
ASSOCIATION FOR
PSYCHOLOGICAL SCIENCE

Creative Commons NonCommercial CC BY-NC: This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0
License (https://creativecommons.org/licenses/by-nc/4.0/), which permits noncommercial use, reproduction, and distribution of the work without

further permission provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/open-access-at-sage).

https://doi.org/10.1177/25152459231162559

Advances in Methods and
Practices in Psychological Science
July-September 2023, Vol. 6, No. 3,
pp. 1 –35
© The Author(s) 2023
Article reuse guidelines:
sagepub.com/journals-permissions
DOI: 10.1177/25152459231162559
www.psychologicalscience.org/AMPPS

Tutorial

Over the past decade, supervised machine learning (ML)
has appeared with increasing frequency in psychology
and other social sciences. In psychology, ML has been
used to tackle such diverse topics as predicting psycho-
logical traits from digital traces of online and offline
behavior (Kosinski et al., 2013; Stachl, Au, et al., 2020;
Youyou et al., 2015), modeling consistency in human
behavior (Shaw et al., 2022), or investigating the empiri-
cal structure of self-regulation (Eisenberg et al., 2019).
This popularity can be traced to a number of features:
a focus on prediction, which complements traditional
methods that emphasize description and explanation
(Shmueli, 2010); the flexibility to account for nonlinear

patterns in large quantities of data (Kosinski et al., 2016);
and an increase in the generalizability of research find-
ings by evaluating predictive performance on new data
(Yarkoni, 2022). Together, these features hold the prom-
ise of elevating the understanding of the processes that
connect human behavior, cognition, and experience
while being able to account for real-world complexity
(Rocca & Yarkoni, 2021; Yarkoni & Westfall, 2017).

1162559 AMPXXX10.1177/25152459231162559Pargent et al.Advances in Methods and Practices in Psychological Science
research-article2023

Corresponding Author:
Florian Pargent, Department of Psychology, Ludwig-Maximilians-
Universität München, Munich, Germany
Email: florian.pargent@psy.lmu.de

Best Practices in Supervised Machine
Learning: A Tutorial for Psychologists

Florian Pargent1 , Ramona Schoedel1, and Clemens Stachl1,2

1Department Psychology, Ludwig-Maximilians-Universität München, Munich, Germany, and
2Institute of Behavioral Science and Technology, University of St. Gallen, St. Gallen, Switzerland

Abstract
Supervised machine learning (ML) is becoming an influential analytical method in psychology and other social sciences.
However, theoretical ML concepts and predictive-modeling techniques are not yet widely taught in psychology programs.
This tutorial is intended to provide an intuitive but thorough primer and introduction to supervised ML for psychologists
in four consecutive modules. After introducing the basic terminology and mindset of supervised ML, in Module 1, we
cover how to use resampling methods to evaluate the performance of ML models (bias-variance trade-off, performance
measures, k-fold cross-validation). In Module 2, we introduce the nonlinear random forest, a type of ML model that is
particularly user-friendly and well suited to predicting psychological outcomes. Module 3 is about performing empirical
benchmark experiments (comparing the performance of several ML models on multiple data sets). Finally, in Module 4,
we discuss the interpretation of ML models, including permutation variable importance measures, effect plots (partial-
dependence plots, individual conditional-expectation profiles), and the concept of model fairness. Throughout the
tutorial, intuitive descriptions of theoretical concepts are provided, with as few mathematical formulas as possible, and
followed by code examples using the mlr3 and companion packages in R. Key practical-analysis steps are demonstrated
on the publicly available PhoneStudy data set (N = 624), which includes more than 1,800 variables from smartphone
sensing to predict Big Five personality trait scores. The article contains a checklist to be used as a reminder of important
elements when performing, reporting, or reviewing ML analyses in psychology. Additional examples and more advanced
concepts are demonstrated in online materials (https://osf.io/9273g/).

Keywords
tutorial, supervised machine learning, cross-validation, interpretable machine learning, random forest, open data,
open materials

Received 7/13/22; Revision accepted 2/17/23

https://us.sagepub.com/en-us/journals-permissions
https://www.psychologicalscience.org/AMPPS
mailto:florian.pargent@psy.lmu.de
https://osf.io/9273g/
http://crossmark.crossref.org/dialog/?doi=10.1177%2F25152459231162559&domain=pdf&date_stamp=2023-08-03

2 Pargent et al.

However, the application, evaluation, and interpretation
of ML-based analyses require new skills and acute
awareness of its methodological challenges and
limitations.

In this tutorial article, we aim to provide an intuitive
but thorough introduction to the fundamentals of super-
vised ML for students, researchers, and educators in
psychology. Our goal is to demystify ML and to help
readers achieve their analytic goals. We introduce the
most important ML concepts, which should enable read-
ers to safely familiarize themselves with more complex
methods in self-study. Our focus is exclusively on super-
vised ML (James et al., 2021; Kuhn & Johnson, 2013).
We do not cover other branches of ML (e.g., unsuper-
vised learning; see Murphy, 2022) and more advanced
or specific topics (e.g., deep learning; see Goodfellow
et al., 2016). We assume that readers are familiar with
the free open-source statistical programming language
R (Version 4.2.2; R Core Team, 2020), linear regression
models, and their standard application in psychology or
other social sciences.

In this tutorial, we present ML theory and application
side by side. In each of four consecutive modules, we
first introduce key theoretical concepts, prioritizing intu-
ition and visualizations over mathematical formulas.
Then, we apply the theoretical concepts in R while pro-
viding enough details for readers to understand which
analysis steps to think about and how to adapt them to
their own projects. Readers will benefit most from our
tutorial by following our practical exercises on their own
computers (but all major R outputs are included in our
article). The tutorial covers a lot of content, and some
concepts might seem complicated at first. We encourage
readers to work through the tutorial at their own pace
and revisit earlier sections to consolidate what they have
learned. We added a short summary to the end of each
module, which should make it easier to continue with
the next module at a later time.

Before getting into the first module, we introduce the
basic terminology and mindset of supervised ML and
describe the data set and the software we use in our
practical exercises. After setting the stage, in Module 1,
we cover how to use resampling methods to evaluate
the performance of ML models. In Module 2, we intro-
duce the nonlinear random forest (RF; and its compo-
nents regression and classification trees), a type of ML
model that is particularly user-friendly and well suited
to predicting psychological outcomes. Module 3 is about
performing empirical benchmark experiments. Finally,
in Module 4, we discuss the interpretation of ML models,
including permutation variable importance measures,
effect plots, and the concept of model fairness. At the
end of the tutorial, we provide a single-page checklist
that can be used as a reminder about important concepts
and pitfalls when performing, reporting, or reviewing

ML analyses in psychology. Beyond what we cover in
the tutorial, we provide electronic supplemental materi-
als (ESM) with additional examples and demonstrations
of more advanced topics in an accompanying OSF repos-
itory. All materials for our tutorial, including our repro-
ducible article, the data set, and the ESM can be found
at https://osf.io/9273g/. We also uploaded our tutorial
to Code Ocean (https://doi.org/10.24433/CO.5687964
.v1), which provides the most convenient way to follow
along with our exercises or the ESM directly in the
browser without having to install any software.

The Terminology and Mindset
of Supervised ML

Scientists often want to predict the value of some vari-
able of interest using some other predictor variables. For
example, in our own research, we were interested in
predicting the personality trait score of a person (mea-
sured with a questionnaire) on the basis of their smart-
phone behaviors (recorded on their personal smartphone;
Stachl, Au, et al., 2020).

Basic terminology

In supervised ML, the variable of interest (e.g., personal-
ity trait score) is often called “target,” and the predictor
variables (e.g., smartphone behaviors) are called “fea-
tures.” We use that terminology in this tutorial. Depend-
ing on the variable type of the target, supervised learning
problems are typically divided into “regression” and
“classification” tasks. In regression tasks, the target is
continuous (e.g., personality trait score), whereas in
classification tasks, the target is categorical (e.g., nomi-
nal: having an illness or not; ordinal: education level).
For the classification task, there is a further distinction:
The target can either have only two distinct values,
which is called “binary classification,” or it can have
more than two classes (e.g., country of origin), which is
called “multiclass classification.” A visualization of simple
regression and classification tasks can be found in ESM
2.1. We do not cover multiclass classification tasks in
this tutorial, but most syntax can be easily adjusted for
this setting.

To produce predictions for the target y when pre-
sented with concrete values for a series of features
x x x p1 2, , . . . , (with p the number of features) requires
a “predictive model.” The methodological literature dis-
tinguishes various types of models, which differ from
each other in their structure and type of “model param-
eters.” Before a model can make predictions, the model
parameters have to be estimated from data. For that, an
estimation “algorithm” is used, which is some formal set
of rules to determine appropriate parameter values. Esti-
mating model parameters (cf. model fitting) is often

https://osf.io/9273g/
https://doi.org/10.24433/CO.5687964.v1
https://doi.org/10.24433/CO.5687964.v1

Advances in Methods and Practices in Psychological Science 6(3) 3

called model “training,” thus only a trained predictive
model is ready to make predictions. Using a data set for
training with values for both the features and the target
available is called “supervised learning.” If models are
trained without target values, this is called “unsupervised
learning” (Murphy, 2022). In the context of supervised
ML, the terms “predictive model” and “ML model” are
often used interchangeably.

For example, a simple predictive model is linear
regression: y x x xi i i p pi i= + + +…+ +β β β β ε0 1 1 2 2 , for indi-
viduals i N= 1,..., . The model parameters β β β0 1, , ,… p are
usually estimated with the least squares algorithm. Before
training, suitable values for the model parameters are
unknown. During training, the model learns suitable
parameter values from a data set with sample size N . After
training, the resulting parameter estimates β β β β   

0 1 2, , , ,… p
can be used to compute a prediction y j

 (e.g., the pre-
dicted personality trait score for a certain individual j) for
some new observation with known feature values (e.g.,
smartphone behaviors of the same individual)
x x xj j pj1 2, ,..., : y x x xj j j p pj



   = + + +…+β β β β0 1 1 2 2 .
Predictive models differ with respect to their “flexibil-

ity.” A relatively inflexible model such as linear regression
can account only for linear relationships, include manually
selected linear interactions, and use a small number of
features simultaneously. A flexible model such as the RF
(Breiman, 2001a) promises to automatically learn nonlin-
ear relationships and interactions while effectively dealing
with a large number of features. If the true relationship
between the features and the target is complex, a more
flexible model has the potential to produce more accurate
predictions when trained on enough data. Predictive mod-
els also differ with respect to their “interpretability.” The
interpretability of a model refers to how easy it is to under-
stand the relationships between feature values and the
predictions of the model. Usually, there is a trade-off
between model flexibility and interpretability. In more
flexible models, interpretability is often more challenging
or can be achieved only by applying additional methods
because no simple model equation (cf. linear regression
example) is available.

Predictive-modeling mindset

Talking about supervised ML often involves the applica-
tion of relatively flexible ML models and, more impor-
tantly, a “predictive mindset” when performing data
analysis. This mindset is sometimes at odds with how
most psychologists were trained to apply statistical mod-
els, mostly limited to generalized linear models such as
linear or logistic regression. Such “classical modeling”
approaches have been described with many names, such
as “data,” “descriptive,” and “explanatory” modeling
(Breiman, 2001b; Shmueli, 2010). The classical approach

aims to understand and model the concrete relationships
between variables. Given theoretical knowledge or pre-
vious work, a statistical model with a specific relation-
ship (e.g., a conditional linear association) is assumed
that describes how the data were produced in the popu-
lation. Appropriate model-fit indices such as R2
and residual diagnostics naturally arise from the data-
generating model, and these indices are typically used
to determine how well a model fits the available data
set. After model fit is deemed satisfactory, the focus
typically lies in qualitatively interpreting the estimated
model parameters (e.g., testing the hypothesis that a β
coefficient is positive).

In supervised ML, researchers usually do not make
any explicit assumptions about the data-generating pro-
cess in the hope that the models can learn the specific
functional relationship between the features and the
target automatically. In contrast to evaluating the trained
model on the same data set, which is what is usually
done in classical modeling, supervised ML seeks to
quantify the predictive performance of models regarding
how well they can predict new, previously unseen obser-
vations. Appropriate performance measures that define
what is a good prediction are carefully selected accord-
ing to the intended model application instead of being
derived from an explicit data model. After model evalu-
ation, the focus is on concrete predictions, and the
trained model parameters are often of secondary interest
or not considered at all. Two (idealistic) assumptions
are necessary for a trained model to make accurate pre-
dictions for new observations: First, all observations
(those used to train the model and those used to evalu-
ate the model) have to be randomly drawn from the
same population. Second, when making predictions,
the relationship in the population has not changed since
the model was trained. Of course, predictions can also be
computed for observations from a different population.
However, a realistic estimate of predictive performance
in this case requires reevaluating the model on data from
this new population.

To get to the core of ML, it is important to embrace
this predictive mindset when performing data analysis
in an ML framework; this requires a thorough under-
standing of model evaluation in supervised ML. For
example, how do researchers quantify the predictive
performance of models regarding how well they can
predict new, previously unseen observations? That is
why we dedicate Module 1 exclusively to this topic.

Summary of the terminology and
mindset of supervised ML

In the first section, we set the stage for the main modules
of our tutorial by introducing the basic terminology of

4 Pargent et al.

supervised ML and helping readers to adopt a predictive
mindset that focuses on predicting new, unseen observa-
tions. Because ML uses a different language unfamiliar
to psychologists, we summarized the most important
terms in Table 1 to assist readers while working through
the rest of the tutorial. Before we start with Module 1,
we shortly introduce the data set and the software pack-
ages, which are used in the Practical Exercises 1 to 4.

Data Sets Used in Practical Exercises

Throughout the tutorial, we use the publicly available
PhoneStudy behavioral-patterns data set, which has been
used to predict human personality from smartphone-
usage data (Stachl, Au, et al., 2020). Subsets of these
data have also been used in a number of other publica-
tions (Au et al., 2021; Harari et al., 2020; Schoedel et al.,
2018, 2020; Schuwerk et al., 2019; Stachl et al., 2017;
Sust et al., 2023). The data set contains self-reported
questionnaire data of personality traits measured with
the German Big Five Structure Inventory (five factors
and 30 facets; Arendasy et al., 2011), demographic vari-
ables (age, gender, education), and behavioral data from
smartphone sensing (e.g., communication and social
behavior, app usage, music consumption, overall phone
usage, day-nighttime activity). The smartphone sensing
data were recorded for up to 30 days on the personal
smartphone of 624 study volunteers, bundled from sev-
eral smaller studies (e.g., Stachl et al., 2017). Here, we

use the data set for the following regression task: We
predict the continuous personality trait score for the
sociability facet of the trait extraversion using 1,821 fea-
tures of aggregated smartphone-usage behavior (e.g., a
person’s average number of telephone calls at night).
Demonstrating ML concepts on a real data set is impor-
tant for getting a feeling for common obstacles, but it
also means that not all context-specific details can be
discussed exhaustively. More details on the data set can
be found in Stachl, Au, et al. (2020), along with an in-
depth discussion of the research question and interpreta-
tion of the final results. We use the PhoneStudy data set
to demonstrate the main ML methods introduced in each
module. However, when the data set is too complex to
allow for an intuitive illustration of some theoretical con-
cepts, we use two more simplistic open data sets from
the general ML literature: AmesHousing and Titanic.1

Software Used in Practical Exercises

Throughout the tutorial, we use an ML framework that
provides a unified interface to train, evaluate, and inter-
pret ML models, which helps users to write modeling
syntax that is shorter and less error-prone. There are
several popular frameworks available in the main coding
languages (e.g., tidymodels in R, Kuhn & Wickham, 2020;
scikit-learn in Python, Pedregosa et al., 2011). Here, we
use mlr3 (Lang et al., 2019) and DALEX (Biecek, 2018):
mlr3 (and its companion packages) provides a

Table 1. A Summary of Important Terminology Used in Supervised Machine Learning

Terminology Description

Target The variable to predict (e.g., personality trait score)
Features Predictor variables (e.g., aggregated smartphone behaviors)
Task A concrete prediction problem in supervised machine learning, defined by a target

and features. Depending on the type of the target variable, the task is called either a
regression (continuous target, e.g., personality trait score) or a classification task (nominal
target, e.g., having an illness or not; ordinal target, e.g., education level)

Predictive model/machine-
learning model

A type of model that can produce a prediction for the target when presented with a
concrete value for each feature (e.g., linear regression)

Model parameters One aspect in which different types of models differ from each other. Must be estimated
from data before a model can make predictions (e.g., β coefficients in linear regression).

Algorithm A formal set of rules that is used to estimate appropriate values for the model parameters
from data (e.g., least squares algorithm)

Model training The process of estimating the model parameters of a predictive model from data
Trained model A predictive model that has been trained (i.e., it has learned suitable values for its model

parameters) and is now ready to make predictions
Flexibility Predictive models vary in their flexibility to adapt to the true functional relationship in

the population. Inflexible: account for linear relationships, manually selected linear
interactions, small number of features; flexible: account for nonlinear relationships, large
number of features, automatically learns nonlinear interactions

Interpretability Predictive models vary in their degree of interpretability, that is, how easy it is to
comprehend the relationship between feature values and model predictions. More
flexible models tend to be more difficult to interpret.

Advances in Methods and Practices in Psychological Science 6(3) 5

standardized interface to perform ML analyses in the
open-source statistical programming language R (Version
4.2.2; R Core Team, 2020); DALEX provides functionality
for model interpretation. A detailed tutorial on mlr3 is
available as a free e-book (Bischl et al., 2023) at https://
mlr3book.mlr-org.com/. The mlr3 package is written in
the object-oriented programming system R6 (Chang,
2021), which is why some mlr3 syntax looks unfamiliar
to readers used to base R. In ESM 2.2, we highlight pos-
sible sources of error for users unfamiliar with R6 and
give advice on how to effectively look up information
in the extensive mlr3 documentation.

Module 1: Performance Evaluation

Performance evaluation in theory:
basics

In the first module of our tutorial, we cover the most
important concept of predictive modeling: performance
evaluation. Responsible use of ML mandates a thorough
evaluation of the quality of a trained predictive model
on the basis of the magnitude of error that can be
expected for new (unseen) data from the same popula-
tion. What does this mean? Imagine we have trained a
predictive model (i.e., the model is ready to make pre-
dictions). Before we apply the model in practice, we
want to know how well it will predict observations in
our practical application, where the true target values
are not available. So the key question is how to quantify
the quality of models.

The bias-variance trade-off. The so-called bias-variance
trade-off can be a helpful mental model, which we intro-
duce with the following thought experiment: We have two
models of different flexibility, and they greatly differ in
their predictive performance (i.e., how well they predict
new unseen data). What factors influence the performance
of a predictive model in theory?

The “expected prediction error” of a predictive model
consists of “bias,” “variance,” and “noise” (James et al.,
2021). A metaphorical illustration is given in ESM 2.3.
Before we continue with a graphical illustration, consider
the following simplified definitions: Expected prediction
error is the average prediction error we would expect
when repeatedly fitting the same ML model on many
samples of a certain size and measuring the prediction
error on the basis of new samples with a large size. We
assume all samples are randomly drawn from the same
population of interest. Bias is the deviation of the average
prediction from the true value. Variance is the variability
of predictions based on different samples. Noise is the
irreducible error of the true model in the population.

Counterintuitively, bias and variance are not attributes
of a single trained model but refer to how a particular

ML model would perform when fitted to repeated sam-
ples from the same population (e.g., collecting multiple
samples of German psychology students). Figure 1 illus-
trates the bias-variance trade-off. The black line repre-
sents the population model, from which we draw
samples of size N = 12 for Example 1 (first row) and
N = 50 for Example 2 (second row). Each set of points
with the same color represents one sample. In both
examples, we fit an inflexible linear model (colored
curves, left column) and a flexible seventh-degree poly-
nomial (colored curves, right column) to each sample.
We look at how closely the models can reproduce the
functional shape of the population model, from which
we simulated the data. Keep in mind that in practice, all
we have is a single sample from the population (one set
of points and models fitted to these points). We cannot
fit models to multiple samples, and we do not know the
underlying population model. Thus, a figure like this
one can be produced only for simulated data.

To better “see” bias and variance, we ask our readers
to visually focus on Example 1, where we use small
sample sizes. If we pick a single point on the x-axis (e.g.,
x = 2 5. . in Fig. 1) and compare the vertical average of
the colored curves (the cross) with the black line, we
see that the average prediction across samples is close
to the population model for the flexible models (Fig. 1,
b1). In contrast, the average prediction of the inflexible
models (Fig. 1, a1) is far away from the population
model (this is true for most values of x , although the
deviation is small for some x values like x = 0). Thus,
the bias is relatively high for the inflexible model and
low for the flexible model. We can find the exact oppo-
site pattern for variance. The variance is relatively low
for the inflexible model (Fig. 1, a1) but high for the
flexible model (Fig. 1, b1). If we pick a single point on
the x-axis (e.g., x = 2 5. in Fig. 1) and inspect the vertical
variance of the colored curves (the bars), we see that
for each value of x , the variance of the predictions is
high across the flexible models but low across the inflex-
ible models in Example 1.

Figure 1 also illustrates that the bias-variance trade-off
can be heavily influenced by sample size if we compare
Examples 1 and 2. Both the inflexible and flexible mod-
els are trained on small samples (N = 12) from the popu-
lation in Example 1 and on larger samples (N = 50) in
Example 2. If our task was to find the model with the
“best” bias-variance trade-off in the small-sample setting,
the inflexible model (which is guaranteed to miss the
population model; Fig. 1, a1) would probably be pre-
ferred over the flexible one (which will sometimes miss
the population model by a large margin; Fig. 1, b1). In
contrast, the flexible model (Fig. 1, b2) would be pre-
ferred over the inflexible one (Fig. 1, a2) in the big
sample setting. The bigger sample size sufficiently
reduces the variance while keeping the bias low, which

https://mlr3book.mlr-org.com/
https://mlr3book.mlr-org.com/

6 Pargent et al.

results in a very close fit to the population model and
consequently a low expected prediction error.

To conclude, when we aim to quantify predictive
performance or to compare different ML models, it is
helpful to keep the bias-variance trade-off in mind. The
goal of supervised ML is always to strike a good bias-
variance trade-off—to find a predictive model with both
low bias and low variance. However, ML cannot escape
from a general principle in statistics: More flexible mod-
els with weaker assumptions about the true functional
relationship require more data to be effective.

Performance measures. In the previous section, we
used vague definitions of prediction error and predictive

performance to give an intuition of what it means for a
predictive model to perform well. However, before we can
evaluate a given ML model in practice, we need concrete
definitions of prediction error for model predictions. Let
us assume that someone provides us with a set of true
target values and the corresponding predictions of a
model. Without knowing anything about where these pre-
dictions come from, how would we quantify how good
the predictions are? The first step of model evaluation is
thus to select appropriate performance measures depend-
ing on the task type (i.e., regression or classification),
research questions, and whether we want to use standard
measures or we have expert knowledge leading to custom
measures relevant for our specific model application.

Example 1:
N = 12

−5.0 −2.5 0.0 2.5 5.0
x

−5.0 −2.5 0.0 2.5 5.0
x

y

a1
Inflexible Model

−5.0 −2.5 0.0 2.5 5.0
x

−5.0 −2.5 0.0 2.5 5.0
x

b1

a2 b2

Flexible Model

Example 2:
N = 50

−20

0

20

y

−20

0

20
y

Bias: High | Variance: Low Bias: Low | Variance: Low

−20

0

20

y

−20

0

20

Bias: High | Variance: Low Bias: Low | Variance: High

Fig. 1. Visualization of the bias-variance trade-off by fitting machine-learning models with different flexibility on multiple
samples (one color per sample) from a nonlinear population model (black). Left column = inflexible (linear) model; right
column = flexible (seventh-degree polynomial) model; first row = 60 samples with N = 12 each; second row = 60 samples
with N = 50 each. Mean (cross) and 0.1 and 0.9 quantiles (bars) of model predictions are displayed at x = 2.5 (vertical line).

Advances in Methods and Practices in Psychological Science 6(3) 7

Regression tasks. Performance measures for regression
quantify a “typical” deviation from the true target value.
The default measure is the mean squared error (MSE),

MSE
N

y yi ii

N
= −

=∑1 2

1
() . The MSE is the mean of the

squared residuals y yi i−  , with yi indicating the true
target value and yi indicating the predicted target value of
observation i . The higher the deviation of the predicted
from the true target value, the higher the prediction error
is (i.e., the worse the model predictions are). As a result of
squaring the residuals, both positive and negative devia-
tions increase the error, and large deviations are weighted
more strongly. The MSE is 0 only if all predictions are per-
fect, but there is no upper limit for bad predictions. MSE
values are hard to compare across applications because
the values depend on the measurement unit of the tar-
get. Because the MSE is measured in squared units, the
absolute values are even more difficult to interpret. Many
researchers prefer the root mean squared error (RMSE)
()RMSE MSE= , which is in the same unit as the target.
Alternative measures can be constructed by using absolute
instead of squared differences (mean absolute error) or
by computing the median instead of the mean (MSE or
median absolute error).

In the social sciences, the coefficient of determina-
tion (R2) is often used as a performance measure
because it is familiar from linear regression:

R
residual sum of squares

total of squares

y
i

N

2 11 1= − = − =∑
 sum

(ii i

i

N

i

y

y y

−

−
=∑

)

()
.

2

1

2

There are alternative ways to compute R2 that should not
be used in the ML setting because the equivalence holds
only for linear regression (e.g., simply squaring the Pear-
son correlation between predictions and target values).
Like MSE , R2 is based on the residual sum of squares,
which is then standardized by the total sum of squares.
This computation results in a relative measure, with a
maximum value of 1 only if all predictions are perfect.
Note that a model that predicts the mean target value for
all observations y yi

 = would result in R2 0= , which is a
useful reference point. R2 is often introduced in the con-
text of measuring in-sample model fit in linear regression,
where values of R2 range from 0 to 1. However, in general,
R2 is not bound to 0 and can assume values below zero.
Negative values of R2 imply that the predictions are worse
compared with a simple baseline model that does not use
any feature information (e.g., predicts the mean target
value, which is often called a “featureless learner”). We
encounter this case in one of our demonstrations.

Classification tasks. Measuring classification perfor-
mance is often less straightforward compared with regres-
sion tasks. We consider only binary classification in which
the target has two possible values (coded as 0 and 1 by

convention) but there are comparable performance mea-
sures for multiclass classification (Ferri et al., 2009). The
simplest idea to construct a performance measure is to
compute the proportion of misclassified observations,
which results in the mean misclassification error (MMCE),

MMCE
N

I y yi ii

N
= ≠

=∑1
1
()

. The indicator function I (.)

takes the value 1 if the condition in the parentheses is
true and 0 if the condition is false. MMCE counts how
often our model made the wrong prediction and relates
it to the total number of predictions. Instead of quanti-
fying prediction error, we could also measure prediction
accuracy as ACC MMCE= −1 . Note that in the standard
case in which all predictions have the value 0 or 1, the
MMCE can also be computed with the MSE formula, which
highlights the similarity between both standard measures.
For most applied classification problems, the isolated
consideration of the MMCE is of limited value, and addi-
tional measures should be considered. These additional
measures are particularly important when different errors
have different consequences or associated costs (e.g., giv-
ing cancer treatment to a person without cancer vs. not
treating a cancer patient) or if both classes are unequally
represented in the data set (e.g., more healthy people than
people suffering from an illness). Most useful classifica-
tion measures (including the MMCE) are computed from a
confusion matrix in Table 2, which shows the number of
true-positive (TP), false-positive (FP), true-negative (TN),
and false-negative (FN) predictions.

From the context of diagnostics and assessment, many
psychologists are familiar with the sensitivity, also called
true positive rate or recall: SENS TP TP FN= +/ () and the
specificity or true negative rate: SPEC TN TN FP= +/ ().
Related measures are the positive predictive value (PPV),
PPV TP TP FP= +/ (), and the negative predictive value
(NPV), NPV TN TN FN= +/ (). Also important is the area
under the receiver operating curve (AUC), which can be
interpreted as the probability that an observation ran-
domly drawn from Class 1 has a higher predicted prob-
ability to belong to Class 1 than an observation randomly
drawn from Class 0. AUC is based on the receiver oper-
ating curve (ROC), which plots 1 − SPEC against SENS .
Each combination results from a different prediction
threshold; that means we predict Class 1 if the predicted
probability for Class 1 is greater than the threshold (0.5

Table 2. Confusion Matrix

Truth yi

 1 0

Prediction yi 1 TP FP
 0 FN TN

Note: TP = true positive; FP = false positive; FN = false negative; TN =
true negative.

8 Pargent et al.

by default). For more advanced techniques, Sterner
et al. (2021) provided an introduction to cost-sensitive
learning for psychologists with mlr3.

Resampling strategies for model evaluation. In ML,
it is always the predictive performance on new observa-
tions that is of practical and theoretical interest. Thus, we
want to know how well a model trained on a specific data
set will predict new, unseen data (out-of-sample perfor-
mance). The ideal approach would be to collect a new
sample from the same population. However, this approach
is often not feasible in practice. A naive alternative would
be to estimate predictive performance on the basis of the
same data used to train the model (in-sample perfor-
mance). Unfortunately, this procedure can lead to an
extreme overestimation of predictive performance, which
we demonstrate later. Too flexible models can perfectly
predict all observations they have been trained on, but the
predictions for new observations can be disastrous. A bet-
ter approach for model evaluation is to use resampling
methods, which are a smart way of recycling the available
data to estimate out-of-sample performance. The general
principle is to use the available sample to simulate what
happens when the trained model will be applied on new
observations in a practical application. To produce a real-
istic estimate of expected performance, resampling meth-
ods must ensure a strict separation of model fitting and
model evaluation. This rule implies that different data
must be used for training and testing the model.

The idea behind resampling. One of the simplest resa-
mpling strategies is to randomly split the data into a train-
ing set and a test set. The training set is used to train the
model, and the test set is used to compute predictions
and estimate predictive performance. Imagine we have a
data set from a random sample consisting of a target y
and a set of features X, as displayed in Figure 2. We use
the entire data set to train an ML model, which we want
to use in a practical application (Fig. 2a). We call this “full
model” (shown in red in Fig. 2) because it used all of the
available data. The full model learns a functional relation-
ship between the features and the target. For new obser-
vations (i.e., when we apply the model in practice), the
feature values Xnew can be fed to the trained full model to
produce predictions y . Before we use these predictions
in our application, we want to know how well our trained
full model performs. Unfortunately, we cannot compute
performance measures for our new observations because
the true target values ynew are not available. To get an esti-
mate of the predictive performance of our full model, we
randomly split our data set into two parts (Fig. 2b): First,
the training set is used to train a proxy model (shown
in purple in Fig. 2). Second, feature values from the test
set are fed to the proxy model to compute predictions.

Third, we compute a performance measure (e.g., MSE) for
the test-set predictions. Calculating performance is pos-
sible because the true target values are available for our
test-set data. It can be shown that (under some reasonable
conditions; James et al., 2021) the computed performance
is a realistic yet conservative estimate of the predictive
performance of our full model (see Fig. 2c). To compute
predictions in a practical application, we would always
use the full model, which was trained on all available data.
The smaller proxy model, which is based on the training
set, will not be used to make predictions in practice but
merely tells us how well the full model will likely work. In
other words, the proxy model is a tool to estimate predic-
tive performance and can be discarded after producing
the test set predictions.

Why is it necessary to separate training and test data
rather than computing the performance on the basis of
the complete data set that we used to train the full
model? Flexible ML models sometimes adjust to a set of
given data points too closely, a phenomenon that is often
called “overfitting.” If a model overfits to the data, it
learns sample-specific patterns (“fitting the noise”) that
will not generalize to new samples from the same popu-
lation. Overfitting can also be thought as “learning some-
thing by heart”: The model exactly recognizes each
observation it has been trained on but cannot transfer
any information to new observations it has not seen
before. We show later that especially for flexible ML
models, in-sample performance is useless to judge a
model’s performance on new data.

Figure 3 illustrates the concepts of overfitting and
model evaluation. In Figure 3a, points were simulated
from a nonlinear population model (dotted line) and
randomly split into a training set (black dots) and a test
set (framed dots). Note that because of the irreducible
noise in the data-generating process, even the true popu-
lation model would not predict observations perfectly.
Three models of varying flexibility were fitted to the
training set: polynomial regression models with Degrees
1 (linear model; green), 3 (orange), and 8 (purple). The
green model clearly underfits. It is not flexible enough
to approximate the population model and makes bad
predictions for both training and test observations. The
purple model overfits because its flexibility is too high.
It almost perfectly interpolates all training observations,
but the deviations from the test observations can be
quite high. In contrast, the orange model seems to have
optimal flexibility and closely approximates the popula-
tion model. It roughly predicts training and test observa-
tions equally well. In such a simple example with only
one feature, it is possible to visually identify the model
with optimal flexibility. However, with more features,
this becomes rapidly unfeasible because visualizing
more dimensions is difficult. Fortunately, we can always

Advances in Methods and Practices in Psychological Science 6(3) 9

try to determine the optimal model on the basis of the
test-set performance. In Figure 3b, we show how training
and test MSE were computed on the simulated data from
Figure 3a for polynomial models with flexibility ranging
from Degree 1 to Degree 9, which includes the three
models displayed in Figure 3a. Remember how to com-
pute the (training) test MSE: For each observation from
the (training) test set, take the squared vertical difference
between the point and the model prediction; then com-
pute the mean of all squared differences. The trajectories
of training and test performances along the axis of model
flexibility show a characteristic pattern: Prediction error
in the training set decreases with increasingly flexible
models and almost reaches 0 (perfect interpolation) for
Degree 9. We saw in Figure 3a that models with extremely
high flexibility overfit and perform poorly on new obser-
vations. Hence, it becomes clear that we cannot use the
training performance to select the optimal model. In
contrast, prediction error in the test set first decreases
until Degree 3 but then increases again. This reflects our
observation from Figure 3a that both very low and very
high flexibility is not ideal to achieve good predictions
for new observations. In the bias-variance framework,
bias decreases with flexibility, and variance increases.
The optimal trade-off in this example seems to be a
degree of about 3. To conclude, if we have to choose
between different types of models or model settings, we
generally select the model with the best performance
on the test set (here, the model with the lowest MSE).

In theory, we could favor models with lower flexibility
among models with comparable test-set performance.
However, this is usually not the default in practice.2

Different types of resampling strategies. In the previ-
ous example, we worked with the most simple resam-
pling strategy of randomly splitting the data into a training
set and a test set. This strategy is also termed the “hold-
out” estimator. An important practical issue when using
the holdout estimator is the ideal proportion of data to
put into the training and the test sets. The full model is
always based on more observations than the proxy model
that is fit to only the training set. Because model quality
increases with sample size, test-set performance will (on
average) be an underestimate of the true performance of
the full model. The larger the training set, the smaller this
negative bias is. The test-set performance is only a point
estimate of the true predictive performance of the full
model. Thus, the variance of this estimate is also impor-
tant. The larger the test set, the smaller the variance of
the performance estimate is. This is a dilemma because it
is obviously not possible to maximize the size of training
and test sets simultaneously (without collecting more data
in the first place). We can think of this as the bias-variance
trade-off of the holdout estimator, which should not be
confused with the bias-variance trade-off of ML models
we discussed earlier.3 The trade-off strongly depends on
the size of the training and test sets, but there is no single
ratio that is optimal in general. Rules of thumb (see James

Fig. 2. A visualization of how predictive performance is evaluated in supervised machine learning. (a) The
training of the full model (red), which can later be used in an application (i.e., to predict new observations).
The predictive performance of the full model is estimated by resampling. For this purpose, a proxy model
(purple) is trained on (b) a training set, and the predictive performance computed on (c) the corresponding
test set is used as an estimate of the predictive performance of the full model.

10 Pargent et al.

et al., 2021) typically suggest to use two thirds of the full
data for the training (large enough to learn well) and one
third for the test set (large enough for stable performance
evaluation).

In some ML settings in which the amount of data is
not a problem, the holdout estimator is sufficient to
achieve reasonable performance estimates. For extremely
large (think of “Google sized”) data sets, the predictive
performance of most ML models saturates (i.e., the per-
formance no longer improves with increasing amounts
of data), and the size difference between the training
and the full data sets becomes irrelevant. At the same

time, the variance of the performance estimate computed
on the test set will be so small to be almost negligible.
In the social and behavioral sciences, researchers usually
face the situation that data are scarce and their collection
are costly and time-consuming. For such smaller data
sets, the performance difference between the full model
and the proxy model and high variance of performance
estimates from small test sets negatively affect the quality
of holdout estimates. More elaborate resampling strate-
gies, try to improve on the holdout estimator by recy-
cling the data in a smarter way. You can optimize the
partitioning of the data set by performing several splits

Flexibility Too Low
Flexibility Optimal

0.06

1.0

0.8

0.6

0.4

0.2

0.0

0.0 0.2 0.4 0.6 0.8 1.0

0.04

0.02

0.00

Population
Training Set
Test Set

Flexibility Too High

MSEtrain

MSEtest

M
SE

Degree of Flexibility

y

x

 low bias,
high variance

high bias,
low variance

2 4 6 8

a

b

Fig. 3. (a) Observations drawn from a nonlinear population model (dotted line) divided
into a training (black dots) and a test set (framed dots). Three models of varying flexibility
(polynomials of Degrees 1 in green, 3 in orange, and 8 in purple) were fitted to the training
set. (b) Relationship between model flexibility (polynomials of Degrees 1 to 9) and predic-
tive performance estimated with training and test mean square error (MSE). Performance
estimates are computed using the data from Figure 3a.

Advances in Methods and Practices in Psychological Science 6(3) 11

into training and test sets and aggregating the resulting
performance estimates. The most common resampling
method is k-fold cross-validation (CV; Kohavi, 1995).
Bischl et al. (2012) provided a good overview of CV and
alternative resampling techniques such as repeated CV,
leave-one-out CV, bootstrap, or subsampling.

In k-fold CV, the data set is randomly partitioned into
k (roughly) equally sized parts. Each part is used as a
test set exactly once, and the remaining parts are com-
bined into a larger training set. The CV estimator is the
average of the performance estimates from the k test
sets. Figure 4 is a visualization of 3-fold CV (i.e., the data
are randomly divided into three parts). In the first fold,
a proxy model is trained on the combined data from
Parts 1 and 2, and Part 3 (Fig. 4, green) is used to com-
pute predictions and calculate the performance measure.
In the second fold, Parts 1 and 3 form the training set,
and Part 2 forms the test set. Finally, in the third fold,
Parts 2 and 3 form the training set, and Part 1 forms the
test set. The performance estimates from the three test
sets are aggregated by the arithmetic mean (other aggre-
gation functions such as the median are also possible).
Note that each observation from the complete data set
will be used exactly once (it is either in Test Set 1, 2, or
3) to make a prediction and thus to contribute to the final
performance estimate. For each prediction, the observa-
tion in question was never used to train the model
making that prediction. However, each observation
belongs to two of all three training sets and thus is used
several times to train proxy models. Compared with
holdout, CV reduces the bias by increasing the size of
the training sets and reduces the variance by aggregating
several test set performances.

A simple intuition for those advantages can be given
for 2-fold CV, in which the training and the test sets have
the same size. Imagine a holdout estimator in which the
training and the test sets have the same size. The model
is trained on the first part, and performance is tested on

the second part. However, if we switched the training
set and test set, the resulting performance estimate
would be of exactly the same quality. The size of the
training set (i.e., the bias) is similar, and the size of the
test set (i.e., the variance) is also the same. In addition,
both performance estimates are independent (set assign-
ments were random, and sets do not overlap). Thus, it
is intuitive that the 2-fold CV estimator, which computes
the mean across both test-set performances, will have
similar bias but lower variance than each of the two
holdout estimators. Unfortunately, the intuition breaks
down for k > 2 , where the performance estimates are
no longer independent because they are based on mod-
els trained on overlapping data. It can be shown that
increasing k does not improve the quality of the per-
formance estimator indefinitely (for a simple discussion,
see James et al., 2021). The greater the overlap in the
training sets, the higher the similarity between predic-
tions from these models and the less effective the vari-
ance reduction from averaging are. Rules of thumb that
have proven effective both in benchmark studies and in
practical applications recommend five or 10 folds.

Excursus on sample size. We want to conclude the sec-
tion on performance evaluation with a comment on sam-
ple size. By far, the best strategy to improve the performance
of predictive models for some application is to increase the
amount of available data: For larger samples, (a) the vari-
ance of model predictions is lower, (b) the potential for
flexible models with low bias is higher, (c) the danger of
overfitting is lower, (d) the more features can be used
effectively, and (e) the precision of estimates of predictive
performance increases.

Practical Exercise 1: performance
evaluation with k-fold cross-validation

Compute in-sample performance estimate. In our
first practical exercise, we demonstrate how to use mlr3 to
fit a standard linear regression model to the PhoneStudy
data set by predicting the sociability personality-trait score
on the basis of all variables of aggregated smartphone-
usage behavior. Then we compare in-sample and out-of-
sample predictive performance using R2 and RMSE . We
assume that readers are generally familiar with basic data
analysis in R. To follow the tutorial, install R4 and down-
load our materials from the OSF repository at https://osf
.io/9273g/. If you open the mlr3TutorialPaper.Rproj file
with the code editor RStudio Desktop,5 you can follow the
displayed instructions to automatically install all R pack-
ages in a local project library with the exact versions we
used for this tutorial.6

First, we load the PhoneStudy data set and remove
some administrative variables we do not use in our

fold 1 fold 2 fold 3

3-fold Cross-Validation

Fig. 4. Visualization of the principle behind 3-fold cross-validation.

https://osf.io/9273g/
https://osf.io/9273g/

12 Pargent et al.

tutorial. We also remove four participants who did not
report their gender:

phonedata <- readRDS(file =
 "data/clusterdata.RDS")
phonedata <- phonedata[
 complete.cases(
 phonedata$gender),]
phonedata <- phonedata[, c(1:1821,
 1823, 1837)]

We load the mlr3verse - R package (Lang & Schratz,
2021), which conveniently loads mlr3 and the most
important companion packages. Then we create a task
object with a unique ID (Sociability_Regr), which is
mlr3’s way to store the raw data along with some metain-
formation for modeling. In mlr3, a task defines a certain
prediction problem, here, supervised regression with the
sociability trait score (named E2.Sociableness in our data
set) as the target:7

library(mlr3verse)
task_Soci <- as_task_regr(phonedata,
 id = "Sociability_Regr",
 target = "E2.Sociableness")

The metadata can be displayed by printing the task
object (type task_Soci). When training a model on a task,
mlr3 by default uses all variables except the target as
features. We do not want to use gender as a feature,
although we want to check our models for gender fair-
ness in a later module. Therefore we remove gender from
the set of features but keep it within the task object:

task_Soci$set_col_roles("gender",
 remove_from = "feature")

We recommend to always doublecheck which vari-
ables are really intended to be used as features (you can
get the full list of feature names with task_Soci$col_
roles$feature) because including the wrong vari-
ables is a common source of embarrassing mistakes,
which can completely invalidate the whole analysis.

Next we create a learner object to specify an ML
model to apply later. mlr3 does not implement its own
ML models but links to available implementations in
other R packages. For example, the ID regr.lm links to
the ordinary lm function in the stats package. You can
find a list of mlr3 IDs for the most popular ML models
in the mlr3 e-book (Bischl et al., 2023):

lm <- lrn ("regr.lm")

We try to train (i.e., estimate model parameters) the
learner on the task. In mlr3, objects have “abilities” (also

called “methods”) that can be applied with the following
$-syntax (here, the train method of the learner object is
used to train the learner on a specified task):

lm$train(task = task_Soci)

Error: Task ’Sociability_Regr’ has
 missing values in column(s)
’AR_num_calls_in1’, ’AR_num_calls_
 in12’, [. . .] but learner ’regr.lm’
does not support this

Unfortunately, this fails because there are missing
values in the data set, and regr.lm cannot handle them.
We use mlr3pipelines (Binder et al., 2021) to build a
simple analysis pipeline, called GraphLearner in mlr3
(a learner consisting of several consecutive analysis steps
that can be visualized as a graph), that automatically
replaces missing values with the median of the respec-
tive training set (i.e., median imputation) before fitting
our linear model. We do not recommend using mean or
median imputation in real applications.8 A tutorial on
how to build more complex analysis pipelines with the
mlr3pipelines package can be found in the mlr3 e-book
(Bischl et al., 2023):

imputer <- po("imputemedian")
po defines a single pipeline
operation
lm <- as_learner(imputer %>>% lm)
combine po and learner into a
pipeline

Now, training the augmented learner on the task
works just fine:

lm$train(task = task_Soci)

The previous line trained the model and automatically
stored it inside the learner object. One great advantage
of mlr3 is that we can use the same modeling functions
for ML models from different R packages without having
to remember the peculiarities of their modeling syntax.
We can use the trained model to make predictions,
which we have to store in a separate object:9

prediction <- lm$predict(task =
 task_Soci)

We just predicted the same data that we already used
for model training, but we could also compute predic-
tions for new observations. In the Sociability task, we
did not include four individuals with missing values on
the gender variable. Because we do not use gender as

Advances in Methods and Practices in Psychological Science 6(3) 13

a feature here, we can treat these individuals as
new data and predict their sociability score with
$predict_newdata():

phonedata_new <- readRDS(file =
 "data/clusterdata.RDS")
phonedata_new <- phonedata_new[
 ! complete.cases(

phonedata_new$gender),
c(1:1821, 1837)]

lm$predict_newdata(newdata =
 phonedata_new)$response
[1] 603 -374 -45 -27

With this functionality, it would be possible to use
the model in a practical application. However, it would
be irresponsible to apply any predictive model for which
the expected predictive performance is unknown. There-
fore, we now demonstrate how to evaluate predictive
performance with mlr3.

If we wanted to compute in-sample performance on
the basis of the predictions for all observations included
in our task (which we stored in prediction), we
could calculate the estimates with the score function
and specify the performance measures we are interested
in (R2 and RMSE) with their respective ID. For an
exhaustive list of all performance measures available in
mlr3, type as.data.table(mlr_measures) or
check out the mlr3 e-book (Bischl et al., 2023):

mes <- msrs(c("regr.rsq",
 "regr.rmse"))
prediction$score(mes)

regr.rsq regr.rmse
1.0e+00 2.7e-11

The performance on the training data is almost per-
fect. R2 is 1, and the RMSE is numerically indistinguish-
able from 0 (see all.equal(0, 2.7e-11)). We
should always be skeptical when we observe very high
in-sample performance because this can be a sign that
the model overfitted to the training data. In general, we
should never trust in-sample performance but estimate
out-of-sample performance instead.

Compute out-of-sample performance estimate. Next
we want to use CV to compute an out-of-sample perfor-
mance estimate. We specify a resampling strategy (here,
5-fold CV). You can run as.data.table(mlr_resam
plings) to get a table of available resampling strategies:

rdesc <- rsmp ("cv", folds = 5)

The resample function randomly splits the data set
on the basis of the resample description, retrains the
learner on each subset, and computes predictions on
each test set. Before running resample, we set an
arbitrary seed to make our results reproducible. Next we
compute the out-of-sample performance estimate for our
preferred measures aggregated across our five test sets
with aggregate:

set.seed(1)
res <- resample(learner = lm,
 task = task_Soci, resampling =
 rdesc)
res$aggregate(mes)

regr.rsq regr.rmse
 -2341 79

When we compare the out-of-sample with the in-
sample estimates, we realize that the predictions of our
model are expected to be really bad. This might be no
surprise to many readers because we used ordinary lin-
ear regression with 620 observations and 1,822 predictor
variables, which results in an unidentified model. As a
consequence, the RMSE is huge: A typical deviation
between true and predicted sociability scores is about
79, but the true sociability scores in the data set range
only from –4.50 to 5.64. The negative R2 also implies
that the predictive model should not be used in practice.
Remember that in contrast to the well-known in-sample
estimate for linear regression, out-of-sample R2 can be
negative. Negative R2 indicates that the model performs
worse than a simple baseline model that completely
ignores all features and merely predicts the mean target
value in the test data. The concrete values of negative R2
do not have any intuitive interpretation. We give a better
intuition on why R2 can become negative in ESM 3.1. The
important message here is that with a poorly designed
ML model, it is easy to produce worse predictions com-
pared with simple guessing. The naive notion that using
any predictive model might still be better than using no
formal predictions at all is wrong. However, estimating
predictive performance with resampling can prevent us
from applying inappropriate models in practice without
relying on expert knowledge about the specific model
class (e.g., identification issues in linear regression).

Performance evaluation in theory: advanced

Model optimization. Our first exercise demonstrated
how to estimate the predictive performance of a simple
predictive model with CV. However, predictive modeling
in practice often entails a series of model decisions (or
researcher degrees of freedom; see Wicherts et al., 2016)

14 Pargent et al.

that have to be considered when estimating predictive
performance: (a) hyperparameter tuning, (b) preprocess-
ing, and (c) variable selection.

Many types of ML models have hyperparameters,
which are parameters that are not automatically esti-
mated during the training process by the estimation
algorithm. However, because they can have a big impact
on predictive performance, optimal values have to be
chosen in a data-dependent way. Tuning hyperparam-
eters (i.e., finding optimal configurations) typically
works similarly to our model-comparison example in
Figure 3. The degree of the polynomial can be seen as
a hyperparameter of a general polynomial regression
model. To find the optimal hyperparameter setting, we
again use resampling (e.g., a single test set or CV) to
estimate predictive performance for different hyperpa-
rameter settings, select the hyperparameter value with
the best test-set performance, and choose the selected
value when training the full model on the complete data
set. Preprocessing operations can also have hyperpa-
rameters, which can be tuned in the same way as hyper-
parameters of ML models. A simple example for a
categorical hyperparameter would be whether to use the
mean or the median for data imputation. Regarding vari-
able selection, sometimes it can be a good strategy to
not include all possible features in a predictive model
but only a subset of particularly informative features. A
simple method for regression tasks is to compute the
Pearson correlation for each feature with the target and
use only the features with the highest target correlations
when training the full model. Note that the number of
features selected is a hyperparameter of this variable-
selection strategy, which could again be tuned with CV.

Nested resampling. Modeling decisions such as those
mentioned above are often implemented in a way that
makes data-dependent choices before the full model is
trained on the entire data set (e.g., predictive perfor-
mance of mean and median imputation is compared on a
test set to decide which method to use for the full model).
To estimate predictive performance correctly when data-
dependent choices have been made, it is of utmost impor-
tance to focus on the complete modeling pipeline, which
contains the hyperparameters of the ML model and all
previous or consecutive steps such as feature preprocess-
ing or variable selection. For each training set in the resa-
mpling process used to estimate predictive performance,
all data-dependent model decisions have to be repeated
in exactly the same way as they are performed when pro-
ducing the full model (which will actually be used to
compute predictions in practical applications). This pro-
cedure entails the possibility that in some training sets,
different hyperparameter settings are chosen than in the
full model. That phenomenon might seem unintuitive, but
it is unproblematic.

If data-dependent model decisions are not repeated
within resampling, the predictive performance of the full
model can be grossly overestimated. This mistake is most
commonly observed when tuning the hyperparameters
of ML models: First, researchers try out different hyper-
parameter combinations to find the setting with the best
predictive performance in sample or with resampling. For
example, in accordance with Figure 3, they determined
that a third-degree polynomial seems optimal. Then they
use this hyperparameter setting to train a full model on
the basis of the complete data set, which is fine. However,
to estimate the predictive performance of their full model,
they run holdout or CV but use the degree setting from
the full model in each training set. To obtain a realistic
performance estimate of their full model, they should
instead have repeated the tuning process of finding the
optimal polynomial degree in each training set.

If modeling decisions require resampling themselves
(e.g., hyperparameter tuning), correctly estimating the
predictive performance of such a modeling pipeline
results in nested resampling loops. We do not need
nested resampling for the practical exercises performed
in this tutorial because we do not employ hyperparam-
eter tuning. However, we explain nested resampling in
ESM 3.2, which also contains a full example with code
on how to tune hyperparameters in mlr3.

Variable selection. Another prevalent example of over-
optimistic predictive performance estimates by not consid-
ering data-dependent model decisions in performance
evaluation is biased variable selection (Varma & Simon,
2006). Researchers might be interested in a sparse, interpre-
table model and want only to include a certain maximum
number of features. Or they hope that a reduced feature set
that contains most of the “signal” might increase predictive
performance because the ML model is not distracted by
other “noisy” features. Both can be valid reasons to perform
variable selection, but variable selection is often evaluated
with the following flawed procedure (James et al., 2021):
First, researchers determine a limited number of features
with the best predictive performance in sample or with
resampling. They then use the selected features to train a
full model on the basis of the complete data set, which is
fine. However, to estimate the predictive performance of
their full model, they run holdout or CV but include the
features selected by the full model in each training set. To
obtain a realistic performance estimate of their full model,
instead, they should have repeated the variable-selection
process of finding the optimal features in each training set
before evaluating on the respective test set.

Biased variable selection invalidates many applied ML
articles in the social sciences and threaten the replicability
of this literature (for a discussion of biased variable selec-
tion in early studies of predicting personality traits with
mobile sensing features, see Mønsted et al., 2018). The

Advances in Methods and Practices in Psychological Science 6(3) 15

risk to upwardly bias estimates of predictive performance
when performing variable selection on the full data set
instead of repeating it for each resampling iteration is
greatly exacerbated in settings with comparatively small
samples and a large number of features. The PhoneStudy
data set with 620 observations and 1,822 features repre-
sents such a setting. If variable selection is done incor-
rectly, it is easy to produce overly optimistic performance
estimates of the magnitude reported in the applied mobile
sensing literature, even if the data were completely ran-
dom. We illustrate this phenomenon in ESM 3.3, where
we analyze simulated data that are of the same size as
the PhoneStudy data set but do not contain any true
relationship between the features and the target.

Dependent observations. A different setting in which
we also have to be careful not to produce overoptimistic
performance estimates exists in the case of clustered, lon-
gitudinal, or spatial data (Roberts et al., 2017). The general
principle is again to imagine how the trained model will
be used in practice and simulate this process during resa-
mpling to avoid bias: A frequent example is a prediction
task in which multiple observations belong to the same
person (e.g., repeated experience sampling of daily
mood). In practice, we want to make predictions for new
individuals on which the full model has not been trained.
With standard resampling, the predictive performance of
the full model will be overestimated because the proxy
models will sometimes make predictions for individuals
whose observations were also included in the respective
training set. If the model recognizes the person to which
an observation belongs (for flexible models, this is often
possible without any person ID being used as an explicit
feature), this memory can facilitate predictions during
resampling because observations from the same person
tend to be more similar. However, similar performance
cannot be expected for the full model because it will never
be able to use such information in the actual application,
in which new cases will not have been part of the training
data. This bias in performance estimates has to be pre-
vented by blocked resampling (Roberts et al., 2017): All
observations belonging together must either be in the
training or in the test set but never in both at the same
time. The PhoneStudy data set is actually a collection of
three independent samples (Stachl, Au, et al., 2020), and
individuals in the same sample might be more similar
because of convenience sampling (e.g., participants might
have asked their friends to join the study as well). In ESM
3.4, we present a simple example of blocked resampling
using this group structure.

Summary of Module 1

Module 1 covered performance evaluation, the most
important concept in supervised ML: The goal of

supervised ML is to build powerful predictive models
that can be used in practical applications. As a conse-
quence, estimating how well the model would perform
when predicting new observations is central to the pre-
dictive mindset. We first introduced the so-called bias-
variance trade-off as a mental model to think about
prediction error from a conceptual point of view. How-
ever, to practically assess the prediction error in regres-
sion or classification tasks, we have to choose an
appropriate performance measure and a resampling
method. Practical Exercise 1 introduced how to train ML
models with the mlr3 package in R and to evaluate their
predictive performance with k-fold CV. To better under-
stand the predictive mindset, we contrasted in-sample
performance (which is the traditional way to evaluate
models in psychology) with out-of-sample performance.
Module 1 also gave a theoretical preview of more
advanced issues in performance evaluation, which
become relevant when researchers want to tune hyper-
parameters, select features, or apply ML on clustered
data sets.

Module 2: Random Forests

Students in the social sciences are often untrained in
nonlinear predictive models. We now introduce the RF
(Breiman, 2001a), a relatively simple yet widely effective
nonlinear ML model that can be used for both regression
and classification tasks. We do not claim that the RF is
always superior to other models, but it is often highly
competitive in medium-sized prediction tasks (Grinsztajn
et al., 2022) and is well suited to predict psychological
outcomes (e.g., Fife & D’Onofrio, 2022; Stachl, Au, et al.,
2020). Knowing at least one type of ML model well is
helpful to better understand the general principles of
ML, to safely apply ML in practice, and to expand to
other ML models. An RF consists of several decision trees
(Breiman et al., 1984), which we outline first to get a
good start in understanding how the RF works. An early
discussion of applying tree-based methods in psycho-
logical research is Strobl et al. (2009).

Classification and regression trees
in theory

Basic principles. We start with a graphical demonstra-
tion based on the Titanic data set, which is simpler to
interpret than examples based on the PhoneStudy data.
The decision tree in Figure 5 predicts whether passengers
of the Titanic survived or died in the disaster, dependent
on demographic (age, sex) and voyage variables (pclass:
passenger class; sibsp: number of siblings or spouses
aboard; parch: number of parents or children aboard).
The tree is “grown” from the root node on the top, which
contains all observations in the data set. The label above

16 Pargent et al.

each node (survived vs. died) shows the prediction we
would make for each passenger belonging to this node.
The numbers below the label show how many passengers
died (left) and survived (right). Below each node, we see
some logical criterion used to split the “parent node” into
exactly two “child nodes.” Passengers are sent to the left
child node if the split-condition (e.g., age ≥ 9 5. years) is
true and to the right if it is false. The tree is not symmetric,
which means in some parts of the tree, we see more splits
than in others, and the same variable can be used multiple
times at different nodes. In this way, the tree naturally
accounts for nonlinear, possibly high-dimensional interac-
tions. For example, for men (moving left on first split), the
next relevant feature is age, but for women (moving right
on first split), the next relevant feature is passenger class.
At some point, the tree-growing algorithm stops, and we
reach the so-called leafs or terminal nodes in the bottom
row. Only the leafs are required to make predictions in
practice (the intermediate nodes are only part of the tree-
growing process). To make a prediction for a new pas-
senger of the Titanic who was not included in the data

set, we first determine to which leaf this observation
belongs by starting from the top and following the deter-
ministic path through the tree using the logical decisions
at each split-point. For a concrete example, consider the
fictional 17-year-old Rose from the movie Titanic, who
traveled first class with her mother and spouse: Because
Rose is not male and did not travel third class, she lands
in the rightmost leaf, and thus the tree would predict that
she survives the disaster. If Rose had traveled third class,
she would follow a different path in which the prediction
also depends on the features sibsp, parch, and age. Given
her values on these variables, the tree would predict that
Rose dies.

The classification and regression trees algorithm.
The tree in Figure 5 used the classification and regression
trees (CART) algorithm by Breiman et al. (1984). Although
many different algorithms for decision trees have been
developed, the CART algorithm is still the most frequently
applied one. According to which principles did the CART
algorithm construct the displayed tree? Decision trees use

sex = male

age >= 9.5

sibsp >= 3

pclass = 3rd

sibsp >= 3

age >= 17

parch >= 4

age >= 28

age < 22

Died
809 500

Died
682 161

Died
660 136

Survived
22 25

Died
19 1

Survived
3 24

Survived
127 339

Died
110 106

Died
18 3

Survived
92 103

Died
83 79

Died
8 1

Survived
75 78

Died
27 17

Survived
48 61

Died
17 11

Survived
31 50

Survived
9 24

Survived
17 233

yes no

Fig. 5. Classification tree fitted to the Titanic classification task. Passenger characteristics are used to predict whether a passenger survived
the Titanic disaster. pclass = passenger class; sibsp = number of siblings or spouses aboard; parch = number of parents or children aboard.
Node color encodes the classification made for the observations in that node (dark = died, light = survived).

Advances in Methods and Practices in Psychological Science 6(3) 17

features to iteratively partition the data space into subre-
gions (i.e., nodes). The same prediction is computed for
all observations in each node, usually on the basis of the
mean (regression) or the mode (classification) of the tar-
get in that node. An optimization criterion simultaneously
determines which splitting-variables and which split-
points are used in the tree-growing process. The goal is to
construct large nodes that contain observations with most
similar target values. The similarity or purity of target val-
ues is quantified by a so-called impurity function. Intuitive
impurity functions are the MSE for regression and the
MMCE for classification. When regression trees make con-
stant predictions in each node on the basis of the target
mean, the MSE is equal to the observed variance of the
target in a node (y yi Node

 = for all observations in the
node). When classification trees make constant predic-
tions in each node on the basis of the mode (the most
frequent class), the MMCE is equal to the observed relative
frequency of the smaller class in a node. Nodes with a
small MSE or a small MMCE are favored, thus the term
“impurity” function. In practice, classification trees do not
use MMCE but the more complex Gini - impurity (James
et al., 2021), which has been shown to result in better
predictive performance. To achieve high predictive perfor-
mance, it is important that nodes are relatively pure and
contain a high number of observations to better generalize
for new, unseen observations. The CART algorithm uses
“stopping criteria” (e.g., a minimum number of observa-
tions in the parent node or a maximum number of hierar-
chical levels) to determine the end of the tree-growing
process. A more technical description of the CART algo-
rithm is given in ESM 4.

Figure 6 visualizes the tree-growing process for a
regression example based on a reduced version of the
AmesHousing regression task from two different per-
spectives. The sale price of a property is predicted with
the two continuous features, Gr_Liv_Area (the above-
ground living area) and Year_Built (the construction
year). On the right side of each subplot, we see the
already familiar tree visualization of the split-variables
and split-points starting from the complete training data
set on the top. On the left side, we see the correspond-
ing prediction surface of the tree at that stage: a visual-
ization of which target value is predicted for each
combination of feature values. Each point is one prop-
erty, and the true sale price is color coded (low prices
in blue, high prices in red). CART trees always split the
feature space into rectangles of different sizes along the
feature axes. All observations falling into the same rect-
angle get the same target prediction (i.e., the mean sale
price of all properties in that rectangle). The predicted
sale price is represented by the surface color of each
rectangle. In each consecutive step of the tree-growing
algorithm, one rectangle is split into two smaller ones,

hopefully converging toward a state in which observa-
tions in the same rectangle have roughly similar target
values. The tree in Fig. 6d (with eight splits) shows the
result when growing the CART tree with the default
stopping criteria of the rpart R package.

Advantages and disadvantages of decision trees.
Decision trees have several advantages (Hastie et al.,
2009), which we briefly list here but more thoroughly
demonstrate and visualize in ESM 5 (same for disadvan-
tages): (a) Trees offer a graphical display of the predictive
model, including an intuitive illustration of nonlinear
interactions. It is often easier to explain a tree model than
a regression model to decision makers because the tree
does not require an understanding of model equations.
(b) Tree models are relatively robust against outliers in the
features. The algorithm depends only on the ranks in each
feature and thus is also invariant against monotone trans-
formations such as standardization. (c) Trees can model
nonlinear relationships by performing several splits on the
same feature in a data-driven way. The amount of splits,
and thus the flexibility of the model, will automatically
increase with sample size (when stopping criteria are
selected with care). (d) The tree algorithm automatically
performs variable selection. Uninformative features should
not be selected as split variables because other features
will provide higher impurity reduction. Features that are
not selected as split variables during construction do not
have any influence on predictions. Because of the variable
selection property, trees can be effective with a possibly
large number of features—uninformative features will not
be selected.

However, trees also have disadvantages (Hastie et al.,
2009): (a) Trees have problems modeling truly linear
relationships because a large number of splits is neces-
sary for a smooth approximation with step functions.
(b) In addition, the tree structure can be highly unstable
(i.e., trees trained on different samples from the same
population vary a lot) if the ratio of sample size to num-
ber of features (or the general signal to noise ratio) is
low. If the tree structure is unstable, this also implies
that interpretations based on the structure can be unreli-
able. If the tree will be used for interpretation purposes,
checking the stability of the model should be a high
priority (Philipp et al., 2016). (c) An important hyperpa-
rameter to stabilize trees is the stopping criterion, which
has a strong influence on the bias-variance trade-off of
the model. Setting liberal stopping criteria (i.e., allowing
many splits) will result in deeper trees that have a lower
bias but also a higher variance (i.e., higher instability).
Because the optimal trade-off depends on many factors,
such as sample size, number of features, and the signal-
to-noise ratio, elaborate tuning of stopping criteria is
often required in practice. In this tuning process, a

18

F
ig

.
6
.

V
is

u
al

iz
at

io
n
 o

f
th

e
tr

ee
 g

ro
w

in
g

p
ro

ce
ss

 b
y

d
is

p
la

yi
n
g

th
e

p
re

d
ic

ti
o
n
 s

u
rf

ac
e

al
o
n
gs

id
e

th
e

tr
ee

 s
tr

u
ct

u
re

.
T
h
e

p
lo

t
is

 b
as

ed
 o

n
 t

h
e

A
m

es
H

o
u
si

n
g

re
gr

es
-

si
o
n
 t

as
k
 w

it
h
 t

w
o
 c

o
n
ti
n
u
o
u
s

fe
at

u
re

s,
 G

r_
Li

v_
A

re
a
 (

ab
o
ve

-g
ro

u
n
d
 l
iv

in
g

ar
ea

)
an

d
 Y

ea
r_

B
u

il
t

(c
o
n
st

ru
ct

io
n
 y

ea
r)

.
T
ru

e
an

d
 p

re
d
ic

te
d
 s

al
es

 p
ri

ce
s

o
f

p
ro

p
er

ti
es

 a
re

co

lo
r-

co
d
ed

 (
lo

w
 p

ri
ce

s
in

 b
lu

e,
 h

ig
h
 p

ri
ce

s
in

 r
ed

).
 T

h
e

n
u
m

b
er

 o
f

sp
li
ts

 i
n
cr

ea
se

s
b
y

1
fr

o
m

 F
ig

.
6a

 t
o
 6

c.
 T

h
e

la
st

 p
lo

t
in

 p
an

el
 F

ig
.

6d
 s

h
o
w

s
th

e
re

su
lt
 o

f
u
si

n
g

th
e

d
ef

au
lt
 s

to
p
p
in

g
cr

it
er

ia
.

Advances in Methods and Practices in Psychological Science 6(3) 19

perfect trade-off between predictive performance and
interpretability is difficult to achieve. The most predictive
model will often be too unstable to use the tree structure
for high-stakes interpretations. (d) Last but not least,
although decision trees are powerful predictive models,
their predictive performance (even with elaborate
tuning) is often lower compared with more complex ML
models.

Random forests in theory

Basic principles. Next, we introduce a procedure called
“bootstrap aggregation” (Bagging; Breiman, 1996) to
improve the predictive performance of decision trees by
reducing variance (remember our section on the bias-
variance trade-off). Variance reduction is achieved by
aggregating the predictions of many trees. The Bagging
algorithm (a) draws a number of bootstrap samples with
replacement, (b) fits a deep decision tree (with liberal
stopping criteria) on each bootstrap sample, and (c) aggre-
gates the predictions across all trees (using the mean for
regression or the mode for classification). The intuition is
that the bootstrap simulates drawing multiple samples
from the population of interest. Because decision trees
with liberal stopping criteria have low bias but high vari-
ance, the tree structure on different (approximate) sam-
ples will vary. By averaging predictions from different
trees, the low bias is retained, but the variance can be
reduced, resulting in a better bias-variance trade-off and
thus better predictive performance. However, one remain-
ing limitation is that the high “correlation” between trees
reduces the effectiveness of variance reduction. In this
context, correlation means that (despite some instability),
the tree structure on different samples shows great similar-
ity because informative features have a high chance to be
selected early in the tree-growing process. Early splits
have a high influence on the tree structure and thus on the
predictions made by those trees (James et al., 2021).

The RF algorithm. With the RF, Breiman (2001a), who
also developed the CART algorithm and Bagging, found a
clever way to improve the variance reduction from Bag-
ging by reducing the similarity of trees in the forest: For
each split, the RF algorithm draws a random subset of
features that are taken into account by the optimization
algorithm. At the same time, the RF uses highly liberal
stopping criteria to assure minimal bias. The final RF algo-
rithm has three major hyperparameters: (a) the number of
trees to be aggregated (num.trees), (b) the number of fea-
tures to consider at each split (mtry), and (c) the minimum
number of observations in a node to continue splitting
(min.node.size). In contrast to many other state-of-the-art
ML models that require excessive tuning of hyperparame-
ters to achieve good predictive performance, the RF typi-
cally performs well without tuning (Bernard et al.,

2009; Probst et al., 2019). Useful default values are
num trees. = 500 , mtry p= , and minnode size. . = 1 for

classification and num trees. = 500 , mtry
p

=
3

, and

minnode size. . = 5 for regression (James et al., 2021). Of
course, there might be some data sets for which tuning
those hyperparameters improves predictive performance.

Figure 7 visualizes how the RF predictions change
with an increasing number of trees using the reduced
AmesHousing regression task with two continuous fea-
tures. For num trees. = 1, the prediction surface is com-
posed of possibly small rectangles (because of liberal
stopping criteria), often resulting in abrupt changes in
predictions for small changes in feature values. With
num trees. > 1, the rectangles from different trees overlap,
resulting in smoother predictions. The smoothness
increases with the number of trees and saturates at some
point (in this example, few trees are required because
the sample size and the number of features is small).
The smoother prediction surface of the RF compared
with a single CART tree is one important argument why
the RF often shows better predictive performance. A
smooth surface can be expected to generalize better for
new observations than rough prediction changes. How-
ever, note that all tree-based models are local methods
that can make strange generalizations in regions in
which none or few training observations have been
observed: for example, the region around the single
expensive (red) property with Year Built_ > 1975 and
Gr Liv Area_ _ ,> 3 000 .

Advantages and disadvantages of RFs. The RF is
often thought to be one of the best “off-the-shelf” models
(Fernández-Delgado et al., 2014) with many advantages.
Although more complex models that require excessive
preprocessing or hyperparameter tuning might be able to
achieve slightly better performance (e.g., XGBoost, Chen
& Guestrin, 2016; deep neural networks, Goodfellow
et al., 2016), the RF often reaches satisfying performance
with less effort and less computational resources (i.e.,
models can usually be trained and evaluated on a laptop
in only a few minutes). (a) The RF inherits all advantages
from single decision trees (except interpretability). (b) In
addition, the RF can be expected to achieve better (or at
least comparable) predictive performance than single
trees. All in all, the RF can be thought of as an ML model
with both low bias and low variance. It keeps the low bias
of deep decision trees and achieves low variance by effec-
tive variance reduction via aggregating predictions from
trees with small correlations. (c) The RF handles nonlin-
earity and interactions even better. In contrast to linear
models or single decision trees, the RF can handle even
stronger nonlinear relationships between the features and
the target. A visual demonstration of an artificial nonlinear
classification problem is given in ESM 5.5. (d) The RF is

20 Pargent et al.

easy to use because tuning of hyperparameters is not nec-
essarily required. Note that there is no danger that increas-
ing the number of trees in the RF might decrease predictive
performance. Although extremely few trees will lead to
suboptimal performance, the only disadvantage of an
excessive number of trees is a waste of computational
resources. This is in sharp contrast to other methods such
as boosting (Friedman, 2001), which will strongly overfit
to the training data if the number of trees is not tuned
carefully (James et al., 2021).

Of course, the RF also has a few disadvantages: (a) The
RF might still not be ideal for truly linear relationships,
although a sufficiently large number of trees can approxi-
mate smooth functions much better than a single tree. (b)
Possibly the biggest disadvantage is that the RF loses the
convenient interpretability of single trees. It is not useful

to inspect graphical displays of hundreds of trees that are
aggregated for the final predictive model. Additional tools
from the field of interpretable ML are necessary to interpret
RF predictions. We introduce such methods later.

Practical Exercise 2: train an RF and
estimate predictive performance

In the next exercise, we show how to train and evaluate
a RF model in mlr3. We use a classification problem in
this exercise to demonstrate how classification is done
in mlr3. However, the RF also works for regression prob-
lems, which we demonstrate in the next module. To
follow along, make sure to repeat the earlier code steps
in which we loaded the PhoneStudy data set.

1900

1950

2000

1000 2000 3000
Gr_Liv_Area

Ye
ar

_B
ui

lt

1 Tree

1900

1950

2000

1000 2000 3000
Gr_Liv_Area

Ye
ar

_B
ui

lt

5 Trees

R 2
cv = 0.7

1900

1950

2000

1000 2000 3000
Gr_Liv_Area

Ye
ar

_B
ui

lt

50 Trees

1900

1950

2000

1000 2000 3000
Gr_Liv_Area

Ye
ar

_B
ui

lt

500 Trees

R 2
cv = 0.72

R 2
cv = 0.48 R 2

cv = 0.66

Fig. 7. Visualization of how the smoothness of the prediction surface of a random forest changes with an increasing
number of trees (from 1 to 500 trees). The plot is based on the AmesHousing regression task with two continuous
features, Gr_Liv_Area (above-ground living area) and Year_Built (construction year). True and predicted sales
prices of properties are color-coded (low prices in blue, high prices in red). Performance estimates are based on
10-fold cross-validation.

Advances in Methods and Practices in Psychological Science 6(3) 21

Create a classification task. First, we create an artifi-
cial classification example by binning the continuous E2.
Sociableness variable into “high” and “low” sociability
according to the median of the complete data set. This is
just to showcase how classification works in mlr3. We do
not recommend binning in a real application, in which we
would always perform regression if the target is continu-
ous (Stachl, Pargent, et al., 2020):

phonedata$E2.Sociableness_bin <-
 ifelse(phonedata$E2.Sociableness >=
 median(phonedata$E2.Socia bleness),
 "high", "low")
phonedata$E2.Sociableness_bin <-

as.factor(phonedata$
 E2.Sociableness_bin)

We create a new supervised classification task on the
basis of the binned target, declaring high sociability as
the so-called positive group. This arbitrary choice deter-
mines the interpretation of performance measures such
as SENS and SPEC (e.g., sensitivity is the ratio of indi-
viduals with high sociability that are correctly classified
to have high sociability). We make sure to remove both
the original continuous sociability variable and the gen-
der variable from the feature set:

task_Soci_bin <-as_task_classif(
 phonedata,
 id = "Sociability_Classif",
target = "E2.Sociableness_bin",
positive = "high")

task_Soci_bin$set_col_roles(
 "E2.Sociableness", remove_from =
 "feature")
task_Soci_bin$set_col_roles(
 "gender", remove_from =
 "feature")

In the following line, we specify our target as a so-
called stratification variable. When we later split the task
for CV, this will (roughly) keep the proportion of high
and low sociability in each training set equal to the
proportion in the complete data set. Using stratified
resampling for classification tasks is usually a good idea
because it improves the precision of performance esti-
mates, especially for data sets with imbalanced classes
or relatively few observations (Kohavi, 1995):

task_Soci_bin$set_col_roles(
 "E2.Sociableness_bin",
 add_to = "stratum")

Train a random forest model. Next, we create a
learner for the RF model, using the state-of-the-art imple-
mentation in the ranger package (Wright & Ziegler, 2017).
We can directly specify hyperparameter settings of the

learner (e.g., the number of trees). To handle the missing
data, we again fuse our learner with our imputation strat-
egy and create a GraphLearner. Because the RF algorithm
contains random steps (drawing bootstrap samples), we
set a seed before training the learner on our classification
task to make the results reproducible.

imputer <- po("imputemedian")
rf <- lrn("classif.ranger",
 num.trees = 500)
rf <- as_learner(imputer %>>% rf)
set.seed(1)
rf$train(task_Soci_bin)

The trained model object produced by the ranger
package could be extracted with rf$model$classif.
ranger$model. Similar to Practical Exercise 1, it would
be easy to use the trained model to compute predictions
for new observations:

phonedata_new <-readRDS(file =
 "data/clusterdata.RDS")
phonedata_new <-phonedata_new[
 ! complete.cases(

phonedata_new$gender),
c(1:1821, 1837)]

rf$predict_newdata(newdata =
 phonedata_new)$response

[1] high high high high
Levels: high low

As before, we could also calculate in-sample predic-
tive performance by computing predictions for the same
data used in training. Now that we have a classification
task, the prediction object also contains a confusion
matrix of our in-sample predictions:

pred <-rf$predict(task_Soci_bin)
pred$confusion

 truth
response high low
high 341 0
low 0 279

All observations from the training data have been clas-
sified without error. However, this estimate is probably
not realistic for the predictive performance on new data.

Estimate predictive performance of the model. The fol-
lowing out-of-sample estimate exemplifies again that in-
sample performance estimates should not be trusted,
especially not for flexible ML models such as RF. It is abso-
lutely necessary to use resampling, here 10-fold CV with
MMCE as the performance measure:

22 Pargent et al.

set.seed(3)
res <-resample(task_Soci_bin,
 learner = rf,
 resampling = rsmp("cv", folds = 10))
res$aggregate(list(
 msr("classif.ce"),
 msr("classif.ce", id =
 "classif.ce.sd", aggregator = sd)))

classif.ce classif.ce.sd
 0.377 0.039

CV reveals that the full model cannot be expected to
perfectly predict new data but will misclassify about 38%
of all cases. Note that we computed both the already
familiar point estimate of predictive performance (mean
MMCE across folds) and an estimate of the variability
of performance estimates from different test sets
(the code msr("classif.ce", id = "classif
.ce.sd", aggregator = sd) constructs a perfor-
mance measure that computes the standard deviation of
MMCE across folds). Documenting this variability is
highly recommended to evaluate the precision of our
performance estimate. A further step to increase our con-
fidence in our performance estimate is to check whether
the point estimate changes a lot when repeating the
resampling with different seeds. Note that actively search-
ing for a seed that produces a higher performance esti-
mate is not meaningful and would bias the performance
evaluation. Instead, repeated CV should be used to get
a stable performance estimate. We illustrate repeated CV
and the variability of resampling estimates in ESM 3.5.

Summary of Module 2

In Module 2, we introduced the RF, a popular nonlinear
ML model with strong predictive performance and high
usability. The logic of the RF is quite different from the
linear regression models that psychologists are most
familiar with: The RF algorithm averages the predictions
from a large number of decision trees that are grown
with the CART algorithm. We took our time to explain
those important underlying concepts with graphical
illustrations. In Practical Exercise 2, readers were guided
on how to train and to evaluate the predictive perfor-
mance of an RF model with mlr3, thereby rehearsing
important concepts introduced in Module 1.

Module 3: Benchmark Experiments

Model comparisons as controlled
scientific experiments

When performing supervised ML in practice, it is often
necessary to compare predictive performance estimates
for different types of models because there are no

effective heuristics on which models are optimal under
different settings. These so-called benchmark experi-
ments include an assessment of whether a model has
superior predictive performance in comparison with a
baseline or state-of-the art model. Often a “featureless”
learner is used as a simple baseline model against which
the performance of the other models of interest are
compared. The featureless learner uses the mean target
value in the training set as a constant prediction for all
observation in the test set, thereby effectively ignoring
the information from all features. Useful ML models
should be able to at least beat the featureless model. Even
stronger theoretical baseline models can be designed for
most applications (e.g., predict personality scores on the
basis of only demographic variables). Benchmarks
strongly resemble scientific experiments or randomized
controlled trials; they investigate the effect of choosing a
predictive model on the expected predicted performance:
Different experimental conditions or treatments (i.e.,
types of models) are compared with a control group (i.e.,
featureless learner). For each experimental condition, the
optimal stimulus intensity or “dosage” is identified and
applied (i.e., nested tuning of all hyperparameter set-
tings). To ensure fair comparisons, external factors (i.e.,
performance measures, resampling strategies including
the concrete assignment of observations to training and
test sets) are kept constant between conditions.

Practical Exercise 3: model comparisons
with benchmark experiments

In our third exercise, we conduct two benchmark experi-
ments. The first benchmark experiment illustrates a
regression task, the second a classification task. We
apply the RF from Module 2, along with other learners.
Besides a featureless learner, we also compare the RF
to a so-called least absolute shrinkage and selection
operator (LASSO) model (Tibshirani, 1996) in our bench-
mark experiments. The LASSO is a linear regression (or
classification) model that can effectively include a large
number of features by shrinking the coefficients toward
zero. This shrinkage also results in coefficients of exactly
zero for unimportant features, thereby performing auto-
matic variable selection because the corresponding fea-
tures will not be taken into account when computing
predictions. The results can be interpreted similar to
ordinary linear or logistic regression because the LASSO
can be seen as an alternative method to estimate the
model parameters of these models. We have observed
in our own ML applications that LASSO often performs
comparably or even better than RF on survey data (e.g.,
Pargent & Albert-Von Der Gönna, 2018). Thus, we rec-
ommend by default to include the LASSO into bench-
mark experiments when working with psychological
data. A nontechnical introduction to the LASSO was
provided by James et al. (2021).

Advances in Methods and Practices in Psychological Science 6(3) 23

For our benchmark analysis, we reuse the task_Soci
and task_Soci_bin objects we created earlier. We create
GraphLearners fused with imputation (featureless learner,
LASSO, and RF) for both a regression and a classification
task. The featureless learner does not require imputation
because it does not use any features:10

imputer <-po(“imputemedian”)

fl_regr <-lrn(“regr.featureless”)
lasso_regr <-lrn(“regr.cv_glmnet”,
 nfolds = 5)
lasso_regr <-as_learner(
 imputer %>>% lasso_regr)
rf_regr <-lrn(“regr.ranger”,
 num.trees = 100)
rf_regr <-as_learner(
 imputer %>>% rf_regr)

fl_classif <-lrn(“classif.featureless”,
 predict_type = “prob”)
lasso_classif <-lrn(
 “classif.cv_glmnet”, nfolds = 5,
 predict_type = “prob”)
lasso_classif <-as_learner(
 imputer %>>% lasso_classif)
rf_classif <-lrn(“classif.ranger”,
 num.trees = 100,
 predict_type = “prob”)
rf_classif <-as_learner(
 imputer %>>% rf_classif)

Because benchmark experiments easily become com-
putationally intensive, we use parallelization (speeding up
computations by using more than one core of the com-
puter simultaneously), which is provided by the future
package (Bengtsson, 2021). To use parallelization with
mlr3, the only steps are to load the future package, specify
a parallelization plan (use strategy = "multises
sion" which should work on both Windows and Mac),
and select the number of cores (you can type
parallel::detectCores() to find out the maximum
number of cores available on your computer). Paralleliza-
tion will then be automatically used by mlr3 whenever
possible. Note that even with a seed, parallel computations
are sometimes not fully reproducible, which depends on
technical peculiarities that are not specific to mlr3 or R:

library(future)
plan("multisession", workers = 2)
set.seed(2)

Before we can actually compute the individual bench-
mark experiments for our regression and classification
tasks, we have to declare our benchmark designs. These

designs specify which learners will be trained on which
tasks and which resampling strategies should be used
for each combination of Learner × Task interaction. We
choose 10-fold CV to enable computation on smaller
laptops in a reasonable amount of time for our tutorial.
In a real application, we would apply repeated CV here
because performance estimates have a high variability
for this example (notice how the estimates change when
repeating the benchmark with different seeds). After
running the experiments by calling the benchmark
function for each task type, we turn off the paralleliza-
tion by switching back to "sequential" mode:

design_regr <-benchmark_grid(
 tasks = task_Soci,
 learners = list(fl_regr, lasso_regr,
 rf_regr),

 resamplings = rsmp("cv", folds = 10))
bm_regr <-benchmark(design_regr)

design_classif <-benchmark_grid(
tasks = task_Soci_bin,

 learners = list(fl_classif,
 lasso_classif, rf_classif),

 resamplings = rsmp("cv", folds = 10))
bm_classif <-benchmark(design_classif)

plan("sequential")

We choose an extended set of performance measures
for our regression and classification benchmarks. For
regression, we look at R2 and RMSE but also consider
Spearman’s correlation, which evaluates predictive per-
formance by correlating the predictions with the true
target values. Evaluating predictive performance with
correlation measures is useful in practical applications
in which we care only about ranking individuals on the
basis of the target (e.g., is this person rather more or
less sociable compared with this other person), but the
actual target values do not matter. Such settings fre-
quently arise in psychological assessment (e.g., person-
nel selection; Stachl, Pargent, et al., 2020). For
classification, we not only look at MMCE but also con-
sider SENS (i.e., true-positive rate) and SPEC (i.e., true-
negative rate):

mes_regr <-msrs(c("regr.rsq",
 "regr.rmse", "regr.srho"))
mes_classif <-msrs(c("classif.ce",
 "classif.tpr", "classif.tnr"))

First, we compute aggregated performance for the
regression benchmark with aggregate and print the
results. We can also request a grouped box plot for a
specific performance measure (see Fig. 8), which is very

24 Pargent et al.

useful because it also visualizes the variability of per-
formance estimates across test sets:

bmr_regr <-
 bm_regr$aggregate(mes_regr)
bmr_regr[, c(4,7:9)]

learner_id regr.rsq regr.rmse regr.srho
1: regr -0.030 1.8 NA
 .featureless
2: impute -0.028 1.8 NA
 median.regr
 .cv_glmnet
3: imputemedian
 .regr.ranger 0.111 1.6 0.38

autoplot(bm_regr, measure = msr(
 "regr.rsq")) + papaja::theme_apa()

It seems that the RF produces more accurate predic-
tions than the LASSO and the featureless learner for all
performance measures. Note that the Spearman’s correla-
tion could not be computed for the LASSO and the
featureless learner because both produced constant pre-
dictions for all observations in at least one fold. Although
this must always be the case for the featureless learner
(i.e., constant prediction based on the target mean in
the training set), it seems that the LASSO automatically
removed all features from the model (i.e., constant pre-
diction based on the model intercept). This observation
reflects the bad performance of the LASSO, which cannot
effectively use the information contained in the features
in this example.

The commands to display benchmark results are simi-
lar for the classification benchmark. Instead of the
grouped box plot, we here show how to produce a

simple ROC plot (see Fig. 9) by calling autoplot(bm_
classif, type = "roc").

bmr_classif <-
 bm_classif$aggregate(mes_classif)
bmr_classif[, c(4,7:9)]

learner_id classif.ce classif.tpr classif.tnr
1: classif 0.45 1.00 0.00
 .featureless
2: imputemedian 0.39 0.88 0.27
 .classif
 .cv_glmnet
3: imputemedian 0.38 0.75 0.47
 .classif.ranger
autoplot(bm_classif, type = "roc")

When looking at the results, we notice that although
MMCE is very similar for RF and LASSO, the models
slightly differ in their respective trade-off of SENS and
SPEC . This finding exemplifies the need to consider other
performance measures beyond mean classification error
or accuracy in many applied classification settings, where
the practical cost of false-positive and false-negative pre-
dictions are not the same (Sterner et al., 2021).

To practice with another benchmark example, ESM 6
contains mlr3 code to perform a benchmark experiment
with the Titanic data set.

Summary of Module 3

Module 3 introduced benchmark experiments. Super-
vised ML usually requires comparing the predictive per-
formance of different types of ML models because
researchers cannot know in advance which model will
perform best for the specific research question at hand.
This comparison typically includes a featureless baseline

sociability_regr

regr.featureless imputemedian.regr.cv_glmnet imputemedian.regr.ranger

−0.10

−0.05

0.00

0.05

0.10

0.15

nr

re
gr
.rs
q

Fig. 8. Box plots displaying the results of the benchmark experiment of the Sociability regression
task using the PhoneStudy data set. R2 was estimated with 10-fold cross-validation. (Left) Featureless
learner. (Middle) Least absolute shrinkage and selection operator. (Right) Random forest.

Advances in Methods and Practices in Psychological Science 6(3) 25

model to answer the question whether a predictive
model performs better than naive guessing. Practical
Exercise 3 took readers step-by-step through the process
of setting up benchmark experiments in mlr3, which
draws on the skills obtained in Module 1 (i.e., perfor-
mance evaluation via resampling) and Module 2 (i.e.,
training an RF). We demonstrated how to interpret
benchmark results and highlighted the importance of
different performance measures and the variability of
performance estimates.

Module 4: Interpretation of Models

Interpretable ML

In addition to training models for practical applications
or answering substantial research questions on the basis
of benchmark experiments (Rocca & Yarkoni, 2021;
Shmueli, 2010; Yarkoni & Westfall, 2017), researchers
often want to understand how the final model makes
predictions to connect findings to psychological theo-
ries. Understanding model predictions is the goal of
interpretable ML (IML; Molnar et al., 2020). We focus
solely on model-agnostic methods that can be applied
with any trained predictive model and are not limited
to a specific type of ML model (e.g., RF). We do not
discuss a contrasting view that focuses on building
inherently interpretable models (e.g., simple decision
rules) instead of explaining the predictions from black-
box ML models (Rudin et al., 2022).

Many IML methods can be broadly categorized to
answer one of two important questions. First, which fea-
tures have the biggest effect on model predictions? This
question can be answered with variable importance mea-
sures. Second, how do individual features influence model
predictions? This question can be answered with effect
plots. We briefly describe these methods in the following
sections. For an extensive introduction to IML methods for
psychological research, see Henninger et al. (2022).

Variable importance measures. Variable importance
measures try to answer the following question: Which fea-
tures are most influential for model predictions? They are
mostly inspired by the RF (Breiman, 2001a) but were
extended to work with arbitrary ML models. We focus on
the model-agnostic permutation variable importance (PVI;
Fisher et al., 2019). PVI formalizes the intuitive idea that a
model should make a bad prediction for an observation if
the data for this observation contain an accidental mistake
in an important feature (e.g., a young age was recorded for
an old person). PVI takes a set of observations and shuffles
the observed values in the feature of interest (e.g., persons
are randomly assigned the age values of other persons in
the sample). This permutation destroys the systematic infor-
mation in the feature, which could be used to meaningfully
predict the target. Predictions are computed for all observa-
tions with the shuffled feature values, and the actually
observed values are used on all remaining features. Note
that the model that is used to compute predictions is always

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
1 − Specificity

Se
ns

iti
vi

ty Learner
classif.featureless
imputemedian.classif.cv_glmnet
imputemedian.classif.ranger

Fig. 9. Receiver operating curve ()ROC plot displaying the results of the benchmark analysis of
the Sociability classification task based on the PhoneStudy data set. ROC curves were estimated
with 10-fold cross-validation. The shaded region visualizes the variability across test sets.

26 Pargent et al.

trained on the unshuffled data. Predictive performance is
calculated under the shuffled condition and compared with
the performance under the normal condition with unshuf-
fled values. The greater the performance difference, the
more important the respective feature is (e.g., if age is an
important feature, predictive performance should suffer
when the observed age values are assigned to the wrong
persons). In contrast, if a feature is not important (i.e., unre-
lated to the target), shuffling should not decrease predictive
performance. By repeating the process for each feature, PVI
produces a ranking of important features. The resulting PVI
values should be interpreted only in comparison with each
other because the absolute values are difficult to interpret. In
principle, PVI automatically captures both main and interac-
tion effects. However, it does not say anything about the
direction of the effect, the shape of the effects, or whether
an important feature has any causal effect on the target.

Figure 10a shows the PVI rankings for the Titanic task.
Because this is a classification task, AUC is used as the
performance measure here. AUC values in the shuffled

condition are subtracted from the unshuffled condition so
that high positive PVI values indicate important features.
Note that this difference can also become negative for
noisy features, in which case, we would expect improved
predictive performance if these “bad” features were actu-
ally removed from the full model. Here, the prediction
whether a passenger survived seems to depend most
strongly on the passenger’s sex. The box plots indicate
how stable the PVI values are across different permuta-
tions (i.e., in each permutation, there is a new random
assignment of feature values to observations). More formal
tests of whether PVI values significantly differ between
features are difficult to construct and are still an active
area of research (e.g., Janitza et al., 2018).

Standard PVI has been known to overestimate the
importance of features with many unique values (Strobl
et al., 2007) or high correlations with truly important
features (Strobl et al., 2008). Unbiased PVI measures
have been developed, but they are not model-agnostic
and work together only with a specific RF algorithm

0.0 0.1 0.2

Parch
Sibsp

Age
Pclass

Sex

One Minus AUC Loss After Permutations

Feature Importance

0 20 40 60 80
0.00

0.25

0.50

0.75

1.00

Pr
ed

ic
tio

n

Created for the Titanic Random Forest Model
Age

Ceteris Paribus profile

Created for the Titanic Random Forest Model
Titanic Random Forest

a

b

Fig. 10. A visualization of interpretable machine-learning methods applied to a random
forest model trained on the complete Titanic data set. (a) The permutation variable impor-
tance for each feature. (b) Effect plot of the age feature, combining the individual condi-
tional expectation profiles (gray lines) with the partial dependence (blue line). pclass =
passenger class; sibsp = number of siblings or spouses aboard; parch = number of parents
or children aboard.

Advances in Methods and Practices in Psychological Science 6(3) 27

based on recursive partitioning (Debeer & Strobl, 2020;
Strobl et al., 2008). Unfortunately, this newer RF version
is less computationally efficient and requires more
extensive hyperparameter tuning to perform well, which
is why we do not use it as a default. For a short discus-
sion on RF-specific variable importance measures, see
ESM 7.1.

Effect plots. Effect plots try to answer the following
question: How do individual features influence model
predictions? Effect plots display how model predictions
change for different values of some feature of interest.
Like in PVI, this is done by substituting the actual feature
values, but now values are changed systematically instead
of randomly. A prediction for an individual naturally uses
the actually observed value in a feature of interest (e.g., a
person is 40 years of age). However, the trained model
could also compute a prediction for a different feature
value (e.g., “pretending” that the observed age for this per-
son is 60). In this way, a range of predictions can be com-
puted for each individual by systematically changing the
values in the feature of interest (e.g., on a grid of age
values between 0 and 80 years) while keeping the actually
observed values on all other features. Visualizing these
profiles for a group of observations is called an “individual
conditional expectation” (ICE; Goldstein et al., 2015) plot.

Figure 10b shows the ICE plot for the age feature in
the Titanic task. Each line shows predictions for a single
person computed with different age values (shown on
the x-axis), and the points mark the actually observed
age value for each person. ICE profiles can sometimes
reveal interactions of the feature of interest with other,
potentially unknown variables. For example, there seems
to be a group of persons (the lines on the top) for which
the predicted probability of surviving (shown on the
y-axis) does not change with different age values. This
seems in contrast to another group of persons (the lines
in the middle) for which predicted survival probabilities
decrease with higher age values. These different shapes
indicate an interaction of age with one or several other
features, which might be either contained in the data set
or completely unobserved. For further exploration, one
could color the lines on the basis of a feature suspected
to be responsible for these interaction (e.g., pclass or
sex) and see whether systematic patterns emerge.

ICE plots can be a bit overwhelming, and a more
simple summary might be desired. The thick line in
Figure 10b shows the average profile by vertically com-
puting the mean across all lines for each feature value
on the x-axis. If this average is displayed without the
individual profiles, the resulting curve is called a “partial
dependence” (PD; Friedman, 2001) plot. The PD in our
example indicates that on average, the predicted survival
probability decreases for higher age values. However,
keep in mind that the ICE profiles show that this average
trend is not observed for all persons. Note also that effect

plots do not necessarily indicate that the feature of inter-
est has any causal effect on the target.

An alternative to PD are “accumulated local effects”
(ALEs; Apley & Zhu, 2020) plots. Although ALEs plots
are often discussed as an improvement on PD, this does
not seem to be without controversy because both
estimate slightly different concepts. Molnar (2019) and
Henninger et al. (2022) provided a clear introduction on
both methods.

Model fairness

Closely related to IML is the topic of model fairness
(Barocas et al., 2019). Intuitively, a trained ML model is
considered fair if it does not discriminate against pro-
tected subgroups of observations (e.g., gender groups;
Buolamwini & Gebru, 2018). However, which specific
model behavior is considered fair is highly context-
specific because it entails some normative consensus. It
has been argued that all ML models applied in practice
should be accompanied by transparent documentation
on their performance characteristics and their intended
use cases (Mitchell et al., 2019). Fairness seems particu-
larly relevant when ML is used in psychological assess-
ment (Stachl, Pargent, et al., 2020). In such settings, the
“protected attribute” (e.g., the gender variable in the
data set) is usually not included as a feature in the model
to prevent the model from using the information in the
protected variable to predict the target. However, flexible
ML models often implicitly infer group membership on
the basis of available features that are related to the
protected attribute. Thus, it is necessary to explicitly
evaluate fairness by comparing predictions for observa-
tions with different values on the protected attribute.
Many techniques introduced in our performance evalu-
ation and IML sections can be useful to creatively explore
whether a trained model behaves as required by a fair-
ness definition appropriate for the concrete use-case of
the model. We give brief examples of two different fair-
ness aspects in our applied section and refer readers to
Barocas et al. (2019) for an extensive overview of fair-
ness definitions and evaluation strategies. First, is the
predictive performance of the model comparable for
different values of the protected attribute? This can be
evaluated by estimating out-of-sample performance
separately for each value of the protected attribute. Sec-
ond, do model predictions differentially depend on the
value of some feature of interest for different values of
the protected attribute? This can be evaluated by com-
puting PVI rankings or ICE/PD plots separately for each
value of the protected attribute.

Comments on causal interpretation

Most methods introduced in the IML and fairness sec-
tions seem to have an intuitive interpretation. However,

28 Pargent et al.

we point out that it is of utmost importance not to care-
lessly interpret the results in a causal manner. Generally,
those methods investigate only the relationship between
feature values and model predictions. They do not nec-
essarily reflect the true data-generating process (Zhao
& Hastie, 2021). It is a well-known fact in the causal-
inference literature that causal claims always rely on
strong assumptions that cannot be fully inferred from
the observed data itself (Pearl, 2009). A common defini-
tion for a causal effect of some feature on the target is
that a (hypothetical) intervention on the feature would
lead to a different target value. Even if some ML model
accurately estimated the correlation structure between
the target and the features, this does not necessarily
mean that features with high PVI are good candidates
to focus in interventions if the aim is to influence the
true target values. In addition, PD and ICE plots do not
show how the true target values would change if some
intervention could achieve specific values on the feature
of interest without intervening on the other features.
Similar arguments are true for fairness aspects (Plecko
& Bareinboim, 2022). Without a causal model, one can-
not differentiate between a situation in which a model
directly discriminates against certain values of a pro-
tected attribute (e.g., women earn less money because
they are women) versus indirectly (e.g., women earn
less because they choose professions with lower income).

Recent calls in psychology urge to take questions of
causal inference seriously, and intuitive tutorials on
choosing the right control variables in statistical modeling
are now available (Deffner et al., 2022; Rohrer, 2018;
Wysocki et al., 2022). IML methods are no magical
devices that justify ignoring these considerations. Zhao
and Hastie (2021) explained under which assumptions
PD and ICE plots may be interpreted as causal effects. A
causal perspective on ML fairness is given in Plecko and
Bareinboim (2022). We strongly advise all readers to
deeply think about whether the results of IML and fair-
ness analyses will actually be useful to serve the intended
purpose in their specific case. There might be many
circumstances in which such reflections will reveal that
explicitly modeling the causal mechanisms is necessary
to ensure that predictions will be practically useful.

Practical Exercise 4: IML with mlr3
and DALEX

For our empirical demonstration, we use the DALEX/
DALEXtra R packages (Biecek, 2018), which come with
a detailed online textbook (Biecek & Burzykowski,
2021). An alternative is the iml package (Molnar et al.,
2018), with its excellent online companion book
(Molnar, 2019). The mlr3 e-book also contains a chapter
on how to use both frameworks (Bischl et al., 2023). We
use all IML methods on an RF model trained on the

complete Sociability regression task. For a discussion on
whether using IML on the complete data set or using
some combination of training and test sets, see Chapter
8.5.2 in Molnar (2019).

First, we train the RF GraphLearner from earlier
(which includes the imputation pipeline) on our com-
plete Sociability task:

set.seed(123)
rf_regr$train(task_Soci)

Then we construct an “explainer” object from the
DALEXtra package, which takes the following as main
inputs: model = a trained mlr3 model, data = the
feature values of new observations for which predictions
shall be computed (in our case, these are the same data
from our task appended with the gender variable), and
y = the target values for these new observations:11

library(DALEXtra)
library(ggplot2)

rf_exp <- explain_mlr3(rf_regr,
 data = cbind(phonedata[, 1:1821],
 phonedata$gender),

 y = phonedata$E2.Sociableness,
 label = "ranger explainer", colorize
 = FALSE)

Preparation of a new explainer is
 initiated

-> model label : ranger
explainer

-> data : 620 rows 1822
cols

-> target variable : 620 values
-> predict function : yhat.

GraphLearner
will be used
(default)

-> predicted values : No value for
predict
function
target
column.
(default)

-> model_info : package mlr3,
ver. 0.14.1,
task
regression
(default)

-> predicted values : numerical,
min = -2.4,
mean = 1.3,
max = 4.4

Advances in Methods and Practices in Psychological Science 6(3) 29

-> residual function : difference
between y and
yhat
(default)

-> residuals : numerical,
min = -2.4,
mean =
-0.019, max =
2.1

A new explainer has been created!

exemplary_features <-
 c("nightly_mean_num_call",
 "daily_mean_num_call_out",
 "daily_mean_num_.com.whatsapp")

The explainer object can be used for all IML methods
included in the DALEX/DALEXtra packages. To reduce
the computational load for this tutorial, we use only a
small subset of exemplary features for which we com-
pute the IML methods. In practice, we would include all
features from our task.

Permutation variable importance. To compute PVI,
we use the model_parts function:

varimp <- model_parts(
 rf_exp, B = 3, N = 400,
 variables = exemplary_features,
 type = "difference")
plot(varimp, show_boxplots = TRUE)

We use only a subset of observations (N) and a limited
number of permutations (B) to reduce running times. In
practice, we would increase the number of permutations
and use all available observations. We plot the resulting
object (Fig. 11), including box plots that visualize the
variability of feature importance across permutations.
The default performance measure for regression tasks
is the RMSE . With type = "difference" in the
model_parts function, the shuffled RMSE minus the
unshuffled RMSE is displayed on the y-axis. This differ-
ence is more positive for more important features.

The PhoneStudy data set consists of a very large num-
ber of features. In such settings, it can be more enlighten-
ing to interpret variable importance for groups of features
(e.g., app categories; see Stachl, Au, et al., 2020).12

ICE profiles and PD plot. The model_profile func-
tion computes different measures to visually inspect fea-
ture effects. ICE is used when setting type = "partial"
in model_profile and geom = "points" (or geom =
"profiles") in the corresponding plot command:

ice <- model_profile(rf_exp,
 variables = exemplary_features,
 N = 100, center = FALSE,
type = "partial")

plot(ice, geom = "points", variables =
 "nightly_mean_num_call") +
 geom_rug(sides = "b") +
xlim(0, 2) + ylim(0.5, 2)

Each ICE profile (i.e., each line in the plot) in Figure
12 corresponds to one person in our data set. It shows
how the model’s predicted sociability for this person (on
the y-axis) changes when we arbitrarily set the average
number of telephone calls at night (nightly_mean_num_
call; on the x-axis) to different values across the observed
range while keeping the person’s observed values on all
other features. In this example, there is no sign for any
strong interactions, and the effect of all single features
on the target seems quite weak (nightly_mean_num_call
is already the most important feature measured by PVI;
see Stachl, Au, et al., 2020). The PD is already displayed
in the ICE plot in Figure 12 as the bold blue line. We
could also request the PD by itself with type = "par
tial" in model_profile and geom = "aggre
gates" in the plot function. On average, we see a slight
increase in predicted Sociability for a higher number of
nightly calls. The corresponding ALE plot looks very
similar and can be found in ESM 7.2.

Note that for these PhoneStudy examples, IML methods
do not reveal causal effects: Personality theory would
consider it unreasonable that some intervention that
would simply call study participants at late hours, thereby
increasing the average number of telephone calls at night
(feature nightly_mean_num_call), would lead to an
increase in those participants’ sociability.

Aspects of model fairness. To explore whether the pre-
dictive performance of our model differs between men
and women, we compute predictive performance sepa-
rately for each gender with the mlr3fairness companion
package (Pfisterer et al., 2022). When mlr3fairness is

0.00 0.02 0.04

daily_mean_num_.com.whatsapp

daily_mean_num_call_out

nightly_mean_num_call

Root Mean Square Error (RMSE)
Loss After Permutations

Feature Importance
Created for the Ranger Explainer Model
Ranger Explainer

Fig. 11. Permutation variable importance for three exemplary fea-
tures based on the random forest model trained on the full Sociability
regression task.

30 Pargent et al.

loaded before creating task_Soci, we can declare gender
as a protected attribute (pta). We can then create group-
wise performance measures that automatically take this
variable into account:

library(mlr3fairness)
task_Soci <- as_task_regr(phonedata,
 id = "Sociability_Regr",
 target = "E2.Sociableness")
task_Soci$set_col_roles("gender",
 add_to = "pta",
 remove_from = "feature")
mes_fair <- c(groupwise_metrics(
 msr("regr.rsq"), task_Soci),
 groupwise_metrics(
 msr("regr.rmse"), task_Soci))
set.seed(2)
res <- resample(task_Soci, rf_regr,
 rsmp("cv", folds = 10))
res$aggregate(mes_fair)

subgroup subgroup subgroup subgroup
.rsq_m .rsq_f .rmse_m .rmse_f
 0.049 0.077 1.629 1.625

The resampling results suggest that our model makes
more accurate predictions for women (f) than for men (m).
One plausible reason could be that the data set contains
more observations from women (61% women). The mlr-
3fairness package includes many more options for classi-
fication than for regression settings. Apart from evaluating
fairness with different fairness metrics, it also contains
methods to construct models with better fairness properties
by using augmented ML models or debiasing methods.

To explore whether predicted sociability differentially
depends on the value of the feature nightly_mean_num_
call for men and women, the PD plot introduced earlier
can be computed simultaneously for both genders,
which we demonstrate in ESM 7.3. Although the form

of the relationship between the feature and the target
predictions seems similar for both genders, the model
generally predicts higher sociability for women than for
men. Note that for both fairness analyses, the gender
variable was not used as a feature when training the
predictive model.

Summary of Module 4

In the final Module 4, we introduced popular tools to
interpret a trained predictive model. In a first step, vari-
able importance measures can detect the features with
the greatest impact on predictive performance. In a sec-
ond step, effect plots can reveal the functional relation-
ship between the important features and the target. In
Practical Exercise 4, we showed how to use the DALEX
R package to interpret models trained with mlr3. To
prevent the practical application of models that discrimi-
nate against certain groups, in Module 4, we also gave
a primer on how to evaluate model fairness. Finally, we
discussed important limitations of interpretable ML and
fairness methods with respect to causal inference.

Conclusion

In this tutorial, we gave an intuitive but thorough intro-
duction to the fundamentals of supervised ML for stu-
dents, researchers, and educators in psychology. After
introducing important terminology and the predictive
mindset of supervised ML, in Module 1, we covered the
important topic of how to evaluate the predictive perfor-
mance of ML models with resampling methods such as
10-fold CV. Module 2 introduced the RF, a versatile non-
linear model that serves as a useful entry point into the
diverse world of ML algorithms. In Module 3, we focused
on benchmark experiments, which are a structured
approach to compare the predictive performance of dif-
ferent models and to determine which model performs
better in a specific application. Finally, Module 4 dis-
cussed permutation variable importance and effect plots
to interpret ML models, which is important whenever
predictive performance is not the only goal to use predic-
tive models in psychological applications. For a quick
reminder on the most important considerations and com-
mon pitfalls when performing, reporting, or reviewing
ML models in psychological research, we provide a con-
venient one-page checklist in Figure 13. The excellent
textbook by James et al. (2021) that we have referenced
throughout this article is an ideal starting point to read
more about basic ML concepts and methods.

Our tutorial did not cover the following advanced top-
ics, which we briefly mention for interested readers. First,
the psychological community has started to construct ML
models that explicitly address one important characteristic
of most psychological data—measurement error (e.g.,
Brandmaier et al., 2013; Jacobucci et al., 2016; Jacobucci

0.0 0.5 1.0 1.5 2.0
0.5

1.0

1.5

2.0

Pr
ed

ic
tio

n

Ceteris Paribus profile
Created for the Ranger Explainer Model
nightly_mean_num_call

Fig. 12. Individual conditional expectation profiles for the average
number of telephone calls at night (nightly_mean_num_call) based on
the random forest model trained on the full Sociability regression task.

31

F
ig

.
1
3
.

T
h
e

ch
ec

k
li
st

 o
n
 t
h
e

le
ft
 s

u
m

m
ar

iz
es

 t
h
e

m
o
st

 i
m

p
o
rt

an
t
m

ac
h
in

e-
le

ar
n
in

g
(M

L)
 p

ro
ce

d
u
re

s,
 w

h
ic

h
 w

er
e

p
re

se
n
te

d
 i
n
 d

et
ai

l
in

 o
u
r

tu
to

ri
al

.
T
h
es

e
re

m
in

d
er

s
ar

e
in

te
n
d
ed

 f
o
r

re
ad

er
s

w
h
en

 p
er

fo
rm

in
g,

 r
ep

o
rt

in
g,

 o
r
re

vi
ew

in
g

M
L

an
al

ys
es

.
T
h
e

li
st

 o
f
le

ss
o
n
s

le
ar

n
ed

 o
n
 t
h
e

ri
gh

t
su

m
m

ar
iz

es
 s

o
m

e
o
f
th

e
au

th
o
rs

’ o
w

n
 s

u
b
je

ct
iv

e
ex

p
er

ie
n
ce

s
w

h
en

 r
u
n
n
in

g
an

al
y-

se
s

an
d
 r

ev
ie

w
in

g
M

L
ar

ti
cl

es
.
In

 c
o
m

b
in

at
io

n
,
th

ey
 m

ig
h
t
sa

ve
 o

u
r

re
ad

er
s

fr
o
m

 s
o
m

e
o
f
th

e
m

o
st

 c
o
m

m
o
n
 p

it
fa

ll
s

an
d
 s

u
rp

ri
se

s
w

h
en

 a
p
p
ly

in
g

M
L

m
et

h
o
d
s

in
 p

sy
ch

o
lo

gi
ca

l
re

se
ar

ch
.

32 Pargent et al.

& Grimm, 2020). Second, we have not discussed some
open issues of ML with latent variables but refer the inter-
ested reader to Stachl, Pargent, et al. (2020). Finally, users
in psychology and other social sciences need to be acutely
aware of the ethical implications that can arise from the
reflected use of ML methods in applications (Mitchell et al.,
2019). We gave a short introduction on the idea of model
fairness, an important framework to ethically evaluate pre-
dictive models. However, additional aspects (e.g., transpar-
ency, justice, nonmaleficence) should be taken into account
(Jobin et al., 2019), and psychologists must be careful not
to prematurely neglect important issues of causality when
focusing on prediction (Plecko & Bareinboim, 2022; Zhao
& Hastie, 2021). There is also a growing literature with
specific guidelines for clinical predictive models (Moons
et al., 2015; Wolff et al., 2019), which require especially
high methodological and ethical standards.

Supervised ML is poised to become an important method
in the toolbox of psychologists, and we hope that our tuto-
rial can help them to apply ML responsibly. Although ML
is not a silver bullet to solve the generalizability crisis
(Yarkoni, 2022) of our discipline, we are convinced that
psychology can profit from investigating predictive research
questions with ML tools, which were specifically designed
to make predictive claims (Yarkoni & Westfall, 2017).

Transparency

Action Editor: David A. Sbarra
Editor: David A. Sbarra
Author Contribution(s)

Florian Pargent: Conceptualization; Writing – original
draft; Writing – review & editing.
Ramona Schoedel: Writing – original draft; Writing –
review & editing.
Clemens Stachl: Writing – original draft; Writing – review
& editing.

Declaration of Conflicting Interests
The author(s) declared that there were no conflicts of inter-
est with respect to the authorship or the publication of this
article.

Open Practices
This article has received the badges for Open Data and Open
Materials. More information about the Open Practices badges
can be found at http://www.psychologicalscience.org/
publications/badges. A preprint is published on PsyArXiv
(https://doi.org/10.31234/osf.io/89snd). All materials are
openly available on the OSF (https://osf.io/9273g/) and on
Code Ocean (https://doi.org/10.24433/CO.5687964.v1).

ORCID iD

Florian Pargent https://orcid.org/0000-0002-2388-553X

Acknowledgments

We thank Bernd Bischl and the mlr3 team for developing
amazing open-source software and for teaching us how to

perform responsible machine-learning analyses. We thank
Sanaz Talaifar, Samuel D. Gosling, Meike Zehnle, and Fotis
Efthymiou for valuable feedback on earlier versions of this
article. We thank Anja Betz for increasing the reproducibility
of our article. The first version of the article was based on a
workshop we have given to various audiences in psychology
and other social sciences. We thank our students and workshop
participants for continuous feedback on our educational
materials.

Notes

1. We use the AmesHousing data set included in the AmesHousing
R package (Kuhn, 2020) and the Titanic data set included in the
rpart.plot R package (Milborrow, 2021).
2. For an exception, see the s = "lambda.1se" argument of
the coef and predict functions in the glmnet R package
(Friedman et al., 2010).
3. The holdout estimator would be unbiased if the average hold-
out estimate for repeated samples from the population were
equivalent to the expected prediction error. The variance of the
holdout estimator describes the variability of holdout estimates
for repeated samples from the population.
4. https://cran.r-project.org/. We used R Version 4.2.2 (2022-
10-31).
5. https://posit.co/download/rstudio-desktop/.
6. This functionality uses the renv package (Ushey, 2022), which
is very useful for reproducible data analysis in R.
7. The E2.Sociableness variable is the estimated person param-
eter of a partial credit model (Masters, 1982) for the sociability
facet of the personality trait extraversion in the Big Five Structure
Inventory. For details, see Stachl, Au, et al. (2020).
8. In Stachl, Au, et al. (2020), a more advanced analysis pipeline
and imputation strategy was used compared with this tutorial.
For a description, see the supplementary information for that
article.
9. R issues a warning that the predictions may be misleading, but
they are computed nonetheless.
10. We set the predict_type of the classification learners to
"prob", which is only necessary because we want to show a
ROC plot later. For more details on predict_type, see the
mlr3 e-book (Bischl et al., 2023).
11. Be careful when using explain_mlr3 with a classification
task: y must be a numeric variable with the positive class coded
as 1 and the other coded with 0; predict_function_tar
get_column must be set to the label of the positive class.
12. In DALEX, grouped variable importance can be computed by
using the variable_groups argument of the model_parts
function as described in https://ema.drwhy.ai/featureImpor
tance.html#featureImportanceR.

References

Apley, D. W., & Zhu, J. (2020). Visualizing the effects of pre-
dictor variables in black box supervised learning mod-
els. Journal of the Royal Statistical Society B: Statistical
Methodology, 82(4), 1059–1086. https://doi.org/10.1111/
rssb.12377

Arendasy, M., Sommer, M., & Feldhammer, M. (2011).
Manual Big-Five Structure Inventory (BFSI). Schuhfried
Gmbh.

http://www.psychologicalscience.org/publications/badges
http://www.psychologicalscience.org/publications/badges
https://doi.org/10.31234/osf.io/89snd
https://osf.io/9273g/
https://doi.org/10.24433/CO.5687964.v1
https://orcid.org/0000-0002-2388-553X
https://cran.r-project.org/
https://posit.co/download/rstudio-desktop/
https://ema.drwhy.ai/featureImportance.html#featureImportanceR
https://ema.drwhy.ai/featureImportance.html#featureImportanceR
https://doi.org/10.1111/rssb.12377
https://doi.org/10.1111/rssb.12377

Advances in Methods and Practices in Psychological Science 6(3) 33

Au, Q., Herbinger, J., Stachl, C., Bischl, B., & Casalicchio, G.
(2021). Grouped feature importance and combined features
effect plot. arXiv. https://doi.org/10.48550/arxiv.2104.11688

Barocas, S., Hardt, M., & Narayanan, A. (2019). Fairness and
machine learning. fairmlbook.org

Bengtsson, H. (2021). A unifying framework for parallel and
distributed processing in R using futures. The R Journal,
13(2), 273–291. https://doi.org/10.32614/RJ-2021-048

Bernard, S., Heutte, L., & Adam, S. (2009). Influence of hyperpa-
rameters on random forest accuracy. In J. A. Benediktsson,
J. Kittler, & F. Roli (Eds.), Multiple classifier systems (pp.
171–180). Springer.

Biecek, P. (2018). DALEX: Explainers for complex predictive
models in R. Journal of Machine Learning Research, 19(84),
1–5. https://jmlr.org/papers/v19/18-416.html

Biecek, P., & Burzykowski, T. (2021). Explanatory model analy-
sis. Chapman & Hall/CRC. https://pbiecek.github.io/ema/

Binder, M., Pfisterer, F., Lang, M., Schneider, L., Kotthoff, L.,
& Bischl, B. (2021). mlr3pipelines-flexible machine learn-
ing pipelines in R. Journal of Machine Learning Research,
22(184), 1–7.

Bischl, B., Mersmann, O., Trautmann, H., & Weihs, C. (2012).
Resampling methods for meta-model validation with rec-
ommendations for evolutionary computation. Evolutionary
Computation, 20(2), 249–275.

Bischl, B., Sonabend, R., Kotthoff, L., & Lang, M. (2023).
Flexible and robust machine learning using mlr3 in R.
https://mlr3book.mlr-org.com/

Brandmaier, A. M., Oertzen, T., von McArdle, J. J., & Lindenberger, U.
(2013). Structural equation model trees. Psychological
Methods, 18(1), 71–86. https://doi.org/10.1037/a0030001

Breiman, L. (1996). Bagging predictors. Machine Learning,
24(2), 123–140. https://doi.org/10.1007/BF00058655

Breiman, L. (2001a). Random forests. Machine Learning, 45(1),
5–32.

Breiman, L. (2001b). Statistical modeling: The two cultures
(with comments and a rejoinder by the author). Statistical
Science, 16(3), 199–231.

Breiman, L., Friedman, J., Stone, C. J., & Olshen, R. A. (1984).
Classification and regression trees. CRC Press.

Buolamwini, J., & Gebru, T. (2018). Gender shades: Intersectional
accuracy disparities in commercial gender classification.
In S. A. Friedler & C. Wilson (Eds.), Proceedings of the 1st
conference on fairness, accountability and transparency
(Vol. 81, pp. 77–91). PMLR. https://proceedings.mlr.press/
v81/buolamwini18a.html

Chang, W. (2021). R6: Encapsulated classes with reference
semantics. https://CRAN.R-project.org/package=R6

Chen, T., & Guestrin, C. (2016). XGBoost: A scalable tree
boosting system. In Proceedings of the 22nd ACM SIGKDD
International Conference on Knowledge Discovery and
Data Mining (pp. 785–794). Association for Computing
Machinery.

Debeer, D., & Strobl, C. (2020). Conditional permutation impor-
tance revisited. BMC Bioinformatics, 21(1), Article 307.
https://doi.org/10.1186/s12859-020-03622-2

Deffner, D., Rohrer, J. M., & McElreath, R. (2022). A causal
framework for cross-cultural generalizability. Advances
in Methods and Practices in Psychological Science, 5(3).
https://doi.org/10.1177/25152459221106366

Eisenberg, I. W., Bissett, P. G., Enkavi, A. Z., Li, J., MacKinnon,
D. P., Marsch, L. A., & Poldrack, R. A. (2019). Uncovering
the structure of self-regulation through data-driven ontol-
ogy discovery. Nature Communications, 10, Article 2319.
https://doi.org/10.1038/s41467-019-10301-1

Fernández-Delgado, M., Cernadas, E., Barro, S., & Amorim, D.
(2014). Do we need hundreds of classifiers to solve real
world classification problems? Journal of Machine Learning
Research, 15, 3133–3181. http://jmlr.org/papers/v15/del
gado14a.html

Ferri, C., Hernández-Orallo, J., & Modroiu, R. (2009). An exper-
imental comparison of performance measures for classifi-
cation. Pattern Recognition Letters, 30(1), 27–38. https://
doi.org/10.1016/j.patrec.2008.08.010

Fife, D. A., & D’Onofrio, J. (2022). Common, uncommon,
and novel applications of random forest in psychologi-
cal research. Behavior Research Methods. Advance online
publication. https://doi.org/10.3758/s13428-022-01901-9

Fisher, A., Rudin, C., & Dominici, F. (2019). All models are
wrong, but many are useful: Learning a variable’s impor-
tance by studying an entire class of prediction models
simultaneously. Journal of Machine Learning Research,
20(177), 1–81. http://jmlr.org/papers/v20/18-760.html

Friedman, J. (2001). Greedy function approximation: A gra-
dient boosting machine. The Annals of Statistics, 29(5),
1189–1232. http://www.jstor.org/stable/2699986

Friedman, J., Hastie, T., & Tibshirani, R. (2010). Regularization
paths for generalized linear models via coordinate descent.
Journal of Statistical Software, 33(1), 1–22. https://www
.jstatsoft.org/v33/i01/

Goldstein, A., Kapelner, A., Bleich, J., & Pitkin, E. (2015).
Peeking inside the black box: Visualizing statistical learning
with plots of individual conditional expectation. Journal
of Computational and Graphical Statistics, 24(1), 44–65.
https://doi.org/10.1080/10618600.2014.907095

Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learn-
ing. MIT Press.

Grinsztajn, L., Oyallon, E., & Varoquaux, G. (2022). Why do
tree-based models still outperform deep learning on tabular
data? arXiv. https://doi.org/10.48550/ARXIV.2207.08815

Harari, G. M., Müller, S. R., Stachl, C., Wang, R., Wang, W.,
Bühner, M., Rentfrow, P. J., Campbell, A. T., & Gosling, S. D.
(2020). Sensing sociability: Individual differences in young
adults’ conversation, calling, texting, and app use behaviors
in daily life. Journal of Personality and Social Psychology,
119(1), 204–228. https://doi.org/10.1037/pspp0000245

Hastie, T., Tibshirani, R., & Friedman, J. (2009). The elements
of statistical learning (2nd ed.). Springer.

Henninger, M., Debelak, R., Rothacher, Y., & Strobl, C.
(2022). Interpretable machine learning for psychological
research: Opportunities and pitfalls. PsyArXiv. https://doi
.org/10.31234/osf.io/xe83y

Jacobucci, R., & Grimm, K. J. (2020). Machine learning and
psychological research: The unexplored effect of mea-
surement. Perspectives on Psychological Science, 15(3),
809–816. https://doi.org/10.1177/1745691620902467

Jacobucci, R., Grimm, K. J., & McArdle, J. J. (2016). Regularized
structural equation modeling. Structural Equation Modeling:
A Multidisciplinary Journal, 23(4), 555–566. https://doi.org/
10.1080/10705511.2016.1154793

https://doi.org/10.48550/arxiv.2104.11688
https://doi.org/10.32614/RJ-2021-048
https://jmlr.org/papers/v19/18-416.html
https://pbiecek.github.io/ema/
https://doi.org/10.1037/a0030001
https://doi.org/10.1007/BF00058655
https://proceedings.mlr.press/v81/buolamwini18a.html
https://proceedings.mlr.press/v81/buolamwini18a.html
https://CRAN.R-project.org/package=R6
https://doi.org/10.1186/s12859-020-03622-2
https://doi.org/10.1177/25152459221106366
https://doi.org/10.1038/s41467-019-10301-1
http://jmlr.org/papers/v15/delgado14a.html
http://jmlr.org/papers/v15/delgado14a.html
https://doi.org/10.1016/j.patrec.2008.08.010
https://doi.org/10.1016/j.patrec.2008.08.010
https://doi.org/10.3758/s13428-022-01901-9
http://jmlr.org/papers/v20/18-760.html
http://www.jstor.org/stable/2699986
https://www.jstatsoft.org/v33/i01/
https://www.jstatsoft.org/v33/i01/
https://doi.org/10.1080/10618600.2014.907095
https://doi.org/10.48550/ARXIV.2207.08815
https://doi.org/10.1037/pspp0000245
https://doi.org/10.31234/osf.io/xe83y
https://doi.org/10.31234/osf.io/xe83y
https://doi.org/10.1177/1745691620902467
https://doi.org/10.1080/10705511.2016.1154793
https://doi.org/10.1080/10705511.2016.1154793

34 Pargent et al.

James, G., Witten, D., Hastie, T., & Tibshirani, R. (2021). An
introduction to statistical learning: With applications in
R. Springer.

Janitza, S., Celik, E., & Boulesteix, A.-L. (2018). A computa-
tionally fast variable importance test for random forests
for high-dimensional data. Advances in Data Analysis and
Classification, 12(4), 885–915. https://doi.org/10.1007/
s11634-016-0276-4

Jobin, A., Ienca, M., & Vayena, E. (2019). The global landscape
of AI ethics guidelines. Nature Machine Intelligence, 1,
389–399. https://doi.org/10.1038/s42256-019-0088-2

Kohavi, R. (1995). A study of cross-validation and bootstrap
for accuracy estimation and model selection. International
Joint Conference on Artificial Intelligence, 14, 1137–1145.

Kosinski, M., Stillwell, D., & Graepel, T. (2013). Private traits
and attributes are predictable from digital records of
human behavior. Proceedings of the National Academy of
Sciences, USA, 110(15), 5802–5805. https://doi.org/10.1073/
pnas.1218772110

Kosinski, M., Wang, Y., Lakkaraju, H., & Leskovec, J. (2016).
Mining big data to extract patterns and predict real-life
outcomes. Psychological Methods, 21(4), 493–506. https://
doi.org/10.1037/met0000105

Kuhn, M. (2020). AmesHousing: The Ames Iowa housing data.
https://CRAN.R-project.org/package=AmesHousing

Kuhn, M., & Johnson, K. (2013). Applied predictive modeling
(Vol. 26). Springer.

Kuhn, M., & Wickham, H. (2020). Tidymodels: A collection of
packages for modeling and machine learning using tidy-
verse principles. https://www.tidymodels.org

Lang, M., Binder, M., Richter, J., Schratz, P., Pfisterer, F., Coors,
S., Au, Q., Casalicchio, G., Kotthoff, L., & Bischl, B. (2019).
mlr3: A modern object-oriented machine learning frame-
work in R. Journal of Open Source Software, 4(44), Article
1903. https://doi.org/10.21105/joss.01903

Lang, M., & Schratz, P. (2021). mlr3verse: Easily install and
load the ’mlr3’ package family. https://CRAN.R-project.org/
package=mlr3verse

Masters, G. N. (1982). A Rasch model for partial credit scoring.
Psychometrika, 47(2), 149–174. https://doi.org/10.1007/
BF02296272

Milborrow, S. (2021). Rpart.plot: Plot ’rpart’ models: An
enhanced version of ’plot.rpart’. https://CRAN.R-project
.org/package=rpart.plot

Mitchell, M., Wu, S., Zaldivar, A., Barnes, P., Vasserman, L.,
Hutchinson, B., Spitzer, E., Raji, I. D., & Gebru, T. (2019).
Model cards for model reporting. In Proceedings of the
Conference on Fairness, Accountability, and Transparency
(pp. 220–229). Association for Computing Machinery.
https://doi.org/10.1145/3287560.3287596

Molnar, C. (2019). Interpretable machine learning: A guide for
making black box models explainable. https://christophm
.github.io/interpretable-ml-book/

Molnar, C., Casalicchio, G., & Bischl, B. (2018). Iml: An r package
for interpretable machine learning. Journal of Open Source
Software, 3, Article 786. https://doi.org/10.21105/joss.00786

Molnar, C., Casalicchio, G., & Bischl, B. (2020). Interpretable
machine learning – A brief history, state-of-the-art and chal-
lenges. In I. Koprinska, M. Kamp, A. Appice, C. Loglisci, L.

Antonie, A. Zimmermann, R. Guidotti, Ö. Özgöbek, R. P.
Ribeiro, R. Gavaldà, J. Gama, L. Adilova, Y. Krishnamurthy,
P. M. Ferreira, D. Malerba, I. Medeiros, M. Ceci, G. Manco,
E. Masciari, . . . J. A. Gulla (Eds.), ECML PKDD 2020
Workshops (Vol. 1323, pp. 417–431). Springer International
Publishing. https://doi.org/10.1007/978-3-030-65965-3_28

Mønsted, B., Mollgaard, A., & Mathiesen, J. (2018). Phone-
based metric as a predictor for basic personality traits.
Journal of Research in Personality, 74, 16–22. https://doi
.org/10.1016/j.jrp.2017.12.004

Moons, K. G., Altman, D. G., Reitsma, J. B., Ioannidis, J. P.,
Macaskill, P., Steyerberg, E. W., Vickers, A. J., Ransohoff,
D. F., & Collins, G. S. (2015). Transparent reporting of
a multivariable prediction model for individual progno-
sis or diagnosis (TRIPOD): Explanation and elaboration.
Annals of Internal Medicine, 162(1), W1–W73. https://doi
.org/10.7326/M14-0698

Murphy, K. P. (2022). Probabilistic machine learning: An intro-
duction. MIT Press.

Pargent, F., & Albert-Von Der Gönna, J. (2018). Predictive
modeling with psychological panel data. Zeitschrift fur
Psychologie / Journal of Psychology, 226(4), 246–258.
https://doi.org/10.1027/2151-2604/a000343

Pearl, J. (2009). Causality: Models, reasoning, and inference.
Cambridge University Press.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B.,
Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V.,
Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M.,
Perrot, M., & Duchesnay, E. (2011). Scikit-learn: Machine
learning in Python. Journal of Machine Learning Research,
12, 2825–2830.

Pfisterer, F., Siyi, W., & Lang, M. (2022). mlr3fairness: Fairness
auditing and debiasing for mlr3. https://mlr3fairness.mlr-
org.com, https://github.com/mlr-org/mlr3fairness

Philipp, M., Zeileis, A., & Strobl, C. (2016). A toolkit for sta-
bility assessment of tree-based learners. In I. A. Colubi,
A. Blanco, & C. Gatu (Eds.), Proceedings of COMPSTAT
2016 – 22nd international conference on computational
statistics (pp. 315–325). International Statistical Institute.

Plecko, D., & Bareinboim, E. (2022). Causal fairness analysis.
arXiv. https://doi.org/10.48550/arXiv.2207.11385

Probst, P., Wright, M. N., & Boulesteix, A.-L. (2019). Hyper-
parameters and tuning strategies for random forest. Wiley
Interdisciplinary Reviews: Data Mining and Knowledge
Discovery, 9(3), Article e1301. https://doi.org/10.1002/
widm.1301

R Core Team. (2020). R: A language and environment for sta-
tistical computing. R Foundation for Statistical Computing.
https://www.R-project.org/

Roberts, D. R., Bahn, V., Ciuti, S., Boyce, M. S., Elith, J., Guillera-
Arroita, G., Hauenstein, S., Lahoz-Monfort, J. J., Schröder, B.,
Thuiller, W., Warton, D. I., Wintle, B. A., Hartig, F., &
Dormann, C. F. (2017). Cross-validation strategies for data
with temporal, spatial, hierarchical, or phylogenetic struc-
ture. Ecography, 40(8), 913–929. https://doi.org/10.1111/
ecog.02881

Rocca, R., & Yarkoni, T. (2021). Putting psychology to the
test: Rethinking model evaluation through bench-
marking and prediction. Advances in Methods and

https://doi.org/10.1007/s11634-016-0276-4
https://doi.org/10.1007/s11634-016-0276-4
https://doi.org/10.1038/s42256-019-0088-2
https://doi.org/10.1073/pnas.1218772110
https://doi.org/10.1073/pnas.1218772110
https://doi.org/10.1037/met0000105
https://doi.org/10.1037/met0000105
https://cran.r-project.org/
https://www.tidymodels.org
https://doi.org/10.21105/joss.01903
https://CRAN.R-project.org/package=mlr3verse
https://CRAN.R-project.org/package=mlr3verse
https://doi.org/10.1007/BF02296272
https://doi.org/10.1007/BF02296272
https://CRAN.R-project.org/package=rpart.plot
https://CRAN.R-project.org/package=rpart.plot
https://doi.org/10.1145/3287560.3287596
https://christophm.github.io/interpretable-ml-book/
https://christophm.github.io/interpretable-ml-book/
https://doi.org/10.21105/joss.00786
https://doi.org/10.1007/978-3-030-65965-3_28
https://doi.org/10.1016/j.jrp.2017.12.004
https://doi.org/10.1016/j.jrp.2017.12.004
https://doi.org/10.7326/M14-0698
https://doi.org/10.7326/M14-0698
https://doi.org/10.1027/2151-2604/a000343
https://mlr3fairness.mlr-org.com
https://mlr3fairness.mlr-org.com
https://github.com/mlr-org/mlr3fairness
https://doi.org/10.48550/arXiv.2207.11385
https://doi.org/10.1002/widm.1301
https://doi.org/10.1002/widm.1301
https://www.R-project.org/
https://doi.org/10.1111/ecog.02881
https://doi.org/10.1111/ecog.02881

Advances in Methods and Practices in Psychological Science 6(3) 35

Practices in Psychological Science, 4(3). https://doi.org/
10.1177/25152459211026864

Rohrer, J. M. (2018). Thinking clearly about correlations and
causation: Graphical causal models for observational data.
Advances in Methods and Practices in Psychological Science,
1(1), 27–42. https://doi.org/10.1177/2515245917745629

Rudin, C., Chen, C., Chen, Z., Huang, H., Semenova, L.,
& Zhong, C. (2022). Interpretable machine learning:
Fundamental principles and 10 grand challenges. Statistics
Surveys, 16. https://doi.org/10.1214/21-SS133

Schoedel, R., Au, Q., Völkel, S. T., Lehmann, F., Becker, D.,
Bühner, M., Bischl, B., Hussmann, H., & Stachl, C. (2018).
Digital footprints of sensation seeking: A traditional
concept in the big data era. PsychArchives. https://doi
.org/10.23668/psycharchives.846

Schoedel, R., Pargent, F., Au, Q., Völkel, S. T., Schuwerk, T.,
Bühner, M., & Stachl, C. (2020). To challenge the morning
lark and the night owl: Using smartphone sensing data to
investigate day–night behaviour patterns. European Journal
of Personality, 34, 733–752. https://doi.org/10.1002/per.2258

Schuwerk, T., Kaltefleiter, L. J., Au, J. Q., Hoesl, A., & Stachl, C.
(2019). Enter the wild: Autistic traits and their relation-
ship to mentalizing and social interaction in everyday life.
Journal of Autism and Developmental Disorders, 49, 4193–
4208. https://doi.org/10.1007/s10803-019-04134-6

Shaw, H., Taylor, P. J., Ellis, D. A., & Conchie, S. M. (2022). Behavioral
consistency in the digital age. Psycho logical Science, 33(3),
364–370. https://doi.org/10.1177/09567976211040491

Shmueli, G. (2010). To explain or to predict? Statistical Science,
25(3), 289–310. https://doi.org/10.1214/10-STS330

Stachl, C., Au, Q., Schoedel, R., Gosling, S. D., Harari, G. M.,
Buschek, D., Völkel, S. T., Schuwerk, T., Oldemeier, M.,
Ullmann, T., Hussmann, H., Bischl, B., & Bühner, M.
(2020). Predicting personality from patterns of behavior
collected with smartphones. Proceedings of the National
Academy of Sciences, USA, 117(30), 17680–17687. https://
doi.org/10.1073/pnas.1920484117

Stachl, C., Hilbert, S., Au, J.-Q., Buschek, D., De Luca, A.,
Bischl, B., Hussmann, H., & Bühner, M. (2017). Personality
traits predict smartphone usage. European Journal of
Personality, 31(6), 701–722. https://doi.org/10.1002/
per.2113

Stachl, C., Pargent, F., Hilbert, S., Harari, G. M., Schoedel, R.,
Vaid, S., Gosling, S. D., & Bühner, M. (2020). Personality
research and assessment in the era of machine learning.
European Journal of Personality, 34(5), 613–631. https://
doi.org/10.1002/per.2257

Sterner, P., Goretzko, D., & Pargent, F. (2021). Everything has its
price: Foundations of cost-sensitive learning and its appli-
cation in psychology. PsyArXiv. https://doi.org/10.31234/
osf.io/7asgz

Strobl, C., Boulesteix, A.-L., Kneib, T., Augustin, T., & Zeileis, A.
(2008). Conditional variable importance for random forests.
BMC Bioinformatics, 9(1), Article 307. https://doi.org/10
.1186/1471-2105-9-307

Strobl, C., Boulesteix, A.-L., Zeileis, A., & Hothorn, T. (2007).
Bias in random forest variable importance measures:
Illustrations, sources and a solution. BMC Bioinformatics,
8(1), Article 25. https://doi.org/10.1186/1471-2105-8-25

Strobl, C., Malley, J., & Tutz, G. (2009). An introduction to
recursive partitioning: Rationale, application, and char-
acteristics of classification and regression trees, bagging,
and random forests. Psychological Methods, 14(4), 323–348.
https://doi.org/10.1037/a0016973

Sust, L., Stachl, C., Kudchadker, G., Bühner, M., & Schoedel, R.
(2023). Personality computing with naturalistic music lis-
tening behavior: Comparing audio and lyrics preferences.
Collabra: Psychology, 9(1), 75214. https://doi.org/10.1525/
collabra.75214

Tibshirani, R. (1996). Regression shrinkage and selection via the
lasso. Journal of the Royal Statistical Society B: Methodologi-
cal, 58(1), 267–288. http://www.jstor.org/stable/2346178

Ushey, K. (2022). Renv: Project environments. https://CRAN.R-
project.org/package=renv

Varma, S., & Simon, R. (2006). Bias in error estimation when using
cross-validation for model selection. BMC Bioinformatics,
7(1), Article 91. https://doi.org/10.1186/1471-2105-7-91

Wicherts, J. M., Veldkamp, C. L. S., Augusteijn, H. E. M., Bakker, M.,
van Aert, R. C. M., & van Assen, M. A. L. M. (2016). Degrees
of freedom in planning, running, analyzing, and report-
ing psychological studies: A checklist to avoid p-hacking.
Frontiers in Psychology, 7, Article 1832. https://doi.org/
10.3389/fpsyg.2016.01832

Wolff, R. F., Moons, K. G., Riley, R. D., Whiting, P. F., Westwood, M.,
Collins, G. S., Reitsma, J. B., Kleijnen, J., & Mallett, S. (2019).
PROBAST: A tool to assess the risk of bias and applicability
of prediction model studies. Annals of Internal Medicine,
170(1), 51–58. https://doi.org/10.7326/M18-1376

Wright, M. N., & Ziegler, A. (2017). ranger: A fast implementa-
tion of random forests for high dimensional data in C++
and R. Journal of Statistical Software, 77(1), 1–17. https://
doi.org/10.18637/jss.v077.i01

Wysocki, A. C., Lawson, K. M., & Rhemtulla, M. (2022).
Statistical control requires causal justification. Advances
in Methods and Practices in Psychological Science, 5(2).
https://doi.org/10.1177/25152459221095823

Yarkoni, T. (2022). The generalizability crisis. Behavioral and
Brain Sciences, 45, Article e1. https://doi.org/10.1017/
S0140525X20001685

Yarkoni, T., & Westfall, J. (2017). Choosing prediction over
explanation in psychology: Lessons from machine learning.
Perspectives on Psychological Science, 12(6), 1100–1122.
https://doi.org/10.1177/1745691617693393

Youyou, W., Kosinski, M., & Stillwell, D. (2015). Computer-
based personality judgments are more accurate than those
made by humans. Proceedings of the National Academy of
Sciences, USA, 112(4), 1036–1040.

Zhao, Q., & Hastie, T. (2021). Causal interpretations of black-box
models. Journal of Business & Economic Statistics, 39(1),
272–281. https://doi.org/10.1080/07350015.2019.1624293

https://doi.org/10.1177/25152459211026864
https://doi.org/10.1177/25152459211026864
https://doi.org/10.1177/2515245917745629
https://doi.org/10.1214/21-SS133
https://doi.org/10.23668/psycharchives.846
https://doi.org/10.23668/psycharchives.846
https://doi.org/10.1002/per.2258
https://doi.org/10.1007/s10803-019-04134-6
https://doi.org/10.1177/09567976211040491
https://doi.org/10.1214/10-STS330
https://doi.org/10.1073/pnas.1920484117
https://doi.org/10.1073/pnas.1920484117
https://doi.org/10.1002/per.2113
https://doi.org/10.1002/per.2113
https://doi.org/10.1002/per.2257
https://doi.org/10.1002/per.2257
https://doi.org/10.31234/osf.io/7asgz
https://doi.org/10.31234/osf.io/7asgz
https://doi.org/10.1186/1471-2105-9-307
https://doi.org/10.1186/1471-2105-9-307
https://doi.org/10.1186/1471-2105-8-25
https://doi.org/10.1037/a0016973
https://doi.org/10.1525/collabra.75214
https://doi.org/10.1525/collabra.75214
http://www.jstor.org/stable/2346178
https://cran.r-project.org/
https://cran.r-project.org/
https://doi.org/10.1186/1471-2105-7-91
https://doi.org/10.3389/fpsyg.2016.01832
https://doi.org/10.3389/fpsyg.2016.01832
https://doi.org/10.7326/M18-1376
https://doi.org/10.18637/jss.v077.i01
https://doi.org/10.18637/jss.v077.i01
https://doi.org/10.1177/25152459221095823
https://doi.org/10.1017/S0140525X20001685
https://doi.org/10.1017/S0140525X20001685
https://doi.org/10.1177/1745691617693393
https://doi.org/10.1080/07350015.2019.1624293

