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Tutorial

Over the past decade, supervised machine learning (ML) 
has appeared with increasing frequency in psychology 
and other social sciences. In psychology, ML has been 
used to tackle such diverse topics as predicting psycho-
logical traits from digital traces of online and offline 
behavior (Kosinski et al., 2013; Stachl, Au, et al., 2020; 
Youyou et  al., 2015), modeling consistency in human 
behavior (Shaw et al., 2022), or investigating the empiri-
cal structure of self-regulation (Eisenberg et al., 2019). 
This popularity can be traced to a number of features: 
a focus on prediction, which complements traditional 
methods that emphasize description and explanation 
(Shmueli, 2010); the flexibility to account for nonlinear 

patterns in large quantities of data (Kosinski et al., 2016); 
and an increase in the generalizability of research find-
ings by evaluating predictive performance on new data 
(Yarkoni, 2022). Together, these features hold the prom-
ise of elevating the understanding of the processes that 
connect human behavior, cognition, and experience 
while being able to account for real-world complexity 
(Rocca & Yarkoni, 2021; Yarkoni & Westfall, 2017). 
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Abstract
Supervised machine learning (ML) is becoming an influential analytical method in psychology and other social sciences. 
However, theoretical ML concepts and predictive-modeling techniques are not yet widely taught in psychology programs. 
This tutorial is intended to provide an intuitive but thorough primer and introduction to supervised ML for psychologists 
in four consecutive modules. After introducing the basic terminology and mindset of supervised ML, in Module 1, we 
cover how to use resampling methods to evaluate the performance of ML models (bias-variance trade-off, performance 
measures, k-fold cross-validation). In Module 2, we introduce the nonlinear random forest, a type of ML model that is 
particularly user-friendly and well suited to predicting psychological outcomes. Module 3 is about performing empirical 
benchmark experiments (comparing the performance of several ML models on multiple data sets). Finally, in Module 4, 
we discuss the interpretation of ML models, including permutation variable importance measures, effect plots (partial-
dependence plots, individual conditional-expectation profiles), and the concept of model fairness. Throughout the 
tutorial, intuitive descriptions of theoretical concepts are provided, with as few mathematical formulas as possible, and 
followed by code examples using the mlr3 and companion packages in R. Key practical-analysis steps are demonstrated 
on the publicly available PhoneStudy data set (N = 624), which includes more than 1,800 variables from smartphone 
sensing to predict Big Five personality trait scores. The article contains a checklist to be used as a reminder of important 
elements when performing, reporting, or reviewing ML analyses in psychology. Additional examples and more advanced 
concepts are demonstrated in online materials (https://osf.io/9273g/).
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However, the application, evaluation, and interpretation 
of ML-based analyses require new skills and acute 
awareness of its methodological challenges and 
limitations.

In this tutorial article, we aim to provide an intuitive 
but thorough introduction to the fundamentals of super-
vised ML for students, researchers, and educators in 
psychology. Our goal is to demystify ML and to help 
readers achieve their analytic goals. We introduce the 
most important ML concepts, which should enable read-
ers to safely familiarize themselves with more complex 
methods in self-study. Our focus is exclusively on super-
vised ML ( James et al., 2021; Kuhn & Johnson, 2013). 
We do not cover other branches of ML (e.g., unsuper-
vised learning; see Murphy, 2022) and more advanced 
or specific topics (e.g., deep learning; see Goodfellow 
et al., 2016). We assume that readers are familiar with 
the free open-source statistical programming language 
R (Version 4.2.2; R Core Team, 2020), linear regression 
models, and their standard application in psychology or 
other social sciences.

In this tutorial, we present ML theory and application 
side by side. In each of four consecutive modules, we 
first introduce key theoretical concepts, prioritizing intu-
ition and visualizations over mathematical formulas. 
Then, we apply the theoretical concepts in R while pro-
viding enough details for readers to understand which 
analysis steps to think about and how to adapt them to 
their own projects. Readers will benefit most from our 
tutorial by following our practical exercises on their own 
computers (but all major R outputs are included in our 
article). The tutorial covers a lot of content, and some 
concepts might seem complicated at first. We encourage 
readers to work through the tutorial at their own pace 
and revisit earlier sections to consolidate what they have 
learned. We added a short summary to the end of each 
module, which should make it easier to continue with 
the next module at a later time.

Before getting into the first module, we introduce the 
basic terminology and mindset of supervised ML and 
describe the data set and the software we use in our 
practical exercises. After setting the stage, in Module 1, 
we cover how to use resampling methods to evaluate 
the performance of ML models. In Module 2, we intro-
duce the nonlinear random forest (RF; and its compo-
nents regression and classification trees), a type of ML 
model that is particularly user-friendly and well suited 
to predicting psychological outcomes. Module 3 is about 
performing empirical benchmark experiments. Finally, 
in Module 4, we discuss the interpretation of ML models, 
including permutation variable importance measures, 
effect plots, and the concept of model fairness. At the 
end of the tutorial, we provide a single-page checklist 
that can be used as a reminder about important concepts 
and pitfalls when performing, reporting, or reviewing 

ML analyses in psychology. Beyond what we cover in 
the tutorial, we provide electronic supplemental materi-
als (ESM) with additional examples and demonstrations 
of more advanced topics in an accompanying OSF repos-
itory. All materials for our tutorial, including our repro-
ducible article, the data set, and the ESM can be found 
at https://osf.io/9273g/. We also uploaded our tutorial 
to Code Ocean (https://doi.org/10.24433/CO.5687964 
.v1), which provides the most convenient way to follow 
along with our exercises or the ESM directly in the 
browser without having to install any software.

The Terminology and Mindset  
of Supervised ML

Scientists often want to predict the value of some vari-
able of interest using some other predictor variables. For 
example, in our own research, we were interested in 
predicting the personality trait score of a person (mea-
sured with a questionnaire) on the basis of their smart-
phone behaviors (recorded on their personal smartphone; 
Stachl, Au, et al., 2020).

Basic terminology

In supervised ML, the variable of interest (e.g., personal-
ity trait score) is often called “target,” and the predictor 
variables (e.g., smartphone behaviors) are called “fea-
tures.” We use that terminology in this tutorial. Depend-
ing on the variable type of the target, supervised learning 
problems are typically divided into “regression” and 
“classification” tasks. In regression tasks, the target is 
continuous (e.g., personality trait score), whereas in 
classification tasks, the target is categorical (e.g., nomi-
nal: having an illness or not; ordinal: education level). 
For the classification task, there is a further distinction: 
The target can either have only two distinct values, 
which is called “binary classification,” or it can have 
more than two classes (e.g., country of origin), which is 
called “multiclass classification.” A visualization of simple 
regression and classification tasks can be found in ESM 
2.1. We do not cover multiclass classification tasks in 
this tutorial, but most syntax can be easily adjusted for 
this setting.

To produce predictions for the target y  when pre-
sented with concrete values for a series of features 
x x x p1 2, , . . . ,  (with p the number of features) requires 
a “predictive model.” The methodological literature dis-
tinguishes various types of models, which differ from 
each other in their structure and type of “model param-
eters.” Before a model can make predictions, the model 
parameters have to be estimated from data. For that, an 
estimation “algorithm” is used, which is some formal set 
of rules to determine appropriate parameter values. Esti-
mating model parameters (cf. model fitting) is often 
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called model “training,” thus only a trained predictive 
model is ready to make predictions. Using a data set for 
training with values for both the features and the target 
available is called “supervised learning.” If models are 
trained without target values, this is called “unsupervised 
learning” (Murphy, 2022). In the context of supervised 
ML, the terms “predictive model” and “ML model” are 
often used interchangeably.

For example, a simple predictive model is linear 
regression: y x x xi i i p pi i= + + +…+ +β β β β ε0 1 1 2 2 , for indi-
viduals i N= 1,..., . The model parameters β β β0 1, , ,… p are 
usually estimated with the least squares algorithm. Before 
training, suitable values for the model parameters are 
unknown. During training, the model learns suitable 
parameter values from a data set with sample size N . After 
training, the resulting parameter estimates β β β β   

0 1 2, , , ,… p  
can be used to compute a prediction y j

  (e.g., the pre-
dicted personality trait score for a certain individual j) for 
some new observation with known feature values (e.g., 
smartphone behaviors of the same individual) 
x x xj j pj1 2, ,..., : y x x xj j j p pj



   = + + +…+β β β β0 1 1 2 2 .
Predictive models differ with respect to their “flexibil-

ity.” A relatively inflexible model such as linear regression 
can account only for linear relationships, include manually 
selected linear interactions, and use a small number of 
features simultaneously. A flexible model such as the RF 
(Breiman, 2001a) promises to automatically learn nonlin-
ear relationships and interactions while effectively dealing 
with a large number of features. If the true relationship 
between the features and the target is complex, a more 
flexible model has the potential to produce more accurate 
predictions when trained on enough data. Predictive mod-
els also differ with respect to their “interpretability.” The 
interpretability of a model refers to how easy it is to under-
stand the relationships between feature values and the 
predictions of the model. Usually, there is a trade-off 
between model flexibility and interpretability. In more 
flexible models, interpretability is often more challenging 
or can be achieved only by applying additional methods 
because no simple model equation (cf. linear regression 
example) is available.

Predictive-modeling mindset

Talking about supervised ML often involves the applica-
tion of relatively flexible ML models and, more impor-
tantly, a “predictive mindset” when performing data 
analysis. This mindset is sometimes at odds with how 
most psychologists were trained to apply statistical mod-
els, mostly limited to generalized linear models such as 
linear or logistic regression. Such “classical modeling” 
approaches have been described with many names, such 
as “data,” “descriptive,” and “explanatory” modeling 
(Breiman, 2001b; Shmueli, 2010). The classical approach 

aims to understand and model the concrete relationships 
between variables. Given theoretical knowledge or pre-
vious work, a statistical model with a specific relation-
ship (e.g., a conditional linear association) is assumed 
that describes how the data were produced in the popu-
lation. Appropriate model-fit indices such as R2   
and residual diagnostics naturally arise from the data-
generating model, and these indices are typically used 
to determine how well a model fits the available data 
set. After model fit is deemed satisfactory, the focus 
typically lies in qualitatively interpreting the estimated 
model parameters (e.g., testing the hypothesis that a β 
coefficient is positive).

In supervised ML, researchers usually do not make 
any explicit assumptions about the data-generating pro-
cess in the hope that the models can learn the specific 
functional relationship between the features and the 
target automatically. In contrast to evaluating the trained 
model on the same data set, which is what is usually 
done in classical modeling, supervised ML seeks to 
quantify the predictive performance of models regarding 
how well they can predict new, previously unseen obser-
vations. Appropriate performance measures that define 
what is a good prediction are carefully selected accord-
ing to the intended model application instead of being 
derived from an explicit data model. After model evalu-
ation, the focus is on concrete predictions, and the 
trained model parameters are often of secondary interest 
or not considered at all. Two (idealistic) assumptions 
are necessary for a trained model to make accurate pre-
dictions for new observations: First, all observations 
(those used to train the model and those used to evalu-
ate the model) have to be randomly drawn from the 
same population. Second, when making predictions,  
the relationship in the population has not changed since 
the model was trained. Of course, predictions can also be 
computed for observations from a different population. 
However, a realistic estimate of predictive performance 
in this case requires reevaluating the model on data from 
this new population.

To get to the core of ML, it is important to embrace 
this predictive mindset when performing data analysis 
in an ML framework; this requires a thorough under-
standing of model evaluation in supervised ML. For 
example, how do researchers quantify the predictive 
performance of models regarding how well they can 
predict new, previously unseen observations? That is 
why we dedicate Module 1 exclusively to this topic.

Summary of the terminology and 
mindset of supervised ML

In the first section, we set the stage for the main modules 
of our tutorial by introducing the basic terminology of 
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supervised ML and helping readers to adopt a predictive 
mindset that focuses on predicting new, unseen observa-
tions. Because ML uses a different language unfamiliar 
to psychologists, we summarized the most important 
terms in Table 1 to assist readers while working through 
the rest of the tutorial. Before we start with Module 1, 
we shortly introduce the data set and the software pack-
ages, which are used in the Practical Exercises 1 to 4.

Data Sets Used in Practical Exercises

Throughout the tutorial, we use the publicly available 
PhoneStudy behavioral-patterns data set, which has been 
used to predict human personality from smartphone-
usage data (Stachl, Au, et  al., 2020). Subsets of these 
data have also been used in a number of other publica-
tions (Au et al., 2021; Harari et al., 2020; Schoedel et al., 
2018, 2020; Schuwerk et  al., 2019; Stachl et  al., 2017; 
Sust et  al., 2023). The data set contains self-reported 
questionnaire data of personality traits measured with 
the German Big Five Structure Inventory (five factors 
and 30 facets; Arendasy et al., 2011), demographic vari-
ables (age, gender, education), and behavioral data from 
smartphone sensing (e.g., communication and social 
behavior, app usage, music consumption, overall phone 
usage, day-nighttime activity). The smartphone sensing 
data were recorded for up to 30 days on the personal 
smartphone of 624 study volunteers, bundled from sev-
eral smaller studies (e.g., Stachl et al., 2017). Here, we 

use the data set for the following regression task: We 
predict the continuous personality trait score for the 
sociability facet of the trait extraversion using 1,821 fea-
tures of aggregated smartphone-usage behavior (e.g., a 
person’s average number of telephone calls at night). 
Demonstrating ML concepts on a real data set is impor-
tant for getting a feeling for common obstacles, but it 
also means that not all context-specific details can be 
discussed exhaustively. More details on the data set can 
be found in Stachl, Au, et al. (2020), along with an in-
depth discussion of the research question and interpreta-
tion of the final results. We use the PhoneStudy data set 
to demonstrate the main ML methods introduced in each 
module. However, when the data set is too complex to 
allow for an intuitive illustration of some theoretical con-
cepts, we use two more simplistic open data sets from 
the general ML literature: AmesHousing and Titanic.1

Software Used in Practical Exercises

Throughout the tutorial, we use an ML framework that 
provides a unified interface to train, evaluate, and inter-
pret ML models, which helps users to write modeling 
syntax that is shorter and less error-prone. There are 
several popular frameworks available in the main coding 
languages (e.g., tidymodels in R, Kuhn & Wickham, 2020; 
scikit-learn in Python, Pedregosa et al., 2011). Here, we 
use mlr3 (Lang et al., 2019) and DALEX (Biecek, 2018): 
mlr3 (and its companion packages) provides a 

Table 1. A Summary of Important Terminology Used in Supervised Machine Learning

Terminology Description

Target The variable to predict (e.g., personality trait score)
Features Predictor variables (e.g., aggregated smartphone behaviors)
Task A concrete prediction problem in supervised machine learning, defined by a target 

and features. Depending on the type of the target variable, the task is called either a 
regression (continuous target, e.g., personality trait score) or a classification task (nominal 
target, e.g., having an illness or not; ordinal target, e.g., education level)

Predictive model/machine-
learning model

A type of model that can produce a prediction for the target when presented with a 
concrete value for each feature (e.g., linear regression)

Model parameters One aspect in which different types of models differ from each other. Must be estimated 
from data before a model can make predictions (e.g., β coefficients in linear regression).

Algorithm A formal set of rules that is used to estimate appropriate values for the model parameters 
from data (e.g., least squares algorithm)

Model training The process of estimating the model parameters of a predictive model from data
Trained model A predictive model that has been trained (i.e., it has learned suitable values for its model 

parameters) and is now ready to make predictions
Flexibility Predictive models vary in their flexibility to adapt to the true functional relationship in 

the population. Inflexible: account for linear relationships, manually selected linear 
interactions, small number of features; flexible: account for nonlinear relationships, large 
number of features, automatically learns nonlinear interactions

Interpretability Predictive models vary in their degree of interpretability, that is, how easy it is to 
comprehend the relationship between feature values and model predictions. More 
flexible models tend to be more difficult to interpret.
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standardized interface to perform ML analyses in the 
open-source statistical programming language R (Version 
4.2.2; R Core Team, 2020); DALEX provides functionality 
for model interpretation. A detailed tutorial on mlr3 is 
available as a free e-book (Bischl et al., 2023) at https://
mlr3book.mlr-org.com/. The mlr3 package is written in 
the object-oriented programming system R6 (Chang, 
2021), which is why some mlr3 syntax looks unfamiliar 
to readers used to base R. In ESM 2.2, we highlight pos-
sible sources of error for users unfamiliar with R6 and 
give advice on how to effectively look up information 
in the extensive mlr3 documentation.

Module 1: Performance Evaluation

Performance evaluation in theory: 
basics

In the first module of our tutorial, we cover the most 
important concept of predictive modeling: performance 
evaluation. Responsible use of ML mandates a thorough 
evaluation of the quality of a trained predictive model 
on the basis of the magnitude of error that can be 
expected for new (unseen) data from the same popula-
tion. What does this mean? Imagine we have trained a 
predictive model (i.e., the model is ready to make pre-
dictions). Before we apply the model in practice, we 
want to know how well it will predict observations in 
our practical application, where the true target values 
are not available. So the key question is how to quantify 
the quality of models.

The bias-variance trade-off. The so-called bias-variance 
trade-off can be a helpful mental model, which we intro-
duce with the following thought experiment: We have two 
models of different flexibility, and they greatly differ in 
their predictive performance (i.e., how well they predict 
new unseen data). What factors influence the performance 
of a predictive model in theory?

The “expected prediction error” of a predictive model 
consists of “bias,” “variance,” and “noise” ( James et al., 
2021). A metaphorical illustration is given in ESM 2.3. 
Before we continue with a graphical illustration, consider 
the following simplified definitions: Expected prediction 
error is the average prediction error we would expect 
when repeatedly fitting the same ML model on many 
samples of a certain size and measuring the prediction 
error on the basis of new samples with a large size. We 
assume all samples are randomly drawn from the same 
population of interest. Bias is the deviation of the average 
prediction from the true value. Variance is the variability 
of predictions based on different samples. Noise is the 
irreducible error of the true model in the population.

Counterintuitively, bias and variance are not attributes 
of a single trained model but refer to how a particular 

ML model would perform when fitted to repeated sam-
ples from the same population (e.g., collecting multiple 
samples of German psychology students). Figure 1 illus-
trates the bias-variance trade-off. The black line repre-
sents the population model, from which we draw 
samples of size N = 12  for Example 1 (first row) and 
N = 50  for Example 2 (second row). Each set of points 
with the same color represents one sample. In both 
examples, we fit an inflexible linear model (colored 
curves, left column) and a flexible seventh-degree poly-
nomial (colored curves, right column) to each sample. 
We look at how closely the models can reproduce the 
functional shape of the population model, from which 
we simulated the data. Keep in mind that in practice, all 
we have is a single sample from the population (one set 
of points and models fitted to these points). We cannot 
fit models to multiple samples, and we do not know the 
underlying population model. Thus, a figure like this 
one can be produced only for simulated data.

To better “see” bias and variance, we ask our readers 
to visually focus on Example 1, where we use small 
sample sizes. If we pick a single point on the x-axis (e.g., 
x = 2 5. . in Fig. 1) and compare the vertical average of 
the colored curves (the cross) with the black line, we 
see that the average prediction across samples is close 
to the population model for the flexible models (Fig. 1, 
b1). In contrast, the average prediction of the inflexible 
models (Fig. 1, a1) is far away from the population 
model (this is true for most values of x , although the 
deviation is small for some x  values like x = 0 ). Thus, 
the bias is relatively high for the inflexible model and 
low for the flexible model. We can find the exact oppo-
site pattern for variance. The variance is relatively low 
for the inflexible model (Fig. 1, a1) but high for the 
flexible model (Fig. 1, b1). If we pick a single point on 
the x-axis (e.g., x = 2 5.  in Fig. 1) and inspect the vertical 
variance of the colored curves (the bars), we see that 
for each value of x , the variance of the predictions is 
high across the flexible models but low across the inflex-
ible models in Example 1.

Figure 1 also illustrates that the bias-variance trade-off 
can be heavily influenced by sample size if we compare 
Examples 1 and 2. Both the inflexible and flexible mod-
els are trained on small samples (N = 12) from the popu-
lation in Example 1 and on larger samples (N = 50) in 
Example 2. If our task was to find the model with the 
“best” bias-variance trade-off in the small-sample setting, 
the inflexible model (which is guaranteed to miss the 
population model; Fig. 1, a1) would probably be pre-
ferred over the flexible one (which will sometimes miss 
the population model by a large margin; Fig. 1, b1). In 
contrast, the flexible model (Fig. 1, b2) would be pre-
ferred over the inflexible one (Fig. 1, a2) in the big 
sample setting. The bigger sample size sufficiently 
reduces the variance while keeping the bias low, which 

https://mlr3book.mlr-org.com/
https://mlr3book.mlr-org.com/
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results in a very close fit to the population model and 
consequently a low expected prediction error.

To conclude, when we aim to quantify predictive 
performance or to compare different ML models, it is 
helpful to keep the bias-variance trade-off in mind. The 
goal of supervised ML is always to strike a good bias-
variance trade-off—to find a predictive model with both 
low bias and low variance. However, ML cannot escape 
from a general principle in statistics: More flexible mod-
els with weaker assumptions about the true functional 
relationship require more data to be effective.

Performance measures. In the previous section, we 
used vague definitions of prediction error and predictive 

performance to give an intuition of what it means for a 
predictive model to perform well. However, before we can 
evaluate a given ML model in practice, we need concrete 
definitions of prediction error for model predictions. Let 
us assume that someone provides us with a set of true 
target values and the corresponding predictions of a 
model. Without knowing anything about where these pre-
dictions come from, how would we quantify how good 
the predictions are? The first step of model evaluation is 
thus to select appropriate performance measures depend-
ing on the task type (i.e., regression or classification), 
research questions, and whether we want to use standard 
measures or we have expert knowledge leading to custom 
measures relevant for our specific model application.

Example 1:
N = 12 

−5.0 −2.5 0.0 2.5 5.0
x

−5.0 −2.5 0.0 2.5 5.0
x

y

a1
Inflexible Model

−5.0 −2.5 0.0 2.5 5.0
x

−5.0 −2.5 0.0 2.5 5.0
x

b1

a2 b2

Flexible Model

Example 2:
N = 50

−20
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y

−20

0
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y

Bias: High | Variance: Low Bias: Low | Variance: Low

−20

0

20

y

−20

0

20

Bias: High | Variance: Low Bias: Low | Variance: High

Fig. 1. Visualization of the bias-variance trade-off by fitting machine-learning models with different flexibility on multiple 
samples (one color per sample) from a nonlinear population model (black). Left column = inflexible (linear) model; right 
column = flexible (seventh-degree polynomial) model; first row = 60 samples with N = 12 each; second row = 60 samples 
with N = 50 each. Mean (cross) and 0.1 and 0.9 quantiles (bars) of model predictions are displayed at x = 2.5 (vertical line).
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Regression tasks. Performance measures for regression 
quantify a “typical” deviation from the true target value.  
The default measure is the mean squared error (MSE), 

MSE
N

y yi ii

N
= −

=∑1 2

1
( ) . The MSE is the mean of the 

squared residuals y yi i−  , with yi  indicating the true  
target value and yi  indicating the predicted target value of 
observation i . The higher the deviation of the predicted 
from the true target value, the higher the prediction error 
is (i.e., the worse the model predictions are). As a result of 
squaring the residuals, both positive and negative devia-
tions increase the error, and large deviations are weighted 
more strongly. The MSE is 0 only if all predictions are per-
fect, but there is no upper limit for bad predictions. MSE 
values are hard to compare across applications because 
the values depend on the measurement unit of the tar-
get. Because the MSE is measured in squared units, the 
absolute values are even more difficult to interpret. Many 
researchers prefer the root mean squared error (RMSE) 
( )RMSE MSE= , which is in the same unit as the target. 
Alternative measures can be constructed by using absolute 
instead of squared differences (mean absolute error) or 
by computing the median instead of the mean (MSE or 
median absolute error).

In the social sciences, the coefficient of determina-
tion (R2) is often used as a performance measure  
because it is familiar from linear regression: 

R
residual sum of squares

total of squares

y
i

N

2 11 1= − = − =∑
 sum

( ii i

i

N

i

y

y y

−

−
=∑

 )

( )
.

2

1

2

 

There are alternative ways to compute R2  that should not 
be used in the ML setting because the equivalence holds 
only for linear regression (e.g., simply squaring the Pear-
son correlation between predictions and target values). 
Like MSE , R2  is based on the residual sum of squares, 
which is then standardized by the total sum of squares. 
This computation results in a relative measure, with a 
maximum value of 1 only if all predictions are perfect. 
Note that a model that predicts the mean target value for 
all observations y yi

 =  would result in R2 0= , which is a 
useful reference point. R2 is often introduced in the con-
text of measuring in-sample model fit in linear regression, 
where values of R2 range from 0 to 1. However, in general, 
R2 is not bound to 0 and can assume values below zero. 
Negative values of R2 imply that the predictions are worse 
compared with a simple baseline model that does not use 
any feature information (e.g., predicts the mean target 
value, which is often called a “featureless learner”). We 
encounter this case in one of our demonstrations.

Classification tasks. Measuring classification perfor-
mance is often less straightforward compared with regres-
sion tasks. We consider only binary classification in which 
the target has two possible values (coded as 0 and 1 by 

convention) but there are comparable performance mea-
sures for multiclass classification (Ferri et al., 2009). The 
simplest idea to construct a performance measure is to 
compute the proportion of misclassified observations, 
which results in the mean misclassification error (MMCE), 

MMCE
N

I y yi ii

N
= ≠

=∑1
1
( )

. The indicator function I (.)  

takes the value 1 if the condition in the parentheses is 
true and 0 if the condition is false. MMCE counts how 
often our model made the wrong prediction and relates 
it to the total number of predictions. Instead of quanti-
fying prediction error, we could also measure prediction 
accuracy as ACC MMCE= −1 . Note that in the standard 
case in which all predictions have the value 0 or 1, the 
MMCE can also be computed with the MSE formula, which 
highlights the similarity between both standard measures. 
For most applied classification problems, the isolated 
consideration of the MMCE is of limited value, and addi-
tional measures should be considered. These additional 
measures are particularly important when different errors 
have different consequences or associated costs (e.g., giv-
ing cancer treatment to a person without cancer vs. not 
treating a cancer patient) or if both classes are unequally 
represented in the data set (e.g., more healthy people than 
people suffering from an illness). Most useful classifica-
tion measures (including the MMCE) are computed from a 
confusion matrix in Table 2, which shows the number of 
true-positive (TP), false-positive (FP), true-negative (TN), 
and false-negative (FN) predictions.

From the context of diagnostics and assessment, many 
psychologists are familiar with the sensitivity, also called 
true positive rate or recall: SENS TP TP FN= +/ ( ) and the 
specificity or true negative rate: SPEC TN TN FP= +/ ( ). 
Related measures are the positive predictive value (PPV), 
PPV TP TP FP= +/ ( ), and the negative predictive value 
(NPV), NPV TN TN FN= +/ ( ). Also important is the area 
under the receiver operating curve (AUC), which can be 
interpreted as the probability that an observation ran-
domly drawn from Class 1 has a higher predicted prob-
ability to belong to Class 1 than an observation randomly 
drawn from Class 0. AUC is based on the receiver oper-
ating curve (ROC), which plots 1 − SPEC  against SENS . 
Each combination results from a different prediction 
threshold; that means we predict Class 1 if the predicted 
probability for Class 1 is greater than the threshold (0.5 

Table 2. Confusion Matrix

Truth yi

 1 0

Prediction yi 1 TP FP
 0 FN TN

Note: TP = true positive; FP = false positive; FN = false negative; TN = 
true negative.
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by default). For more advanced techniques, Sterner  
et al. (2021) provided an introduction to cost-sensitive 
learning for psychologists with mlr3.

Resampling strategies for model evaluation. In ML, 
it is always the predictive performance on new observa-
tions that is of practical and theoretical interest. Thus, we 
want to know how well a model trained on a specific data 
set will predict new, unseen data (out-of-sample perfor-
mance). The ideal approach would be to collect a new 
sample from the same population. However, this approach 
is often not feasible in practice. A naive alternative would 
be to estimate predictive performance on the basis of the 
same data used to train the model (in-sample perfor-
mance). Unfortunately, this procedure can lead to an 
extreme overestimation of predictive performance, which 
we demonstrate later. Too flexible models can perfectly 
predict all observations they have been trained on, but the 
predictions for new observations can be disastrous. A bet-
ter approach for model evaluation is to use resampling 
methods, which are a smart way of recycling the available 
data to estimate out-of-sample performance. The general 
principle is to use the available sample to simulate what 
happens when the trained model will be applied on new 
observations in a practical application. To produce a real-
istic estimate of expected performance, resampling meth-
ods must ensure a strict separation of model fitting and 
model evaluation. This rule implies that different data 
must be used for training and testing the model.

The idea behind resampling. One of the simplest resa-
mpling strategies is to randomly split the data into a train-
ing set and a test set. The training set is used to train the 
model, and the test set is used to compute predictions 
and estimate predictive performance. Imagine we have a 
data set from a random sample consisting of a target y  
and a set of features X, as displayed in Figure 2. We use 
the entire data set to train an ML model, which we want 
to use in a practical application (Fig. 2a). We call this “full 
model” (shown in red in Fig. 2) because it used all of the 
available data. The full model learns a functional relation-
ship between the features and the target. For new obser-
vations (i.e., when we apply the model in practice), the 
feature values Xnew  can be fed to the trained full model to 
produce predictions y . Before we use these predictions 
in our application, we want to know how well our trained 
full model performs. Unfortunately, we cannot compute 
performance measures for our new observations because 
the true target values ynew  are not available. To get an esti-
mate of the predictive performance of our full model, we 
randomly split our data set into two parts (Fig. 2b): First, 
the training set is used to train a proxy model (shown 
in purple in Fig. 2). Second, feature values from the test 
set are fed to the proxy model to compute predictions.  

Third, we compute a performance measure (e.g., MSE) for 
the test-set predictions. Calculating performance is pos-
sible because the true target values are available for our 
test-set data. It can be shown that (under some reasonable 
conditions; James et al., 2021) the computed performance 
is a realistic yet conservative estimate of the predictive 
performance of our full model (see Fig. 2c). To compute 
predictions in a practical application, we would always 
use the full model, which was trained on all available data. 
The smaller proxy model, which is based on the training 
set, will not be used to make predictions in practice but 
merely tells us how well the full model will likely work. In 
other words, the proxy model is a tool to estimate predic-
tive performance and can be discarded after producing 
the test set predictions.

Why is it necessary to separate training and test data 
rather than computing the performance on the basis of 
the complete data set that we used to train the full 
model? Flexible ML models sometimes adjust to a set of 
given data points too closely, a phenomenon that is often 
called “overfitting.” If a model overfits to the data, it 
learns sample-specific patterns (“fitting the noise”) that 
will not generalize to new samples from the same popu-
lation. Overfitting can also be thought as “learning some-
thing by heart”: The model exactly recognizes each 
observation it has been trained on but cannot transfer 
any information to new observations it has not seen 
before. We show later that especially for flexible ML 
models, in-sample performance is useless to judge a 
model’s performance on new data.

Figure 3 illustrates the concepts of overfitting and 
model evaluation. In Figure 3a, points were simulated 
from a nonlinear population model (dotted line) and 
randomly split into a training set (black dots) and a test 
set (framed dots). Note that because of the irreducible 
noise in the data-generating process, even the true popu-
lation model would not predict observations perfectly. 
Three models of varying flexibility were fitted to the 
training set: polynomial regression models with Degrees 
1 (linear model; green), 3 (orange), and 8 (purple). The 
green model clearly underfits. It is not flexible enough 
to approximate the population model and makes bad 
predictions for both training and test observations. The 
purple model overfits because its flexibility is too high. 
It almost perfectly interpolates all training observations, 
but the deviations from the test observations can be 
quite high. In contrast, the orange model seems to have 
optimal flexibility and closely approximates the popula-
tion model. It roughly predicts training and test observa-
tions equally well. In such a simple example with only 
one feature, it is possible to visually identify the model 
with optimal flexibility. However, with more features, 
this becomes rapidly unfeasible because visualizing 
more dimensions is difficult. Fortunately, we can always 
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try to determine the optimal model on the basis of the 
test-set performance. In Figure 3b, we show how training 
and test MSE were computed on the simulated data from 
Figure 3a for polynomial models with flexibility ranging 
from Degree 1 to Degree 9, which includes the three 
models displayed in Figure 3a. Remember how to com-
pute the (training) test MSE: For each observation from 
the (training) test set, take the squared vertical difference 
between the point and the model prediction; then com-
pute the mean of all squared differences. The trajectories 
of training and test performances along the axis of model 
flexibility show a characteristic pattern: Prediction error 
in the training set decreases with increasingly flexible 
models and almost reaches 0 (perfect interpolation) for 
Degree 9. We saw in Figure 3a that models with extremely 
high flexibility overfit and perform poorly on new obser-
vations. Hence, it becomes clear that we cannot use the 
training performance to select the optimal model. In 
contrast, prediction error in the test set first decreases 
until Degree 3 but then increases again. This reflects our 
observation from Figure 3a that both very low and very 
high flexibility is not ideal to achieve good predictions 
for new observations. In the bias-variance framework, 
bias decreases with flexibility, and variance increases. 
The optimal trade-off in this example seems to be a 
degree of about 3. To conclude, if we have to choose 
between different types of models or model settings, we 
generally select the model with the best performance 
on the test set (here, the model with the lowest MSE). 

In theory, we could favor models with lower flexibility 
among models with comparable test-set performance. 
However, this is usually not the default in practice.2

Different types of resampling strategies.  In the previ-
ous example, we worked with the most simple resam-
pling strategy of randomly splitting the data into a training 
set and a test set. This strategy is also termed the “hold-
out” estimator. An important practical issue when using 
the holdout estimator is the ideal proportion of data to 
put into the training and the test sets. The full model is 
always based on more observations than the proxy model 
that is fit to only the training set. Because model quality 
increases with sample size, test-set performance will (on 
average) be an underestimate of the true performance of 
the full model. The larger the training set, the smaller this 
negative bias is. The test-set performance is only a point 
estimate of the true predictive performance of the full 
model. Thus, the variance of this estimate is also impor-
tant. The larger the test set, the smaller the variance of 
the performance estimate is. This is a dilemma because it 
is obviously not possible to maximize the size of training 
and test sets simultaneously (without collecting more data 
in the first place). We can think of this as the bias-variance 
trade-off of the holdout estimator, which should not be 
confused with the bias-variance trade-off of ML models 
we discussed earlier.3 The trade-off strongly depends on 
the size of the training and test sets, but there is no single 
ratio that is optimal in general. Rules of thumb (see James 

Fig. 2. A visualization of how predictive performance is evaluated in supervised machine learning. (a) The 
training of the full model (red), which can later be used in an application (i.e., to predict new observations). 
The predictive performance of the full model is estimated by resampling. For this purpose, a proxy model 
(purple) is trained on (b) a training set, and the predictive performance computed on (c) the corresponding 
test set is used as an estimate of the predictive performance of the full model.



10 Pargent et al.

et al., 2021) typically suggest to use two thirds of the full 
data for the training (large enough to learn well) and one 
third for the test set (large enough for stable performance 
evaluation).

In some ML settings in which the amount of data is 
not a problem, the holdout estimator is sufficient to 
achieve reasonable performance estimates. For extremely 
large (think of “Google sized”) data sets, the predictive 
performance of most ML models saturates (i.e., the per-
formance no longer improves with increasing amounts 
of data), and the size difference between the training 
and the full data sets becomes irrelevant. At the same 

time, the variance of the performance estimate computed 
on the test set will be so small to be almost negligible. 
In the social and behavioral sciences, researchers usually 
face the situation that data are scarce and their collection 
are costly and time-consuming. For such smaller data 
sets, the performance difference between the full model 
and the proxy model and high variance of performance 
estimates from small test sets negatively affect the quality 
of holdout estimates. More elaborate resampling strate-
gies, try to improve on the holdout estimator by recy-
cling the data in a smarter way. You can optimize the 
partitioning of the data set by performing several splits 
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Fig. 3. (a) Observations drawn from a nonlinear population model (dotted line) divided 
into a training (black dots) and a test set (framed dots). Three models of varying flexibility 
(polynomials of Degrees 1 in green, 3 in orange, and 8 in purple) were fitted to the training 
set. (b) Relationship between model flexibility (polynomials of Degrees 1 to 9) and predic-
tive performance estimated with training and test mean square error (MSE). Performance 
estimates are computed using the data from Figure 3a.
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into training and test sets and aggregating the resulting 
performance estimates. The most common resampling 
method is k-fold cross-validation (CV; Kohavi, 1995). 
Bischl et al. (2012) provided a good overview of CV and 
alternative resampling techniques such as repeated CV, 
leave-one-out CV, bootstrap, or subsampling.

In k-fold CV, the data set is randomly partitioned into 
k  (roughly) equally sized parts. Each part is used as a 
test set exactly once, and the remaining parts are com-
bined into a larger training set. The CV estimator is the 
average of the performance estimates from the k  test 
sets. Figure 4 is a visualization of 3-fold CV (i.e., the data 
are randomly divided into three parts). In the first fold, 
a proxy model is trained on the combined data from 
Parts 1 and 2, and Part 3 (Fig. 4, green) is used to com-
pute predictions and calculate the performance measure. 
In the second fold, Parts 1 and 3 form the training set, 
and Part 2 forms the test set. Finally, in the third fold, 
Parts 2 and 3 form the training set, and Part 1 forms the 
test set. The performance estimates from the three test 
sets are aggregated by the arithmetic mean (other aggre-
gation functions such as the median are also possible). 
Note that each observation from the complete data set 
will be used exactly once (it is either in Test Set 1, 2, or 
3) to make a prediction and thus to contribute to the final 
performance estimate. For each prediction, the observa-
tion in question was never used to train the model  
making that prediction. However, each observation 
belongs to two of all three training sets and thus is used 
several times to train proxy models. Compared with 
holdout, CV reduces the bias by increasing the size of 
the training sets and reduces the variance by aggregating 
several test set performances.

A simple intuition for those advantages can be given 
for 2-fold CV, in which the training and the test sets have 
the same size. Imagine a holdout estimator in which the 
training and the test sets have the same size. The model 
is trained on the first part, and performance is tested on 

the second part. However, if we switched the training 
set and test set, the resulting performance estimate 
would be of exactly the same quality. The size of the 
training set (i.e., the bias) is similar, and the size of the 
test set (i.e., the variance) is also the same. In addition, 
both performance estimates are independent (set assign-
ments were random, and sets do not overlap). Thus, it 
is intuitive that the 2-fold CV estimator, which computes 
the mean across both test-set performances, will have 
similar bias but lower variance than each of the two 
holdout estimators. Unfortunately, the intuition breaks 
down for k > 2 , where the performance estimates are 
no longer independent because they are based on mod-
els trained on overlapping data. It can be shown that 
increasing k  does not improve the quality of the per-
formance estimator indefinitely (for a simple discussion, 
see James et al., 2021). The greater the overlap in the 
training sets, the higher the similarity between predic-
tions from these models and the less effective the vari-
ance reduction from averaging are. Rules of thumb that 
have proven effective both in benchmark studies and in 
practical applications recommend five or 10 folds.

Excursus on sample size. We want to conclude the sec-
tion on performance evaluation with a comment on sam-
ple size. By far, the best strategy to improve the performance 
of predictive models for some application is to increase the 
amount of available data: For larger samples, (a) the vari-
ance of model predictions is lower, (b) the potential for 
flexible models with low bias is higher, (c) the danger of 
overfitting is lower, (d) the more features can be used 
effectively, and (e) the precision of estimates of predictive 
performance increases.

Practical Exercise 1: performance 
evaluation with k-fold cross-validation

Compute in-sample performance estimate. In our 
first practical exercise, we demonstrate how to use mlr3 to 
fit a standard linear regression model to the PhoneStudy 
data set by predicting the sociability personality-trait score 
on the basis of all variables of aggregated smartphone-
usage behavior. Then we compare in-sample and out-of-
sample predictive performance using R2 and RMSE . We 
assume that readers are generally familiar with basic data 
analysis in R. To follow the tutorial, install R4 and down-
load our materials from the OSF repository at https://osf 
.io/9273g/. If you open the mlr3TutorialPaper.Rproj file 
with the code editor RStudio Desktop,5 you can follow the 
displayed instructions to automatically install all R pack-
ages in a local project library with the exact versions we 
used for this tutorial.6

First, we load the PhoneStudy data set and remove 
some administrative variables we do not use in our 

fold 1 fold 2 fold 3

3-fold Cross-Validation

Fig. 4. Visualization of the principle behind 3-fold cross-validation.

https://osf.io/9273g/
https://osf.io/9273g/
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tutorial. We also remove four participants who did not 
report their gender:

phonedata <- readRDS(file =  
 "data/clusterdata.RDS")
phonedata <- phonedata[ 
 complete.cases( 
  phonedata$gender),]
phonedata <- phonedata[, c(1:1821,  
 1823, 1837)]

We load the mlr3verse - R package (Lang & Schratz, 
2021), which conveniently loads mlr3 and the most 
important companion packages. Then we create a task 
object with a unique ID (Sociability_Regr), which is 
mlr3’s way to store the raw data along with some metain-
formation for modeling. In mlr3, a task defines a certain 
prediction problem, here, supervised regression with the 
sociability trait score (named E2.Sociableness in our data 
set) as the target:7

library(mlr3verse)
task_Soci <- as_task_regr(phonedata,  
  id = "Sociability_Regr", 
 target = "E2.Sociableness")

The metadata can be displayed by printing the task 
object (type task_Soci). When training a model on a task, 
mlr3 by default uses all variables except the target as 
features. We do not want to use gender as a feature, 
although we want to check our models for gender fair-
ness in a later module. Therefore we remove gender from 
the set of features but keep it within the task object:

task_Soci$set_col_roles("gender",  
 remove_from = "feature")

We recommend to always doublecheck which vari-
ables are really intended to be used as features (you can 
get the full list of feature names with task_Soci$col_
roles$feature) because including the wrong vari-
ables is a common source of embarrassing mistakes, 
which can completely invalidate the whole analysis.

Next we create a learner object to specify an ML 
model to apply later. mlr3 does not implement its own 
ML models but links to available implementations in 
other R packages. For example, the ID regr.lm links to 
the ordinary lm function in the stats package. You can 
find a list of mlr3 IDs for the most popular ML models 
in the mlr3 e-book (Bischl et al., 2023):

lm <- lrn ("regr.lm")

We try to train (i.e., estimate model parameters) the 
learner on the task. In mlr3, objects have “abilities” (also 

called “methods”) that can be applied with the following 
$-syntax (here, the train method of the learner object is 
used to train the learner on a specified task):

lm$train(task = task_Soci)

Error: Task ’Sociability_Regr’ has  
 missing values in column(s)
’AR_num_calls_in1’, ’AR_num_calls_ 
 in12’, [. . .] but learner ’regr.lm’
does not support this

Unfortunately, this fails because there are missing 
values in the data set, and regr.lm cannot handle them. 
We use mlr3pipelines (Binder et  al., 2021) to build a 
simple analysis pipeline, called GraphLearner in mlr3 
(a learner consisting of several consecutive analysis steps 
that can be visualized as a graph), that automatically 
replaces missing values with the median of the respec-
tive training set (i.e., median imputation) before fitting 
our linear model. We do not recommend using mean or 
median imputation in real applications.8 A tutorial on 
how to build more complex analysis pipelines with the 
mlr3pipelines package can be found in the mlr3 e-book 
(Bischl et al., 2023):

imputer <- po("imputemedian")  
# po defines a single pipeline  
# operation
lm <- as_learner(imputer %>>% lm)  
# combine po and learner into a  
# pipeline

Now, training the augmented learner on the task 
works just fine:

lm$train(task = task_Soci)

The previous line trained the model and automatically 
stored it inside the learner object. One great advantage 
of mlr3 is that we can use the same modeling functions 
for ML models from different R packages without having 
to remember the peculiarities of their modeling syntax. 
We can use the trained model to make predictions, 
which we have to store in a separate object:9

prediction <- lm$predict(task =  
 task_Soci)

We just predicted the same data that we already used 
for model training, but we could also compute predic-
tions for new observations. In the Sociability task, we 
did not include four individuals with missing values on 
the gender variable. Because we do not use gender as 
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a feature here, we can treat these individuals as  
new data and predict their sociability score with 
$predict_newdata():

phonedata_new <- readRDS(file =  
 "data/clusterdata.RDS")
phonedata_new <- phonedata_new[
   ! complete.cases( 

phonedata_new$gender),  
c(1:1821, 1837)]

lm$predict_newdata(newdata =  
 phonedata_new)$response
[1] 603 -374 -45 -27

With this functionality, it would be possible to use 
the model in a practical application. However, it would 
be irresponsible to apply any predictive model for which 
the expected predictive performance is unknown. There-
fore, we now demonstrate how to evaluate predictive 
performance with mlr3.

If we wanted to compute in-sample performance on 
the basis of the predictions for all observations included 
in our task (which we stored in prediction), we 
could calculate the estimates with the score function 
and specify the performance measures we are interested 
in (R2  and RMSE ) with their respective ID. For an 
exhaustive list of all performance measures available in 
mlr3, type as.data.table(mlr_measures) or 
check out the mlr3 e-book (Bischl et al., 2023):

mes <- msrs(c("regr.rsq",  
 "regr.rmse"))
prediction$score(mes)

regr.rsq regr.rmse
1.0e+00    2.7e-11

The performance on the training data is almost per-
fect. R2  is 1, and the RMSE  is numerically indistinguish-
able from 0  (see all.equal(0, 2.7e-11)). We 
should always be skeptical when we observe very high 
in-sample performance because this can be a sign that 
the model overfitted to the training data. In general, we 
should never trust in-sample performance but estimate 
out-of-sample performance instead.

Compute out-of-sample performance estimate. Next 
we want to use CV to compute an out-of-sample perfor-
mance estimate. We specify a resampling strategy (here, 
5-fold CV). You can run as.data.table(mlr_resam 
plings) to get a table of available resampling strategies:

rdesc <- rsmp ("cv", folds = 5)

The resample function randomly splits the data set 
on the basis of the resample description, retrains the 
learner on each subset, and computes predictions on 
each test set. Before running resample, we set an 
arbitrary seed to make our results reproducible. Next we 
compute the out-of-sample performance estimate for our 
preferred measures aggregated across our five test sets 
with aggregate:

set.seed(1)
res <- resample(learner = lm,  
 task = task_Soci, resampling =  
 rdesc)  
res$aggregate(mes)

regr.rsq regr.rmse
 -2341     79

When we compare the out-of-sample with the in-
sample estimates, we realize that the predictions of our 
model are expected to be really bad. This might be no 
surprise to many readers because we used ordinary lin-
ear regression with 620 observations and 1,822 predictor 
variables, which results in an unidentified model. As a 
consequence, the RMSE  is huge: A typical deviation 
between true and predicted sociability scores is about 
79, but the true sociability scores in the data set range 
only from –4.50 to 5.64. The negative R2  also implies 
that the predictive model should not be used in practice. 
Remember that in contrast to the well-known in-sample 
estimate for linear regression, out-of-sample R2  can be 
negative. Negative R2  indicates that the model performs 
worse than a simple baseline model that completely 
ignores all features and merely predicts the mean target 
value in the test data. The concrete values of negative R2 
do not have any intuitive interpretation. We give a better 
intuition on why R2  can become negative in ESM 3.1. The 
important message here is that with a poorly designed 
ML model, it is easy to produce worse predictions com-
pared with simple guessing. The naive notion that using 
any predictive model might still be better than using no 
formal predictions at all is wrong. However, estimating 
predictive performance with resampling can prevent us 
from applying inappropriate models in practice without 
relying on expert knowledge about the specific model 
class (e.g., identification issues in linear regression).

Performance evaluation in theory: advanced

Model optimization. Our first exercise demonstrated 
how to estimate the predictive performance of a simple 
predictive model with CV. However, predictive modeling 
in practice often entails a series of model decisions (or 
researcher degrees of freedom; see Wicherts et al., 2016) 
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that have to be considered when estimating predictive 
performance: (a) hyperparameter tuning, (b) preprocess-
ing, and (c) variable selection.

Many types of ML models have hyperparameters, 
which are parameters that are not automatically esti-
mated during the training process by the estimation 
algorithm. However, because they can have a big impact 
on predictive performance, optimal values have to be 
chosen in a data-dependent way. Tuning hyperparam-
eters (i.e., finding optimal configurations) typically 
works similarly to our model-comparison example in 
Figure 3. The degree of the polynomial can be seen as 
a hyperparameter of a general polynomial regression 
model. To find the optimal hyperparameter setting, we 
again use resampling (e.g., a single test set or CV) to 
estimate predictive performance for different hyperpa-
rameter settings, select the hyperparameter value with 
the best test-set performance, and choose the selected 
value when training the full model on the complete data 
set. Preprocessing operations can also have hyperpa-
rameters, which can be tuned in the same way as hyper-
parameters of ML models. A simple example for a 
categorical hyperparameter would be whether to use the 
mean or the median for data imputation. Regarding vari-
able selection, sometimes it can be a good strategy to 
not include all possible features in a predictive model 
but only a subset of particularly informative features. A 
simple method for regression tasks is to compute the 
Pearson correlation for each feature with the target and 
use only the features with the highest target correlations 
when training the full model. Note that the number of 
features selected is a hyperparameter of this variable-
selection strategy, which could again be tuned with CV.

Nested resampling. Modeling decisions such as those 
mentioned above are often implemented in a way that 
makes data-dependent choices before the full model is 
trained on the entire data set (e.g., predictive perfor-
mance of mean and median imputation is compared on a 
test set to decide which method to use for the full model). 
To estimate predictive performance correctly when data-
dependent choices have been made, it is of utmost impor-
tance to focus on the complete modeling pipeline, which 
contains the hyperparameters of the ML model and all 
previous or consecutive steps such as feature preprocess-
ing or variable selection. For each training set in the resa-
mpling process used to estimate predictive performance, 
all data-dependent model decisions have to be repeated 
in exactly the same way as they are performed when pro-
ducing the full model (which will actually be used to 
compute predictions in practical applications). This pro-
cedure entails the possibility that in some training sets, 
different hyperparameter settings are chosen than in the 
full model. That phenomenon might seem unintuitive, but 
it is unproblematic.

If data-dependent model decisions are not repeated 
within resampling, the predictive performance of the full 
model can be grossly overestimated. This mistake is most 
commonly observed when tuning the hyperparameters 
of ML models: First, researchers try out different hyper-
parameter combinations to find the setting with the best 
predictive performance in sample or with resampling. For 
example, in accordance with Figure 3, they determined 
that a third-degree polynomial seems optimal. Then they 
use this hyperparameter setting to train a full model on 
the basis of the complete data set, which is fine. However, 
to estimate the predictive performance of their full model, 
they run holdout or CV but use the degree setting from 
the full model in each training set. To obtain a realistic 
performance estimate of their full model, they should 
instead have repeated the tuning process of finding the 
optimal polynomial degree in each training set.

If modeling decisions require resampling themselves 
(e.g., hyperparameter tuning), correctly estimating the 
predictive performance of such a modeling pipeline 
results in nested resampling loops. We do not need 
nested resampling for the practical exercises performed 
in this tutorial because we do not employ hyperparam-
eter tuning. However, we explain nested resampling in 
ESM 3.2, which also contains a full example with code 
on how to tune hyperparameters in mlr3.

Variable selection. Another prevalent example of over-
optimistic predictive performance estimates by not consid-
ering data-dependent model decisions in performance 
evaluation is biased variable selection (Varma & Simon, 
2006). Researchers might be interested in a sparse, interpre-
table model and want only to include a certain maximum 
number of features. Or they hope that a reduced feature set 
that contains most of the “signal” might increase predictive 
performance because the ML model is not distracted by 
other “noisy” features. Both can be valid reasons to perform 
variable selection, but variable selection is often evaluated 
with the following flawed procedure (James et al., 2021): 
First, researchers determine a limited number of features 
with the best predictive performance in sample or with 
resampling. They then use the selected features to train a 
full model on the basis of the complete data set, which is 
fine. However, to estimate the predictive performance of 
their full model, they run holdout or CV but include the 
features selected by the full model in each training set. To 
obtain a realistic performance estimate of their full model, 
instead, they should have repeated the variable-selection 
process of finding the optimal features in each training set 
before evaluating on the respective test set.

Biased variable selection invalidates many applied ML 
articles in the social sciences and threaten the replicability 
of this literature (for a discussion of biased variable selec-
tion in early studies of predicting personality traits with 
mobile sensing features, see Mønsted et al., 2018). The 
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risk to upwardly bias estimates of predictive performance 
when performing variable selection on the full data set 
instead of repeating it for each resampling iteration is 
greatly exacerbated in settings with comparatively small 
samples and a large number of features. The PhoneStudy 
data set with 620 observations and 1,822 features repre-
sents such a setting. If variable selection is done incor-
rectly, it is easy to produce overly optimistic performance 
estimates of the magnitude reported in the applied mobile 
sensing literature, even if the data were completely ran-
dom. We illustrate this phenomenon in ESM 3.3, where 
we analyze simulated data that are of the same size as 
the PhoneStudy data set but do not contain any true 
relationship between the features and the target.

Dependent observations. A different setting in which 
we also have to be careful not to produce overoptimistic 
performance estimates exists in the case of clustered, lon-
gitudinal, or spatial data (Roberts et al., 2017). The general 
principle is again to imagine how the trained model will 
be used in practice and simulate this process during resa-
mpling to avoid bias: A frequent example is a prediction 
task in which multiple observations belong to the same 
person (e.g., repeated experience sampling of daily 
mood). In practice, we want to make predictions for new 
individuals on which the full model has not been trained. 
With standard resampling, the predictive performance of 
the full model will be overestimated because the proxy 
models will sometimes make predictions for individuals 
whose observations were also included in the respective 
training set. If the model recognizes the person to which 
an observation belongs (for flexible models, this is often 
possible without any person ID being used as an explicit 
feature), this memory can facilitate predictions during 
resampling because observations from the same person 
tend to be more similar. However, similar performance 
cannot be expected for the full model because it will never 
be able to use such information in the actual application, 
in which new cases will not have been part of the training 
data. This bias in performance estimates has to be pre-
vented by blocked resampling (Roberts et al., 2017): All 
observations belonging together must either be in the 
training or in the test set but never in both at the same 
time. The PhoneStudy data set is actually a collection of 
three independent samples (Stachl, Au, et al., 2020), and 
individuals in the same sample might be more similar 
because of convenience sampling (e.g., participants might 
have asked their friends to join the study as well). In ESM 
3.4, we present a simple example of blocked resampling 
using this group structure.

Summary of Module 1

Module 1 covered performance evaluation, the most 
important concept in supervised ML: The goal of 

supervised ML is to build powerful predictive models 
that can be used in practical applications. As a conse-
quence, estimating how well the model would perform 
when predicting new observations is central to the pre-
dictive mindset. We first introduced the so-called bias-
variance trade-off as a mental model to think about 
prediction error from a conceptual point of view. How-
ever, to practically assess the prediction error in regres-
sion or classification tasks, we have to choose an 
appropriate performance measure and a resampling 
method. Practical Exercise 1 introduced how to train ML 
models with the mlr3 package in R and to evaluate their 
predictive performance with k-fold CV. To better under-
stand the predictive mindset, we contrasted in-sample 
performance (which is the traditional way to evaluate 
models in psychology) with out-of-sample performance. 
Module 1 also gave a theoretical preview of more 
advanced issues in performance evaluation, which 
become relevant when researchers want to tune hyper-
parameters, select features, or apply ML on clustered 
data sets.

Module 2: Random Forests

Students in the social sciences are often untrained in 
nonlinear predictive models. We now introduce the RF 
(Breiman, 2001a), a relatively simple yet widely effective 
nonlinear ML model that can be used for both regression 
and classification tasks. We do not claim that the RF is 
always superior to other models, but it is often highly 
competitive in medium-sized prediction tasks (Grinsztajn 
et al., 2022) and is well suited to predict psychological 
outcomes (e.g., Fife & D’Onofrio, 2022; Stachl, Au, et al., 
2020). Knowing at least one type of ML model well is 
helpful to better understand the general principles of 
ML, to safely apply ML in practice, and to expand to 
other ML models. An RF consists of several decision trees 
(Breiman et al., 1984), which we outline first to get a 
good start in understanding how the RF works. An early 
discussion of applying tree-based methods in psycho-
logical research is Strobl et al. (2009).

Classification and regression trees  
in theory

Basic principles. We start with a graphical demonstra-
tion based on the Titanic data set, which is simpler to 
interpret than examples based on the PhoneStudy data. 
The decision tree in Figure 5 predicts whether passengers 
of the Titanic survived or died in the disaster, dependent 
on demographic (age, sex) and voyage variables (pclass: 
passenger class; sibsp: number of siblings or spouses 
aboard; parch: number of parents or children aboard). 
The tree is “grown” from the root node on the top, which 
contains all observations in the data set. The label above 
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each node (survived vs. died) shows the prediction we 
would make for each passenger belonging to this node. 
The numbers below the label show how many passengers 
died (left) and survived (right). Below each node, we see 
some logical criterion used to split the “parent node” into 
exactly two “child nodes.” Passengers are sent to the left 
child node if the split-condition (e.g., age ≥ 9 5.  years) is 
true and to the right if it is false. The tree is not symmetric, 
which means in some parts of the tree, we see more splits 
than in others, and the same variable can be used multiple 
times at different nodes. In this way, the tree naturally 
accounts for nonlinear, possibly high-dimensional interac-
tions. For example, for men (moving left on first split), the 
next relevant feature is age, but for women (moving right 
on first split), the next relevant feature is passenger class. 
At some point, the tree-growing algorithm stops, and we 
reach the so-called leafs or terminal nodes in the bottom 
row. Only the leafs are required to make predictions in 
practice (the intermediate nodes are only part of the tree-
growing process). To make a prediction for a new pas-
senger of the Titanic who was not included in the data 

set, we first determine to which leaf this observation 
belongs by starting from the top and following the deter-
ministic path through the tree using the logical decisions 
at each split-point. For a concrete example, consider the 
fictional 17-year-old Rose from the movie Titanic, who 
traveled first class with her mother and spouse: Because 
Rose is not male and did not travel third class, she lands 
in the rightmost leaf, and thus the tree would predict that 
she survives the disaster. If Rose had traveled third class, 
she would follow a different path in which the prediction 
also depends on the features sibsp, parch, and age. Given 
her values on these variables, the tree would predict that 
Rose dies.

The classification and regression trees algorithm.  
The tree in Figure 5 used the classification and regression 
trees (CART) algorithm by Breiman et al. (1984). Although 
many different algorithms for decision trees have been 
developed, the CART algorithm is still the most frequently 
applied one. According to which principles did the CART 
algorithm construct the displayed tree? Decision trees use 

sex = male

age >= 9.5

sibsp >= 3

pclass = 3rd

sibsp >= 3

age >= 17

parch >= 4

age >= 28

age < 22

Died
809  500

Died
682  161

Died
660  136

Survived
22  25

Died
19  1
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3  24
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127  339
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110  106

Died
18  3
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92  103
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83  79
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8  1
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75  78
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27  17
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48  61
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17  11
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31  50
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9  24
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yes no

Fig. 5. Classification tree fitted to the Titanic classification task. Passenger characteristics are used to predict whether a passenger survived 
the Titanic disaster. pclass = passenger class; sibsp = number of siblings or spouses aboard; parch = number of parents or children aboard. 
Node color encodes the classification made for the observations in that node (dark = died, light = survived).
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features to iteratively partition the data space into subre-
gions (i.e., nodes). The same prediction is computed for 
all observations in each node, usually on the basis of the 
mean (regression) or the mode (classification) of the tar-
get in that node. An optimization criterion simultaneously 
determines which splitting-variables and which split-
points are used in the tree-growing process. The goal is to 
construct large nodes that contain observations with most 
similar target values. The similarity or purity of target val-
ues is quantified by a so-called impurity function. Intuitive 
impurity functions are the MSE for regression and the 
MMCE for classification. When regression trees make con-
stant predictions in each node on the basis of the target 
mean, the MSE is equal to the observed variance of the 
target in a node ( y yi Node

 =  for all observations in the 
node). When classification trees make constant predic-
tions in each node on the basis of the mode (the most 
frequent class), the MMCE is equal to the observed relative 
frequency of the smaller class in a node. Nodes with a 
small MSE or a small MMCE are favored, thus the term 
“impurity” function. In practice, classification trees do not 
use MMCE but the more complex Gini - impurity ( James 
et  al., 2021), which has been shown to result in better 
predictive performance. To achieve high predictive perfor-
mance, it is important that nodes are relatively pure and 
contain a high number of observations to better generalize 
for new, unseen observations. The CART algorithm uses 
“stopping criteria” (e.g., a minimum number of observa-
tions in the parent node or a maximum number of hierar-
chical levels) to determine the end of the tree-growing 
process. A more technical description of the CART algo-
rithm is given in ESM 4.

Figure 6 visualizes the tree-growing process for a 
regression example based on a reduced version of the 
AmesHousing regression task from two different per-
spectives. The sale price of a property is predicted with 
the two continuous features, Gr_Liv_Area (the above-
ground living area) and Year_Built (the construction 
year). On the right side of each subplot, we see the 
already familiar tree visualization of the split-variables 
and split-points starting from the complete training data 
set on the top. On the left side, we see the correspond-
ing prediction surface of the tree at that stage: a visual-
ization of which target value is predicted for each 
combination of feature values. Each point is one prop-
erty, and the true sale price is color coded (low prices 
in blue, high prices in red). CART trees always split the 
feature space into rectangles of different sizes along the 
feature axes. All observations falling into the same rect-
angle get the same target prediction (i.e., the mean sale 
price of all properties in that rectangle). The predicted 
sale price is represented by the surface color of each 
rectangle. In each consecutive step of the tree-growing 
algorithm, one rectangle is split into two smaller ones, 

hopefully converging toward a state in which observa-
tions in the same rectangle have roughly similar target 
values. The tree in Fig. 6d (with eight splits) shows the 
result when growing the CART tree with the default 
stopping criteria of the rpart R package.

Advantages and disadvantages of decision trees.  
Decision trees have several advantages (Hastie et  al., 
2009), which we briefly list here but more thoroughly 
demonstrate and visualize in ESM 5 (same for disadvan-
tages): (a) Trees offer a graphical display of the predictive 
model, including an intuitive illustration of nonlinear 
interactions. It is often easier to explain a tree model than 
a regression model to decision makers because the tree 
does not require an understanding of model equations. 
(b) Tree models are relatively robust against outliers in the 
features. The algorithm depends only on the ranks in each 
feature and thus is also invariant against monotone trans-
formations such as standardization. (c) Trees can model 
nonlinear relationships by performing several splits on the 
same feature in a data-driven way. The amount of splits, 
and thus the flexibility of the model, will automatically 
increase with sample size (when stopping criteria are 
selected with care). (d) The tree algorithm automatically 
performs variable selection. Uninformative features should 
not be selected as split variables because other features 
will provide higher impurity reduction. Features that are 
not selected as split variables during construction do not 
have any influence on predictions. Because of the variable 
selection property, trees can be effective with a possibly 
large number of features—uninformative features will not 
be selected.

However, trees also have disadvantages (Hastie et al., 
2009): (a) Trees have problems modeling truly linear 
relationships because a large number of splits is neces-
sary for a smooth approximation with step functions. 
(b) In addition, the tree structure can be highly unstable 
(i.e., trees trained on different samples from the same 
population vary a lot) if the ratio of sample size to num-
ber of features (or the general signal to noise ratio) is 
low. If the tree structure is unstable, this also implies 
that interpretations based on the structure can be unreli-
able. If the tree will be used for interpretation purposes, 
checking the stability of the model should be a high 
priority (Philipp et al., 2016). (c) An important hyperpa-
rameter to stabilize trees is the stopping criterion, which 
has a strong influence on the bias-variance trade-off of 
the model. Setting liberal stopping criteria (i.e., allowing 
many splits) will result in deeper trees that have a lower 
bias but also a higher variance (i.e., higher instability). 
Because the optimal trade-off depends on many factors, 
such as sample size, number of features, and the signal-
to-noise ratio, elaborate tuning of stopping criteria is 
often required in practice. In this tuning process, a 
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perfect trade-off between predictive performance and 
interpretability is difficult to achieve. The most predictive 
model will often be too unstable to use the tree structure 
for high-stakes interpretations. (d) Last but not least, 
although decision trees are powerful predictive models, 
their predictive performance (even with elaborate  
tuning) is often lower compared with more complex ML 
models.

Random forests in theory

Basic principles. Next, we introduce a procedure called 
“bootstrap aggregation” (Bagging; Breiman, 1996) to 
improve the predictive performance of decision trees by 
reducing variance (remember our section on the bias- 
variance trade-off). Variance reduction is achieved by 
aggregating the predictions of many trees. The Bagging 
algorithm (a) draws a number of bootstrap samples with 
replacement, (b) fits a deep decision tree (with liberal 
stopping criteria) on each bootstrap sample, and (c) aggre-
gates the predictions across all trees (using the mean for 
regression or the mode for classification). The intuition is 
that the bootstrap simulates drawing multiple samples 
from the population of interest. Because decision trees 
with liberal stopping criteria have low bias but high vari-
ance, the tree structure on different (approximate) sam-
ples will vary. By averaging predictions from different 
trees, the low bias is retained, but the variance can be 
reduced, resulting in a better bias-variance trade-off and 
thus better predictive performance. However, one remain-
ing limitation is that the high “correlation” between trees 
reduces the effectiveness of variance reduction. In this 
context, correlation means that (despite some instability), 
the tree structure on different samples shows great similar-
ity because informative features have a high chance to be 
selected early in the tree-growing process. Early splits 
have a high influence on the tree structure and thus on the 
predictions made by those trees (James et al., 2021).

The RF algorithm. With the RF, Breiman (2001a), who 
also developed the CART algorithm and Bagging, found a 
clever way to improve the variance reduction from Bag-
ging by reducing the similarity of trees in the forest: For 
each split, the RF algorithm draws a random subset of 
features that are taken into account by the optimization 
algorithm. At the same time, the RF uses highly liberal 
stopping criteria to assure minimal bias. The final RF algo-
rithm has three major hyperparameters: (a) the number of 
trees to be aggregated (num.trees), (b) the number of fea-
tures to consider at each split (mtry), and (c) the minimum 
number of observations in a node to continue splitting 
(min.node.size). In contrast to many other state-of-the-art 
ML models that require excessive tuning of hyperparame-
ters to achieve good predictive performance, the RF typi-
cally performs well without tuning (Bernard et  al.,  

2009; Probst et  al., 2019). Useful default values are 
num trees. = 500 , mtry p= , and minnode size. . = 1  for 

classification and num trees. = 500 , mtry
p

=
3

, and 

minnode size. . = 5 for regression ( James et al., 2021). Of 
course, there might be some data sets for which tuning 
those hyperparameters improves predictive performance.

Figure 7 visualizes how the RF predictions change 
with an increasing number of trees using the reduced 
AmesHousing regression task with two continuous fea-
tures. For num trees. = 1, the prediction surface is com-
posed of possibly small rectangles (because of liberal 
stopping criteria), often resulting in abrupt changes in 
predictions for small changes in feature values. With 
num trees. > 1, the rectangles from different trees overlap, 
resulting in smoother predictions. The smoothness 
increases with the number of trees and saturates at some 
point (in this example, few trees are required because 
the sample size and the number of features is small). 
The smoother prediction surface of the RF compared 
with a single CART tree is one important argument why 
the RF often shows better predictive performance. A 
smooth surface can be expected to generalize better for 
new observations than rough prediction changes. How-
ever, note that all tree-based models are local methods 
that can make strange generalizations in regions in 
which none or few training observations have been 
observed: for example, the region around the single 
expensive (red) property with Year Built_ > 1975  and 
Gr Liv Area_ _ ,> 3 000 .

Advantages and disadvantages of RFs. The RF is 
often thought to be one of the best “off-the-shelf” models 
(Fernández-Delgado et al., 2014) with many advantages. 
Although more complex models that require excessive 
preprocessing or hyperparameter tuning might be able to 
achieve slightly better performance (e.g., XGBoost, Chen 
& Guestrin, 2016; deep neural networks, Goodfellow 
et al., 2016), the RF often reaches satisfying performance 
with less effort and less computational resources (i.e., 
models can usually be trained and evaluated on a laptop 
in only a few minutes). (a) The RF inherits all advantages 
from single decision trees (except interpretability). (b) In 
addition, the RF can be expected to achieve better (or at 
least comparable) predictive performance than single 
trees. All in all, the RF can be thought of as an ML model 
with both low bias and low variance. It keeps the low bias 
of deep decision trees and achieves low variance by effec-
tive variance reduction via aggregating predictions from 
trees with small correlations. (c) The RF handles nonlin-
earity and interactions even better. In contrast to linear 
models or single decision trees, the RF can handle even 
stronger nonlinear relationships between the features and 
the target. A visual demonstration of an artificial nonlinear 
classification problem is given in ESM 5.5. (d) The RF is 
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easy to use because tuning of hyperparameters is not nec-
essarily required. Note that there is no danger that increas-
ing the number of trees in the RF might decrease predictive 
performance. Although extremely few trees will lead to 
suboptimal performance, the only disadvantage of an 
excessive number of trees is a waste of computational 
resources. This is in sharp contrast to other methods such 
as boosting (Friedman, 2001), which will strongly overfit 
to the training data if the number of trees is not tuned 
carefully ( James et al., 2021).

Of course, the RF also has a few disadvantages: (a) The 
RF might still not be ideal for truly linear relationships, 
although a sufficiently large number of trees can approxi-
mate smooth functions much better than a single tree. (b) 
Possibly the biggest disadvantage is that the RF loses the 
convenient interpretability of single trees. It is not useful 

to inspect graphical displays of hundreds of trees that are 
aggregated for the final predictive model. Additional tools 
from the field of interpretable ML are necessary to interpret 
RF predictions. We introduce such methods later.

Practical Exercise 2: train an RF and 
estimate predictive performance

In the next exercise, we show how to train and evaluate 
a RF model in mlr3. We use a classification problem in 
this exercise to demonstrate how classification is done 
in mlr3. However, the RF also works for regression prob-
lems, which we demonstrate in the next module. To 
follow along, make sure to repeat the earlier code steps 
in which we loaded the PhoneStudy data set.
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Fig. 7. Visualization of how the smoothness of the prediction surface of a random forest changes with an increasing 
number of trees (from 1 to 500 trees). The plot is based on the AmesHousing regression task with two continuous 
features, Gr_Liv_Area (above-ground living area) and Year_Built (construction year). True and predicted sales 
prices of properties are color-coded (low prices in blue, high prices in red). Performance estimates are based on 
10-fold cross-validation.
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Create a classification task. First, we create an artifi-
cial classification example by binning the continuous E2.
Sociableness variable into “high” and “low” sociability 
according to the median of the complete data set. This is 
just to showcase how classification works in mlr3. We do 
not recommend binning in a real application, in which we 
would always perform regression if the target is continu-
ous (Stachl, Pargent, et al., 2020):

phonedata$E2.Sociableness_bin <- 
 ifelse(phonedata$E2.Sociableness >= 
  median(phonedata$E2.Socia  bleness),  
  "high", "low")
phonedata$E2.Sociableness_bin <-

as.factor(phonedata$ 
 E2.Sociableness_bin)

We create a new supervised classification task on the 
basis of the binned target, declaring high sociability as 
the so-called positive group. This arbitrary choice deter-
mines the interpretation of performance measures such 
as SENS  and SPEC  (e.g., sensitivity is the ratio of indi-
viduals with high sociability that are correctly classified 
to have high sociability). We make sure to remove both 
the original continuous sociability variable and the gen-
der variable from the feature set:

task_Soci_bin <-as_task_classif( 
 phonedata,
  id = "Sociability_Classif",  
target = "E2.Sociableness_bin",  
positive = "high")

task_Soci_bin$set_col_roles( 
 "E2.Sociableness", remove_from =  
 "feature")
task_Soci_bin$set_col_roles( 
 "gender", remove_from =  
 "feature")

In the following line, we specify our target as a so-
called stratification variable. When we later split the task 
for CV, this will (roughly) keep the proportion of high 
and low sociability in each training set equal to the 
proportion in the complete data set. Using stratified 
resampling for classification tasks is usually a good idea 
because it improves the precision of performance esti-
mates, especially for data sets with imbalanced classes 
or relatively few observations (Kohavi, 1995):

task_Soci_bin$set_col_roles( 
 "E2.Sociableness_bin", 
 add_to = "stratum")

Train a random forest model. Next, we create a 
learner for the RF model, using the state-of-the-art imple-
mentation in the ranger package (Wright & Ziegler, 2017). 
We can directly specify hyperparameter settings of the 

learner (e.g., the number of trees). To handle the missing 
data, we again fuse our learner with our imputation strat-
egy and create a GraphLearner. Because the RF algorithm 
contains random steps (drawing bootstrap samples), we 
set a seed before training the learner on our classification 
task to make the results reproducible.

imputer <- po("imputemedian")
rf <- lrn("classif.ranger",  
 num.trees = 500)
rf <- as_learner(imputer %>>% rf)
set.seed(1)
rf$train(task_Soci_bin)

The trained model object produced by the ranger 
package could be extracted with rf$model$classif.
ranger$model. Similar to Practical Exercise 1, it would 
be easy to use the trained model to compute predictions 
for new observations:

phonedata_new <-readRDS(file =  
 "data/clusterdata.RDS")
phonedata_new <-phonedata_new[
  ! complete.cases( 

phonedata_new$gender),  
c(1:1821, 1837)]

rf$predict_newdata(newdata =  
 phonedata_new)$response

[1] high high high high
Levels: high low

As before, we could also calculate in-sample predic-
tive performance by computing predictions for the same 
data used in training. Now that we have a classification 
task, the prediction object also contains a confusion 
matrix of our in-sample predictions:

pred <-rf$predict(task_Soci_bin)
pred$confusion

  truth
response high low
high    341    0
low       0 279

All observations from the training data have been clas-
sified without error. However, this estimate is probably 
not realistic for the predictive performance on new data.

Estimate predictive performance of the model. The fol-
lowing out-of-sample estimate exemplifies again that in-
sample performance estimates should not be trusted, 
especially not for flexible ML models such as RF. It is abso-
lutely necessary to use resampling, here 10-fold CV with 
MMCE  as the performance measure:
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set.seed(3)
res <-resample(task_Soci_bin,  
 learner = rf,
 resampling = rsmp("cv", folds = 10))
res$aggregate(list( 
 msr("classif.ce"),
 msr("classif.ce", id =  
  "classif.ce.sd", aggregator = sd)))

classif.ce classif.ce.sd
   0.377          0.039

CV reveals that the full model cannot be expected to 
perfectly predict new data but will misclassify about 38% 
of all cases. Note that we computed both the already 
familiar point estimate of predictive performance (mean 
MMCE  across folds) and an estimate of the variability  
of performance estimates from different test sets  
(the code msr("classif.ce", id = "classif 
.ce.sd", aggregator = sd) constructs a perfor-
mance measure that computes the standard deviation of 
MMCE  across folds). Documenting this variability is 
highly recommended to evaluate the precision of our 
performance estimate. A further step to increase our con-
fidence in our performance estimate is to check whether 
the point estimate changes a lot when repeating the 
resampling with different seeds. Note that actively search-
ing for a seed that produces a higher performance esti-
mate is not meaningful and would bias the performance 
evaluation. Instead, repeated CV should be used to get 
a stable performance estimate. We illustrate repeated CV 
and the variability of resampling estimates in ESM 3.5.

Summary of Module 2

In Module 2, we introduced the RF, a popular nonlinear 
ML model with strong predictive performance and high 
usability. The logic of the RF is quite different from the 
linear regression models that psychologists are most 
familiar with: The RF algorithm averages the predictions 
from a large number of decision trees that are grown 
with the CART algorithm. We took our time to explain 
those important underlying concepts with graphical 
illustrations. In Practical Exercise 2, readers were guided 
on how to train and to evaluate the predictive perfor-
mance of an RF model with mlr3, thereby rehearsing 
important concepts introduced in Module 1.

Module 3: Benchmark Experiments

Model comparisons as controlled 
scientific experiments

When performing supervised ML in practice, it is often 
necessary to compare predictive performance estimates 
for different types of models because there are no 

effective heuristics on which models are optimal under 
different settings. These so-called benchmark experi-
ments include an assessment of whether a model has 
superior predictive performance in comparison with a 
baseline or state-of-the art model. Often a “featureless” 
learner is used as a simple baseline model against which 
the performance of the other models of interest are 
compared. The featureless learner uses the mean target 
value in the training set as a constant prediction for all 
observation in the test set, thereby effectively ignoring 
the information from all features. Useful ML models 
should be able to at least beat the featureless model. Even 
stronger theoretical baseline models can be designed for 
most applications (e.g., predict personality scores on the 
basis of only demographic variables). Benchmarks 
strongly resemble scientific experiments or randomized 
controlled trials; they investigate the effect of choosing a 
predictive model on the expected predicted performance: 
Different experimental conditions or treatments (i.e., 
types of models) are compared with a control group (i.e., 
featureless learner). For each experimental condition, the 
optimal stimulus intensity or “dosage” is identified and 
applied (i.e., nested tuning of all hyperparameter set-
tings). To ensure fair comparisons, external factors (i.e., 
performance measures, resampling strategies including 
the concrete assignment of observations to training and 
test sets) are kept constant between conditions.

Practical Exercise 3: model comparisons 
with benchmark experiments

In our third exercise, we conduct two benchmark experi-
ments. The first benchmark experiment illustrates a 
regression task, the second a classification task. We 
apply the RF from Module 2, along with other learners. 
Besides a featureless learner, we also compare the RF 
to a so-called least absolute shrinkage and selection 
operator (LASSO) model (Tibshirani, 1996) in our bench-
mark experiments. The LASSO is a linear regression (or 
classification) model that can effectively include a large 
number of features by shrinking the coefficients toward 
zero. This shrinkage also results in coefficients of exactly 
zero for unimportant features, thereby performing auto-
matic variable selection because the corresponding fea-
tures will not be taken into account when computing 
predictions. The results can be interpreted similar to 
ordinary linear or logistic regression because the LASSO 
can be seen as an alternative method to estimate the 
model parameters of these models. We have observed 
in our own ML applications that LASSO often performs 
comparably or even better than RF on survey data (e.g., 
Pargent & Albert-Von Der Gönna, 2018). Thus, we rec-
ommend by default to include the LASSO into bench-
mark experiments when working with psychological 
data. A nontechnical introduction to the LASSO was 
provided by James et al. (2021).
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For our benchmark analysis, we reuse the task_Soci 
and task_Soci_bin objects we created earlier. We create 
GraphLearners fused with imputation (featureless learner, 
LASSO, and RF) for both a regression and a classification 
task. The featureless learner does not require imputation 
because it does not use any features:10

imputer <-po(“imputemedian”)

fl_regr <-lrn(“regr.featureless”)
lasso_regr <-lrn(“regr.cv_glmnet”,
  nfolds = 5)
lasso_regr <-as_learner(
  imputer %>>% lasso_regr)
rf_regr <-lrn(“regr.ranger”,
  num.trees = 100)
rf_regr <-as_learner(
  imputer %>>% rf_regr)

fl_classif <-lrn(“classif.featureless”,
  predict_type = “prob”)
lasso_classif <-lrn(
  “classif.cv_glmnet”, nfolds = 5, 
  predict_type = “prob”)
lasso_classif <-as_learner(
  imputer %>>% lasso_classif)
rf_classif <-lrn(“classif.ranger”,
  num.trees = 100,
  predict_type = “prob”)
rf_classif <-as_learner(
  imputer %>>% rf_classif)

Because benchmark experiments easily become com-
putationally intensive, we use parallelization (speeding up 
computations by using more than one core of the com-
puter simultaneously), which is provided by the future 
package (Bengtsson, 2021). To use parallelization with 
mlr3, the only steps are to load the future package, specify 
a parallelization plan (use strategy = "multises 
sion" which should work on both Windows and Mac), 
and select the number of cores (you can type 
parallel::detectCores() to find out the maximum 
number of cores available on your computer). Paralleliza-
tion will then be automatically used by mlr3 whenever 
possible. Note that even with a seed, parallel computations 
are sometimes not fully reproducible, which depends on 
technical peculiarities that are not specific to mlr3 or R:

library(future)
plan("multisession", workers = 2)
set.seed(2)

Before we can actually compute the individual bench-
mark experiments for our regression and classification 
tasks, we have to declare our benchmark designs. These 

designs specify which learners will be trained on which 
tasks and which resampling strategies should be used 
for each combination of Learner ×  Task interaction. We 
choose 10-fold CV to enable computation on smaller 
laptops in a reasonable amount of time for our tutorial. 
In a real application, we would apply repeated CV here 
because performance estimates have a high variability 
for this example (notice how the estimates change when 
repeating the benchmark with different seeds). After 
running the experiments by calling the benchmark 
function for each task type, we turn off the paralleliza-
tion by switching back to "sequential" mode:

design_regr <-benchmark_grid(
 tasks = task_Soci,
  learners = list(fl_regr, lasso_regr,  
 rf_regr),

 resamplings = rsmp("cv", folds = 10))
bm_regr <-benchmark(design_regr)

design_classif <-benchmark_grid(
tasks = task_Soci_bin,

  learners = list(fl_classif,  
 lasso_classif, rf_classif),

 resamplings = rsmp("cv", folds = 10))
bm_classif <-benchmark(design_classif)

plan("sequential")

We choose an extended set of performance measures 
for our regression and classification benchmarks. For 
regression, we look at R2  and RMSE  but also consider 
Spearman’s correlation, which evaluates predictive per-
formance by correlating the predictions with the true 
target values. Evaluating predictive performance with 
correlation measures is useful in practical applications 
in which we care only about ranking individuals on the 
basis of the target (e.g., is this person rather more or 
less sociable compared with this other person), but the 
actual target values do not matter. Such settings fre-
quently arise in psychological assessment (e.g., person-
nel selection; Stachl, Pargent, et  al., 2020). For 
classification, we not only look at MMCE  but also con-
sider SENS  (i.e., true-positive rate) and SPEC  (i.e., true-
negative rate):

mes_regr <-msrs(c("regr.rsq",  
 "regr.rmse", "regr.srho"))
mes_classif <-msrs(c("classif.ce",  
 "classif.tpr", "classif.tnr"))

First, we compute aggregated performance for the 
regression benchmark with aggregate and print the 
results. We can also request a grouped box plot for a 
specific performance measure (see Fig. 8), which is very 
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useful because it also visualizes the variability of per-
formance estimates across test sets:

bmr_regr <-  
 bm_regr$aggregate(mes_regr)
bmr_regr[, c(4,7:9)]

learner_id regr.rsq regr.rmse regr.srho
1: regr  -0.030  1.8  NA 
 .featureless
2: impute -0.028  1.8  NA 
 median.regr 
 .cv_glmnet
3: imputemedian 
 .regr.ranger  0.111 1.6  0.38

autoplot(bm_regr, measure = msr( 
 "regr.rsq")) + papaja::theme_apa()

It seems that the RF produces more accurate predic-
tions than the LASSO and the featureless learner for all 
performance measures. Note that the Spearman’s correla-
tion could not be computed for the LASSO and the 
featureless learner because both produced constant pre-
dictions for all observations in at least one fold. Although 
this must always be the case for the featureless learner 
(i.e., constant prediction based on the target mean in 
the training set), it seems that the LASSO automatically 
removed all features from the model (i.e., constant pre-
diction based on the model intercept). This observation 
reflects the bad performance of the LASSO, which cannot 
effectively use the information contained in the features 
in this example.

The commands to display benchmark results are simi-
lar for the classification benchmark. Instead of the 
grouped box plot, we here show how to produce a 

simple ROC plot (see Fig. 9) by calling autoplot(bm_
classif, type = "roc").

bmr_classif <-  
 bm_classif$aggregate(mes_classif)
bmr_classif[, c(4,7:9)]

learner_id classif.ce classif.tpr classif.tnr
1: classif  0.45  1.00  0.00 
 .featureless
2: imputemedian  0.39  0.88  0.27 
 .classif 
 .cv_glmnet
3: imputemedian  0.38  0.75 0.47 
 .classif.ranger
autoplot(bm_classif, type = "roc")

When looking at the results, we notice that although 
MMCE  is very similar for RF and LASSO, the models 
slightly differ in their respective trade-off of SENS  and 
SPEC . This finding exemplifies the need to consider other 
performance measures beyond mean classification error 
or accuracy in many applied classification settings, where 
the practical cost of false-positive and false-negative pre-
dictions are not the same (Sterner et al., 2021).

To practice with another benchmark example, ESM 6 
contains mlr3 code to perform a benchmark experiment 
with the Titanic data set.

Summary of Module 3

Module 3 introduced benchmark experiments. Super-
vised ML usually requires comparing the predictive per-
formance of different types of ML models because 
researchers cannot know in advance which model will 
perform best for the specific research question at hand. 
This comparison typically includes a featureless baseline 
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Fig. 8. Box plots displaying the results of the benchmark experiment of the Sociability regression 
task using the PhoneStudy data set. R2 was estimated with 10-fold cross-validation. (Left) Featureless 
learner. (Middle) Least absolute shrinkage and selection operator. (Right) Random forest.
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model to answer the question whether a predictive 
model performs better than naive guessing. Practical 
Exercise 3 took readers step-by-step through the process 
of setting up benchmark experiments in mlr3, which 
draws on the skills obtained in Module 1 (i.e., perfor-
mance evaluation via resampling) and Module 2 (i.e., 
training an RF). We demonstrated how to interpret 
benchmark results and highlighted the importance of 
different performance measures and the variability of 
performance estimates.

Module 4: Interpretation of Models

Interpretable ML

In addition to training models for practical applications 
or answering substantial research questions on the basis 
of benchmark experiments (Rocca & Yarkoni, 2021;  
Shmueli, 2010; Yarkoni & Westfall, 2017), researchers 
often want to understand how the final model makes 
predictions to connect findings to psychological theo-
ries. Understanding model predictions is the goal of 
interpretable ML (IML; Molnar et  al., 2020). We focus 
solely on model-agnostic methods that can be applied 
with any trained predictive model and are not limited 
to a specific type of ML model (e.g., RF). We do not 
discuss a contrasting view that focuses on building 
inherently interpretable models (e.g., simple decision 
rules) instead of explaining the predictions from black-
box ML models (Rudin et al., 2022).

Many IML methods can be broadly categorized to 
answer one of two important questions. First, which fea-
tures have the biggest effect on model predictions? This 
question can be answered with variable importance mea-
sures. Second, how do individual features influence model 
predictions? This question can be answered with effect 
plots. We briefly describe these methods in the following 
sections. For an extensive introduction to IML methods for 
psychological research, see Henninger et al. (2022).

Variable importance measures. Variable importance 
measures try to answer the following question: Which fea-
tures are most influential for model predictions? They are 
mostly inspired by the RF (Breiman, 2001a) but were 
extended to work with arbitrary ML models. We focus on 
the model-agnostic permutation variable importance (PVI; 
Fisher et al., 2019). PVI formalizes the intuitive idea that a 
model should make a bad prediction for an observation if 
the data for this observation contain an accidental mistake 
in an important feature (e.g., a young age was recorded for 
an old person). PVI takes a set of observations and shuffles 
the observed values in the feature of interest (e.g., persons 
are randomly assigned the age values of other persons in 
the sample). This permutation destroys the systematic infor-
mation in the feature, which could be used to meaningfully 
predict the target. Predictions are computed for all observa-
tions with the shuffled feature values, and the actually 
observed values are used on all remaining features. Note 
that the model that is used to compute predictions is always 
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trained on the unshuffled data. Predictive performance is 
calculated under the shuffled condition and compared with 
the performance under the normal condition with unshuf-
fled values. The greater the performance difference, the 
more important the respective feature is (e.g., if age is an 
important feature, predictive performance should suffer 
when the observed age values are assigned to the wrong 
persons). In contrast, if a feature is not important (i.e., unre-
lated to the target), shuffling should not decrease predictive 
performance. By repeating the process for each feature, PVI 
produces a ranking of important features. The resulting PVI 
values should be interpreted only in comparison with each 
other because the absolute values are difficult to interpret. In 
principle, PVI automatically captures both main and interac-
tion effects. However, it does not say anything about the 
direction of the effect, the shape of the effects, or whether 
an important feature has any causal effect on the target.

Figure 10a shows the PVI rankings for the Titanic task. 
Because this is a classification task, AUC  is used as the 
performance measure here. AUC  values in the shuffled 

condition are subtracted from the unshuffled condition so 
that high positive PVI values indicate important features. 
Note that this difference can also become negative for 
noisy features, in which case, we would expect improved 
predictive performance if these “bad” features were actu-
ally removed from the full model. Here, the prediction 
whether a passenger survived seems to depend most 
strongly on the passenger’s sex. The box plots indicate 
how stable the PVI values are across different permuta-
tions (i.e., in each permutation, there is a new random 
assignment of feature values to observations). More formal 
tests of whether PVI values significantly differ between 
features are difficult to construct and are still an active 
area of research (e.g., Janitza et al., 2018).

Standard PVI has been known to overestimate the 
importance of features with many unique values (Strobl 
et  al., 2007) or high correlations with truly important 
features (Strobl et  al., 2008). Unbiased PVI measures 
have been developed, but they are not model-agnostic 
and work together only with a specific RF algorithm 
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based on recursive partitioning (Debeer & Strobl, 2020; 
Strobl et al., 2008). Unfortunately, this newer RF version 
is less computationally efficient and requires more 
extensive hyperparameter tuning to perform well, which 
is why we do not use it as a default. For a short discus-
sion on RF-specific variable importance measures, see 
ESM 7.1.

Effect plots. Effect plots try to answer the following 
question: How do individual features influence model 
predictions? Effect plots display how model predictions 
change for different values of some feature of interest. 
Like in PVI, this is done by substituting the actual feature 
values, but now values are changed systematically instead 
of randomly. A prediction for an individual naturally uses 
the actually observed value in a feature of interest (e.g., a 
person is 40 years of age). However, the trained model 
could also compute a prediction for a different feature 
value (e.g., “pretending” that the observed age for this per-
son is 60). In this way, a range of predictions can be com-
puted for each individual by systematically changing the 
values in the feature of interest (e.g., on a grid of age 
values between 0 and 80 years) while keeping the actually 
observed values on all other features. Visualizing these 
profiles for a group of observations is called an “individual 
conditional expectation” (ICE; Goldstein et al., 2015) plot.

Figure 10b shows the ICE plot for the age feature in 
the Titanic task. Each line shows predictions for a single 
person computed with different age values (shown on 
the x-axis), and the points mark the actually observed 
age value for each person. ICE profiles can sometimes 
reveal interactions of the feature of interest with other, 
potentially unknown variables. For example, there seems 
to be a group of persons (the lines on the top) for which 
the predicted probability of surviving (shown on the 
y-axis) does not change with different age values. This 
seems in contrast to another group of persons (the lines 
in the middle) for which predicted survival probabilities 
decrease with higher age values. These different shapes 
indicate an interaction of age with one or several other 
features, which might be either contained in the data set 
or completely unobserved. For further exploration, one 
could color the lines on the basis of a feature suspected 
to be responsible for these interaction (e.g., pclass or 
sex) and see whether systematic patterns emerge.

ICE plots can be a bit overwhelming, and a more 
simple summary might be desired. The thick line in 
Figure 10b shows the average profile by vertically com-
puting the mean across all lines for each feature value 
on the x-axis. If this average is displayed without the 
individual profiles, the resulting curve is called a “partial 
dependence” (PD; Friedman, 2001) plot. The PD in our 
example indicates that on average, the predicted survival 
probability decreases for higher age values. However, 
keep in mind that the ICE profiles show that this average 
trend is not observed for all persons. Note also that effect 

plots do not necessarily indicate that the feature of inter-
est has any causal effect on the target.

An alternative to PD are “accumulated local effects” 
(ALEs; Apley & Zhu, 2020) plots. Although ALEs plots 
are often discussed as an improvement on PD, this does 
not seem to be without controversy because both  
estimate slightly different concepts. Molnar (2019) and 
Henninger et al. (2022) provided a clear introduction on 
both methods.

Model fairness

Closely related to IML is the topic of model fairness 
(Barocas et al., 2019). Intuitively, a trained ML model is 
considered fair if it does not discriminate against pro-
tected subgroups of observations (e.g., gender groups; 
Buolamwini & Gebru, 2018). However, which specific 
model behavior is considered fair is highly context- 
specific because it entails some normative consensus. It 
has been argued that all ML models applied in practice 
should be accompanied by transparent documentation 
on their performance characteristics and their intended 
use cases (Mitchell et al., 2019). Fairness seems particu-
larly relevant when ML is used in psychological assess-
ment (Stachl, Pargent, et al., 2020). In such settings, the 
“protected attribute” (e.g., the gender variable in the 
data set) is usually not included as a feature in the model 
to prevent the model from using the information in the 
protected variable to predict the target. However, flexible 
ML models often implicitly infer group membership on 
the basis of available features that are related to the 
protected attribute. Thus, it is necessary to explicitly 
evaluate fairness by comparing predictions for observa-
tions with different values on the protected attribute. 
Many techniques introduced in our performance evalu-
ation and IML sections can be useful to creatively explore 
whether a trained model behaves as required by a fair-
ness definition appropriate for the concrete use-case of 
the model. We give brief examples of two different fair-
ness aspects in our applied section and refer readers to 
Barocas et al. (2019) for an extensive overview of fair-
ness definitions and evaluation strategies. First, is the 
predictive performance of the model comparable for 
different values of the protected attribute? This can be 
evaluated by estimating out-of-sample performance 
separately for each value of the protected attribute. Sec-
ond, do model predictions differentially depend on the 
value of some feature of interest for different values of 
the protected attribute? This can be evaluated by com-
puting PVI rankings or ICE/PD plots separately for each 
value of the protected attribute.

Comments on causal interpretation

Most methods introduced in the IML and fairness sec-
tions seem to have an intuitive interpretation. However, 
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we point out that it is of utmost importance not to care-
lessly interpret the results in a causal manner. Generally, 
those methods investigate only the relationship between 
feature values and model predictions. They do not nec-
essarily reflect the true data-generating process (Zhao 
& Hastie, 2021). It is a well-known fact in the causal-
inference literature that causal claims always rely on 
strong assumptions that cannot be fully inferred from 
the observed data itself (Pearl, 2009). A common defini-
tion for a causal effect of some feature on the target is 
that a (hypothetical) intervention on the feature would 
lead to a different target value. Even if some ML model 
accurately estimated the correlation structure between 
the target and the features, this does not necessarily 
mean that features with high PVI are good candidates 
to focus in interventions if the aim is to influence the 
true target values. In addition, PD and ICE plots do not 
show how the true target values would change if some 
intervention could achieve specific values on the feature 
of interest without intervening on the other features. 
Similar arguments are true for fairness aspects (Plecko 
& Bareinboim, 2022). Without a causal model, one can-
not differentiate between a situation in which a model 
directly discriminates against certain values of a pro-
tected attribute (e.g., women earn less money because 
they are women) versus indirectly (e.g., women earn 
less because they choose professions with lower income).

Recent calls in psychology urge to take questions of 
causal inference seriously, and intuitive tutorials on 
choosing the right control variables in statistical modeling 
are now available (Deffner et  al., 2022; Rohrer, 2018; 
Wysocki et  al., 2022). IML methods are no magical 
devices that justify ignoring these considerations. Zhao 
and Hastie (2021) explained under which assumptions 
PD and ICE plots may be interpreted as causal effects. A 
causal perspective on ML fairness is given in Plecko and 
Bareinboim (2022). We strongly advise all readers to 
deeply think about whether the results of IML and fair-
ness analyses will actually be useful to serve the intended 
purpose in their specific case. There might be many 
circumstances in which such reflections will reveal that 
explicitly modeling the causal mechanisms is necessary 
to ensure that predictions will be practically useful.

Practical Exercise 4: IML with mlr3 
and DALEX

For our empirical demonstration, we use the DALEX/
DALEXtra R packages (Biecek, 2018), which come with 
a detailed online textbook (Biecek & Burzykowski, 
2021). An alternative is the iml package (Molnar et al., 
2018), with its excellent online companion book  
(Molnar, 2019). The mlr3 e-book also contains a chapter 
on how to use both frameworks (Bischl et al., 2023). We 
use all IML methods on an RF model trained on the 

complete Sociability regression task. For a discussion on 
whether using IML on the complete data set or using 
some combination of training and test sets, see Chapter 
8.5.2 in Molnar (2019).

First, we train the RF GraphLearner from earlier 
(which includes the imputation pipeline) on our com-
plete Sociability task:

set.seed(123)
rf_regr$train(task_Soci)

Then we construct an “explainer” object from the 
DALEXtra package, which takes the following as main 
inputs: model = a trained mlr3 model, data = the 
feature values of new observations for which predictions 
shall be computed (in our case, these are the same data 
from our task appended with the gender variable), and 
y = the target values for these new observations:11

library(DALEXtra)
library(ggplot2)

rf_exp <- explain_mlr3(rf_regr,
  data = cbind(phonedata[, 1:1821],  
 phonedata$gender),

 y = phonedata$E2.Sociableness,
  label = "ranger explainer", colorize  
 = FALSE)

Preparation of a new explainer is  
 initiated

-> model label       :  ranger 
explainer

-> data              :  620 rows 1822 
cols

-> target variable      : 620 values
-> predict function  :  yhat.

GraphLearner 
will be used 
( default )

-> predicted values     :  No value for 
predict 
function 
target 
column.  
( default )

-> model_info          :  package mlr3, 
ver. 0.14.1, 
task 
regression  
( default )

-> predicted values     :  numerical, 
min = -2.4, 
mean = 1.3, 
max = 4.4
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-> residual function :  difference 
between y and 
yhat  
( default )

-> residuals      :  numerical, 
min = -2.4, 
mean = 
-0.019, max = 
2.1

A new explainer has been created!

exemplary_features <-  
 c("nightly_mean_num_call",  
  "daily_mean_num_call_out",  
  "daily_mean_num_.com.whatsapp")

The explainer object can be used for all IML methods 
included in the DALEX/DALEXtra packages. To reduce 
the computational load for this tutorial, we use only a 
small subset of exemplary features for which we com-
pute the IML methods. In practice, we would include all 
features from our task.

Permutation variable importance. To compute PVI, 
we use the model_parts function:

varimp <- model_parts( 
 rf_exp, B = 3, N = 400,  
 variables = exemplary_features,  
 type = "difference")
plot(varimp, show_boxplots = TRUE)

We use only a subset of observations (N) and a limited 
number of permutations (B) to reduce running times. In 
practice, we would increase the number of permutations 
and use all available observations. We plot the resulting 
object (Fig. 11), including box plots that visualize the 
variability of feature importance across permutations. 
The default performance measure for regression tasks  
is the RMSE . With type = "difference" in the 
model_parts function, the shuffled RMSE  minus the 
unshuffled RMSE  is displayed on the y-axis. This differ-
ence is more positive for more important features.

The PhoneStudy data set consists of a very large num-
ber of features. In such settings, it can be more enlighten-
ing to interpret variable importance for groups of features 
(e.g., app categories; see Stachl, Au, et al., 2020).12

ICE profiles and PD plot. The model_profile func-
tion computes different measures to visually inspect fea-
ture effects. ICE is used when setting type = "partial" 
in model_profile and geom = "points" (or geom = 
"profiles") in the corresponding plot command:

ice <- model_profile(rf_exp,  
 variables = exemplary_features,
  N = 100, center = FALSE,  
type = "partial")

plot(ice, geom = "points", variables =  
 "nightly_mean_num_call") +
  geom_rug(sides = "b") + 
xlim(0, 2) + ylim(0.5, 2)

Each ICE profile (i.e., each line in the plot) in Figure 
12 corresponds to one person in our data set. It shows 
how the model’s predicted sociability for this person (on 
the y-axis) changes when we arbitrarily set the average 
number of telephone calls at night (nightly_mean_num_
call; on the x-axis) to different values across the observed 
range while keeping the person’s observed values on all 
other features. In this example, there is no sign for any 
strong interactions, and the effect of all single features 
on the target seems quite weak (nightly_mean_num_call 
is already the most important feature measured by PVI; 
see Stachl, Au, et al., 2020). The PD is already displayed 
in the ICE plot in Figure 12 as the bold blue line. We 
could also request the PD by itself with type = "par 
tial" in model_profile and geom = "aggre 
gates" in the plot function. On average, we see a slight 
increase in predicted Sociability for a higher number of 
nightly calls. The corresponding ALE plot looks very 
similar and can be found in ESM 7.2.

Note that for these PhoneStudy examples, IML methods 
do not reveal causal effects: Personality theory would 
consider it unreasonable that some intervention that 
would simply call study participants at late hours, thereby 
increasing the average number of telephone calls at night 
(feature nightly_mean_num_call), would lead to an 
increase in those participants’ sociability.

Aspects of model fairness. To explore whether the pre-
dictive performance of our model differs between men 
and women, we compute predictive performance sepa-
rately for each gender with the mlr3fairness companion 
package (Pfisterer et  al., 2022). When mlr3fairness is 

0.00 0.02 0.04

daily_mean_num_.com.whatsapp

daily_mean_num_call_out

nightly_mean_num_call

Root Mean Square Error (RMSE)
Loss After Permutations

Feature Importance
Created for the Ranger Explainer Model
Ranger Explainer

Fig. 11. Permutation variable importance for three exemplary fea-
tures based on the random forest model trained on the full Sociability 
regression task.
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loaded before creating task_Soci, we can declare gender 
as a protected attribute (pta). We can then create group-
wise performance measures that automatically take this 
variable into account:

library(mlr3fairness)
task_Soci <- as_task_regr(phonedata,  
 id = "Sociability_Regr",  
 target = "E2.Sociableness")
task_Soci$set_col_roles("gender",  
 add_to = "pta",  
 remove_from = "feature")
mes_fair <- c(groupwise_metrics( 
 msr("regr.rsq"), task_Soci),
 groupwise_metrics( 
  msr("regr.rmse"), task_Soci))
set.seed(2)
res <- resample(task_Soci, rf_regr,  
 rsmp("cv", folds = 10))
res$aggregate(mes_fair)

subgroup subgroup subgroup subgroup
.rsq_m   .rsq_f  .rmse_m  .rmse_f
 0.049    0.077   1.629   1.625

The resampling results suggest that our model makes 
more accurate predictions for women (f) than for men (m). 
One plausible reason could be that the data set contains 
more observations from women (61% women). The mlr-
3fairness package includes many more options for classi-
fication than for regression settings. Apart from evaluating 
fairness with different fairness metrics, it also contains 
methods to construct models with better fairness properties 
by using augmented ML models or debiasing methods.

To explore whether predicted sociability differentially 
depends on the value of the feature nightly_mean_num_
call for men and women, the PD plot introduced earlier 
can be computed simultaneously for both genders, 
which we demonstrate in ESM 7.3. Although the form 

of the relationship between the feature and the target 
predictions seems similar for both genders, the model 
generally predicts higher sociability for women than for 
men. Note that for both fairness analyses, the gender 
variable was not used as a feature when training the 
predictive model.

Summary of Module 4

In the final Module 4, we introduced popular tools to 
interpret a trained predictive model. In a first step, vari-
able importance measures can detect the features with 
the greatest impact on predictive performance. In a sec-
ond step, effect plots can reveal the functional relation-
ship between the important features and the target. In 
Practical Exercise 4, we showed how to use the DALEX 
R package to interpret models trained with mlr3. To 
prevent the practical application of models that discrimi-
nate against certain groups, in Module 4, we also gave 
a primer on how to evaluate model fairness. Finally, we 
discussed important limitations of interpretable ML and 
fairness methods with respect to causal inference.

Conclusion

In this tutorial, we gave an intuitive but thorough intro-
duction to the fundamentals of supervised ML for stu-
dents, researchers, and educators in psychology. After 
introducing important terminology and the predictive 
mindset of supervised ML, in Module 1, we covered the 
important topic of how to evaluate the predictive perfor-
mance of ML models with resampling methods such as 
10-fold CV. Module 2 introduced the RF, a versatile non-
linear model that serves as a useful entry point into the 
diverse world of ML algorithms. In Module 3, we focused 
on benchmark experiments, which are a structured 
approach to compare the predictive performance of dif-
ferent models and to determine which model performs 
better in a specific application. Finally, Module 4 dis-
cussed permutation variable importance and effect plots 
to interpret ML models, which is important whenever 
predictive performance is not the only goal to use predic-
tive models in psychological applications. For a quick 
reminder on the most important considerations and com-
mon pitfalls when performing, reporting, or reviewing 
ML models in psychological research, we provide a con-
venient one-page checklist in Figure 13. The excellent 
textbook by James et al. (2021) that we have referenced 
throughout this article is an ideal starting point to read 
more about basic ML concepts and methods.

Our tutorial did not cover the following advanced top-
ics, which we briefly mention for interested readers. First, 
the psychological community has started to construct ML 
models that explicitly address one important characteristic 
of most psychological data—measurement error (e.g., 
Brandmaier et al., 2013; Jacobucci et al., 2016; Jacobucci 

0.0 0.5 1.0 1.5 2.0
0.5

1.0

1.5

2.0

Pr
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Ceteris Paribus profile
Created for the Ranger Explainer Model
nightly_mean_num_call

Fig. 12. Individual conditional expectation profiles for the average 
number of telephone calls at night (nightly_mean_num_call) based on 
the random forest model trained on the full Sociability regression task.
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& Grimm, 2020). Second, we have not discussed some 
open issues of ML with latent variables but refer the inter-
ested reader to Stachl, Pargent, et al. (2020). Finally, users 
in psychology and other social sciences need to be acutely 
aware of the ethical implications that can arise from the 
reflected use of ML methods in applications (Mitchell et al., 
2019). We gave a short introduction on the idea of model 
fairness, an important framework to ethically evaluate pre-
dictive models. However, additional aspects (e.g., transpar-
ency, justice, nonmaleficence) should be taken into account 
( Jobin et al., 2019), and psychologists must be careful not 
to prematurely neglect important issues of causality when 
focusing on prediction (Plecko & Bareinboim, 2022; Zhao 
& Hastie, 2021). There is also a growing literature with 
specific guidelines for clinical predictive models (Moons 
et al., 2015; Wolff et al., 2019), which require especially 
high methodological and ethical standards.

Supervised ML is poised to become an important method 
in the toolbox of psychologists, and we hope that our tuto-
rial can help them to apply ML responsibly. Although ML 
is not a silver bullet to solve the generalizability crisis 
(Yarkoni, 2022) of our discipline, we are convinced that 
psychology can profit from investigating predictive research 
questions with ML tools, which were specifically designed 
to make predictive claims (Yarkoni & Westfall, 2017).
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Notes

1. We use the AmesHousing data set included in the AmesHousing 
R package (Kuhn, 2020) and the Titanic data set included in the 
rpart.plot R package (Milborrow, 2021).
2. For an exception, see the s = "lambda.1se" argument of 
the coef and predict functions in the glmnet R package 
(Friedman et al., 2010).
3. The holdout estimator would be unbiased if the average hold-
out estimate for repeated samples from the population were 
equivalent to the expected prediction error. The variance of the 
holdout estimator describes the variability of holdout estimates 
for repeated samples from the population.
4. https://cran.r-project.org/. We used R Version 4.2.2 (2022- 
10-31).
5. https://posit.co/download/rstudio-desktop/.
6. This functionality uses the renv package (Ushey, 2022), which 
is very useful for reproducible data analysis in R.
7. The E2.Sociableness variable is the estimated person param-
eter of a partial credit model (Masters, 1982) for the sociability 
facet of the personality trait extraversion in the Big Five Structure 
Inventory. For details, see Stachl, Au, et al. (2020).
8. In Stachl, Au, et al. (2020), a more advanced analysis pipeline 
and imputation strategy was used compared with this tutorial. 
For a description, see the supplementary information for that 
article.
9. R issues a warning that the predictions may be misleading, but 
they are computed nonetheless.
10. We set the predict_type of the classification learners to 
"prob", which is only necessary because we want to show a 
ROC plot later. For more details on predict_type, see the 
mlr3 e-book (Bischl et al., 2023).
11. Be careful when using explain_mlr3 with a classification 
task: y must be a numeric variable with the positive class coded 
as 1 and the other coded with 0; predict_function_tar 
get_column must be set to the label of the positive class.
12. In DALEX, grouped variable importance can be computed by 
using the variable_groups argument of the model_parts 
function as described in https://ema.drwhy.ai/featureImpor 
tance.html#featureImportanceR.
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