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ABSTRACT
To advance the foundation of one-particle reduced density matrix functional theory (1RDMFT), we refine and relate some of its fundamental
features and underlying concepts. We define by concise means the scope of a 1RDMFT, identify its possible natural variables, and explain
how symmetries could be exploited. In particular, for systems with time-reversal symmetry, we explain why there exist six equivalent uni-
versal functionals, prove concise relations among them, and conclude that the important notion of v-representability is relative to the scope
and choice of variable. All these fundamental concepts are then comprehensively discussed and illustrated for the Hubbard dimer and its
generalization to arbitrary pair interactions W. For this, we derive by analytical means the pure and ensemble functionals with respect to
both the real- and complex-valued Hilbert space. The comparison of various functionals allows us to solve the underlying v-representability
problems analytically, and the dependence of its solution on the pair interaction is demonstrated. Intriguingly, the gradient of each universal
functional is found to always diverge repulsively on the boundary of the domain. In that sense, this key finding emphasizes the univer-
sal character of the fermionic exchange force, recently discovered and proven in the context of translationally invariant one-band lattice
models.
© 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0143657

I. INTRODUCTION

The v-representability problem plays a pivotal role in func-
tional theory, especially from a historical point of view: The
Hohenberg–Kohn theorem1–3 proves the existence of a universal
functional on the set of exactly those densities that correspond to
pure ground states. The same holds true for Gilbert’s generalization4

to non-local external potentials v and the corresponding domain
of one-particle reduced density matrices (1RDMs). Particularly, the
problem of understanding which 1RDMs are v-representable has
been perceived as too complex, and the relaxation of the functional’s
domain to the set of N-representable 1RDMs was vital for the
development of 1RDM-functional theory (1RDMFT).5,6 Yet, the
relaxation of the domain first to pure N-representable5 and then to
ensemble N-representable 1RDMs6 comes at a cost that has been
underestimated so far. As it is illustrated in Fig. 1, reducing the

complexity of the functional’s domain, in turn, increases the dif-
ficulty of deriving functional approximations. To be more specific,
by resorting to Levy’s pure state 1RDMFT, one includes in the con-
strained search formalism unphysical N-particle quantum states that
never occur in nature as ground states. Hence, resorting to our intu-
ition about ground state physics becomes less effective, and fitting
approaches need to be extended beyond the solution of ground state
problems. Circumventing then according to Valone, the resulting
highly intricate pure state N-representability constraints (general-
ized Pauli constraints)7–9 necessitates the implementation of non-
linear positivity conditions on the N-particle ensemble states. In
particular, compelling evidence has recently been provided that the
complexity of the generalized Pauli constraints is merely shifted
from the functional’s domain to the universal functional itself.10

These unpleasant consequences of reducing the domain’s complex-
ity and the recent development of machine learning techniques call
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FIG. 1. Picking one’s poison in 1RDMFT
(qualitative consideration): By chang-
ing the employed variant of 1RDMFT
(Gilbert, Levy, or Valone), the complexity
is interchanged to some degree between
the functional’s domain and the task of
deriving functional approximations (see
text for more details).

for a more thorough assessment of the original 1RDMFT approach
by Gilbert with an emphasis on the v-representability problem and
its complexity.

The main goal of this work is to elaborate on the v-
representability problem and its relation to other fundamental fea-
tures and concepts in 1RDMFT. Accordingly, we complement all
the recent theoretical investigations of 1RDMFT11–32 and hope that
our insights could guide the intense development of novel func-
tionals and their implementations.33–51 To achieve this, as a first
key achievement, we introduce the so-called scope of a functional
theory. This novel concept will be vital for our general understand-
ing since it identifies a functional variable in a concise way. By
focusing then on time-reversal symmetric Hamiltonians, we make
a crucial observation with far-reaching consequences: the notion
of v-representability is relative and depends, in complete analogy
to 1RDMFT, on the scope, the variable, and the optional reduc-
tions of the constrained search to pure and real-valued quantum
states. By recalling a well-known geometric interpretation of the
Legendre–Fenchel transformation, we establish a fruitful connec-
tion between the notion of v-representability and the form of the
universal functional. This clearly demonstrates that several crucial
concepts in 1RDMFT are connected. In order to discuss and illus-
trate all these fundamental concepts, we then solve by analytical
means the Hubbard dimer and its generalization to arbitrary pair-
interactions. The former has been widely used in density functional
theory (DFT) and 1RDMFT to illustrate conceptual aspects and test
functionals for larger lattice systems.10,33,52–66 In particular, we show
that 1RDMs that are not v-representable with respect to real-valued
Hamiltonians indeed become v-representable if a complex-valued
Hilbert space is considered. The comparison of our work to previous
ones53,61 also demonstrates that the scope of questions in 1RDMFT
that allow for analytical and, thus, fully conclusive answers has been
underestimated so far.

This paper is structured as follows: In Sec. II, we refine and
relate important conceptual aspects of 1RDMFT and, in particu-
lar, provide a comprehensive discussion of v-representability. All
these fundamental aspects are then illustrated and discussed for
the Hubbard dimer in Sec. III, and its generalization to arbitrary
pair-interaction is discussed in Sec. IV.

II. FOUNDATIONAL ASPECTS OF 1RDMFT
In this section, we introduce in detail the conceptual aspects

of 1RDMFT required for the analytic study of the Hubbard dimer
model in Sec. III and its generalization in Sec. IV. On the one

hand, this means to recall well-known concepts and, on the other
hand, to refine them and to introduce new ones. A prime exam-
ple for the latter will be the definition of the scope of a functional
theory and a rigorous argument that identifies the related natural
variables.

A. Pure and ensemble universal functionals
In order to keep our work self-contained, we first recap Levy’s5

pure and Valone’s6 ensemble 1RDMFT and introduce some nota-
tion that is used throughout this paper. The N-fermion Hilbert

space HN≡ ∧NH1 has (complex) dimension D = (d

N
), where H1 is

the underlying d-dimensional complex one-fermion Hilbert space.
The set of all N-fermion density operators Γ on HN is denoted by
E N . By definition, Γ ∈ E N is self-adjoint, positive semidefinite, and
TrN[Γ] = 1. The boundary points of the compact and convex set E N

are given by all those density operators that are not strictly positive,
i.e., at least one of their eigenvalues vanishes. Moreover, the extremal
elements of E N are given by the idempotent density operators Γ2 = Γ,
which constitute the set P N of all pure N-fermion density oper-
ators. Then, according to the Krein–Milman theorem,67 E N is the
convex hull of its extremal elements. The sets of corresponding one-
particle reduced density operators γ are obtained by tracing out
N − 1 fermions of the elements Γ of the respective sets of N-fermion
density operators,

P 1
N ≡ N TrN−1[P N], (1)

E 1
N ≡ N TrN−1[E N]. (2)

We refer to a 1RDM in P 1
N as being pure N-representable and to

those in E 1
N as being ensemble N-representable.

As a first scientific accomplishment, we provide in the following
a concise motivation and derivation of 1RDMFT. For this, we con-
sider a fixed pair-interaction W and introduce the corresponding
(affine) class of total Hamiltonians of the form

H(h) ≡ h +W, (3)

which are parameterized by the one-particle Hamiltonian h. The
latter takes in the first quantization the form

h ≡ h(h1) ≡ h1 ⊗ 𝟙⊗N−1 + ⋅ ⋅ ⋅ + 𝟙⊗N−1 ⊗ h1, (4)

with some suitable h1 acting on H1. As a novel scientific concept,
we interpret the class (3) as the scope of the resulting functional
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theory. This scope could be reduced by restricting h to a subspace,
e.g., by considering only operators h that exhibit certain additional
symmetries.

If we do not restrict h, the full 1RDM γ represents the conjugate
variable in a natural and mathematical concise sense: In virtue of the
Riesz representation theorem applied to the linear map,

h1 ↦ TrN[h(h1)Γ] ≡ ⟨h(h1), Γ⟩HS,N

= Tr1[h1γ] ≡ ⟨h1, γ⟩HS,1, (5)

the 1RDM γ follows as the unique “Riesz vector” for which the equal-
ity TrN[h(h1)Γ] = ⟨h1, γ⟩HS,1 holds for all h1. Here, we introduced
the Hilbert–Schmidt inner product ⟨A, B⟩HS,m ≡ Trm[A†B] on the
space of linear operators acting on H⊗m

1 . An appealing aspect of
our novel and mathematically concise reasoning is that it identifies
the simplest reduced state of Γ, which is still sufficient for calculat-
ing the expectation values of any one-particle Hamiltonian h. It is
also worth noting that any restriction of the vector space of all one-
particle Hamiltonians h to a subspace would directly yield via (5) a
new and simpler conjugate variable with fewer degrees of freedom
than the full 1RDM. For instance, if we restricted to h ≡ h(v) ≡ t + v
for some fixed kinetic energy operator t and variable external poten-
tial v, this general reasoning would yield the particle density as the
conjugate variable. Moreover, the reduced state/conjugate variable
identified via the Riesz representation theorem has the number of
degrees of freedom as the variable h, reduced by one because of the
normalization of quantum states.

After having chosen an interaction W in (3) (e.g., the Coulomb
pair-interaction), the ground state 1RDM and the ground state
energy follow from the Levy–Lieb constrained search,5,6,68

E(h) = min
Γ

TrN[(h +W)Γ]

= min
γ
[Tr1[h1γ] +min

Γ↦γ
TrN[WΓ]]

≡ min
γ
[Tr1[h1γ] + F(γ)]. (6)

This, in turn, defines the universal functional F(γ) and, thus, estab-
lishes a 1RDMFT. The minimizations in Eq. (6) can either refer to all
states Γ ∈ E N or just the pure states Γ ∈ P N . This immediately leads
to the distinction of the universal pure/Levy functional F (p),

F (p)(γ) = min
P N
∋Γ↦γ

TrN[WΓ], (7)

with (non-convex) domain P 1
N , and the universal ensemble/Valone

functional F (e) on the convex domain E 1
N . Intriguingly, F (e) and

F (p) are related through10

F (e) = conv(F (p)), (8)

where conv(⋅) denotes the lower convex envelope. As it has been
outlined in the Introduction, each of the two 1RDMFT variants
has relative advantages and disadvantages. In the development of
functional approximations, it is a matter of preference whether one
would like shift a part of the complexity of the ground state problem
from the universal functional into the functional’s domain or not.

B. Optional reductions: Real (R) vs complex (C)
In this section, we present another key result of our work. First,

we recall that time-reversal symmetric systems could be described
by real-valued quantum states. We then explain that this symme-
try effectively simulates a binary degree of freedom, which, in turn,
introduces in pure state 1RDMFT a certain degree of mixedness
through the constrained search formalism. As a consequence, the
choice of a natural variable is not unique, and the same holds true
for the definition of the universal functional.

Quantum systems with time-reversal symmetry are of cen-
tral importance in physics and chemistry. Most common appli-
cations of 1RDMFT so far even consider Hamiltonians H, which
exhibit a conventional time-reversal symmetry T, i.e., [H, T] = 0 and
T2 = 1.70,89 For the class of all such Hamiltonians on a given Hilbert
space H, one can construct a (non-unique) basis B of time-reversal
invariant orthonormal states with respect to which every H takes the
form of a real-valued matrix.70 Consequently, the energy minimiza-
tion in the Ritz variational principle can then be restricted to pure
or ensemble density matrices, which are real-valued with respect to
B. If we do not like to restrict to real-valued quantum states, we can
interpret any pure state ∣Ψ⟩ ∈ H ≅ CD as a spinor-like object of the
form

∣Ψ⟩ =̂
⎛
⎜
⎝

a∣Ψr⟩
b∣Ψi⟩

⎞
⎟
⎠

, (9)

with a2 + b2 = 1, a, b ∈ R. The latter condition denotes the difference
to the spin-1/2 degree of freedom, where, in general, a, b ∈ C. In
Eq. (9), ∣Ψr⟩ and ∣Ψi⟩ denote the real and imaginary part defined
with respect to the reference basis B, respectively. The identification
(9) is nothing else than aB-induced isomorphism forCD ≅ RD ⊗R2.
Accordingly, we can define the linear map TrR2[⋅] that traces out the
degree of freedom, which corresponds to the complex-valuedness
of the state ∣Ψ⟩, i.e., TrR2[∣Ψ⟩⟨Ψ∣] = a2∣Ψr⟩⟨Ψr ∣ + b2∣Ψi⟩⟨Ψi∣. This
finally leads to the observation that pure states in CD can
be described by real density matrices on RD of rank less or
equal to 2.

In our case of N-fermion quantum systems with conventional
time-reversal symmetry, we may apply the above reasoning to both
the one-particle Hamiltonian h1 (here as an operator on the one-
particle Hilbert space H1) and to the Hamiltonian and its individ-
ual parts acting on the N-fermion Hilbert space HN ≡ ∧NH1. In
practice, these two applications can be made compatible, and in par-
ticular, the former one implies the latter: For the class of all one-
particle Hamiltonians h1 on H1, we introduce an orthonormal
reference basis B1 = {∣φ j⟩}d

j=1 with respect to which all h1 take
the form of real-valued matrices. The basis B1 then induces the
orthonormal reference basis BN of Slater determinants with respect
to which the total Hamiltonian H and its parts h ≡ h(h1), W are real-
valued. Actually, the latter would also be true for any basis B ′N whose
elements are real-valued linear combinations of Slater determinants
(e.g., spin-configuration states).

The consequences of restricting 1RDMFT to Hamiltonians
H(h) with conventional time-reversal symmetry are then twofold.
First, as it has been explained in Sec. II A, this restriction of h1 and h,
respectively, allows one to reduce the natural variable from the full
1RDM γ̃ ∈ Cd×d to its real part, which we denote in the following by
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γ ≡ Re(γ̃) ∈ Rd×d, w.r.t.B1, (10)

where B1 denotes a suitable reference basis for H1, as described
above. It is worth recalling here that the eigenvalues of the 1RDMs
corresponding to non-degenerate ground states of time-reversal
symmetric Hamiltonians are pairwise degenerate.71 This mathemat-
ical implication thus played an important role in the analysis of the
(quasi)pinning effect.72,73 Second, if one follows the paradigm of
irreducibility by resorting to γ as the natural variable, one can in
addition restrict the search space in the constrained search (6) to
density matrices, which are real-valued with respect to BN . These
two reductions of 1RDMFT are optional, and by realizing them
or not and by employing either the Levy/pure or Valone/ensemble
variant, one could choose among six possible universal function-
als. We list all of them together with their defining characteristics
in Fig. 2. There, the first column explains whether the class of one-
particle Hamiltonians respects conventional time-reversal symmetry
or not, the second one indicates the potential reduction of the vari-
able according to Eq. (10), and the fourth one indicates the optional
choice of restricting the constrained search to real-valued states. The
convention of the six universal functionals is as follows: If the func-
tional depends on the full, complex-valued 1RDM γ̃, we add a tilde
(F̃) and otherwise not. The reference in the constrained search (6)
to real- or complex-valued density matrices is indicated by the index
R/C, and the one to pure or ensemble states is indicated by the
superscript (p/e).

We conclude this section by presenting another key result of
our work. To be more specific, we discover and explain that all
six universal functionals are related to each other. According to
the Levy–Lieb constrained search (6), F(p/e)C is related to F̃ (p/e)C
through [recall Eq. (10)]

F(p/e)C (γ) ≡ min
Im(γ̃)

F̃ (p/e)C (γ̃). (11)

Hence, F(p/e)C can be obtained directly from F̃ (p/e)C through a min-
imization with respect to the imaginary part of γ̃. Moreover, the
relation

F(p)C (γ) ≤ F(p)R (γ) (12)

follows immediately from (6) as well. Finally, the three function-
als F̃ (p)C , F(p)C , F(p)R are related to their Valone/ensemble-partner

FIG. 3. Illustration of the relations between the six universal functionals introduced
in the text and listed in Fig. 2. They hold for any system of arbitrary size, which
exhibits conventional time-reversal symmetry (see text for more details).

functionals F̃ (e)C , F(e)C , F(e)R through the lower convex envelop.10

This, in turn, implies that

F(e)C (γ) = F(e)R (γ). (13)

Various relations among the six functionals are illustrated in Fig. 3.
In Secs. III and IV, we will derive these functionals for the specific
Hubbard dimer with on-site and generic interactions, respectively.

C. General discussion of the v-representability
problem
1. Variants of v-representability problem

The discussion in Sec. II B implies that also the concept of
v-representability is relative: It refers to a pre-defined scope of a
functional theory and the choice of a corresponding variable. To
explain this absolutely vital aspect of our work, we consider the
sequence,

H ↦ ∣Ψ⟩↦ γ, (14)

where H is some Hamiltonian on a fixed Hilbert space H, ∣Ψ⟩ is
its ground state, and γ—in the most general context—is just some
reduced information of ∣Ψ⟩, which is obtained by applying a fixed
linear map to ∣Ψ⟩⟨Ψ∣. Obviously, the set of γ that one can reach by
varying H in (14) over a certain subset S of all Hermitian operators
on H depends on the choice of S. In a similarly obvious fashion, this
sought-after set depends on the precise definition of γ, e.g., whether
the latter is the 1RDM or particle density (in case of a system of
N-identical particles) or more generally just the expectation values
of a collection of distinctive observables. A comment is in order
here concerning Hamiltonians in S with degenerate ground states.

FIG. 2. Overview of some of our conceptual key results: Optional choices can be made in case of real-valued Hamiltonians (conventional time-reversal symmetry): First, one
may follow the paradigm of irreducibility and reduce the functional’s variable from the full complex-valued 1RDM γ̃ ∈ Cd×d to γ ≡ Re(γ̃) ∈ Rd×d , and second one may then
restrict in addition the constrained search to real-valued N-particle quantum states. The relation among the six possible functionals is explained in Fig. 3.
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For them, one would just extend the notion (14) by considering
all sequences (14) involving any possible ground states ∣Ψ⟩ in the
degenerate subspace. This resembles also the important fact that the
original theorems due to Hohenberg–Kohn1,74 in DFT and Gilbert4

in 1RDMFT extend straightforwardly to degenerate pure ground
states.2,3

As another key result of this work, the application of these
general considerations to 1RDMFT for Hamiltonians (3) with a
(conventional) time-reversal symmetry leads to four different mean-
ingful notions of pure state v-representability. As it is illustrated
in Fig. 4, the chosen scope might be either the complex- or real-
valued one-particle Hamiltonians h. In the case of the latter, one
may restrict the 1RDM γ̃ to its real-part γ according to (10) and
then optionally consider only real-valued N-fermion states in the
constrained search formalism (6). This again demonstrates that the
notion of pure state v-representability is a relative concept. More-
over, in analogy to DFT (see, e.g., Refs. 75 and 76), one may
even allow for mixed ground states in (14) for degenerate Hamil-
tonians. In turn, this yields in the same fashion as for pure state
v-representability four notions of ensemble state v-representability.
In principle, the resulting eight sets could be denoted by Ṽ C/R

p/e ,

V C/R
p/e , where the tilde indicates that the set refers to γ̃ rather than

γ. By definition, 1RDMs γ̃ ∈ Ṽ C/R
p/e , and analogously for γ ∈ V C/R

p/e , are
referred to as being real/complex pure/ensemble v-representable. In
Secs. III C and IV B, however, we will simplify those symbols to just
Vp/e since it will be always clear from the context to which of the
eight sets we are actually referring to.

2. Relation between v-representability
and universal functional

We first recall that according to the last line of Eq. (6), the cal-
culation of the ground state energy E(h) through 1RDMFT can be
interpreted (up to minus signs) as a Legendre–Fenchel transforma-
tion of the universal functional.10 This and all the following com-
ments made in this section are equally valid for all universal func-
tionals shown in Fig. 2, and thus, we introduce the simplified symbol
F (p/e) to represent any of them. As it is illustrated in Fig. 5, there
is a simple geometric interpretation of the Legendre–Fenchel trans-
formation and the calculation of E(h), respectively:10 The underly-
ing minimization means nothing else than shifting the hyperplane

FIG. 4. Our novel and more systematic perspective on 1RDMFT reveals that
v-representability is a relative concept: it refers to the scope (set of variables
h1) and the choice of the corresponding conjugate variable. For time-reversal
invariant systems, this yields in the context of 1RDMFT four variants, Cd×d ∋ h1
↦ γ̃, Rd×d ∋ h1 ↦ γ̃, and Rd×d ∋ h1 ↦ γ, where the latter may involve complex
(∣ΨC⟩) or real-valued (∣ΨR⟩) N-fermion ground states.

FIG. 5. Schematic illustration of the energy minimization and pure state v-
representability for the pure universal functional F (p), which is defined on the
set P 1

N (red and blue). The red area between the two red dashed lines depicts the
set of non-pure state v-representable 1RDMs (see text for more details).

defined by Tr1[h1γ] = const upward until it touches the graph of
the functional F(p/e). The corresponding intercept with the verti-
cal axis coincides (up to a minus sign) with the ground state energy
E(h), and the horizontal coordinate of the touch point is the cor-
responding ground state 1RDM. In case the graph of F(p/e) is not
convex or contains flat parts, there are corresponding h1 leading
to more than one touch point. This, in turn, means that the cor-
responding Hamiltonian H(h) has a degenerate ground state space
and, thus, can lead according to the sequence (14) to more than one
ground state 1RDM. For instance, in the exemplary case of h1 = h(1)1 ,
the ground state 1RDM is unique, whereas for h(2)1 , the hyperplane
touches F (p) at two distinct points indicated by the black dots. In
particular, all 1RDMs between the two red dashed lines are not pure
state v-representable since they cannot be obtained as touch points
with the graph of F (p) for any choice of the one-particle Hamil-
tonian. Accordingly, the notion of pure state v-representability is
strongly linked to the form and more specifically the non-convexity
of the pure functional F (p): A 1RDM γ is pure state v-representable
if and only if the pure functional and its lower convex envelop (the
corresponding ensemble functional) coincide at that point γ, i.e.,
F (p)(γ) = conv(F (p))(γ). In particular, this also means that the
existence of not pure state v-representable sets of 1RDMs is tightly
bound to the presence of ground state degeneracies.10

The same reasoning actually applies also in the context of
ensemble 1RDMFT, yet with one crucial difference. Since the
ensemble functional F (e) is convex, any 1RDM in the interior of
the domain E 1

N is ensemble state v-representable. This is in strik-
ing contrast to 1RDMs on the boundary of E 1

N . For instance, for
arbitrary translationally invariant one-band lattice models,18 the so-
called fermionic exchange force (or Bose–Einstein condensation
force for bosons25,77,78) repels the 1RDM from the boundary ∂E1

N
(and ∂P 1

N in pure 1RDMFT). Hence, 1RDMs on the boundary of the
functional’s domain are not pure/ensemble state v-representable,
except for the non-generic case of a vanishing prefactor of the
exchange force. Although there is little doubt that these implications
are valid also for non-translationally invariant models—compelling
evidence follows from the work in Refs. 79–81—no rigorous proof
has been found so far. It will therefore be one of the crucial con-
tributions of our work to confirm the existence of the fermionic
exchange force for the class of all generalized Hubbard dimer
models.
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In summary, it is exactly the close relation between convex-
ity of the universal functional and pure state v-representability that
will play a central role for the discussion of the v-representability
problem for the Hubbard dimer in Secs. III and IV.

III. HUBBARD DIMER WITH ON-SITE
INTERACTION—SINGLET SUBSPACE

In the following, we provide an analytical discussion of the
six universal functionals introduced in Sec. II B for the Hubbard
dimer with on-site interaction. In particular, to complement the
results obtained in Ref. 61, we derive analytically the functional
F(p)C , namely, by exploiting geometric aspects of the set of density
matrices. Finally, we discuss the relations among the functionals and
relate our findings to the concept of v-representability, as it has been
outlined in Sec. III C.

A. Recap of the derivation of F(p)R

To keep our paper self-contained, we recap in this section the
derivation of the universal functional F(p)R for real-valued wave
function as it was already derived, e.g., in Refs. 56 and 61. Further-
more, similar concepts will be required in Sec. III B to derive the uni-
versal functional for complex-valued wave functions by analytical
means.

The anisotropic Hubbard dimer with on-site interaction is
described by the Hamiltonian

H = − t∑
σ=↑,↓
(c†1σc2σ + c†2σc1σ) + ∑

σ=↑,↓
(ϵ1n1σ + ϵ2n2σ)

+U(n1↑n1↓ + n2↑n2↓), (15)

where the first term describes hopping with strength t of electrons
with spin σ =↑, ↓ between the left and right site and U is the on-site
interaction. Moreover, niσ = c†iσciσ denotes the occupation number
operator, which involves the fermionic annihilation (creation) oper-
ators ciσ (c†iσ) acting on site i = 1, 2. Note that we skip the commonly
used hat symbol on the operators niσ since we will not use the
same symbol for the operators and their expectation values. Con-
sequently, to relate this to the context of 1RDMFT, the last term
in Eq. (15) describes the fixed pair-interaction W, and the first two
terms constitute the variable one-particle Hamiltonian h.

In the following, we consider the asymmetric Hubbard dimer,
which means that we allow for an asymmetric external poten-
tial introduced by the second term in Eq. (15), which allows for
ϵ1 ≠ ϵ2. At half-filling, N = 2, we restrict the N-fermion Hilbert space

HN≡ ∧NH1 of dimension D = (d

N
) = 6 to the three-dimensional sin-

glet subspace containing the ground state. In the singlet subspace,
spin-symmetry furthermore implies that γ̃i j ≡ ⟨i↑∣γ̃∣ j↑⟩ = ⟨i↓∣γ̃∣ j↓⟩,
i, j = 1, 2. Thus, the 1RDM γ̃ is block-diagonal with respect to the
spin, and the two non-vanishing blocks γ̃ ↑, γ̃ ↓ are equal, γ̃ ↑ = γ̃ ↓.
Therefore, we will effectively consider only one of them and denote it
for the sake of simplicity by γ̃ as well, where now Tr1[γ̃] = 1 instead
of Tr1[γ̃] = 2. The same is assumed for the related γ ≡ Re(γ̃). More-
over, the two sets of 1RDMs defined in Eqs. (1) and (2) are equal,
that is, P 1

2 = E 1
2.82 As an orthonormal reference basis B = {∣Φi⟩}3

i=1
for the singlet subspace, we choose

∣Φ1⟩ = c†1↑c
†
1↓∣0⟩,

∣Φ2⟩ = c†2↑c
†
2↓∣0⟩,

∣Φ3⟩ = (c†1↑c
†
2↓ − c†1↓c

†
2↑)∣0⟩/

√
2,

(16)

where ∣0⟩ denotes the vacuum state. Due to the positivity condition
of the 1RDM γ̃, the set P 1

2 = E 1
2 is characterized by the condition61

(γ̃ 11 −
1
2
)

2
+ ∣γ̃12∣2 ≤

1
4

. (17)

In the following, we interpret occasionally the 1RDM γ̃ as a vec-
tor in R3 with independent entries [γ̃11, Re(γ̃12), Im(γ̃12)] and its
real-part γ ≡ Re(γ̃) as a vector in R2 with independent entries
(γ11, γ12) = (γ̃11, Re(γ̃12)).

If we deal with real-valued 1RDMs γ, their set is again described
by relation (17). In that case, this leads to the disk illustrated in Fig. 6.
Instead of Cartesian coordinates (γ11, γ12), we may also represent γ
in polar coordinates R and φ. As it is illustrated in Fig. 6, R then
denotes the distance of the 1RDM γ to the boundary of the set P 1

2
and φ is the corresponding polar angle. Expressing the two inde-
pendent matrix elements of the 1RDM, γ11 and γ12, in the polar
coordinates R, φ yields

γ11 = [1 + (1 − 2R) cos (φ)]/2,
γ12 = (1 − 2R) sin (φ)/2.

(18)

To recap the common 1RDMFT approach to the Hubbard
dimer, we recall that the underlying Hamiltonian (15), in particular,
its one-particle term h, is time-reversal symmetric. As it is explained
in Sec. II B, this allows one to first reduce the functional’s variable
from the full 1RDM γ̃ to its real part γ ≡ Re(γ̃) and then to restrict
the constrained minimization of ⟨Ψ∣W∣Ψ⟩ to pure states,

∣Ψ⟩ = a∣Φ1⟩ + b∣Φ2⟩ + c∣Φ3⟩, (19)

with real coefficients a, b, c ∈ R. It is then a straightforward exercise
to show that the corresponding functional F(p)R for the Hubbard
dimer (15) with (19) is given by83

FIG. 6. Illustration of the set P 1
2 = E 1

2 of pure and ensemble N-representable
real-valued 1RDMs γ = (γ11, γ12) and their polar coordinates R and φ.
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F(p)R (γ) = U
(γ11 − 1

2)
2 + 1

2 γ2
12[1 − sgn (U)

√
1 − 4(γ11 − 1

2)
2 − 4γ2

12]

(γ11 − 1
2)

2 + γ2
12

. (20)

We illustrate F(p)R in the left panel of Fig. 7. Note
that F(p)R = 0 at (γ11, γ12) = (1/2, 0), and thus, the functional
is lower semi-continuous84 at this point. This is, in partic-
ular, relevant from a conceptual and mathematical point of
view since this ensures that the minimum of the energy func-
tional Tr1[h1γ] + F(p)R (γ) is attained for every choice of h1.
As a consequence of Eq. (8),10 the knowledge of (20) is suffi-
cient to construct, at least, in principle, the ensemble functional
F(e)R , namely, as the lower convex envelope of F(p)R . Yet, it is
worth noticing that the numerical calculation of a lower con-
vex envelope in larger dimensions represents a rather involved
problem.

B. Analytic derivation of universal functionals
for complex-valued wave functions

In the following, we derive first the functional F̃ (p)C (γ̃) and
afterward the two functionals F(p/e)C (γ) for the Hubbard dimer with
on-site interaction described by the Hamiltonian in Eq. (15). The
functional F̃ (p)C is obtained by minimizing ⟨Ψ∣W∣Ψ⟩ over all pure
N-fermion states of the form in Eq. (19) with complex coefficients
a, b, c ∈ C, and ∣Φ1⟩, ∣Φ2⟩, and ∣Φ3⟩ are given by Eq. (16). For the
crucial expectation value of the interaction W = U(n1↑n1↓ + n2↑n2↓),
one finds

TrN[W∣Ψ⟩⟨Ψ∣] = U(1 − ∣c∣2). (21)

Since ∣c∣ turns out to be decoupled from the phase of γ̃12, it directly follows that F̃ (p)C is independent of the phase of γ̃12. Finally, one
finds (see Appendix A)

F̃ (p)C (γ̃) = U
(γ̃ 11 − 1

2)
2 + 1

2 ∣γ̃12∣2[1 − sgn (U)
√

1 − 4(γ̃ 11 − 1
2)

2 − 4∣γ̃12∣2]

(γ̃ 11 − 1
2)

2 + ∣γ̃12∣2
. (22)

In particular, we thus observe that (recall γ̃11 ∈ R)

F̃ (p)C (γ̃11, γ̃12) = F(p)R (γ̃11, ∣γ̃12∣). (23)

This simply means that F̃ (p)C is related to the well-known result
for F(p)R ; one just needs to replace γ12 by ∣γ̃12∣. According to
Eq. (8), the functional F̃ (p)C in Eq. (22) determines F̃ (e)C . The latter,

namely, follows as the lower convex envelop of the former. Thus, the
remaining universal functionals to be calculated are F(p/e)C .

To derive F(p)C according to Eq. (11), we first notice that
each state (19) with complex coefficients a, b, c can be sepa-
rated into its real and imaginary part [relative to the basis
states (16)],

∣Ψ⟩ = wr ∣Ψr⟩ + iwi∣Ψi⟩, (24)

FIG. 7. The universal functional F (p)
R (left) and F (p)

C (right) for the Hubbard dimer with U = 1.
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with wr ,wi ∈ R and w2
r +w2

i = 1. Since only the imaginary part of
∣Ψ⟩⟨Ψ∣ contributes to Im(γ̃12) and only the real part

Re(∣Ψ⟩⟨Ψ∣) = w2
r ∣Ψr⟩⟨Ψr ∣ +w2

i ∣Ψi⟩⟨Ψi∣ (25)

contributes to Tr [∣Ψ⟩⟨Ψ∣W] = ⟨Ψ∣W∣Ψ⟩, Eq. (11) together with the
definition of F̃ (p)C yields

F(p)C (γ) = min
Γ↦γ,

rank(Γ)≤2

TrN[WΓ]. (26)

Here, the minimization of the interaction energy is performed over
all real-valued density operators Γ with rank of at most 2.

The goal is now to show that F(p)C (26) equals the ensemble
functional F(e)R . For this, we first recall from Sec. II A that F(e)R
is obtained by minimizing the linear functional TrN[WΓ] over the
convex and compact set,

E 2(γ) ≡ {Γ ∈ E 2 ∣ Γ↦ γ}, (27)

of real-valued two-electron density operators Γ that map to the given
1RDM γ. Since the partial trace Tr1[⋅] is linear, the set E 2(γ) can
be interpreted as the intersection of the set E 2 with the hyperplane
described by Tr1[⋅] = γ. As a result, the boundary points of E 2(γ) are
of at most rank D − 1 (because they are, in particular, also bound-
ary points of E 2). Then, minimizing Tr2[WΓ] over all Γ ∈ E 2(γ)
means to shift a hyperplane whose normal vector is defined by
the interaction W (i.e., hyperplanes of constant interaction energy)
in direction −W until it touches the boundary of E 2(γ).10 Conse-
quently, to derive the ensemble functional F(e)R (γ), we can restrict
the minimization over all density operators to those that are of at
most rank D − 1. Comparing this with Eq. (26) reveals that the defi-
nitions of F(e)R and F(p)C coincide for D = 3. Since we have D = 3 for
the asymmetric Hubbard dimer restricted to the singlet subspace,
this observation finally leads to

F(p)C (γ) = F(e)R (γ). (28)

Thus, the universal functional F(p)C is equal to F(e)R and, therefore,
also equals the lower convex envelope of F(p)R .

The key result (28) already resembles an important conclusion
of our work: Whenever one adds “unnecessary” degrees of freedom
to HN in the constrained search formalism of Levy, one simulates
effectively a certain degree of mixedness. Indeed, since the interac-
tion W does not depend on the extra degrees of freedom, one can
trace them out again and obtain a mixed state on HN due to the pos-
sible entanglement between the extra degrees of freedom and those
of HN . In case of a sufficiently small-dimensional N-fermion Hilbert
space (as in the case of the Hubbard dimer), this even yields the
entire set of density operators and accordingly Valone’s constrained
search formalism. We also would like to stress that the derivation
of Eq. (28) does not require any knowledge of the interaction under
consideration and is merely based on the dimensionality of the sin-
glet subspace and the geometry of the set of density operators. In
particular, this means that the proof of Eq. (28) is equally valid for
the generalized Hubbard dimer in Sec. IV.

To obtain a closed form for the functional F(p)C (and F(e)R ),
one performs the minimization of F̃ (p)C (γ̃) with respect to the
imaginary part Im(γ̃12). This elementary exercise then leads to

F(p)C (γ11, γ12) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

U(1 − 2γ11) if γ2
12 ≤ γ11(1 − 2γ11),

U(2γ11 − 1) if γ2
12 ≤ γ11(3 − 2γ11) − 1,

F(p)R (γ11, γ12), otherwise.
(29)The above equation describes nothing else than the lower convex

envelope of F(p)R . We plot the universal functional F(p)C in the
right panel of Fig. 7. The result in Eq. (29) was first deduced from
numerical studies in Ref. 61, yet without providing any analytical
evidence. In contrast, our work has provided a complete analytic
proof through Eq. (28).

We present the relations among various functionals derived in
this section in Fig. 8.

C. Discussion of v-representability
Equipped with the six universal functionals derived in Sec. III B,

we now turn toward the v-representability problem and apply the
general concepts introduced in Sec. II C to the asymmetric Hubbard
dimer defined in Eq. (15). For this, we first recall the distinc-
tion between pure state and ensemble state v-representability from
Sec. II C.

First, we focus on the pure state v-representability problem,
which we solve by comparing the graphs of F(p)R and F(p)C = F(e)R .
Thereby, we complement the illustration of the non-v-representable
regions for F(p)R in Ref. 61 with a comprehensive discussion of v-
representability with respect to real-valued or complex-valued one-
particle Hamiltonians h. By restricting to conventional time-reversal
symmetric Hamiltonians, similar illustrations were obtained for the
Anderson model57 and general interactions by numerical means.53

In Fig. 9, we plot the functional’s domain P 1
N and illustrate the

set of 1RDMs, which are not pure state v-representable in green
for both F(p)R (left panel) and F(p)C (right panel). The set of all
pure state v-representable 1RDMs is shown in gray. For F(p)R (20),
there exist two solid green ellipses of 1RDMs γ, which are not pure
state v-representable, whereas for F(p)C , all [γ̃11, Re(γ̃12)] (except
the boundary) are pure state v-representable. It can be easily shown
that the equation of the two ellipses for F(p)R is given by

2γ2
12 + (2∣γ11 −

1
2
∣ − 1

2
)

2
= 1

4
. (30)

FIG. 8. Illustrations of various relations between the six universal functionals for
the Hubbard dimer and its generalizations (see text for more details).
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FIG. 9. Illustration of the non-v-representable subregions (green) of the set P 1
N

(gray and green) for the two universal functionals F (p)
R (γ) (left) and F (p)

C (γ)
(right).

Since the functional F(p)C is convex [recall Eq. (28) and Fig. 8], all
1RDMs in the interior of the underlying domain are according to
Sec. II C 2 indeed complex pure state v-representably. This is an
important insight that demonstrates again that v-representability is
a relative concept.

For both F(p)C and F(p)R , all points on the boundary of P 1
N ,

except the two points (γ11, γ12) = (0, 0), (1, 0), are neither real nor
complex pure state v-representable, as a direct result of the fermionic
exchange force.18 Since we are going to calculate this force for the
asymmetric Hubbard dimer with generic interactions in Sec. IV C
containing (15) as a special case, we skip its derivation here.

To discuss the last of the three pure functionals, we observe that
F̃ (p)C (γ) is not convex. This implies directly according to Sec. II C 2
that some of the complex pure state N-representable 1RDMs γ̃ are
not complex pure state v-representable. To clarify this aspect, let us
now consider a 1RDM γ, which is not real pure state v-representable
but complex pure state v-representable. Then, it follows that the
1RDM γ̃↦ γ obtained from the minimization in Eq. (11) has a
non-zero imaginary part.

We can explicitly determine this imaginary part by construct-
ing the degenerate complex-valued N-particle state. In the case of
F(p)R , there exists an h such that the two 1RDMs,

γ(1) = ∣2⟩⟨2∣, γ(2) = 1
2
(∣1⟩⟨1∣ + ∣2⟩⟨2∣), (31)

following from the quantum states ∣2↑, 2↓⟩ and 1
√

2
(∣1↑, 2↓⟩

− ∣1↓, 2↑⟩), respectively, correspond to the same ground state energy.
Therefore, also a superposition

∣Ψ⟩ = x∣2↑, 2↓⟩ ±
√

1 − ∣x∣2 1√
2
(∣1↑, 2↓⟩ − ∣1↓, 2↑⟩) (32)

leads to the same ground state energy. Since x = ∣x∣eiφ ∈ C with
∣x∣ ∈ [0, 1] in Eq. (32), we obtain

γ̃11 =
1
2
(1 − ∣x∣2)

γ̃12 = ±
1√
2

x
√

1 − ∣x∣2 = ± 1√
2
∣x∣eiφ

√
1 − ∣x∣2

≡ Re(γ̃12) + i Im(γ̃12)

(33)

and similarly for the second ellipse. By varying ∣x∣ and setting
φ = 0, one obtains the ellipses in the (γ11, γ12) plane, which define
the non-v-representable 1RDMs in the case of F(p)R . However, for

φ ≠ 0, we can reach any point (γ11, γ12) inside the ellipse such that
(33) is satisfied.

Since the three ensemble functionals F̃ (e)C , F(e)C , and F(e)R are
convex, all 1RDMs in the interior of the respective functional’s
domain are ensemble v-representable as anticipated in Sec. II C 2.
In analogy to F(p)C and F(p)R , the 1RDMs at the boundary of the
functional’s domain are not ensemble v-representable [except for
(γ11, γ12) = (0, 0), (1, 0)] due to the fermionic exchange force. As
explained in Sec. II C, the 1RDMs that are not pure but ensemble
state v-representable correspond to degenerate ground states.

IV. GENERALIZED HUBBARD DIMER-SINGLET
SUBSPACE

Exact closed expressions for universal 1RDM-functionals of
model systems, such as the ordinary Hubbard dimer, are quite
rare but then frequently used to illustrate conceptual aspects of
1RDMFT.10,33,53–56,61 It is therefore one of the main achievements
of this paper to derive analytically some of the universal function-
als (in particular, F(p)R ) for the Hubbard dimer with generalized
pair-interactions W. This will also allow to confirm conclusively
that the subsets of non-v-representable 1RDMs strongly depend on
the interaction W between the particles as it has been proposed in
Ref. 53 based on numerical investigations.

As for the Hubbard dimer with on-site interaction, we choose
as orthonormal reference basis the three states in Eq. (16). Then, the
most general isotropic, reflection symmetric interaction reads

W = U(∣Φ1⟩⟨Φ1∣ + ∣Φ2⟩⟨Φ2∣) + V(∣Φ1⟩⟨Φ2∣ + h.c.)
+ X(∣Φ1⟩⟨Φ3∣ + ∣Φ2⟩⟨Φ3∣ + h.c.), (34)

where U, V , X ∈ R. The term proportional to ∣Φ3⟩⟨Φ3∣ can be dis-
carded due to a possible overall shift of the total energy. The
first term in Eq. (34) describes the Hubbard on-site interaction
of strength U as in Sec. III. Note that we do not distinguish
between repulsive and attractive on-site interactions. A direct cou-
pling between the singlet basis states ∣Φ1⟩ and ∣Φ2⟩ is introduced
by the second term in (34), V(c†1↑c

†
1↓∣0⟩⟨0∣c2↓c2↑ + h.c.), and there-

fore, it corresponds to a transition involving two fermions from site
i to site j ≠ i as it might occur for a compound of two fermions in
a singlet state (e.g., for cobosons). The third term in (34) finally
comprises all eight possible hopping processes of one fermion
embedded in the two-fermion level. Therefore, it describes the
energy cost or gain of transitions between a double and a single
occupied site.

A. Derivation of F(p)R

In contrast to the ordinary Hubbard dimer with on-site inter-
action discussed in Sec. III, the universal functional F̃ (p)C for the
generic reflection symmetric interaction (34) will, in general, depend
on the phase of γ̃12 ∈ C. Due to this additional degree of freedom, the
constrained search for deriving F̃ (p)C cannot be performed analyti-
cally anymore. Instead, we commence by deriving the pure universal
functional F(p)R . Minimizing the expectation value of the interaction

J. Chem. Phys. 158, 214108 (2023); doi: 10.1063/5.0143657 158, 214108-9

© Author(s) 2023

 30 N
ovem

ber 2023 09:00:46

https://scitation.org/journal/jcp


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

W over all states of the form (19) with real coefficients a, b, c ∈ R
yields in a straightforward manner the key result (see Appendix B),

F(p)R (γ) = U +
√

2X(1 − 2R) sin (φ) + 1
2
(V −U)sin2(φ)

− 1
2

√
1 − (1 − 2R)2∣(V −U)sin2(φ) − 2V ∣, (35)

where R, φ are the polar coordinates introduced in Eq. (18). Accord-
ing to Eq. (35), a non-zero X only adds a tilt to the functional.
Therefore, we choose X = 0 in Table I to plot the universal functional
F(p)R for U = 1 and different values of V in the left panel. Each row
in Table I corresponds to a different value of V as indicated on top of
the plot of F(p)R . Next to F(p)R , we show the domain of the functional
and illustrate the set of not real pure state v-representable 1RDMs
in green, whereby the dashed lines depict the constant values of γ11
and γ12 for which we plot a 2D slice of the functional in the third
and fourth column. The implications thereof with respect to the
v-representability problem will be discussed in Sec. IV B.

In order to derive F(p)C , we recall that our proof of Eq. (28) was
merely based on the geometry of quantum states and, thus, is inde-
pendent of the interaction W under consideration. Therefore, the
six universal functionals for the generalized Hubbard dimer (recall
Fig. 2) obey the same relations among each other as for the ordinary
Hubbard dimer with on-site interaction (see Fig. 8). In particular,
the functional F(p)C is given by

F(p)C (γ) = conv(F(p)R (γ)) = F(e)R (γ). (36)

It is worth stressing here that according to the proof of Eq. (28)
in Sec. III, the simple relations between F(p)C , F(p)R , and F(e)R in
Eq. (36) will typically not hold anymore for dimensions D > 3. Nev-
ertheless, they may still hold for specific systems with distinctive
simplifying properties, as, e.g., the Fermi-Hubbard model with N =
2 electrons on an arbitrary number of lattice sites.85

B. v-representability in the generalized
Hubbard dimer

In this section, we solve the pure state v-representability prob-
lem for the generalized Hubbard dimer. According to Table I, the
functional F(p)R is not convex for most pairs of U and V . To fur-
ther illustrate the pure state v-representability, we present next
to each functional a plot of its domain indicating the 1RDMs γ,
which are not pure state v-representable in green. The pure state
v-representable 1RDMs are shown in gray. As shown by numeri-
cal means in Ref. 53, the non-v-representable regions depend on the
interaction W and, thus, change as a function of the free parameters
U, V . Recall that we set X = 0 in Table I since this will not affect any
results or insights. In particular, a non-vanishing X does not modify
the leading order of the exchange force discussed in Sec. IV C since
the respective term in F(p)R is linear in R. The two-dimensional slices
of F(p)R in Table I were obtained from F(p)R by fixing γ11 = 0.5 in the
third column and γ12 = 0.1 in the fourth column (counting from the
left hand side). Despite the similarity to the schematic illustration
in Fig. 5, it is, in general, not possible to infer v-representability of
a 1RDM γ from a lower-dimensional slice of the functional. This

manifests itself in the fact that v-representability is indeed a global
property of the universal functional.

For the equation of the ellipses restricting the non-
v-representable 1RDMs γ, we obtain for U > V , X = 0 (see
Appendix C),

γ2
12

2(1 − V
U )
+
(∣γ11 − 1

2 ∣ −
1
4

√
1 − (V

U )
2)

2

1 − (V
U )

2 = 1
16

, (37)

and in the case of U < V (X = 0), we have

(3 − U
V )

2(∣γ12∣ − 1
2

√
2(1− U

V )

(3− U
V )

2 )
2

2(1 − U
V )

+
(3 − U

V )(γ11 − 1
2)

2

4(1 − U
V )

= 1
16

. (38)

There are two main differences with respect to the ordinary Hubbard
dimer discussed in Sec. III (compare also Fig. 9 and Table I). First,
the ellipses restricting the set of non-v-representable 1RDMs γ can
change in size and move inside the disk such that they do not touch
its boundary anymore. In addition, these ellipses can be rotated by
90○. Second, they can touch the boundary at four instead of two or
zero points depending on the two parameters U and V . As we will
prove in Sec. IV C, these are the only boundary points where the
exchange force vanishes.

C. Exchange force
Based on the analytic expression for the universal functional

obtained in Eq. (35), we prove in the following the existence of a
fermionic exchange force18 close to the boundary of the domain P 1

2

of F(p)R for an arbitrary isotropic, reflection symmetric pair interac-
tion (34). Taking the derivative of F(p)R with respect to the distance
R, as introduced in Fig. 6, yields to leading order for small R,

∂F(p)R
∂R

= − ∣sin2(φ)(V −U) − 2V ∣
2

1√
R
+O(R0). (39)

The overall minus sign of the leading term ensures that the exchange
force is always repulsive. Thus, we indeed find as expected that
the gradient of the universal functional diverges repulsively at the
boundary of the set P 1

N . Since F(e)R = conv(F(p)R ), the same holds
true for the ensemble functional F(e)R . These findings therefore con-
firm the existence of the fermionic exchange force also in systems
without translational symmetry.

Intriguingly, the prefactor of the 1/
√

R divergence for R→ 0
contains crucial information about the microscopic details and, thus,
provides insights into the system-specific properties: By consider-
ing different angles φ, one could apparently extract the values of the
two coupling parameters U, V . It will be one of the promising future
challenges to understand how this key finding generalized to larger
systems, with an emphasis on the Coulomb interaction.

Moreover, as it has been explained in Sec. II C, the fermionic
exchange force implies that whenever ∂F/∂γ diverges in (39),
the corresponding 1RDMs on the boundary ∂P 1

N/∂E 1
N are not

pure/ensemble state v-representable. For the Hubbard dimer with
on-site interaction discussed in Sec. III, the leading order term in
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TABLE I. Illustration of the universal functional F (p)R and next to it the corresponding pure state v-representable 1RDMs (gray) as well as two two-dimensional slices of F (p)R
for different values of U, V (X = 0). The 1RDMs that are not pure state v-representable are marked in green. The dashed lines in the second column depict the values of γ12
and γ11 that were fixed in the respective plots in the third and fourth column.

Functional F (p)R (γ11, γ12) Domain of F (p)R F (p)R along F (p)R along
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Eq. (39) reduces to ∂F(p)R /∂R = −U sin2(φ)/2
√

R +O(R0). Fur-
thermore, we observe that for specific choices of U and V for
the generalized Hubbard dimer, we can find an angle φ such
that the prefactor in front of the 1/

√
R divergence vanishes. Solv-

ing sin2(φ)(V −U) – 2V = 0 for the angle φ yields in total four
solutions,

φ = ± arcsin
⎛
⎝

√
2V

V −U
⎞
⎠
+ 2πm, m ∈ Z (40)

and

φ = π ± arcsin
⎛
⎝

√
2V

V −U
⎞
⎠
+ 2πm, m ∈ Z. (41)

Thus, it is possible to reach the boundary of P 1
2 on either zero, two,

or four points depending on the values of U and V [cf. Eqs. (40)
and (41)]. Equivalently, the gradient of the universal functional does
not diverge at those points. Whenever a solution for φ ∈ R exists, the
following must hold:

∣V ∣ ≤ ∣U∣. (42)

For U ≥ 0 and V ≥ 0, this can only be satisfied for V = 0, which, in
turn, leads to φ = 0, π, in agreement with the result for the ordinary
Hubbard dimer discussed in Sec. III. For U ≥ 0 and negative V , we
obtain the restriction V ∈ [−U, 0], and in this case, there are four
points where the prefactor in Eq. (39) vanishes. The same holds for
U ≤ 0 and V ∈ [0, ∣U∣], whereas for U ≤ 0 and V < 0, we obtain no
valid solution for φ.

Finally, it is worth noticing that the prefactor in front of the
1/
√

R divergence in (39) can only vanish for some boundary points
if one of the ellipses describing the subsets of non-pure state v-
representable 1RDMs touches it. Thus, those touch points are indeed
pure state v-representable in the sense that they can be obtained
as ground state 1RDMs of an, in this case degenerate, Hamilto-
nian H(h) = h +W. The same holds true in the context of ensemble
v-representability.

V. SUMMARY AND CONCLUSIONS
Our work has advanced the foundation of one-particle reduced

density matrix functional theory (1RDMFT) by refining, relating,
and illustrating some of its fundamental features and underlying
concepts.

In the first part, we have formalized the scope of a func-
tional theory by identifying it with an affine space of Hamiltonians
H(h) = h +W of interest. Addressing the ground state problem
exclusively for that class of systems—as it is indeed done in each
scientific subfield—leads immediately in virtue of the Rayleigh–Ritz
variational principle to a universal functional. This more general
perspective on functional theory has the advantage that the func-
tional variable can be identified in a concise manner through the
Riesz representation theorem. It is given by the unique Riesz vec-
tor, i.e., the simplest possible reduced state that still allows one to
calculate the expectation value of any h. In particular, this reason-
ing also explains how the functional variable could be simplified if

the one-particle Hamiltonian h exhibits further symmetries or, more
generally, is restricted to a subspace. Due to its practical relevance,
we applied these fundamental considerations to Hamiltonians with
(conventional) time-reversal symmetry. This means nothing else
than that the scope of the 1RDMFT is restricted to real-valued matri-
ces h. Following our proposed paradigm of irreducibility based on
Riesz’ representation theorem, this offers the opportunity to restrict
the functional variable from the complex-valued 1RDM γ̃ to its
real part γ ≡ Re(γ̃). In that case, one could even further reduce
1RDMFT by restricting the constrained search formalism to real-
valued N-particle quantum states. These options and the choice
between Levy/pure and Valone/ensemble 1RDMFT yields in total
six equivalent universal functionals, which are all listed and charac-
terized in Fig. 2. Most importantly, all these functionals are related
to each other in concise mathematical terms according to Fig. 3.

In complete analogy to the functional theory, also the notion
of v-representability is a relative concept. As it is illustrated in
Fig. 4, it refers as well to the underlying scope, variable, and
the choice between pure/ensemble and real/complex N-particle
quantum states. Finally, in Sec. II C, we exploited the geomet-
ric interpretation of the Legendre–Fenchel transformation to relate
the notion of v-representability to the form of the corresponding
universal functional. To be more specific, the comparison of a uni-
versal pure and ensemble functional identifies the non-pure state
v-representable 1RDMs in the interior of the domain, while generic
points on the boundary are expected to be never v-representable due
to the fermionic exchange force.

Due to the rigorous and more universal character of our
approach, various definitions, insights, and findings could, in prin-
ciple, also be translated into the context of density functional theory
(DFT). When restricting the affine space of one-particle Hamiltoni-
ans to ht(v) ≡ t + v with fixed kinetic energy operator t and variable
external potential v, our approach identifies immediately the par-
ticle density as the natural variable and, thus, establishes DFT. It
is worth noting, however, that one of the conceptual facets of our
work on 1RDMFT does not appear in DFT: Since the particle density
is always real-valued by definition, the natural variable is unam-
biguous and the choice of referring to complex or real numbers
would therefore affect only the functional but not its variable. In
that sense, such considerations could complement related studies in
DFT on v-representability and, in particular, the potential-density
mapping.76,86,87

In the second part of our work, we then discussed and illus-
trated all these conceptual aspects for the ordinary Hubbard dimer
model and a generalization thereof. In particular, the latter allowed
us to systematically explore and confirm the striking dependence of
various fundamental features on the pair-interaction W. For this,
we first derived by analytical means closed formulas for all six uni-
versal functionals for the Hubbard dimer (cf. Fig. 2) and revealed
concise relations among them (cf. Fig. 8). In particular, we proved
the equivalence of the two functionals F(p)C (γ) and F(e)R (γ) (see
Sec. III B), a relation that was conjectured by numerical means
in Ref. 61. Since our proof is merely based on the geometry of
quantum states and does not refer to any specific interaction, it is
equally valid for the generalized Hubbard dimer in Sec. IV. This
result leads to an important insight: adding “unnecessary” degrees of
freedom in the constrained search formalism with pure states sim-
ulates a certain degree of mixedness. Indeed, since the interaction
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W is assumed to not depend on the extra degrees of freedom, one
can trace them out, which, in turn, leads to a mixed state. More-
over, according to Sec. II C, the comparison of all six functionals
then allowed us to solve each variant of the v-representability prob-
lem. For instance, since F(p)C (γ) was found to be convex, all γ are
complex-pure state v-representable, while the same is not true for
the full complex-valued 1RDM γ̃.

For the generalized dimer, we could derive closed formulas
for the four universal functionals that depend on the reduced vari-
able γ ≡ Re(γ̃), in particular, F(p)R (γ). All six universal functionals
obey the same relations as for the ordinary dimer (cf. Fig. 8).
The corresponding v-representability problems could therefore be
solved again in a straightforward manner, and we confirmed con-
clusively by analytical means the strong influence of the pair inter-
action W on their solution. Intriguingly, the sets of non-pure state
v-representable 1RDMs were found to rotate and change in size.

Finally, the closed formulas of the universal functionals allowed
us to conclusively confirm the existence of the fermionic exchange
force also for systems without translational symmetry. In particular,
the prefactor of its universal diverging behavior at the bound-
ary of the domain depends on W. This crucial observation, also
in combination with our other findings on the v-representability
problem, raises the following far-reaching questions in the con-
text of larger quantum systems: (i) Which information about the
system (W) does the diverging fermionic exchange force provide
and would it be possible to experimentally access it? (ii) How
does the position, shape, and topological structure of the set of
non-v-representable 1RDMs reflect crucial features of the quantum
system?
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APPENDIX A: PROOF OF F̃ (p)
C (γ̃) = F(p)R (γ̃11, ∣γ̃12∣)

FOR ON-SITE INTERACTION

In this section, we prove the relation F̃ (p)C (γ̃)
= F(p)R (γ̃11, ∣γ̃12∣) for the Hubbard dimer with on-site interac-
tion. The reference basis in the singlet spin sector consists of the
three orthonormal states ∣Φ1⟩ = c†1↑c

†
1↓∣0⟩, ∣Φ2⟩ = c†2↑c

†
2↓∣0⟩, and

∣Φ3⟩ = (c†1↑c
†
2↓ − c†1↓c

†
2↑)∣0⟩/

√
2, where ∣0⟩ denotes the vacuum state.

Then, the functional

F̃ (p)C (γ̃) = min
∣Ψ⟩↦γ̃

⟨Ψ∣W∣Ψ⟩ (A1)

is obtained by minimizing the expectation value of the interaction
W over all 2-fermion wave functions,

∣Ψ⟩ = a∣Φ1⟩ + b∣Φ2⟩ + c∣Φ3⟩, (A2)

with a, b, c ∈ C. Since

⟨Ψ∣W∣Ψ⟩ = U(1 − ∣c∣2) (A3)

is invariant under a change of the global phase of the state ∣Ψ⟩, we
assume without loss of generality that c ∈ R. Therefore, we are left
with a minimization of ⟨Ψ∣W∣Ψ⟩ over all ∣Ψ⟩ involving five free para-
meters, namely, the moduli ∣a∣, ∣b∣, the phases φa, φb, and the real
parameter c, under the three constraints,

1 = ∣a∣2 + ∣b∣2 + c2, (A4)

γ̃11 = ∣a∣2 +
c2

2
, (A5)

γ̃12 =
c√
2
(a + b∗), (A6)

where b∗ is the complex conjugate of b. In the next step, we make
use of the fact that the universal functional F̃ (p)C does not depen-
dent on the complex phase of γ̃12. This follows directly from the
fact that any complex phase of γ̃12 could be absorbed into a and b
in Eq. (A6), while such a change of a or b does neither affect the
other two constraints (A4) and (A5) not the interaction energy (A3).
Consequently, the third condition (A6) can be reduced to

∣γ̃12∣2 =
c2

2
(∣a∣2 + ∣b∣2 + 2 Re(ab))

= c2

2
(1 − c2 + cos (φab)

√
4γ̃11(1 − γ̃11) + c2(c2 − 2)), (A7)

where we used Eqs. (A4) and (A5) in the second line and introduced
the new variable φab = φa + φb. Equation (A7) can be rewritten as
follows:

c8 sin2(φab) − 2c6 sin2(φab) − c4(4γ̃11(1 − γ̃11)cos2(φab)
− 4∣γ̃12∣2 − 1) − 4c2∣γ̃12∣2 + 4∣γ̃12∣4 = 0. (A8)
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Therefore, we have to find c2, which minimizes ⟨Ψ∣W∣Ψ⟩ = U(1 − c2). This is achieved by first differentiating Eq. (A8) with respect to
φab, which leads to

dc2

dφab
=

c2 sin (φab)(c4 − 2c2 + 4γ̃11(1 − γ̃11))

cos (φab)(2c4 − 3c2 + 4γ̃11(1 − γ̃11)) + (1 − 2c2)
√

4γ̃11(1 − γ̃11) + c2(c2 − 2)
, (A9)

and, second, using the above expression to determine the extremal points of c2 as a function of φab. The right hand side of Eq. (A9) is equal to
zero for φab = 0, π(+2πm, m ∈ Z). For both solutions for φab, Eq. (A9) yields

c2
± =
∣γ̃12∣2(1 ±

√
1 − 4[∣γ̃12∣2 + (γ̃ 11 − 1

2)
2])

2[∣γ̃12∣2 + (γ̃ 11 − 1
2)

2]
. (A10)

Thus, for both φab = 0, π, the solution c2
+ minimizes the expectation value of the interaction for U ≥ 0 and the solution c2

− for U ≤ 0. This then
immediately leads to

F̃ (p)C (γ̃) = U
(γ̃ 11 − 1

2)
2 + 1

2 ∣γ̃12∣2[1 − sgn (U)
√

1 − 4(γ̃ 11 − 1
2)

2 − 4∣γ̃12∣2]
(γ̃ 11 − 1

2)
2 + ∣γ̃12∣2

. (A11)

By comparing the above result to the well-known expression
for F(p)R (γ)

56,61 [see Eq. (20) in the main text], we observe that

F̃ (p)C (γ̃) = F(p)R (γ̃11, ∣γ̃12∣). (A12)
It remains to check whether φab = 0, π indeed corresponds to a max-
imal solution for c2 or not. Evaluating the second derivative of c2

with respect to φab at φab = 0, π and inserting Eq. (A10) yield

d2c2

dφ2
ab
= ∓

c4
±[4γ̃11(1 − γ̃11) + c2

±(c2
± − 2)]

√
1 − 4[∣γ̃12∣2 + (γ̃ 11 − 1

2)
2]

. (A13)

In order to determine the sign of the right-hand side in Eq. (A13), it
is sufficient to evaluate

sgn [∓(4γ̃11(1 − γ̃11) + c2
±(c2
± − 2))] (A14)

for all points (γ̃11, ∣γ̃12∣), which satisfy (γ̃ 11 − 1/2)2 + ∣γ̃12∣2 ≤ 1/4.
In the following, we focus on c+, i.e., the solution that minimizes
U(1 − c2) for U ≥ 0. The calculation for U ≤ 0 follows analo-
gously. Then, to check the sign of (A14), we only need to deter-
mine the minimum of f (γ̃11, ∣γ̃12∣) = 4γ̃11(1 − γ̃11) + c2

+(c2
+ − 2),

which is equal to zero. Consequently, the right-hand side of
Eq. (A13) is always negative for all possible points (γ̃11, ∣γ̃12∣) in the
domain of F̃ (p)C .

APPENDIX B: DERIVATION OF F(p)R (γ)
FOR GENERIC INTERACTIONS

We derive the pure universal functional F(p)R for a generic
isotropic, reflection symmetric interaction,

W = U(∣Φ1⟩⟨Φ1∣ + ∣Φ2⟩⟨Φ2∣) + V(∣Φ1⟩⟨Φ2∣ + h.c.)
+ X(∣Φ1⟩⟨Φ3∣ + ∣Φ2⟩⟨Φ3∣ + h.c.), (B1)

where U, V , X ∈ R. It follows that the expectation value of this inter-
action W with a general pure state ∣Ψ⟩ = a∣Φ1⟩ + b∣Φ2⟩ + c∣Φ3⟩ with
a, b, c ∈ R is given by

⟨Ψ∣W∣Ψ⟩ = U(1 − c2) + 2Vab + 2
√

2Xγ12

= U − V + 2
√

2Xγ12 + c2(V −U) + 2Vγ2
12

c2 . (B2)

Thus, ⟨Ψ∣W∣Ψ⟩ is a function of c2 only. The universal func-
tional F(p)R then follows from minimizing ⟨Ψ∣W∣Ψ⟩ (B2) under the
constraints a2 + b2 + c2 = 1, γ11 = a2 + c2/2 and γ12 = c(a + b)/

√
2.

Inverting these three constraints for c2 yields the following two
solutions:

c2
± =

γ2
12( 1

2 ±
√

1
4 − [∣γ12∣2 + (γ11 − 1

2)
2])

(γ11 − 1
2)

2 + γ2
12

. (B3)

Thus, the minimization over the free parameter c in F(p)R reduces to

F(p)R (γ) = U − V + 2
√

2Xγ12

+min
c2±

⎛
⎜
⎝

c2
±(V −U) + c2

∓

2V[(γ11 − 1
2)

2 + γ2
12]

γ2
12

⎞
⎟
⎠

. (B4)

This minimization can be executed, and we eventually arrive at

F(p)R (γ) = U + 2
√

2Xγ12 +
(V −U)γ2

12

2((γ11 − 1
2)

2 + γ2
12)

−
¿
ÁÁÀ1

4
− ((γ11 −

1
2
)

2
+ γ2

12)
RRRRRRRRRRRR

γ2
12(V −U)

(γ11 − 1
2)

2 + γ2
12

− 2V
RRRRRRRRRRRR
.

(B5)

The above equation can be rewritten in terms of the polar coordi-
nates γ11 = [1 + (1 − 2R)cos(φ)]/2, γ12 = (1 − 2R)sin(φ)/2, where
R denotes the distance of a 1RDM to the boundary of the disk
describing the set P 1

N (see also Fig. 6) and φ is the polar angle. Using
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the new variables R and φ, Eq. (B5) reduces to the more compact
expression

F(p)R (γ) = U +
√

2X(1 − 2R) sin (φ) + 1
2
(V −U)sin2(φ)

− 1
2

√
1 − (1 − 2R)2∣(V −U)sin2(φ) − 2V ∣. (B6)

APPENDIX C: NON-v-REPRESENTABLE 1RDMs
FOR THE GENERALIZED HUBBARD DIMER

In this section, we derive the equations for the ellipses sur-
rounding the 1RDMs, which are not pure state v-representable

in the generalized Hubbard dimer. As shown below, in
this setting, it is indeed sufficient to investigate the Hes-
sian to answer this question since for the not pure state
v-representable 1RDMs, the functional is locally not convex.
It is important to notice that for more complicated geome-
tries of the sets of not pure state v-representable 1RDMs the
Hessian will be, in general, not sufficient to find a solution
to the pure state v-representability problem. The Hessian is a
symmetric matrix that describes the second derivative of the
energy functional and takes the form Hij = ∂i∂ j f (xi, xj). For
the universal functional F(p)R , this matrix’s eigenvalues take the
form

λ± =
1
2
(∂2

γ11 F
(p)
R + ∂

2
γ12 F

(p)
R ) ±

1
2

√
(∂2

γ11 F
(p)
R + ∂

2
γ12 F

(p)
R )

2
− 4(∂2

γ11 F
(p)
R ∂2

γ12 F
(p)
R − (∂γ11∂γ12 F

(p)
R )

2). (C1)

We are only interested in the eigenvalue’s sign to distinguish between the 1RDMs, which are pure state v-representable and those which are
not. As we will see below, here this information can be obtained by evaluating the sign of the Hessian’s determinant,

∂2
x F
(p)
R ∂2

y F
(p)
R − (∂x∂y F(p)R )

2
, (C2)

where we introduced x = γ11 − 1
2 and y = γ12 and finding the values of (x, y)where this goes to zero. Plugging the functional F(p)R into Eq. (C2)

yields

(xy)2
⎛
⎜
⎝

2(y2 − x2)
⎛
⎝

ξ − 2

√
1
4
− x2 − y2⎞

⎠
+ (x2 + y2)√

1
4 − x2 − y2

(2(x2 + y2) +
(x2 + y2)(y2 + 2V

U−V (x
2 − y2)

( 1
4 − x2 − y2)

)
⎞
⎟
⎠

2

=
⎛
⎜
⎝

y2(3x2 − y2)
⎛
⎝

ξ − 2

√
1
4
− x2 − y2⎞

⎠
+ (x2 + y2)√

1
4 − x2 − y2

(−4x2y2 +
(x2 + y2)( 1

4 − y2)(y2 + 2V
U−V (x

2 − y2)
( 1

4 − x2 − y2)
)
⎞
⎟
⎠

⎛
⎜
⎝

x2(x2 − 3y2)
⎛
⎝

ξ − 2

√
1
4
− x2 − y2⎞

⎠
+ (x2 + y2)√

1
4 − x2 − y2

(4x2y2 +
(x2 + y2)( 1

4 − x2)(y2 + 2V
U−V (x

2 − y2)
( 1

4 − x2 − y2)
)
⎞
⎟
⎠

, (C3)

where ξ = sign[−2V(x2 + y2) + y2(V −U)]. This can be expanded and simplified to

⎛
⎝

1
2
− ξ

√
1
4
− x2 − y2 − (x2 + y2)

⎞
⎠
(1 + (x

2 − y2)(x2 + y2)2

4x2y2( 1
4 − x2 − y2)

( y2

x2 + y2 +
2V

U − V
))

= (x2 + y2)3

4x2y2( 1
4 − x2 − y2)

( y2

x2 + y2 +
2V

U − V
)(y2 + 2V

U − V
(x2 + y2) − (x2 − y2)). (C4)

The above expression can be further simplified to

1 − 4(x2 + y2) =
⎛
⎜⎜
⎝

2(x2 + y2) − 1 +
2(x2 + y2)2((x2 + y2)(1 + 2V

U−V ) − y2)
(x4 − y4) + x2y2

(1−4(x2
+y2
))

y2
+

2V
U−V (x

2
+y2
)

⎞
⎟⎟
⎠

2

. (C5)
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Solving and expanding the above equation yields elliptic solutions,
which take different forms when U > V and when U < V . For the
case where U > V , the solution takes the form

(1
4
)

2
= 1

2(1 − V
U )

y2 + 1

(1 − (V
U )

2)
⎛
⎝
∣x∣ − 1

4

√
1 − (V

U
)

2⎞
⎠

2

, (C6)

and when V < U, the solution takes the form

(1
4
)

2
=
(3 − U

V )
2

8(1 − U
V )
⎛
⎜
⎝
∣y∣ − 1

4

¿
ÁÁÁÀ

8(1 − U
V )

(3 − U
V )

2

⎞
⎟
⎠

2

+ 3 − U
V

4(1 − U
V )

x2. (C7)

Due to the geometry of these ellipses, the above two expressions
finally describe the two ellipses restricting the set of 1RDMs, which
are not pure state v-representable for the generalized Hubbard
dimer.

REFERENCES
1P. Hohenberg and W. Kohn, “Inhomogeneous electron gas,” Phys. Rev. 136,
B864 (1964).
2E. Gross and R. Dreizler, Density Functional Theory, Nato Science Series B
Vol. 337 (Springer Science & Business Media, 2013).
3K. Capelle, C. A. Ullrich, and G. Vignale, “Degenerate ground states and
nonunique potentials: Breakdown and restoration of density functionals,” Phys.
Rev. A 76, 012508 (2007).
4T. L. Gilbert, “Hohenberg-Kohn theorem for nonlocal external potentials,” Phys.
Rev. B 12, 2111 (1975).
5M. Levy, “Universal variational functionals of electron densities, first-order den-
sity matrices, and natural spin-orbitals and solution of the v-representability
problem,” Proc. Natl. Acad. Sci. U. S. A. 76, 6062 (1979).
6S. M. Valone, “Consequences of extending 1-matrix energy functionals from
pure–state representable to all ensemble representable 1-matrices,” J. Chem. Phys.
73, 1344 (1980).
7A. A. Klyachko, “Quantum marginal problem and N-representability,” J. Phys.:
Conf. Ser. 36, 72 (2006).
8M. Altunbulak and A. Klyachko, “The Pauli principle revisited,” Commun. Math.
Phys. 282, 287 (2008).
9A. Klyachko, “The Pauli exclusion principle and beyond,” arXiv:0904.2009
(2009).
10C. Schilling, “Communication: Relating the pure and ensemble density matrix
functional,” J. Chem. Phys. 149, 231102 (2018).
11J. Cioslowski and K. Pernal, “Size versus volume extensivity of a new class of
density matrix functionals,” J. Chem. Phys. 120, 10364–10367 (2004).
12J. Cioslowski, “New constraints upon the electron-electron repulsion energy
functional of the one-electron reduced density matrix,” J. Chem. Phys. 123,
164106 (2005).
13D. R. Rohr and K. Pernal, “Open-shell reduced density matrix functional
theory,” J. Chem. Phys. 135, 074104 (2011).
14K. Pernal, “Excitation energies from range-separated time-dependent density
and density matrix functional theory,” J. Chem. Phys. 136, 184105 (2012).
15J. Wang and P. J. Knowles, “Nonuniqueness of algebraic first-order density-
matrix functionals,” Phys. Rev. A 92, 012520 (2015).
16T. Baldsiefen, A. Cangi, and E. K. U. Gross, “Reduced-density-matrix-functional
theory at finite temperature: Theoretical foundations,” Phys. Rev. A 92, 052514
(2015).
17K. J. H. Giesbertz, A.-M. Uimonen, and R. van Leeuwen, “Approximate energy
functionals for one-body reduced density matrix functional theory from many-
body perturbation theory,” Eur. Phys. J. B 91, 282 (2018).
18C. Schilling and R. Schilling, “Diverging exchange force and form of the exact
density matrix functional,” Phys. Rev. Lett. 122, 013001 (2019).

19O. V. Gritsenko, J. Wang, and P. J. Knowles, “Symmetry dependence and uni-
versality of practical algebraic functionals in density-matrix-functional theory,”
Phys. Rev. A 99, 042516 (2019).
20J. Cioslowski, Z. É. Mihálka, and Á. Szabados, “Bilinear constraints upon the
correlation contribution to the electron–electron repulsion energy as a func-
tional of the one-electron reduced density matrix,” J. Chem. Theory Comput. 15,
4862–4872 (2019).
21J. Cioslowski, “Off-diagonal derivative discontinuities in the reduced density
matrices of electronic systems,” J. Chem. Phys. 153, 154108 (2020).
22J. Cioslowski, “One-electron reduced density matrix functional theory of spin-
polarized systems,” J. Chem. Theory Comput. 16, 1578 (2020).
23K. J. H. Giesbertz, “Implications of the unitary invariance and symmetry restric-
tions on the development of proper approximate one-body reduced-density-
matrix functionals,” Phys. Rev. A 102, 052814 (2020).
24J. Cioslowski, “Construction of explicitly correlated one-electron reduced
density matrices,” J. Chem. Phys. 153, 224109 (2020).
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