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Abstract
Phosphate is a common component in natural growth solutions of ikaite. Although phos-
phate often occurs as a minor constituent, its presence may promote the formation of ikaite 
as it significantly inhibits the precipitation of calcite. The interactions of phosphate with 
ikaite and the role of a potential uptake of phosphate by ikaite, however, are poorly under-
stood. In this study, the influence of phosphate on ikaite growth at 1 °C was investigated. 
Ikaite- and calcite-seeded growth experiments were conducted in cryo-mixed-flow reac-
tors at saturation ratios 1.5 ≤ Ωikaite ≤ 2.9 (Ω = ionic activity product/solubility product). 
From these growth experiments, the rate constant k = 0.10 ± 0.03 µmol/m2/s and the reac-
tion order n = 0.8 ± 0.3 were derived for ikaite. The reaction order implies a transport- or 
adsorption-controlled growth mechanism which supports a low energy pathway of ikaite 
growth via an attachment of hydrous  CaCO3

0 complexes without any extensive dehydra-
tion of aqueous species as, for instance, required for calcite growth. A potential depletion 
of aqueous phosphate due to an uptake by ikaite growth was not detectable. Furthermore, 
growth retardation by phosphate, as known for calcite growth, was not evident. Thus, a sig-
nificant incorporation of phosphate into growing ikaite could be precluded for the condi-
tions applied in this study. The observed lack of incorporation of phosphate agrees with the 
previously suggested growth mechanism via the attachment of hydrous  CaCO3

0 complexes 
which likely does not facilitate substantial substitution of carbonate by phosphate ions.
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1 Introduction

Ikaite  (CaCO3 ×  6H2O) is a calcium carbonate mineral which typically occurs in cold 
regions of the Earth (T < 7 °C; e.g. Bischoff et al. 1993a; Ito 1996; Stockmann et al. 2022). 
Among the known occurrences, the widespread appearance of ikaite in sea ice (Dieckmann 
et al. 2008, 2010) received particular interest as it may provide an abiotic pathway of car-
bon transport between the atmosphere and surface oceanic water (e.g. Delille et al. 2014; 
Geilfus et al. 2013, 2016). The precipitation and dissolution of ikaite concomitant with the 
formation and melting of sea ice could be an effective carbon pump (Delille et al. 2014; 
Rysgaard et  al. 2007) and, thus, might have important implications for the polar carbon 
cycle.

The formation conditions of ikaite, however, are complex. Due to its metastability under 
Earth surface conditions (Marland 1975), the appearance of ikaite requires particular phys-
icochemical parameters favouring its precipitation over the formation of the more stable 
anhydrous calcium carbonate minerals (calcite, aragonite, and vaterite). Previous studies 
showed that low temperatures (Johnston et al. 1916; Stockmann et al. 2018; Tollefsen et al. 
2020; Zhou et al. 2015), alkaline solution conditions (Boch et al. 2015; Hu et al. 2015) or 
the presence of foreign mineral surfaces (Strohm et al. 2022) can promote ikaite nucleation. 
Furthermore, ikaite persistence requires a continuous inhibition of its impending transfor-
mation into anhydrous  CaCO3-minerals. In this regard, both aqueous  Mg2+ and phosphate 
ions may promote the formation and persistence of ikaite (Bischoff et al. 1993a; Buchardt 
et al. 2001; Hu et al. 2014; Stockmann et al. 2018; Tollefsen et al. 2018).

In sea water, phosphate is a minor component with a concentration range of 0–3.2 µM 
(Millero 2013). A retardation of calcite and aragonite crystallization was verified at aque-
ous phosphate concentrations down to 1 µM and 0.25 µM for calcite (Lin and Singer 2006) 
and aragonite (Tadier et  al. 2017), respectively. Dissolved phosphate, thus, may support 
the formation of ikaite in sea water to some degree and may even become a crucial param-
eter at elevated concentrations (⁓ 400 µM) (Zhou et al. 2015). Irrespective of the actual 
phosphate concentration, it remained ambiguous, whether the presence of phosphate in sea 
water is mandatory for the nucleation of ikaite in all settings (Hu et al 2014, 2015; Stock-
mann et al. 2018; Tollefsen et al. 2020; Zhou et al. 2015).

In aqueous solutions, in general, a depletion of phosphate concentrations can be caused 
by nucleation of calcium phosphate minerals (e.g. Stumm and Leckie 1970) and, as 
revealed in laboratory studies for calcite, by adsorption of phosphate ions on crystal sur-
faces (e.g. Sø et al. 2011; Suzuki et al. 1986; van der Weijden et al. 1997) or an uptake by 
amorphous phases (e.g. Habraken et al. 2015; Kababya et al. 2015; Zou et al. 2020, 2021). 
Furthermore, phosphate coprecipitation was observed when calcite growth inhibition was 
incomplete (e.g. House and Donaldson 1986; Ishikawa and Ichikuni 1981; Kitano et  al. 
1978).

Apart from the effects of phosphate on calcite, potential interactions between phosphate 
and ikaite need to be considered for a better understanding of the interaction of sea water 
phosphate with carbonate minerals. An uptake of phosphate by ikaite within sea ice, for 
instance, could contribute to phosphate enrichment relative to surface oceanic water (Hu 
et al. 2014; Jones et al. 2023) and, therefore, might be an important abiotic process in the 
nutrient dynamics of Antarctic landfast sea ice. For ikaite, however, such an incorpora-
tion of phosphate is not evident yet. Although a significant depletion of aqueous phosphate 
was observed during the onset of ikaite precipitation by Hu et al. (2014), ikaite samples 
from sea-ice growth experiments and natural surface ice did not reveal a significant uptake 
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of phosphate (Hu and Wang 2020). In this context, a recent study by Jones et al. (2023) 
showed that aqueous phosphate concentrations were inversely correlated with the forma-
tion of ikaite in sea ice.

Besides phosphate coprecipitation, the fundamental growth kinetics of ikaite is not 
completely understood. The formation of hydrated ikaite, in contrast to anhydrous calcium 
carbonate minerals such as calcite, does not involve extensive dehydration of aqueous com-
plexes, but most likely requires an ordered assembling of the hydrated  CaCO3

0 ion pairs 
within the aqueous solution (Buchardt et  al. 2001; Chaka 2018; Stockmann et  al. 2018; 
Strohm et al. 2022). This discrepancy impedes a derivation of ikaite growth kinetics from 
anhydrous calcium carbonate minerals. Ikaite growth kinetics as well as phosphate uptake, 
however, might have important implications for the role of ikaite as an abiotic factor for 
seasonal fluctuations in dissolved inorganic carbon, alkalinity, and phosphate in sea ice. 
This study, therefore, aims at contributing to an improvement of the knowledge of ikaite 
growth kinetics and phosphate incorporation by conducting seeded growth experiments of 
ikaite in phosphate-containing solutions.

2  Materials and Methods

Aqueous solutions for seed syntheses and growth experiments were prepared by dissolving 
reagent grade  CaCl2 ×  2H2O, NaCl, NaOH,  NaHCO3,  NaH2PO4,  K2CO3, KOH and  K2HPO4 
in deionized water (resistivity 18.2 MΩ cm). Ikaite seed crystals for growth experiments 
were synthesized following the procedure of Bischoff et al. (1993b) by mixing 100 ml each 
of 0.1 M  CaCl2 and  K2CO3 solutions into a 0.04 M KOH solution (400 ml) at 1 °C.  CaCl2 
and  K2CO3 solutions were added dropwise through two separate channels of a peristaltic 
pump (Ismatec IPC-N) with a flow rate of 0.8—1 ml/min. Simultaneously, a  K2HPO4 solu-
tion was added to the mixture yielding phosphate concentrations of 33–200 µM through-
out the synthesis. Upon mixing, the solutions were kept at 1  °C under stirring for 24  h 
before the precipitate was filtered, washed with ethanol (T = − 18 °C) and stored at − 18 °C 
to ensure the persistence of ikaite seeds. Furthermore, calcite seeds for growth experiments 
were synthesized by temperature-induced transformation of ikaite in order to yield a syn-
thetically disintegrated ikaite as a proxy for the manifold types of decomposed ikaite speci-
mens (e.g. Boch et al. 2015; Bischoff et al. 1993a; Németh et al. 2022; Schultz et al. 2023; 
Vickers et al. 2022). For this, ikaite seeds were first synthesized as described above and 
subsequently exposed to temperature fluctuations (temperature maximum 10 °C for 24 h) 
to induce transformation into calcite.

Growth experiments were carried out using 1.5 g of seed crystals in a PFA cryo-mixed-
flow reactor (CMFR, total reactor volume: 120 ml) similar to the experiments described in 
detail by Lindner and Jordan (2018) and Saldi et al. (2021). To maintain a constant tem-
perature of 1 °C, experiments were conducted in a cooling incubator. The total experimen-
tal run time ranged from 22 to 46 h. Inlet solutions were cooled by the cooling incubator 
and injected into the reactor from two separate PE containers using two channels of a peri-
staltic pump. Within the reactor, the solutions were mixed with a Teflon-coated stirring bar. 
In order to prevent a loss of crystals from the reactor, the effluent solution was filtered 
through a PTFE membrane filter with a pore size of 0.45 µm. The effluent solution was 
sampled at time intervals of several hours. Each solution volume was divided into two. One 
subsample was utilized for pH and alkalinity measurements; the other was acidified with 
ultrapure concentrated  HNO3 and used for Ca and P analyses. pH was measured 



222 Aquatic Geochemistry (2023) 29:219–233

1 3

immediately after sampling at 25 °C using a standard glass electrode calibrated with NIST 
certified pH 4.01, 7.01 and 10.01 buffer solutions. Total alkalinity was determined by 
potentiometric end-point titrations with and uncertainty of ± 2% (detection limit: 
5 ×  10–5 eq/l) using a Schott TA 10plus automatic titrator and 0.01 M or 0.05 M HCl stand-
ard solution. Ca concentrations were determined by flame atomic absorption spectroscopy 
(AAS) using a PerkinElmer AANalyst 400 atomic absorption spectrometer with an uncer-
tainty of ± 2% and a detection limit of 1 ×  10–6  M. P concentrations were measured by 
inductively coupled plasma optical emission spectroscopy (ICP-OES) (Horiba Ultima 2) 
with an uncertainty of ± 1.5% and a detection limit of 1 ×  10–6 M. Aqueous speciations and 
saturations of solutions relative to the solid phases of interest were modelled with the geo-
chemical code PHREEQC version 3.7.0 (Parkhurst and Appelo 2013) using the llnl data-
base. Solubility constants of ikaite (log Ksp = 0.15981 − 2011.1/T, Bischoff et  al. 1993b), 
vaterite (log Ksp = − 172.1295 − 0.077993 T + 3074.688/T + 71.595 log T, Plummer and 
Busenberg 1982), amorphous calcium carbonate (ACC, log Ksp = − 12.919 + 0.054538 
T − 0.0001096 T2, Brečević and Nielsen 1989), and the carbonic acid dissociation constants 
from Millero et al. (2007) were inserted in the llnl database. The saturation state Ω was 
defined as Ω =

IAP

Ksp

 where IAP stands for the ionic activity product and Ksp for the solubility 
product of the mineral phase.

Compositions of the inlet solutions of CMFR growth experiments are listed in Table 1. 
Ionic strength of inlet solutions was adjusted to 0.1 M with NaCl, while small amounts of 
1 M NaOH solution were added to set the pH to ⁓8.5. Each run was conducted at constant 
flow rate. Once constant outlet fluid composition had been reached, steady-state condition 
was approximated. For each steady-state condition, the growth rate (R) of ikaite was calcu-
lated by

where ΔCa is the difference of the Ca concentration between inlet and outlet solution, F 
is the outlet flow rate, m is the mass of the crystals, and AS is the specific surface area. To 
approximate the specific surface area of ikaite seed crystals, an average crystal diameter of 
50 µm was estimated from cryo-SEM images. This diameter was implemented in a cubic 
shape model, giving a specific surface area of 894  cm2/g for the ikaite seed crystals.

Crystal powders were analysed before and after growth experiments by X-ray powder 
diffraction (XRD, Bruker D8 Advance A25, CuKα1 radiation λ = 1.5406 Å) with scattering 
angles of 10° ≤ 2θ ≤ 60° and a short measurement time of 12 min to prevent a temperature-
induced phase transition during analyses. Cryoscanning electron microscopy (cryo-SEM; 
Quanta 250 FEG FEI, equipped with a cool stage) was used to visualize crystal powders. 
Images were taken using an accelerating voltage of 15 kV and a gaseous secondary elec-
tron detector (GSED).

3  Results

3.1  Analysis of Solids

Cryo-SEM images of the synthesized ikaite seeds before growth experiments revealed a 
homogeneous euhedral morphology (Fig.  1a). In contrast, the seeds, which have under-
gone an additional subsequent temperature-induced transformation into calcite, comprise 

(1)R =
ΔCaF

mA
S
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spherical and partially coalescing anhedral aggregates (Fig. 1b). After the growth experi-
ments, these calcite aggregates remained unaltered and coexisted with euhedral ikaite crys-
tals, which newly formed during the experiment (Fig. 1c). X-ray powder diffraction analy-
ses of the powders retrieved from these growth experiments confirm the coexistence of 
calcite with a significant amount of ikaite (Fig. 2). For ikaite-seeded experiments, X-ray 
diffractograms of crystals retrieved from CMFR reactor revealed ikaite (Fig. 3). The minor 
traces of calcite which were detected by X-ray phase analysis of ikaite seeds (2θ ≈ 29.45) 
had no impact on the growth rates in ikaite-seeded experiments (Ika_1–Ika_4) as they 
mostly reflect the artefactual transformation of ikaite in air during the time of X-ray analy-
sis rather than the calcite formation during the experiments. Although all reactor solutions 
were supersaturated vs. hydroxyapatite, no sign of this phase was found by XRD.

Fig. 1  Cryo-SEM images of synthesized seeds and crystals retrieved from CMFR experiment. a Euhedral 
ikaite seed crystals before growth experiment. b Anhedral calcite seed crystals before growth experiment. 
c Newly formed euhedral ikaite crystals coexisting with anhedral crystals after growth experiment (Ika_15)

Fig. 2  X-ray powder diffraction pattern (CuKα1) of crystals retrieved from calcite-seeded growth experi-
ment Ika_15. Diffraction peaks correspond to calcite (C) and newly formed ikaite
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3.2  Chemical Analysis of Solutions

Analyses of the inlet and outlet solutions of cryo-MFR experiments were performed for 
each run and are summarized in Table 1, which reports the compositions of the effluent 
solutions of the reactor at steady-state conditions. In all runs, the samples of the effluent 
revealed decreased Ca concentrations and total alkalinity relative to the corresponding inlet 
solutions (ΔCa and Δ tot. alk) indicating substantial growth within the reactor. P concen-
trations, in contrast, remained constant in all tested growth experiments.

3.3  Growth Kinetics of Ikaite

Although ikaite growth was evident from XRD and solution analyses for both ikaite- and 
calcite-seeded experiments, surface normalized growth rates could only be derived from 
ikaite-seeded experiments (Ika_1–Ika_4). In calcite-seeded experiments (Ika_8, Ika_13, 
Ika_15), the unknown length of the ikaite nucleation period negated any surface area nor-
malization of the detected consumption of material by the growing ikaite within the reac-
tor. This applies all the more as some volume nucleation was observed additionally to sur-
face nucleation at the reactor walls and calcite seeds.

Ikaite-seeded experiments (Ika_1–Ika_4) provided surface normalized growth rates 
unequivocally, although trace amounts of freshly formed ikaite crystals were also observed 
in the experiments. Both growth of initial ikaite seed crystals and nucleation and growth 
of new ikaite crystals led to an increase of the ikaite surface area within the reactor dur-
ing the experimental runs. While the increase in surface area resulting from nucleation of 
new ikaite crystals was negligible, the increase in surface area resulting from the growth of 
ikaite seeds was apparent and, therefore, considered in the rate calculations. The increase 

Fig. 3  X-ray powder diffraction pattern (CuKα1) of crystals retrieved from ikaite-seeded growth experiment 
Ika_1. Diffraction peaks correspond to ikaite
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in ikaite surface area was calculated from the measured ΔCa values and the corresponding 
ikaite mass increase, assuming that the specific surface area (AS) of the solid remained con-
stant. Mean growth rates at steady-state conditions (Ika_1–Ika_4) were plotted as a func-
tion of the fluid saturation ratio with respect to ikaite (Ωikaite) (Fig. 4).

To calculate the rate constant k and the reaction order n of ikaite growth, the empirical 
equation

 which has been commonly used for the growth of calcium carbonate minerals (e.g. Buse-
nberg and Plummer 1986; Dromgoole and Walter 1990; Gutjahr et al. 1996; Morse et al. 
2007; Nancollas and Reddy 1971), was used to generate a fit of the measured growth rates 
(Fig. 5). The best fit of the experimental data yielded a reaction order n = 0.8 ± 0.3 and a 
rate constant k = 0.10 ± 0.03 µmol/m2/s.

4  Discussion

4.1  Growth of Ikaite

In calcite-seeded growth experiments (Ika_8, Ika_13 and Ika_15), newly formed ikaite led 
to a decrease of Ca concentrations and total alkalinity relative to inlet solutions. As indi-
cated by cryo-SEM images (Fig.  1), calcite seeds did not reveal any significant growth 
during CMFR experiments. Because the calcite seeds were synthesized from ikaite via 
a temperature-induced transformation, no other chemical component than the phosphate 
added to the CMFR inlet solution is the likely cause of the observed absence of noticeable 
calcite growth.

The reduction of calcite growth to an imperceptible amount is an explicit indicator for 
the phosphate solution concentration being high enough to potentially influence ikaite 

(2)R = k(Ω − 1)n,

Fig. 4  CMFR growth rates of ikaite as a function of saturation ratio. The dashed line represents the linear 
regression of the growth rates
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growth as well. Ikaite growth, however, was not noticeably influenced by the added phos-
phate, which supports the results of Bischoff et al. 1993b, who revealed no detectable inhi-
bition of ikaite crystallization by phosphate, while the precipitation of calcite, aragonite 
and vaterite was suppressed. Although the growing ikaite crystals led to a detectable Ca 
withdrawal in our calcite-seeded experiments, the impossibility of normalizing this with-
drawal to the temporal development of the ikaite surface area disabled the calculation of 
ikaite growth rates. Thus, surface area normalized growth rates could be derived from 
ikaite-seeded experiments exclusively (Ika_1–Ika_4).

A plot of ikaite growth rates as a function of the corresponding saturation sate of the 
aqueous solutions with respect to this phase (Ωikaite) revealed a linear dependence of rates 
on supersaturation (Fig. 4). Our growth rate constant (k = 0.10 ± 0.03 µmol/m2/s) is higher 
than the rate constant of approx. 0.03 µmol/m2/s determined by Papadimitriou et al. (2014) 
which was derived from precipitation in seawater and seawater-derived brines at salini-
ties S = 66 ‰ (T = − 3.6  °C) and S = 102 ‰ (T = − 5.9  °C). The increased value in our 
study relative to the one published by Papadimitriou et al. (2014) might be explained by 
different solution conditions. Although Papadimitriou et  al. (2014) did not detect a sig-
nificant difference of rate constants within their salinity and temperature interval, our rate 
constant obtained from solutions with tremendously lower salinity and slightly higher tem-
perature (ionic strength of 0.1  M corresponding to S ≈ 6‰, T =  + 1.0  °C) might point 
towards either a weak direct correlation of the rate constant with temperature or an inverse 
correlation of the constant with salinity or both. Whether the aqueous phosphate in our 
experiments compared those of Papadimitriou et al. (2014) influences ikaite growth can-
not be assessed as the phosphate concentrations of the poorly defined solutions used by 
Papadimitriou et al. (2014) are unknown.

The reaction order of n = 0.8 ± 0.3, which was derived from the empirical equation 
R = k(Ω − 1)n , points towards first-order reaction kinetics. This is in good agreement with 
the reaction order of n = 1.23 ± 0.42 obtained by Papadimitriou et al. (2014) and in contrast 
to growth kinetics of calcite in sea water at 25 °C. For the latter, the empirical rate equation 

Fig. 5  Logarithmic plot of ikaite growth rates as a function of degree of supersaturation with respect to 
ikaite. The linear regression drawn on the plot provides a reaction order n = 0.8 ± 0.3 and a rate constant 
k = 0.10 ± 0.03 µmol/m2/s for Eq. (2)
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frequently indicated second to third-order reaction kinetics (e.g. Burton and Walter 1990; 
Lopez et  al. 2009; Mucci 1986; Zhong and Mucci 1993). Furthermore, the presence of 
phosphate in artificial sea water led to a slight increase of the reaction order of calcite rela-
tive to that determined for phosphate-free solution (Mucci 1986). Such an increase of the 
reaction order can be ruled out for ikaite as phosphate does not retard ikaite growth in simi-
lar way to calcite growth (Bischoff et al. 1993b; Hu et al. 2015). For ikaite, the obtained 
first-order reaction kinetics for growth in phosphate-containing solutions implies a trans-
port or adsorption process as the rate controlling mechanism (e.g. Nielsen 1983). Although 
this macroscopic approach does not provide direct evidence for the growth rate controlling 
reactions, as microscopic surface processes may lead to deviations from the predictions 
of rate laws (Teng et al. 2000), a transport or adsorption-controlled growth mechanism is 
consistent with the way an extremely hydrated phase such as ikaite could grow. The classi-
cal model of calcite growth via attachment, dehydration and incorporation of growth units 
(e.g. Gratz et al. 1993; Morse et al. 2007) may not apply to ikaite as a complete dehydration 
of attaching species is not required. Ikaite growth might simply comprise an incorporation 
of a  CaCO3

0 ion pair together with six water molecules. Density functional theory (DFT) 
calculations of Chaka (2018) confirmed this low energy pathway of crystallization via the 
assemblage of aqueous  CaCO3

0 ×  6H2O ion pair complexes. This low energy pathway was 
further corroborated by low interfacial energies of ikaite nuclei (Strohm et al. 2022).

4.2  The Insignificance of Phosphate Uptake by Ikaite During Growth

In the CMFR growth experiments (saturation state 1.5 ≤ Ωikaite ≤ 2.9), measured phosphate 
concentrations revealed no evidence of phosphate incorporation into ikaite crystals. During 
ikaite seed synthesis, which was conducted at much higher supersaturation, a phosphate 
uptake cannot be ruled out per se as phosphate partitioning between precipitate and solu-
tion might be increasing at an increasing distance from equilibrium. Furthermore, a sig-
nificant withdrawal of aqueous phosphate concomitant to the onset of ikaite precipitation 
was observed in a laboratory study by Hu et al. (2014). However, any significant phosphate 
uptake of ikaite during our seed synthesis is questionable. Disintegration of ikaite causes 
the release of its weakly bonded water (e.g. Németh et al. 2022; Vickers et al. 2022). If 
phosphate had been taken up during ikaite seed synthesis, the subsequent transformation of 
the filtered ikaite seeds into calcite would have been taken place in a phosphate-containing 
solution. Within such a phosphate-containing solution, however, the formation of calcite 
is impeded, as even minor amounts of phosphate (1 µM) are known to interfere with the 
nucleation of calcite (Lin and Singer 2006). This inhibition of calcite nucleation and pro-
motion of ikaite appearance (or persistence) was found to apply at temperatures up to 25 °C 
(Clarkson et al. 1992). As the transformation of our filtered ikaite seeds into calcite took 
place without any problems, it can be assumed that the phosphate uptake from solution 
during seed synthesis due to coprecipitation with ikaite is likely very limited. Furthermore, 
it is noteworthy that the  [Ca2+]:[CO3

2−] ratio varied in our growth experiments (Ika_1: 
 [Ca2+]:[CO3

2−] ≈ 0.6, Ika_13:  [Ca2+]:[CO3
2−] ≈ 12). Thus, the results also show that a 

decreased  [CO3
2−] concentration does not promote substitution of carbonate by phosphate 

ions during ikaite growth. Substitution of these anions might be expected if carbonate and 
phosphate ions were competing for incorporation.

The lack of phosphate coprecipitation with ikaite contrasts with calcite. While lab-
oratory studies showed that calcite was capable of incorporating detectable amounts 
of phosphate from solution during growth (Hartley et al. 1997; House and Donaldson 
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1986; Ishikawa and Ichikuni 1981), phosphate coprecipitation is not observed during 
ikaite growth in our study. The distinct growth mechanisms of the different calcium 
carbonate phases might explain this discrepancy. The incorporation of adsorbed phos-
phate into calcite most likely occurs at active growth surface sites (House and Donald-
son 1986), which is in agreement with the classical model of calcite growth. Incorpora-
tion of phosphate ions into growing ikaite by substitution of carbonate ions, in contrast, 
might be less compatible with a growth mechanism via an assembling of hydrous 
 CaCO3

0 ion pair complexes.
In summary, there was no sign of phosphate uptake by ikaite from all the experiments 

performed in this study. This finding supports the results of Hu and Wang (2020), who 
did not obtain a detectable coprecipitation of phosphate with ikaite in samples grown 
in sea ice. Based on the experimental data, therefore, it needs to be taken into account 
that phosphate coprecipitation with ikaite in sea ice may not necessarily contribute sig-
nificantly to seasonal phosphate accumulations in Antarctic landfast and pack ice (e.g. 
Cozzi 2008; Fripiat et  al. 2017; Jones et  al. 2023; Meiners et  al. 2011). Even though 
ikaite formation in sea ice may occur with high temporal dynamics (Papadimitriou et al. 
2014; Rysgaard et al. 2014) and, thus, nucleation and growth conditions of ikaite in sea 
ice might not exactly match the conditions of this study in all respects, the absence of 
any signs of phosphate uptake by ikaite rather supports the importance of previously 
proposed biotic pathways like phosphate remineralization in biofilm microenvironments 
and phosphate accumulation due to sea ice algae (Fripiat et  al. 2017; van der Linden 
et al. 2020).

5  Conclusions

The presence of phosphate in the aqueous solutions revealed no detectable impact on 
the growth of ikaite for the experimental conditions tested in this study. An uptake of 
significant amounts of phosphate can be precluded at low supersaturation conditions 
(1.5 ≤ Ωikaite ≤ 2.9). Furthermore, a retardation of growth, as known from calcite growth 
studies, was not evident for ikaite. Measured growth rates of ikaite indicated a first-
order rate law which supports a growth mechanism different from anhydrous calcium 
carbonate minerals involving a dominant role of the attachment of hydrous  CaCO3

0 
complexes. This growth mechanism is suggestive of a low energy pathway, which does 
not require extensive dehydration of attaching species and likely does not allow for sub-
stantial substitution of carbonate by phosphate ions.
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