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Abstract
Background  Antimicrobial stewardship (AMS) programs are effective tools for improving antibiotic prescription quality. 
Their implementation requires the regular surveillance of antibiotic consumption at the patient and institutional level. Our 
study captured and analyzed antibiotic consumption density (ACD) for hospitalized pediatric patients.
Method  We collected antibacterial drug consumption data for 2020 from hospital pharmacies at 113 pediatric departments 
of acute care hospitals in Germany. ACD was calculated as defined daily dose (DDD, WHO/ATC Index 2019) per 100 patient 
days (pd). In addition, we analyzed the trends in antibiotic use during 2013–2020.
Results  In 2020, median ACD across all participating hospitals was 26.7 DDD/100 pd, (range: 10.1–79.2 DDD/100 pd). It 
was higher at university vs. non-university hospitals (38.6 vs. 25.2 DDD/100 pd, p < 0.0001). The highest use densities were 
seen on oncology wards and intensive care units at university hospitals (67.3 vs. 38.4 DDD/100 pd). During 2013–2020, 
overall ACD declined (− 10%) and cephalosporin prescriptions also decreased (− 36%). In 2020, cephalosporins nevertheless 
remained the most commonly dispensed class of antibiotics. Interhospital variability in cephalosporin/penicillin ratio was 
substantial. Antibiotics belonging to WHO AWaRe “Watch” and “Reserve” categories, including broad-spectrum penicillins 
(+ 31%), linezolid (+ 121%), and glycopeptides (+ 43%), increased over time.
Conclusion  Significant heterogeneity in ACD and prescription of different antibiotic classes as well as high prescription 
rates for cephalosporins and an increased use of reserve antibiotics indicate improvable antibiotic prescribing quality. AMS 
programs should urgently prioritize these issues to reduce antimicrobial resistance.
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Introduction

Increasingly, antimicrobial resistance has emerged as a 
global health problem—one linked to worse patient out-
comes and increasing healthcare costs [1, 2]. Several 
studies have drawn connections between inappropri-
ate antibiotic use and the development of antimicrobial 
resistance caused by selection pressure on both bacterial 
pathogens and on human flora microorganisms [1, 3, 4]. 
Antimicrobial resistance can develop after even a single 
dose of antibiotics and can persist for months afterward 
[5]. Furthermore, prolonged antimicrobial use is associ-
ated with toxicity. Even so, in up to 50% of cases, anti-
microbials are prescribed inappropriately, either for treat-
ment of infections or else as prophylaxis [6, 7]. For these 
reasons, it is urgent that antimicrobial use become man-
aged more prudently. In 2015, a call for optimization of 
their use became part of the World Health Organization's 
(WHO) “Global action plan on antimicrobial resistance” 
[8]. Commonly labeled antimicrobial stewardship (AMS) 
programs, initiatives to improve antimicrobial prescribing 
have been developed. These have been proven effective 
also in pediatric settings in reducing antimicrobial pre-
scription rates and related costs, as well lowering usage 
of reserve antibiotics and the antimicrobial resistance that 
accompanies it [9–14].

Besides reducing the overall antibiotic prescription rates 
by avoiding not-indicated or prolonged antibiotic treatments, 
the WHO emphasized on using antibiotics with a low risk 
for antimicrobial resistance whenever possible and classi-
fied antibiotics accordingly into the categories “Access”, 
“Watch”, and “Reserve” [15]. To reduce development of 
antimicrobial resistance, 60% of the total antibiotic con-
sumption should consist of antibiotics belonging to access 
group antibiotics [16].

Crucial to every AMS program is the regular collection 
of antibiotic consumption data and the audit of antibiotic 
prescribing to identify potentially inappropriate prescrib-
ing and subsequently ameliorate it. Although the overall 
quantity of antibiotics prescribed to hospitalized children 
in Germany is small, the density of antibiotic consump-
tion in this setting is high; 30–40% of children hospital-
ized in Germany receive at least one antibiotic for either 
therapy or prophylaxis [7, 17]. Unfortunately, a pool of 
regularly-collected, antibiotic consumption data is not 
available from pediatric hospitals in Germany. Therefore, 
the aim of our study was to analyze available antibiotic 
consumption data from the ADKA-if-DGI project (http://​
www.​antii​nfekt​iva-​surve​illan​ce.​de) in relation to hospital 
size and service type and to then record changes observed 
over the surveillance period 2013–2020.

Methods

Data were collected from German pediatric hospitals with 
acute care wards who were participants in the ADKA-if-
DGI project. Quarterly hospital pharmacy reports on the 
quantity (number of units) of systemic antibiotics (oral 
or parenteral) dispensed to various wards or departments 
with unique cost centers were logged and converted into 
"Defined Daily Doses" (DDD, WHO/ATC Index 2019) 
[18]. Bed occupancy data were collected from the local 
hospital administration. Antibiotic consumption density 
(ACD) was expressed as DDD per 100 patient days, (pd, 
i.e., occupied bed days). Results were additionally calcu-
lated by employing “Recommended Daily Dose” (RDD) 
definitions of hospital-adapted doses for a variety of drugs 
that better reflect truly prescribed doses in hospitalized 
(adult) patients [19]. Details on data collection and analy-
sis in the ADKA-if-DGI project have been described pre-
viously [20].

For the cross-sectional analysis, we calculated median 
and interquartile ranges (25% and 75% percentiles). 
Pooled means per year were used to describe longitudinal 
changes. Data were derived from general wards, intensive 
care wards (pediatric and/or neonatal ICUs), and hematol-
ogy–oncology wards. Hospitals were divided into groups 
according to overall size (including non-pediatric beds): 
small hospitals (< 400 beds), medium-sized hospitals 
(400–800 beds), and large hospitals (> 800 beds). Among 
the large hospitals, university hospitals were evaluated 
separately. Data were compared using either the Wilcoxon 
rank-sum test for comparison of two groups, or else the 
Kruskal–Wallis test for comparison of more than two 
groups. All statistical tests were calculated with Graph-
Pad Prism V.6 (GraphPad Software, La Jolla, CA, USA). 
These tests were two-tailed and considered significant if 
the p value was < 0.05. We also performed a panel analy-
sis (several cross-sectional over several timepoints) using 
linear mixed effect models and by random for institutional 
effects in effects intercept and change over time [21]. Each 
hospital was coded by a random effect and time. Other 
co-variates such as hospital size and category as well as 
ward type were used to estimate antibiotic use over time 
and how this may be influenced by relevant factors. Com-
parisons between different antibiotic classes were done 
descriptively using generalized forest plots. This analy-
sis used the Software R (Version 4.0.3. 2020-10-10 [22]) 
RStudio [23] and the packages lme4 [24] and metafor [25]. 
For assignment of antibiotic substances to displayed anti-
biotic classes and groups, see Supplementary Table 1. To 
describe consumption of cephalosporins, the consumption 
of 1st/2nd generation cephalosporins and 3rd/4th genera-
tion cephalosporins was added up. The consumption of 
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penicillins was computed as sum of broad-spectrum peni-
cillins, aminopenicillins/beta-lactamase inhibitors (BLI), 
and narrow-spectrum penicillins. For classification of anti-
biotics to WHO AWaRe groups, the WHO 2021 AWaRe 
classification was employed [15].

Results

Antibiotic consumption density in 2020

During 2020, a combination of 113 children's hospitals and 
pediatric divisions of acute care hospitals in Germany sub-
mitted a full year (four quarters) of antibiotic consumption 
data covering a total of 1,693,501 pd. Among the reporting 
hospitals were 36 hospitals with < 400 beds (32%), 36 with 
400–800 beds (32%), and 41 (including 22 university hos-
pitals) with > 800 beds (36%) (Table 1).

Median overall ACD at pediatric divisions of acute care 
hospitals was 26.7 DDD/100 pd, with an interquartile range 
of 20.1–36.3 (or median 20.7 RDD/100 pd, IQR 15–26.4) 
(Supplementary Table 2). Significantly higher ACD was 
found at university vs. non-university hospitals (p < 0.0001). 
At non-university hospitals, ACD increased in parallel with 
hospital size (Table 1). However, variability between indi-
vidual hospitals, (which ranged from 10.1 to 79.2 DDD/100 
pd), was high—a span corresponding to 7.8-fold difference 
among hospitals (Fig. 1). Interestingly, substantial variabil-
ity in overall antibiotic use was also seen among hospitals of 
similar size (Fig. 1). For example, the difference in overall 
ACD among the 22 university hospitals was approximately 
4.4-fold (79.2 DDD/100 pd, resp. 17.8 DDD/100 pd).

ACD was especially high on intensive care units (ICUs) 
and hematology/oncology wards of university hospitals 
(Table 2 and Supplementary Table 3). Here, the greatest 
disparity between university hospitals and non-university 
hospitals was observed. By contrast, on regular wards, ACD 
was similar for both university and non-university hospitals. 
Again however, increased ACD was observed to increase 
along with size of the non-university hospital on ICUs and 
regular wards.

Antibiotic classes

The five most common classes of antibiotics across all 
hospitals and wards in 2020 were (in DDD/100 pd): 
1st/2nd generation cephalosporins, narrow-spectrum pen-
icillins, 3rd/4th generation cephalosporins, aminopenicil-
lins/BLI combinations, and macrolides/clindamycin (for 
RDD, see Supplementary Table 2). As with overall ACD, 
interhospital variability regarding prescription of differ-
ent antibiotic classes was substantial (Fig. 1). This vari-
ability encompassed differences between cephalosporin 
and penicillin consumption (ratio ranging between 15:85 
and 87:13), as well as that between piperacillin ± BLI and 
ampicillin/amoxicillin ± BLI, and that between 1st/2nd 
generation and 3rd/4th generation cephalosporins (Fig. 1).

As part of overall antibiotic consumption (in DDD), 
the proportion of broad-spectrum beta-lactams, (carbap-
enems, broad-spectrum penicillins and 3rd/4th generation 
cephalosporins), as well as their median ACD in DDD/100 
pd, was significantly higher at university hospitals (31%; 
11.2 DDD/100 pd) vs. non-university hospitals (21%; 4.6 
DDD/100 pd (Fig. 2A and Supplementary Table 4). In 
comparing cephalosporin and penicillin consumption, 
however, the ratio remained similar between university 
(53:47) and non-university hospitals (57:43)—49:51 and 
53:47 when calculated with RDD, respectively.

As expected, consumption of reserve and broad-spec-
trum antibiotics such as carbapenems, glycopeptides, and 
broad-spectrum penicillins was higher in ICU (especially 
at university hospitals) and oncology wards vs. in patients 
on regular wards. This is reflected in median DDD/100 
and RDD/100, as well as in proportion of overall antibi-
otic use (Fig. 2B, Supplementary Table 4, and data not 
shown). For example, median usage of glycopeptides on 
ICUs and oncology wards at university hospitals was 
30-fold and 49-fold higher than on regular wards at non-
university hospitals (DDD/100 pd: 6.25 vs. 10.39 vs. 
0.21, respectively).

Table 1   Comparison of 
antibiotic consumption density 
in DDD and RDD per 100 
patient days between university 
and non-university hospitals of 
different sizes for the year 2020

pd, patient days

n DDD/100 pd RDD/100 pd

Median Interquartile range Median Interquartile range

Non-university hospitals 91 25.25 19.05–31.27 18.65 13.58–22.90
< 400 beds 36 22.69 18.37–32.25 17.80 12.18–23.77
400–800 beds 36 23.68 18.56–27.28 18.48 13.59–20.79
> 800 beds 19 28.52 24.05–34.95 22.29 19.38–26.48
University hospitals (> 800 beds) 22 38.64 29.42–43.77 31.13 25.10–36.79



828	 M. Freudenhammer et al.

1 3

AWaRe classification

According to the WHO AWaRe classification 2021, 63% 
of the antibiotics used during 2020 (in DDD) belong to 
the “Watch” and “Reserve” categories (Fig. 3A). While 
use of antibiotics from these categories varied extensively 
among individual hospitals (29 – 86%, Fig. 3B), higher 
consumption was observed in university vs. non-univer-
sity hospitals (median 69.0% vs. 58.5%, p = 0.0013).

Longitudinal surveillance 2013–2020

The number of hospitals submitting data increased from 66 
in 2013 to 113 in 2020, with 48 of the hospitals submit-
ting data during every year of the surveillance period. From 
2013 to 2020, overall ACD in DDD/100 pd decreased by 
10% (p < 0.0001), a significant change (Table 3) observed 
at university and non-university hospitals (Fig. 5), as well 
as at hospitals of varying sizes (data not shown). The most 

Fig. 1   Antibiotic consumption density (in DDD/100 patient days) 
of specific antibiotic classes at 113 pediatric hospitals of different 
sizes and categories. A Hospitals with < 400 beds, B hospitals with 

400–800 beds, C hospitals with > 800 beds. University hospitals are 
marked with a asterisk. Data are for the year 2020. BLI, beta-lacta-
mase inhibitors
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notable decline was observed on hematology/oncology 
wards (p = 0.03)—the setting with the highest overall anti-
biotic consumption.

Consumption of penicillins increased significantly 
(+ 50.5%, p < 0.0001), whereas cephalosporins declined 

(− 35.7%, p < 0.0001, Fig. 4). Use of macrolides/clindamy-
cin, tetracycline, and fluoroquinolones decreased over the 
8-year period, while prescription of “reserve antibiotics” 
increased, especially at university hospitals (Fig. 5). These 
reserve antibiotics included broad-spectrum penicillins 

Table 2   Comparison of 
antibiotic consumption 
density in DDD/100 patient 
days between different wards 
(regular, ICU, and hematology–
oncology) in hospitals of 
different size (< 400, 400–
800, > 800 beds) and of different 
categories (non-university and 
university hospitals) in the year 
2020

*Wilcoxon rank-sum test

Non-university hospitals University hospitals p value*

n Median Interquartile range n Median Interquartile range

Regular wards 90 28.51 22.27–34.17 21 29.17 23.48–39.14 0.2988
> 800 beds 19 31.70 27.82–36.79 21 29.17 23.48–39.14 0.6878
400–800 beds 35 27.09 21.92–33.17
< 400 beds 36 26.79 20.09–31.53
ICU 53 15.40 8.56–25.22 22 38.94 31.37–49.98 0.0001
> 800 beds 15 19.47 10.66–31.76 22 38.94 31.37–49.98 0.0003
400–800 beds 27 15.98 10.07–24.07
< 400 beds 11 8.80 6.04–11.98
Hematology/oncology 3 31.98 26.19–42.91 18 67.28 59.32–86.40 0.0105

Fig. 2   Use of antibiotic classes in patients in non-university and uni-
versity hospitals (all wards) (A) and on regular hospital wards vs. 
ICU and oncologic wards of university hospitals (B) as a propor-

tion of the median antibiotic consumption density (in % DDD) in 
the respective stratum. Data for the year 2020. BLI, beta-lactamase 
inhibitors
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(piperacillin–tazobactam), carbapenems, glycopeptides, and 
linezolid (Table 3).

Discussion

Our study collected and analyzed nationwide ACD at pedi-
atric hospitals with acute care wards in Germany.

Overall ACD was 26.7 DDD/100 pd, with 25.3 DDD/100 
pd for non-university and 38.6 DDD/100 pd for university 
hospitals in 2020. In comparison to findings from other 
European countries, this is on the lower range [26–29]. 
Variability of antibiotic use among the participating hos-
pitals was striking, with a 7.8-fold difference in antibiotic 
use among the hospitals that had the lowest and the highest 
ACDs (Fig. 1). The higher ACD found in larger hospitals 
and in university hospitals vs. that seen in smaller hospitals 
and non-university hospitals may be explained by several 
factors: larger hospitals with > 800 beds mostly belong to 
tertiary care centers with specialized pediatric care units, 
and therefore treat many patients with underlying dis-
eases (e.g., immunodeficiency, cystic fibrosis, post-kidney 
transplant, etc.). These patients are more prone to develop 
severe infections, to develop hospital-acquired infections, 

to be colonized by resistant microorganisms and to receive 
(broad-spectrum) antibiotics, factors that influence the ACD. 
Moreover, patients with severe infections/underlying con-
ditions are often transferred to larger and university hos-
pitals. In addition, hematology/oncology or bone marrow 
transplant wards, that were shown to have an extensively 
high antibiotic consumption, as well as NICUs caring for 
extremely low birth weight infants, are exclusively located 
in large (university) hospitals. Other institutional differences 
between small and large/non-university and non-university 
hospitals that may influence antibiotic prescription and con-
sumption include existence of on-site infectious disease (ID) 
consulting services and/or AMS teams. Nevertheless, we 
also observed meaningful differences in ACD among partici-
pating university hospitals or between small hospitals with 
less than 400 beds, assuming comparable patient popula-
tions and treatment indications among these hospitals. This 
within-group variability suggests there to be either subopti-
mal adherence to national guidelines or else the existence of 
suboptimal local guidelines, ones that likely would benefit 
from the institution of a local AMS program [9, 14].

Several point or period prevalence surveys (PPS), that 
describe antibiotic prescribing practice at patient level, 
confirm our finding of a high variability in antibiotic 
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Fig. 3   Percentage of antibiotic use in children according to the WHO AWaRe classification for pediatric hospitals with acute care wards (A) and 
as individual hospitals (B). Data for the year 2020
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consumption. In 2012, as part of the Antibiotic Resistance 
and Prescribing Project (ARPEC), a PPS from 23 German 
pediatric hospitals reported a similarly high variation in 
antibiotic prescribing practices [17, 30]. Here, antibiotic 
prevalence rates (APR) ranged from 6.5 to 49.5% (a 7.6-
fold difference) among surveyed hospitals. The highest APR 
were recorded on oncology wards (65.0%), while the lowest 
were on general neonatal wards (7.3%). APR was higher at 
university hospitals (27.0%) as compared to non-university 
hospitals (16.7%). A British PPS study that examined the 
proportion of children who had been prescribed antibiotics, 
along with the DDD/100 pd per age group, also reported a 
wide variation in antibiotic use when comparing practices 
at the district general hospital and tertiary referral hospi-
tals, as well as when examining the two types of hospitals 
separately [29].

Our study's finding that antibiotic use on hematology/
oncology wards and ICUs was higher than on regular 
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Fig. 4   Antibiotic consumption density of penicillins and cephalospor-
ins (DDD/100pd) for the time period 2013–2020

Fig. 5   Overall antibiotic consumption density and consumption of 
single antibiotic classes as usage evolved during the course of the 
surveillance period (2013–2020) at university hospitals (A) and non-
university hospitals (B). Data shown as a regression coefficient rep-

resenting the change in ACD per year with 2.5%/97.5% confidence 
intervals. Statistics were calculated using a linear mixed model 
adjusted for hospital service type
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pediatric wards is in line with the results reported from 
several multicenter PPS from Europe and elsewhere [17, 
29–33]. This finding may be explained by the high per-
centage of fever and severe infections, as well as the need 
for antimicrobial prophylaxis, in critically ill and/or vul-
nerable patient populations. Moreover, children who are 
on hematology/oncology/transplant wards or on ICUs 
are more likely to receive antibiotic combination thera-
pies, a factor directly affecting the DDD/100 pd [17, 29]. 
However, several studies have shown that approximately 
half of antibiotic treatments on pediatric ICUs (PICUs) 
were inappropriate [32, 34, 35] and that significant reduc-
tions in antimicrobial use can be achieved on PICU and 
hematology/oncology wards (without increased adverse 
outcomes), when effective AMS programs, e.g., prospec-
tive audit with feedback or preauthorization systems, are 
implemented [36–40].

Assuming a similar case mix index and age structure 
in the participating hospitals over the surveillance period 
2013–2020, our finding that antibiotic use among partici-
pating hospitals decreased over time is both noteworthy and 
relevant. Of particular interest is that the use of cephalo-
sporins decreased by approximately 36%, whereas the usage 
of penicillins increased by 51%. According to the WHO 
AWaRe classification of antibiotics, penicillins are the pre-
ferred class of antibiotics for most pediatric indications and 
should replace 2nd, 3rd, or 4th generation cephalosporins 
whenever possible [41]. The use of cephalosporins is asso-
ciated with the development of C. difficile infections (CDI) 
[42], as well as with the emergence of antibiotic-resistant 
microorganisms, including extended-spectrum beta-lacta-
mase-producing Gram-negative bacteria [43, 44] and van-
comycin-resistant enterococci [45]. The observed change 
in consumption density of penicillins and cephalosporins 
during the period 2013–2020 may be related to AMS initia-
tives successfully implemented in many German hospitals 
or the increasing availability of pediatric-specific antibiotic 
stewardship education programs—a positive development 
[10, 39, 46–48]. Unfortunately, however, our study found 
that in 2020, in both university and non-university hospitals, 
cephalosporins remained the most commonly used antibiot-
ics across all pediatric departments (Table 3 and Supplemen-
tary Tables 2 and 4). This stayed true when RDD/100 pd 
was used as an alternative metric instead of DDD/100 pd, as 
DDD is based on a lower daily dose for cephalosporins, and 
therefore overestimates their use. In line with our conclu-
sions, high consumption of cephalosporins (especially 3rd 
generation cephalosporins) has been identified via PPS in 
several other European countries as well. This emphasizes 
the need for a comprehensive, international effort to address 
antibiotic prescription quality [17, 49–53]. In some pediatric 
hospitals in Europe, including in Sweden, cephalosporin use 
has been successfully reduced over a 15-year period [54].

Despite overall decreases in antibiotic use (including 
that of cephalosporins), increased consumption of antibiot-
ics belonging to the WHO “Watch” or “Reserve” catego-
ries—specifically, carbapenems, broad-spectrum penicillins, 
glycopeptides and linezolid — is concerning and needs fur-
ther monitoring. According to a recent global PPS from the 
Global Antimicrobial Resistance, Prescribing, and Efficacy 
in Neonates and Children (GARPEC) and the Global PPS 
on Antimicrobial Consumption and Resistance (Global-PPS) 
networks, antibiotics belonging to the WHO “Watch” cate-
gory in Europe and in Germany (five participating hospitals) 
were prescribed to pediatric patients at a rate of approxi-
mately 40% [51]. In our study, 61% of the dispensed antibi-
otics (in DDD) were antibiotics from the “Watch” category, 
despite substantial variations among hospitals. This misses 
the WHO target—a goal saying that at least 60% of total 
antibiotic consumption be from “Access” group antibiot-
ics—by a long shot [16]. AMS activities as facility-specific 
treatment recommendations (including indication, choice 
of substance and duration of antibiotic treatment) or preau-
thorization systems for antibiotics belonging to “Watch” and 
“Reserve” categories might help to limit the extensive use of 
antibiotics from these categories [55, 56]. With 113 out of 
a total of 318 German pediatric hospitals participating dur-
ing 2020 [57], our sample, which included both small and 
large hospitals, is of considerable size (36%). Because we do 
not have information on the specific populations served by 
each hospital participating in the study, we unfortunately are 
unable to determine the extent to which the selection of hos-
pitals may be fully representative of all pediatric hospitals in 
Germany. Assessing antibiotic consumption as drug dispens-
ing data in the form of DDD has its limitations, especially 
in pediatric populations as DDD usually represent average 
doses for adult patients in the community or hospital, rather 
than those effectively prescribed at the patient level, e.g., as 
days of therapy (DOTs) [58–60]. Therefore, no statements 
can be made regarding the quality of the single antibiotic 
prescription.

Moreover, although RDD/100 pd is closer to the actual 
dose of some antibiotics than DDD/100 pd in adult patients 
[61], calculations of both DDD and RDD are based on the 
average maintenance dose per day in adults and do not 
consider individual pediatric prescribing practices based 
upon age and/or body weight or body surface area (BSA). 
When dispensed by the pharmacy, either only a fraction 
of the antibiotic dose is given to the patient and the rest 
discarded, or else the dose might be divided among several 
pediatric patients. Correlation of DDD/RDD with actual 
consumption is dependent upon body weight variations in 
the studied population, upon the different drug vial sizes 
available at the hospital pharmacy, and upon the percent-
age of discarded drugs [62–64]. Therefore, DDD and 
RDD do not accurately reflect actual drug consumption 



834	 M. Freudenhammer et al.

1 3

on pediatric wards. Both overestimation and underestima-
tion of drug use are of concern [33, 65, 66]. Furthermore, 
due to heterogeneity in patient age and body weight, as 
well as to variations in dosing schemes, comparability 
between wards and institutions might be impacted [59]. 
Metrics considered more appropriate for the capture of 
antibiotic consumption data in children include days of 
therapy, length of therapy or prescribed daily dose. Unfor-
tunately, these data were not available to our study, as 
they generally require access to the individual patient, 
and collecting such data on a regular basis requires use of 
electronic health records to be cost-effective, which to date 
are not nationwide available [33, 47, 59, 66–68]. Nonethe-
less, given the variability of ACD even among university 
hospitals, which is less likely to be due only to differences 
in patient populations and/or regional antimicrobial resist-
ance, we believe our findings remain valid despite these 
limitations. Moreover, DDD and RDD analyses offer the 
possibility of longitudinal surveillance of overall antibiotic 
consumption and/or particular antibiotic classes, assum-
ing there to be a constant case mix [29, 59, 69]. Addi-
tional patient-level analyses in the form of point or period 
prevalence surveys (PPS) in the participating hospitals 
including information on the patient level (e.g., patient 
age, weight, underlying diseases) and antibiotic treatment 
(indication, length, dosage, documentation) could be used 
to confirm the data continuously assessed by analysis of 
pharmacy dispensing data and help us to get a better pic-
ture of ACD in pediatric care. This also would allow us to 
draw more specific conclusions regarding appropriateness 
of prescribed antibiotic treatments.

To conclude, despite the limitations of the DDD/100 
method in a pediatric setting, our study indicates inap-
propriate use of antibiotics at several levels: (1) high 
variability in ACD between hospitals of similar size and 
service type; (2) the extensive use of antibiotics belong-
ing to the WHO “Watch” and “Reserve” categories. Both 
topics should be addressed by antimicrobial stewardship 
activities. Longitudinal surveillance of the relatively eas-
ily accessible pharmacy dispensing data allows to assess 
the development of ACD and the effectiveness of AMS 
interventions on a national level. In addition, patient level 
analyses are needed to confirm and to complement the 
data regarding prescribing quality to specify existing 
AMS activities. The pipeline for new antibiotics has run 
dry. It is urgent that currently available antibiotics are 
used prudently [9, 12, 13].
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