and
the rest. Compare-xAI allows practitioners to quickly and correctly filter xAI algorithms given their
needs and to outline the limitations of the selected ones. The end-user, now aware of the limit of the
xAI algorithm, would not over-trust the algorithm’s output and would avoid common mistakes in
explaining a model. On the other hand, Compare-xAI allows researchers to access a detailed scoring
and to answer specific questions such as “In which case does this xAI algorithm fail?”, “Is it the
only one to solve this issue?”, “What kind of cases are still not covered by any xAI algorithm?” etc.
Compare-xAI continuously re-evaluates indexed xAI algorithms to keep an updated benchmark of
the state-of-the-art. Finally, Compare-xAI is more than a benchmark: it is a comprehensive and
standardized related work analysis, while it also works as an evaluation method for new research
papers in xAI.
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Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes] Compare-xAI is a benchmark for feature importance
xAI algorithms. It includes a user interface that helps data scientists quickly run through
the scores.

(b) Did you describe the limitations of your work? [Yes] see 5
(c) Did you discuss any potential negative societal impacts of your work? [No] We discuss

the societal impacts in the “Broader impact” section, but we would not qualify it as
negative.

(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes]

2. If you are including theoretical results...
(a) Did you state the full set of assumptions of all theoretical results? [N/A] There are no

theoretical results.
(b) Did you include complete proofs of all theoretical results? [N/A]

3. If you ran experiments (e.g., for benchmarks)...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [Yes] Our code is
available at https://github.com/Karim-53/Compare-xAI and the main readme
contains the instructions on how to re-run experiments.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] Each test has its own training details defined in its class.

(c) Did you report error bars (e.g., with respect to the random seed after running exper-
iments multiple times)? [No] The protocol of the benchmark reproduces a specific
behavior of a layman: results are reported after only one run. We aim to target the
second group of end-users (those who run experiments multiple times) in future work
by elaborating more on what to report (min, max, or average) and how to keep an equi-
table comparison between stable and noisy algorithms. Nevertheless, the benchmark
stays stable because it averages over multiple tests.

(d) Did you include the total amount of compute and the type of resources used (e.g.,
type of GPUs, internal cluster, or cloud provider)? [Yes] See https://github.com/
Karim-53/Compare-xAI/blob/main/README.md#23-computing-ressouces=

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes] See https://

github.com/Karim-53/Compare-xAI/blob/main/README.md#reference=
(b) Did you mention the license of the assets? [No]
(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]

https://github.com/Karim-53/Compare-xAI/blob/main/LICENSE
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [N/A] We do not survey people.
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [N/A]
5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A] No crowdsourcing.

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A] No crowdsourcing.

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A] No crowdsourcing.
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A Tests

For the proof-of-concept, the following list of tests is considered. Note that some tests count twice as
they test both feature importance and feature attribution.

cough_and_fever answers the following question: Can the xAI algorithm detect symmetric binary
input features?. The trained model’s equation is [Cough AND Fever]*80. The test utilize
XGBRegressor model trained on a synthetic uniform distribution dataset (total size:
20000). The test procedure is as follows: train a model such that its response to the two
features is exactly the same. The xAI algorithm should detect symmetric features (equal
values) and allocate them equal importance. The score is calculated as follows: 1 if the
xAI detect the two features are symmetric. 0 if the difference in importance is above one
unit. The test is classified in the fidelity category because it is a simple tree model that
demonstrate inconsistencies in explanation [9].

cough_and_fever_10_90 answers the following question: Can the xAI algorithm detect that ’Cough’
feature is more important than ’Fever’?. The trained model’s equation is [Cough AND
Fever]*80 + [Cough]*10. Cough should be more important than Fever globally. Locally for
the case (Fever = yes, Cough = yes) the feature attribution of Cough should be more impor-
tant. The test utilize XGBRegressor model trained on a synthetic uniform distribution
dataset (total size: 20000). The test procedure is as follows: train a model with two features
with unequal impact on the model. The feature with a higher influence on the output should
be detected more important. The score is calculated as follows: Return 1 if Cough is more
important otherwise 0. The test is classified in the fidelity category because it is a simple
tree model that demonstrate inconsistencies in explanation due to the tree structure [9].

x0_plus_x1_distrib_non_uniform_stat_indep answers the following question: Is the xAI able
to explain the model correctly despite a non-uniform distribution of the data?. The test
demonstrate the effect of data distribution / causal inference. The test utilize XGBRegressor
model trained on a non-uniform and statistically independent dataset (total size: 10000).
The test procedure is as follows: Check if the explanation change when the distribution
change. Check if non-uniform distributions affect the explanation. The score is calculated
as follows: returns 1 if the two binary features obtain the same importance. The test is
classified in the stability category because it assesses the impact of slightly changing the
inputs [30].

x0_plus_x1_distrib_uniform_stat_dep answers the following question: Is the xAI able to explain
the model correctly despite a statistically-dependent distribution of the data?. The test
demonstrate the effect of data distribution / causal inference. The example was given
in both [39] and [30]. The test utilize XGBRegressor model trained on a uniform and
statistically dependent dataset (total size: 10000). The test procedure is as follows: Check
if the explanation change when the distribution change. Check if statistically dependent
distributions affect the explanation. The score is calculated as follows: returns 1 if the two
binary features obtain the same importance. The test is classified in the stability category
because To assess the impact of changing the inputs of f... This way, we are able to talk
about a hypothetical scenario where the inputs are changed compared to the true features
[30].

mnist answers the following question: Is the xAI able to detect all dummy (constant and useless)
pixels?. The xAI algorithm should detect that important pixels are only in the center of the
image. The test utilize an MLP model trained on the MNIST dataset (total size: 70000).
The test procedure is as follows: simply train and explain the MLP model globally for every
pixel. The score is calculated as follows: Return the ratio of constant pixels detected as
dummy divided by the true number of constant pixels. The test is classified in the stress
category because of the high number of input features. The test is adapted from [18].

fooling_perturbation_alg answers the following question: Is the xAI affected by an adversarial
attack against perturbation-based algorithms?. Model-agnostic xAI algorithms that use
feature perturbation methods might be vulnerable to this attack. The adversarial attack
exploits a vulnerability to lower the feature importance of a specific feature. Setup: Let’s
begin by examining the COMPAS data set. This data set consists of defendant information
from Broward Couty, Florida. Let’s suppose that some adversary wants to mask biased or
racist behavior on this data set. The test utilize a custom function model trained on the
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COMPAS dataset (total size: 4629). The test procedure is as follows: The xAI algorithms
need to explain the following corrupted model (custom function): if the input is from the
dataset then the output is from a biased model. if not then the output is from a fair model.
The score is calculated as follows: Return 1 if Race is the most important feature despite
the adversarial attack. Score decreases while its rank decrease. The test is classified in the
fragility category because fragility includes all adversarial attacks [40].

counterexample_dummy_axiom answers the following question: Is the xAI able to detect unused
input features?. This is a counter example used in literature to verify that SHAP CES do
not satisfy the dummy axiom while BSHAP succeed in this test. The test utilize a custom
function model trained on a synthetic dataset (total size: 20000). The test procedure is as
follows: Train a model with one extra feature B that is dummy. The score is calculated as
follows: returns 1 if the dummy feature B obtain a null importance. The test is classified in
the simplicity category because assigning an importance of zero to dummy feature reflect
the model behavior (Fidelity) but also helps the data scientist to quickly understand the
model (Simplicity).

a_and_b_or_c answers the following question: Can the xAI algorithm detect that input feature ’A’
is more important than ’B’ or ’C’?. This is a baseline test that the xAI should succeed in all
cases. Model: A and (B or C). Goal: make sure that A is more important than B, C. Noise
effect: even if the model output is not exactly equal to 1 still we expect the xai to give a
correct answer. The test utilize XGBRegressor model trained on a synthetic dataset (total
size: 20000). The test procedure is as follows: The model learns the following equation: A
and (B or C). The explanation should prove that A is more important. The score is calculated
as follows: If A is the most important feature then return 1. If A is the 2nd most important
feature then return 0.5 i.e. 1- (1 / nb of feature more important than A). If A is the last one:
return 0 (completely wrong). The test is classified in the fidelity category because of the
same reason as cough and fever 10-90: A’s effect on the output is higher than B or C.

B xAI Algorithms
archipelago [19] separate the input features into sets. all features inside a set interact and there is

no interaction outside a set. ArchAttribute is an interaction attribution method. ArchDetect
is the corresponding interaction detector. The xAI algorithm is model agnostic i.e. it can
explain any AI model. The xAI algorithm can output the following explanations: Feature
interaction (local explanation).

baseline_random [29] Output a random explanation. It is not a real explainer. It helps measure
the baseline score and processing time. The xAI algorithm is model agnostic i.e. it can
explain any AI model. The xAI algorithm can output the following explanations: Feature
attribution (local explanation), Feature importance (global explanation), Feature interaction
(local explanation).

exact_shapley_values [5] is a permutation-based xAI algorithm following a game theory approach:
Iteratively Order the features randomly, then add them to the input one at a time following
this order, and calculate their expected marginal contribution [4]. The output is unique given
a set of constrains defined in the original paper. The xAI algorithm is model agnostic i.e.
it can explain any AI model. The xAI algorithm can output the following explanations:
Feature importance (global explanation). The following information are required by the xAI
algorithm: , A reference dataset (input only) , The model’s predict function

kernel_shap [7] it approximates the Shapley values with a constant noise [30]. The xAI algorithm
is model agnostic i.e. it can explain any AI model. The xAI algorithm can output the
following explanations: Feature attribution (local explanation), Feature importance (global
explanation). The following information are required by the xAI algorithm: , A reference
dataset (input only) , The model’s predict function

lime [1] it explains the model locally by generating an interpretable model approximating the
original one. The xAI algorithm is model agnostic i.e. it can explain any AI model. The
xAI algorithm can output the following explanations: Feature attribution (local explanation),
Feature importance (global explanation). The following information are required by the xAI
algorithm: , A reference dataset (input only) , The model’s predict probability function ,
Nature of the ML task (regression/classification) , The model’s predict function
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maple [41] is a supervised neighborhood approach that combines ideas from local linear models and
ensembles of decision trees [41]. The xAI algorithm is model agnostic i.e. it can explain
any AI model. The xAI algorithm can output the following explanations: Feature attribution
(local explanation), Feature importance (global explanation). The following information are
required by the xAI algorithm: , AI model’s structure , A reference dataset (input only) ,
The train set , The model’s predict function

partition [7] Partition SHAP approximates the Shapley values using a hierarchy of feature coalitions.
The xAI algorithm is model agnostic i.e. it can explain any AI model. The xAI algorithm
can output the following explanations: Feature attribution (local explanation), Feature im-
portance (global explanation). The following information are required by the xAI algorithm:
, A reference dataset (input only) , The model’s predict function

permutation is a shuffle-based feature importance. It permutes the input data and compares it to the
normal prediction The xAI algorithm is model agnostic i.e. it can explain any AI model. The
xAI algorithm can output the following explanations: Feature attribution (local explanation),
Feature importance (global explanation). The following information are required by the xAI
algorithm: , input features , A reference dataset (input only) , The model’s predict function

permutation_partition is a combination of permutation and partition algorithm from shap. The xAI
algorithm is model agnostic i.e. it can explain any AI model. The xAI algorithm can output
the following explanations: Feature attribution (local explanation), Feature importance
(global explanation). The following information are required by the xAI algorithm: , input
features , A reference dataset (input only) , The model’s predict function

saabas explain tree based models by decomposing each prediction into bias and feature contribution
components The xAI algorithm can explain tree-based models. The xAI algorithm can output
the following explanations: Feature attribution (local explanation), Feature importance
(global explanation). The following information are required by the xAI algorithm: , AI
model’s structure

sage [18] Compute feature importance based on Shapley value but faster. The features that are most
critical for the model to make good predictions will have large importance and only features
that make the model’s performance worse will have negative values.

Disadvantage: The convergence of the algorithm depends on 2 parameters: ‘thres‘ and ‘gap‘.
The algorithm can be trapped in a potential infinite loop if we do not fine tune them. The
xAI algorithm is model agnostic i.e. it can explain any AI model. The xAI algorithm can
output the following explanations: Feature importance (global explanation). The following
information are required by the xAI algorithm: , True output of the data points to explain ,
A reference dataset (input only) , The model’s predict function

shap_interaction [42] SI: Shapley Interaction Index. The xAI algorithm is model agnostic i.e. it can
explain any AI model. The xAI algorithm can output the following explanations: Feature
interaction (local explanation).

shapley_taylor_interaction [43] STI: Shapley Taylor Interaction Index. The xAI algorithm is
model agnostic i.e. it can explain any AI model. The xAI algorithm can output the following
explanations: Feature interaction (local explanation).

tree_shap [9] accurately compute the shap values using the structure of the tree model. The xAI
algorithm can explain tree-based models. The xAI algorithm can output the following expla-
nations: Feature attribution (local explanation), Feature importance (global explanation).
The following information are required by the xAI algorithm: , AI model’s structure , A
reference dataset (input only)

tree_shap_approximation is a faster implementation of shap reserved for tree based models. The
xAI algorithm can explain tree-based models. The xAI algorithm can output the following
explanations: Feature attribution (local explanation), Feature importance (global explana-
tion). The following information are required by the xAI algorithm: , AI model’s structure ,
A reference dataset (input only)
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C Test Results

Table 2 contains test results without using any filter. Tests is the number of completed tests. Time is
the average execution time per test. It informs the user about the relative difference in execution time
between algorithms.

Table 2: Sample of the benchmark scores.

xAI algorithm Time Tests Fidelity Fragility Stability Simplicity Stress test Comprehen-
[Seconds] [%] [%] [%] [%] [%] sibility [%]

baseline_random < 1 22 12.9 50.0 30.7 0 33.3 31.7
exact_shapley_values 831 12 100.0 11.1 84.3 100.0 73.9
kernel_shap 328 15 100.0 11.1 85.6 100.0 100.0 79.3
lime 373 17 89.0 0 99.7 98.5 40.9 82.0
maple 119 17 60.0 11.1 100.0 0 25.5 49.2
partition 5 15 100.0 11.1 84.3 100.0 21.7 63.4
permutation 20 13 100.0 11.1 84.3 100.0 100.0 79.1
permutation_partition 20 13 100.0 11.1 84.3 100.0 100.0 79.1
saabas < 1 11 60.0 50.6 55.1
sage 47 10 66.7 11.1 96.9 100.0 55.7 66.1
tree_shap < 1 11 64.0 84.3 74.2
tree_shap_approximation < 1 7 100.0 49.9 74.2
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