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H I G H L I G H T S  G R A P H I C A L  A B S T R A C T  

• Long-term exposure to fine and ultrafine 
particles is positively associated with 
inflammation. 

• Long-term exposure to fine particles is 
associated with a decrease in the anti- 
inflammatory blood biomarker. 

• In the quantile regression analysis ul-
trafine particles are associated with 
fibrinogen and hs-CRP at the 90th 
percentile. 

• Associations were higher in participants 
taking anti-inflammatory medication.  
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A B S T R A C T   

Previous studies consistently showed an association between fine atmospheric particulate matter (PM2.5) and 
cardiovascular diseases. Concerns about adverse health effects of ultrafine particles (UFP) are growing but long- 
term studies are still scarce. In this study, we examined the association between long-term exposure to ambient 
air pollutants and blood biomarkers of inflammation and coagulation, including fibrinogen, high-sensitivity C- 
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Fine particles 
Ultrafine particles 

reactive protein (hs-CRP), serum amyloid A (SAA) adiponectin and interleukin-6 (IL-6), measured in the German 
KORA-S4 cohort study (1999–2001). IL-6 was available for older participants only, who were therefore 
considered as a subsample. Annual mean concentrations of UFP (as particle number concentration), particulate 
matter in different particles sizes (PM10, PMcoarse, PM2.5, PM2.5 absorbance), ozone (O3), and nitrogen oxides 
(NO2, NOX) were estimated by land-use regression models and assigned to participants’ home addresses. We 
performed a multiple linear regression between each pollutant and each biomarker with adjustment for con-
founders. Per 1 interquartile range (IQR, 1945 particles/cm3) increase of UFP, fibrinogen increased by 0.70 % 
(0.04; 1.37) and hs-CRP increased by 3.16 % (− 0.52; 6.98). Adiponectin decreased by − 2.53 % (− 4.78; − 0.24) 
per 1 IQR (1.4 μg/m3) increase of PM2.5. Besides, PM2.5 was associated with increased IL-6 in the subsample. In 
conclusion, we observed that long-term exposure to air pollutants, including both fine and ultrafine particles, was 
associated with higher concentrations of pro-inflammatory and lower concentrations of an anti-inflammatory 
blood biomarkers, which is consistent with an increased risk for cardiovascular disease observed for long-term 
exposure to air pollutants.   

1. Introduction 

The impact of air pollution on human health is a persistent world-
wide problem. Given the relevance of the problem, in September 2021 
the World Health Organization (WHO) updated its “Air Quality Guide-
lines” recommendations, decreasing the recommended levels of annual 
and daily concentrations considerably for key pollutants such as PM10, 
PM2.5 (particles <10 μm and 2.5 μm in aerodynamic diameter, respec-
tively) and nitrogen dioxide (NO2) (World Health Organization, 2021). 
This update is indicative of the increased evidence and attention that the 
problem is receiving, and it exemplifies the urge to act in a coordinated 
fashion at the international level. However, for ultrafine particles (UFP), 
the existing evidence was considered not yet strong enough to imple-
ment concrete guidelines. Nevertheless, a best practice statement was 
issued, that specifically called for more research on the health effects of 
UFP. 

Exposure to air pollution can cause a variety of adverse effects on 
human health that are not limited to the lungs but can impact almost all 
organs (Brook et al., 2010; Carré et al., 2017; Falcon-Rodriguez et al., 
2016; Nemmar et al., 2006; Wang et al., 2017). In particular, strong 
evidence has linked the fine fraction of particulate matter, such as PM2.5, 
to cardiovascular disease (CVD) (Azzouz et al., 2022; de Bont et al., 
2022; Hystad et al., 2020; Schraufnagel, 2020). Concerns about UFP are 
growing, linking also UFP with CVD (Downward et al., 2018; Li et al., 
2017). Moreover, several studies have reported that neighbourhoods 
with a high proportion of low socio-economic status (SES) households 
have a higher air pollution exposure, and that inhabitants of these 
neighbourhoods therefore may have a higher risk of developing CVD 
(Chi et al., 2016; Hajat et al., 2013; Havard et al., 2009). 

For understanding the link between air pollution and CVD, inflam-
mation and oxidative stress have been identified as key pathophysio-
logical mechanisms (Peters et al., 2021). The study by Peters and 
colleagues (Peters et al., 1997) was the first to investigate ambient air 
pollution in association with plasma viscosity as a marker for systemic 
effects of air pollution. They observed that higher levels of plasma vis-
cosity might represent a pathophysiological link between high levels of 
ambient air pollution and increased cardiovascular mortality and hos-
pital admission. In subsequent years, several epidemiological studies 
(Hajat et al., 2015; Lucht et al., 2019; Rückerl et al., 2007; Viehmann 
et al., 2015; Wolf et al., 2016) have reported associations between air 
pollutants and systemic levels of specific biomarkers reflecting inflam-
mation and coagulation, but most of them are related to short-term 
exposure. Evidence regarding long-term exposure is still limited, espe-
cially for UFP (Hennig et al., 2018; Pilz et al., 2018). 

In this cross-sectional study, we investigated whether there is an 
association between long-term exposure to UFP and other ambient air 
pollutants and levels of blood biomarkers reflecting inflammation and 
coagulation, thus linked to cardiovascular risk. The blood biomarkers 
investigated are fibrinogen, which is a blood coagulation biomarker 
with pro-inflammatory effect (Tang et al., 2020), high-sensitivity C- 
reactive protein (hs-CRP), serum amyloid A (SAA), which are acute- 

phase proteins and sensitive markers for acute inflammation with pro- 
inflammatory properties (Baumann et al., 2017; Li et al., 2017). Adi-
ponectin is inversely related to inflammation as it is an anti- 
inflammatory agent, reducing inflammation in various cell types (Mat-
suda and Shimomura, 2014; Tanaka and Kishimoto, 2014) whereas 
interleukin-6 (IL-6) is a pro-inflammatory cytokine, involved in both 
acute and chronic inflammation (Tanaka et al., 2014). 

We hypothesised that increased exposure to ambient air pollution 
levels, would be associated with higher levels of fibrinogen, hs-CRP, SAA 
and IL-6, and lower levels of adiponectin. Additionally, we were inter-
ested in assessing the impact of neighbourhood SES, hypothesising that a 
lower SES status would lead to stronger associations between air pol-
lutants and blood biomarkers. 

2. Methods 

2.1. Study design and population 

The Cooperative Health Research in the Region of Augsburg (KORA) 
is a research platform for population-based studies in the fields of 
health-related disciplines and epidemiology (Holle et al., 2005). Our 
analysis used data of the population-based cohort study KORA S4 which 
included 4261 participants aged 25–75 years and was conducted be-
tween 1999 and 2001. By design, IL-6 was measured in the older pop-
ulation (54–75) only and therefore considered it as a subsample of the 
data. Demographic, socio-economic and lifestyle data as well as medical 
history and information on medication intake were collected in a face- 
to-face interview, while clinical and anthropometric measures were 
collected during a medical examination. All study participants provided 
written informed consent. The study was approved by the ethics com-
mittee of the Bavarian Chamber of Physicians (Munich, Germany). 

2.2. Outcome data 

On the day of the examination, participants’ blood samples were 
collected and then stored at a temperature of 4 ◦C. Fibrinogen, hs-CRP 
and SAA were measured shortly after the samples had been taken, 
while IL-6 and adiponectin were measured from frozen samples (− 80◦) 
several years after the blood sampling. The blood samples taken from the 
older participants (54–75) were obtained while fasting, whereas the 
majority of the younger participants did not fast. Plasma fibrinogen (g/ 
L) and SAA (mg/L) concentrations were analysed by immunonephel-
ometry (Behring, Marburg, Germany) (Hoffmeister et al., 2001). Plasma 
hs-CRP (mg/L) concentrations were assessed by using a high-sensitivity 
latex-enhanced nephelometric assay on a BNII System analyzer (Dade 
Behring, Marburg, Germany) (Klüppelholz et al., 2015). Serum adipo-
nectin (μg/mL) was determined by ELISA (enzyme-linked immunosor-
bent assay) (Thorand et al., 2021). Serum levels of IL-6 (pg/mL) were 
limited to participants aged between 54 and 75 years and measured by a 
sandwich ELISA (Müller et al., 2002), with values below the detection 
limit set to 0.001 pg/mL. 
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2.3. Exposure data 

The air pollutant measurement campaign took place in 2014–2015, 
in Augsburg, hence 15 years after the KORA S4 study. Annual average 
concentrations of UFP, defined by its particle number concentration 
(PNC), particle mass concentration of PM10, PMcoarse (particulate matter 
with an aerodynamic diameter between 2.5 μm and 10 μm), and PM2.5, 
soot (PM2.5 absorbance), ozone (O3) and nitrogen oxides (NO2, NOx), 
were estimated for all air pollutants using land-use regression (LUR) 
models and assigned to each study participant’s home address (Wolf 
et al., 2017). Spatial predictors and geographic information systems 
were used to build the LUR models, regressing annual average mea-
surements. The adjusted model-explained variance (R2) ranged from 68 
% for PMcoarse to 94 % for NO2, and the corresponding adjusted leave- 
one-out cross-validation R2 ranged from 55 % for PMcoarse to 89 % for 
NO2, indicating a good fit. Further information on the sampling 
campaign and the modelling of exposure data can be found in Wolf et al., 
2017 (Wolf et al., 2017). 

2.4. Covariates 

We considered demographic, socio-economic, lifestyle, clinical and 
medical history covariates as potential confounders. In the cluster of 
socio-economic covariates, we included education level reported as the 
cumulative number of total years of education; marital status as single/ 
married or living with partner/ divorced or separated/ widowed; 
occupational status as employed, self-employed or in training/ unem-
ployed/ homemaker/ retired; neighbourhood socio-economic status 
(SES) as percentage of households with low income in a 1 km2 grid cell. 
Lifestyle covariates covered the following behaviours and characteris-
tics: cumulative exposure to smoking as total smoking pack-years; cur-
rent smoking status at the examination time divided into smokers, ex- 
smokers, or never-smokers. Alcohol consumption was reported as g/ 
day. Body mass index (BMI) and waist-hip ratio were calculated from 
measurements for each participant. Physical activity was coded as 
inactive/active (Thorand et al., 2021). As clinical covariates we 
considered total cholesterol (mg/dL), high-density lipoprotein (HDL) 
cholesterol (mg/dL) and LDL (low-density lipoprotein) cholesterol (mg/ 
dL) (Müller et al., 2002). Hypertension was defined as blood pressure ≥
140/90 or use of antihypertensive medication, given that participants 
were aware of having hypertension. Diabetes status was initially self- 
reported and subsequently validated by medical chart review or con-
tact with the treating physician for those with a self-reported diagnosis 
of diabetes or self-reported use of antidiabetic medication. For the 
collection of medication data, participants took the product packages of 
medications and supplements taken during the seven days prior to the 
examination date to the study centre where they were entered into a 
database using computer software (Instrument for Databased Assess-
ment of Medication) (Herder et al., 2020). Recorded data comprise the 
mode of ingestion (regularly or on demand), mode of prescription 
(prescribed, recommended by physician, self-medication), dosage, and 
frequency. The pharmaceutical products were classified according to the 
Anatomical Therapeutic Chemical Classification System. The use of 
lipid-lowering medication and the use of nonsteroidal anti- 
inflammatory drugs (NSAIDs) refer to a regular use. 

2.5. Statistical methods 

We conducted multiple linear regression analyses adjusting for 
confounders to assess the association between each pollutant and each 
biomarker. After investigating the distribution of the residuals for each 
outcome, we log-transformed all biomarkers to better approximate the 
normal distribution of the residuals. The linearity of the exposure- 
response function was examined with a generalized additive model 
(GAM), using penalized splines for each air pollutant. 

The selection strategy for the confounding variables consisted of the 

following steps: first, the potentially confounding variables were chosen 
a priori based on previous work. Next, we employed three different 
statistical methods for their selection: a) minimizing the Bayesian in-
formation criterion (BIC); b) Spearman’s correlation coefficients be-
tween the covariates and each outcome larger than 0.1/0.2; c) 
significant covariates in multivariable regression analysis. Variables 
selected through all three methods, and representative of all biomarkers, 
were chosen as potential confounders and included in the following 
three different models for statistical analysis. Models are: 1) minimum 
model, with adjustments for age, sex, and month of blood withdrawal; 2) 
main model, with adjustments for the minimum model covariates plus 
years of education, occupational status, marital status, cumulative 
smoking exposure, smoking status, alcohol consumption and physical 
activity; and 3) extended model, with adjustments for the main model 
covariates plus BMI, waist-hip ratio, total and HDL cholesterol, hyper-
tension, diabetes mellitus and regular use of NSAIDs. The same three 
models were run for each outcome. Associations between air pollutants 
and biomarkers are expressed as percent change of the geometric mean 
of biomarker concentrations per interquartile range (IQR) increase of 
each pollutant. 

Quantile regression analysis was carried out to evaluate the associ-
ation between each pollutant and each biomarker across quantiles. 

Effect modification analysis was performed to examine differences 
between selected subgroups. The modifiers included in the analysis 
were: age (≥ 60 vs. < 60 years), sex (female vs. male), smoking status 
(smoker vs. ex-smoker or non-smoker), BMI (< 30 vs ≥ 30 kg/m2), 
physical activity (active vs. inactive), hypertension (yes vs. no), diabetes 
(yes vs. no) and regular use of NSAID use (yes vs. no). 

We conducted several sensitivity analyses to assess the robustness of 
our results. 

We excluded outliers, defined as values less than Q1–3× inter-
quartile range (IQR) and values larger than Q3 + 3 × IQR, of each 
biomarker. We assessed the impact of neighbourhood SES by adding it to 
the main model as additional covariate. In addition, correlation analysis 
was performed between the exposure variables, the neighbourhood SES 
variable, and the biomarkers. Moreover, we investigated the impact of 
additional adjustment for low-density lipoprotein (LDL) cholesterol, by 
adding this variable to the extended model. Last, we examined two- 
pollutant models by adding a second pollutant to the model with the 
main pollutant if the Spearman’s correlation coefficient was <0.7. We 
additionally ran the main model for fibrinogen, hs-CRP, SAA and adi-
ponectin in the subsample data and compared results between samples 
from fasting and non-fasting participants in the main model. 

All analyses were conducted with R version 3.4.1 using the “mgcv” 
and “quantreg” packages. 

3. Results 

3.1. Study population 

The KORA S4 study population consists of 4261 participants, of 
which 3969 participants had measurements of all of the five biomarkers 
under investigation and complete information for all the covariates 
included in the main model. The subpopulation with IL-6 measurements 
comprised 1433 older (54–75 years) participants. Statistically signifi-
cant differences between the main analysis dataset and the subsample 
were observed (Table 1). The average age for the study population was 
49 years, while the subsample was on average older with a mean age of 
64 years. This difference is reflected in the other characteristics that are 
presented in Table 1. Specifically, there were proportionally more 
smokers but less ex-smokers in the main population compared to the 
subsample population. As expected, the percentage of retired people was 
higher in the older subsample than in the whole study population. In 
addition, medical status and medication use showed significant differ-
ences between the whole study population and the subsample. Among 
the latter, a higher percentage of participants had diabetes and 
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hypertension. In general, the levels of all biomarkers did not exceed the 
mean normal reference levels (Acharya and Dimichele, 2008; Nehring 
et al., 2022; Peters et al., 2016; Shand et al., 2006; Sorić Hosman et al., 
2021). The descriptive statistics of the biomarkers in the study popula-
tion are shown in Table 2. The proinflammatory biomarkers showed 
strong correlations with each other, especially hs-CRP and SAA. Adi-
ponectin, as expected, showed an inverse correlation with proin-
flammatory markers, especially with hs-CRP (supplementary material 
Table S1). 

3.2. Exposure data 

None of the pollutants exceeded the annual limit values in the year 
2014–2015 according to the threshold of the European Directive 2008/ 
50/EC, but they exceed the reference values of the WHO guidelines of 
2021 (World Health Organization, 2021). Almost all pollutants were 
highly correlated with each other, except for O3 for which the correla-
tion was either null or inverse, in particular with NO2 and PM2.5. There 
was no statistically significant difference between the annual average of 
each pollutant calculated between the study population and the sub-
sample (Table 3 and Table S2, respectively). 

3.3. Associations of air pollutants and blood biomarkers 

Positive associations were observed for PNC with fibrinogen in the 
main model (Table 4), which persisted with the extended model 
adjustment (Fig. 1a). A positive association with fibrinogen was 
observed for NOx in the minimum model (Fig. 1a), which decreased with 
the inclusion of covariates from the main model. PNC exhibited positive 
associations with hs-CRP in the minimum model (Fig. 1b). Specifically, 
in the main model, one IQR increase (1945 N/cm3) in PNC was associ-
ated with a 3.16 % (− 0.52; 6.98) increase in hs-CRP (Table 4). SAA 
showed a positive trend, but no statistically significant association, with 
PM10 and PNC (Table 4). For adiponectin we found generally inverse 
relations with almost all pollutants. An increase in PM2.5 was signifi-
cantly associated with a decrease in adiponectin, which persisted in all 
three models (Fig. 1d). In the subpopulation, one IQR increase in PM2.5 
was associated with an increase in IL-6 of 11.45 % (− 1.33; 25.89) in the 
main model (Table 4). 

3.4. Associations in different quantiles of blood biomarkers 

In the quantile regression, fibrinogen and hs-CRP were positively 
associated with PNC especially at the highest percentiles (Fig. 2a and b, 
respectively). SAA showed positive associations with PNC at the 40th, 
50th and 70th percentiles (Fig. 2c). Furthermore, fibrinogen was asso-
ciated with PM2.5, PM2.5abs, and NOx at the 90th percentiles (Fig. S1), 
while hs-CRP was associated with almost all pollutants at the lowest 
percentile (Fig. S2). Adiponectin was negatively associated with PM2.5 at 

Table 1 
Descriptive statistics of the main study population and the subsample.  

Variables KORA S4 N = 3969 Subsample N = 1433 

Mean ±
SD or N 
(%) 

Miss. 
N (%) 

Mean ±
SD or N 
(%) 

Miss. 
N (%) 

p-value 

Personal 
characteristics      

Age (years) 49.0 ±
13.9 

– 64.0 ±
5.4 

–  < 0.001 

Sex (female) 2005 
(50.5) 

– 689 
(48.1) 

–  0.1 

Socio-economic 
covariates      

Education (years) 11.6 ±
2.6 

– 10.7 ±
2.4 

–  < 0.001 

Occupational status  –  –  < 0.001 
Employed, self- 
employed or in 
training 

2421 
(61.0)  

326 
(22.7)   

Unemployed 136 
(3.4)  

57 (4.0)   

Homemaker 448 
(11.3)  

159 
(11.1)   

Retired 964 
(24.3)  

891 
(62.2)   

Marital status  –  –  < 0.001 
Single 448 

(11.3)  
65 (4.5)   

Married or living with 
partner 

2935 
(73.9)  

1054 
(73.6)   

Divorced or separated 352 
(8.9)  

121 
(8.4)   

Widowed 234 
(5.9)  

193 
(13.5)   

Percentage of 
households with low 
income in 1 km2 grid 
cell (%) 

27.5 ±
22.6 

– 28.3 ±
22.7 

–  0.2 

Lifestyle covariates      
Cumulative smoking 

exposure (pack-years) 
12.2 ±
19.7 

– 14.8 ±
24.5 

–  0.4 

Smoking status  –  –  < 0.001 
Smoker 1047 

(26.4)  
200 
(14.0)   

Ex-smoker 1264 
(31.8)  

546 
(38.1)   

Non-smoker 1658 
(41.8)  

687 
(47.9)   

Alcohol consumption (g/ 
day) 

16.2 ±
22.0 

– 16.2 ±
21.0 

–  0.7 

BMI (kg/m2) 27.2 ±
4.7 

30 
(0.8) 

28.7 ±
4.4 

7 (0.5)  < 0.001 

Waist-hip ratio 0.9 ±
0.1 

22 
(0.6) 

0.9 ±
0.9 

2 (0.1)  < 0.001 

Physical activity  –    < 0.001 
Inactive 2035 

(51.3)  
835 
(58.3)   

Active 1934 
(48.7)  

598 
(41.7)   

Clinical covariates      
Total cholesterol (mg/ 

dL) 
227.0 ±
43.8 

2 (0.1) 242.0 ±
42.3 

1 (0.1)  < 0.001 

HDL cholesterol (mg/dL) 57.7 ±
17.1 

8 (0.2) 57.4 ±
16.3 

2 (0.1)  0.8 

Medical history and 
medication      

Hypertension(yes) 1472 
(37.2) 

8 (0.2) 808 
(56.4) 

1 (0.1)  < 0.001 

Diabetes mellitus (yes) 151 
(3.8) 

– 121 
(8.4) 

–  < 0.001 

Regular use of NSAIDs 
(yes) 

101 
(2.5) 

6 (0.1) 52 (3.6) 1 (0.1)  0.04 

Mean ± standard deviation (SD) for continuous variables, or N (number of ob-
servations) and respective percentage (%) for categorical variables. HDL- 
cholesterol: high-density lipoprotein (HDL); NSAIDs: non-steroidal anti-inflam-
matory drug; BMI: body mass index. Statistically significant differences 

evaluated using Mann-Whitney U test for continuous variables and Chi squared 
for categorical ones. 

Table 2 
Descriptive statistics of blood biomarkers.  

Biomarker N Mean ±
SD 

Geometric 
mean 

25th 
perc. 

75th 
perc. 

Fibrinogen (g/L)  3969 2.6 ± 0.6  2.6  2.2  3 
hs-CRP (mg/L)  3969 2.6 ± 4.7  1.3  0.6  2.9 
SAA (mg/L)  3969 5.7 ±

18.4  
3.2  1.9  4.9 

Adiponectin (μg/ 
mL)  

3969 7.5 ± 4.6  6.3  4.2  9.6 

IL-6 (pg/mL)  1433 3.6 ±
12.4  

1.5  1.1  3.4 

Mean ± standard deviation (SD); geometric mean; 25th and 75th percentile. 
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the 40th and 50th percentiles (Fig. S4). IL-6 showed negative associa-
tions at the 10th percentile with PNC and PM10, PMcoarse, and PM2.5abs 
but positive associations with PM2.5 around central percentiles (Fig. S5). 

3.5. Effect modification 

The results for smoking status as an effect modifier are shown in 
Fig. S6. We observed that the association between adiponectin and 
PM2.5 and PMcoarse was slightly modified by smoking status, showing a 
higher negative association for the subgroups of ex-smokers and non- 
smokers (Fig. S6). Indeed, looking at the adiponectin levels in each 
category we found that the smokers showed lower levels of adiponectin, 
compared to ex-smokers and in particular to non-smokers (Table S3). 
Participants taking anti-inflammatory drugs showed a stronger effect 
between hs-CRP and PMcoarse and with O3 (Fig. S7), as did SAA with O3. 
Participants using anti-inflammatory drugs were found to have a higher 
level of hs-CRP, SAA and IL-6 compared to those who did not use them 
(Table S4). There were hardly any differences between non-obese and 
obese participants, with the exception of adiponectin for which we 
observed a greater negative trend for participants with BMI ≥ 30 in 
association with the different pollutants. In fact, the obese participants 
had higher levels of hs-CRP and SAA and lower levels of adiponectin 
(Table S5). No consistent pattern of effect modification was observed for 
the other potential modifiers. 

3.6. Sensitivity analyses 

In general, associations did not differ much between the minimum 
and the main model. Results also remained robust after the exclusion of 

outliers for each biomarker from the main model (Fig. 1). Adding 
neighbourhood SES to the main model changed the effect estimates, in 
particular for SAA, IL-6 and adiponectin. Estimates increased for PM10 in 
association with SAA [3.46 % (− 0.51; 7.57), p-value <0.1]. The asso-
ciation of PM2.5 with IL-6 with was stronger compared to the model 
without SES (Fig. 1e). Furthermore, for PM2.5 was stronger with adi-
ponectin [− 3.66 % (− 6.29; − 0.96), p-value <0.05]. The neighbourhood 
SES variable shows a high correlation with all exposure variables, but 
not with biomarkers (Fig. S9). Adjusting the extended model for LDL 
cholesterol did not lead to changes in the results. Adjusting for O3 in the 
two-pollutant model led to robust results for almost all biomarkers 
(Fig. S10) whereas the adjustment with PM2.5 revealed inconsistent 
findings (Fig. S11). While there was no association with any pollutant 
for SAA in the single-pollutant models, associations were slightly 
stronger in the two-pollutant models for PNC and PM10. In the sub-
sample analysis the associations for fibrinogen, hs-CRP, SAA and adi-
ponectin did not change much except for much larger CIs (Fig. S11). 
Associations between air pollution and biomarkers remained stable after 
adjusting for fasting status (data not shown). 

4. Discussion 

4.1. Summary 

In this cross-sectional study of long-term exposure to air pollutants 
and blood biomarkers of inflammation and coagulation, we found pos-
itive associations of PNC with fibrinogen and hs-CRP. In particular, these 
associations were stronger at highest percentiles of fibrinogen and hs- 
CRP. PM2.5 was found to be associated with decreased adiponectin 

Table 3 
Descriptive statistics of air pollutants for the whole study sample.  

KORA S4 N = 3969 Spearman correlation coefficient 

Pollutant Mean ± SD IQR PNC PM10 PMcoarse PM2.5 PM2.5abs NOx NO2 

PNC (N/cm3) 7390.8 ± 1846  1945.1        
PM10 (μg/m3) 16.7 ± 1.5  2.1  0.80       
PMcoarse (μg/m3) 5.0 ± 1.0  1.4  0.77  0.79      
PM2.5 (μg/m3) 11.8 ± 1.0  1.4  0.63  0.51  0.57     
PM2.5abs (10− 5/m3) 1.2 ± 0.20  0.3  0.77  0.77  0.81  0.61    
NOx (μg/m3) 22.3 ± 7.4  8.5  0.90  0.73  0.77  0.74  0.73   
NO2 (μg/m3) 14.5 ± 4.5  7.2  0.75  0.71  0.84  0.70  0.86  0.82  
O3 (μg/m3) 38.9 ± 2.5  3.6  0.06  0.02  0.09  − 0.19  − 0.14  − 0.08  − 0.20 

PNC: particle number concentration; PM10, PMcoarse, PM2.5: particulate matter with aerodynamic diameter < 10 μm, 2.5–10 μm and < 2.5 μm, respectively; PM2.5abs: 
absorbance of PM2.5; NO2: nitrogen dioxide; NOx: nitrogen oxides; O3: ozone. 

Table 4 
Effect estimates and 95 % CI of the associations between long-term exposure to air pollution and biomarkers of inflammation and coagulation, per IQR in air pollutant 
for the main confounder model.  

Pollutant  Percent change per IQR (95 % CI) - main model 

KORA S4 N = 3969 Subsample N = 1433 

IQR Fibrinogen hs-CRP SAA Adiponectin IQR IL-6 

PNC (N/cm3) 1945.1 0.70 (0.04; 1.37)** 3.16 (− 0.52; 6.98)* 1.92 (− 0.79; 4.70) − 1.06 (− 2.83; 0.73) 1824.7 1.40 (− 7.53; 11.20) 
PM10 (μg/m3) 2.1 0.25 (− 0.61; 1.11) 3.46 (− 1.31; 8.45) 2.72 (− 0.80; 6.37) 0.15 (− 2.16; 2.52) 2.1 − 4.67 (− 15.67; 7.76) 
PMcoarse (μg/m3) 1.4 0.07 (− 0.76; 0.92) -0.49 (− 5.00; 4.24) -0.22 (− 3.59; 3.27) − 0.23 (− 2.49; 2.09) 1.3 − 3.76 (− 14.45; 8.26) 
PM2.5 (μg/m3) 1.4 0.47 (− 0.39; 1.33) 0.97 (− 3.68; 5.84) 0.20 (− 3.23; 3.75) − 2.53 (− 4.78; − 0.24)** 1.3 11.45 (− 1.33; 25.89)* 
PM2.5abs 0.3 0.55 (− 0.39; 1.33) 3.27 (− 1.93; 8.76) 2.17 (− 1.67; 6.15) − 1.14 (− 3.63; 1.42) 0.3 − 5.13 (− 16.77; 8.15) 
NOx (μg/m3) 8.5 0.58 (− 0.15; 1.31) 2.47 (− 1.53; 6.64) 1.23 (− 1.71; 4.26) − 1.42 (− 3.35; 0.54) 8.0 3.83 (− 6.19; 14.92) 
NO2 (μg/m3) 7.2 0.51 (− 0.50; 1.52) 2.01 (− 3.49; 7.82) 0.49 (− 3.54; 4.69) − 1.22 (− 3.89; 1.52) 7.1 1.23 (− 12.59; 17.24) 
O3 (μg/m3) 3.6 − 0.36 (− 1.31; 0.59) -2.10 (− 7.09; 3.17) 0.95 (− 2.89; 4.94) 0.77 (− 1.80; 3.42) 3.5 − 3.84 (− 16.14; 10.26) 

CI: confidence interval; PNC: particle number concentration; PM10, PMcoarse, PM2.5: particulate matter with aerodynamic diameter < 10 μm, 2.5–10 μm and < 2.5 μm, 
respectively; PM2.5abs: absorbance of PM2.5; NO2: nitrogen dioxide; NOx: nitrogen oxides; O3: ozone. hs-CRP: high-sensitivity C-reactive protein; SAA: serum amyloid 
A; IL-6: Interleukin 6. 
Adjusted for: age, sex, month, years of education, occupational status, marital status, cumulative smoking exposure, smoking status, alcohol consumption and physical 
activity. 

** p-value ≤0.05. 
* p-value <0.1. 
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Fig. 1. KORA S4 - percent change of biomarker per IQR increase in air pollutant. Comparison of the minimum, main and extended model and the different sensitivity 
analyses performed; Biomarkers: a) Fibrinogen (g/L); b) hs-CRP (mg/L); c) SAA (mg/L); d) adiponectin; e) IL-6 (pg/mL); [95 % CI; ** = p-value <0.05; * = p- 
value <0.1]. 
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and increased IL-6, which were stronger when further adjusted for socio- 
economic status. 

4.2. Biological mechanisms 

The studied blood biomarkers are part of a systemic inflammatory 
response and may indicate a local inflammation in the lungs and in fat 
tissue. Inhalation of air pollutants can induce local oxidative stress and 
inflammation, including macrophage and dendritic cell activation (Pe-
ters et al., 2021). The propagation of inflammation triggers the 
recruitment of immune cells, with a possible release of inflammatory 
mediators such as IL-6, interleukin-1 (IL-1), tumor necrosis factor alpha 
(TNFα), decreasing the level of antioxidants (Al-Kindi et al., 2020; Brook 
et al., 2010; Rückerl et al., 2006). In addition, UFP are able to trans-
locate from the lungs into the circulation contributing to systemic 
inflammation and a release of pro-inflammatory cytokines. With regard 
to the biomarkers under study, a higher level of IL-6 in the blood stream 
promotes the release of proinflammatory biomarkers from the liver such 
as fibrinogen and CRP, and may modulate the release of adipocytokines 
from adipocytes, such as adiponectin. 

4.3. Comparison with other studies 

In comparison to the literature linking short-term exposure to air 
pollution with changes in the levels of blood markers reflecting in-
flammatory and coagulatory processes, the evidence regarding long- 
term exposure is still limited, especially for UFP. Most of these studies 
have been conducted on fibrinogen, hs-CRP and IL-6 (Hajat et al., 2015; 
Lane et al., 2015; Lee et al., 2018). To the best of our knowledge, so far, 
no epidemiological studies were carried out considering the relationship 
between long-term exposure to air pollutants and SAA levels, and only 
few studies assessed adiponectin (Li et al., 2018; Lucht et al., 2019; 
Lucht et al., 2020). 

In a study from South Korea (Lee et al., 2018), fibrinogen was found 
to be positively associated with a 1-year exposure to PM2.5, NO2 and O3; 
in contrast, hs-CRP did not show significant associations with any of the 
pollutants. These results differ from ours, as we found the most pro-
nounced associations with PNC for both blood biomarkers. Another 
study conducted in Massachusetts, USA, which examined the association 
with PNC (Lane et al., 2015) found positive non-significant associations 
for IL-6 and hs-CRP with annual exposure to PNC, whereas fibrinogen 

Fig. 1. (continued). 
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did not show an association. In our data we observed significant asso-
ciations for fibrinogen and a positive trend for hs-CRP but not for IL-6. 
However, the methods used in Lane et al.’s work differ from ours 
since they conducted mobile monitoring of PNC and applied a spatial- 
temporal model to determine individual time-activity (Lane et al., 
2015); furthermore, the analysis comprised a smaller sample size 
compared to our study. 

Studies that have investigated associations of air pollution levels 
with adiponectin are rare. We observed negative associations between 
PM2.5 and adiponectin in all models, which remained stable in the 
sensitivity analyses. This result agrees with the work of Lucht and col-
leagues (Lucht et al., 2019), who, in contrast to our results, found a 
stronger association among non-obese participants, while the negative 
association in our dataset was mainly driven by obese participants (BMI 
≥ 30). We observed that PM2.5 was also positively associated with IL-6. 
This result is consistent with Hajat and colleagues (Hajat et al., 2015) 
who found a positive association between IL-6 and PM2.5 in the Multi- 
Ethnic Study of Atherosclerosis (MESA). 

4.4. Quantile regression analysis 

In the quantile regression, fibrinogen was positively associated with 
most pollutants at the 90th percentile, specifically with PNC, PM2.5, 

PM2.5abs and NOx. Hs-CRP was also associated most at the highest per-
centiles, i.e., 80th and 90th with PM10 and PNC. Our results imply that 
people with already higher levels of inflammatory biomarkers, such as 
fibrinogen and hs-CRP, are more sensitive to high levels of air pollution. 
Hs-CRP has clinical relevance in cardiovascular risk assessment (Bassuk 
et al., 2004). The association of hs-CRP with various air pollutants at the 
highest percentiles indicates that air pollutants may worsen pre-existing 
clinical conditions. In the regression analysis SAA didn’t show any sig-
nificant association with any of the pollutants, however in the quantile 
regression we observed positive association with PNC, PM10 and 
PM2.5abs., specifically at the lower and middle percentiles. These results 
might suggest that prolonged exposure to air pollutants can increase the 
risk of developing inflammation related health issues; however, the 
clinical relevance of this finding is unclear. Adiponectin, in the quantile 
regression analysis showed negative associations at the lower/middle 
percentiles, with PM2.5 and at lowest ones with PNC, NOx and NO2. A 
high level of adiponectin promotes the inhibition of inflammatory bio-
markers and induces the production of anti-inflammatory ones, in a 
linked feedback mechanism (Lontchi-Yimagou et al., 2013). Low Adi-
ponectin levels are associated with obesity and cardiovascular disease 
(Choi et al., 2020; Kawano and Arora, 2009). Our results suggest that 
people with already low concentrations of adiponectin are more sensi-
tive to increased levels of air pollutants, whose exposure could 

Fig. 2. Quantile regression - absolute changes (95 % CIs) in biomarkers at deciles of the distribution per IQR increase in PNC. Biomarkers: a) fibrinogen (g/L), b) hs- 
CRP (mg/L), c) SAA (mg/L) and d) adiponectin (μg/mL) [95 % CI; ** = p-value <0.05; * = p-value <0.1]. 
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negatively affect pre-existing health issues. The association between 
PM2.5 exposure and adiponectin was stronger among non-smokers who 
had a relatively higher level of adiponectin. We do not have a single, 
straightforward explanation, but one could hypothesise that non- 
smokers might be more vulnerable to air pollution as they might be 
non-smokers due to an underlying chronic condition. Also, in our study, 
non-smokers and ex-smokers differ from smokers. They were for 
example older (51 and 52 years, respectively) than current smokers (44 
years). Finally, in the smoker’s category, in general, the inflammatory 
response is already activated given the high intake of smoke (particles), 
so we may not see any response in association with air pollution. 

4.5. Neighbourhood socioeconomic status 

Since we were interested in the possible impact of neighbourhood 
SES on inflammatory biomarkers, we included this variable in the main 
model. Neighbourhoods with a high proportion of low SES households 
may be exposed to higher air pollution levels by living closer to main 
roads (Iyer et al., 2022). Furthermore, low income, also a parameter of 
SES, is correlated with greater psychological stress and it is also reflected 
in unhealthy diet, smoking and less physical activity, all of which are 
directly linked to inflammation. A recent publication from Iyer and 
colleagues (Iyer et al., 2022) examines in detail the impact of neigh-
bourhood SES with blood biomarkers of inflammation. They found that 
higher neighbourhood socio-economic status was associated with lower 
inflammation, both in woman and men. In our results, adjusting the 
associations for an area-based SES indicator did not substantially change 
the results. However, for some exposure-inflammatory marker pairs, the 
evidence became stronger and for others weaker. SAA positively 
increased its association with PM10 and PNC. IL-6 showed a stronger 
association with PM2.5; whereas adiponectin showed a stronger negative 
relationship with PM2.5. These results are in agreement with the work of 
Iyer and colleague, highlighting the contribution of low neighbourhood 
SES on the inflammation status, specifically linked to air pollution 
exposure, indicating that the complex interaction deserves further ex-
amination in larger data sets. 

4.6. Strengths and limitations 

One strength of this study is the detailed amount of information 
available for a large study population, which enabled us to adjust for 
potential confounders and to investigate effect modification. Results 
were robust in various sensitivity analyses such as excluding outliers 
from the main model. Exposure estimation at the home address of the 
participants was based on a targeted measurement campaign which 
included varying monitor locations covering different seasons in urban 
and rural areas in and around the city of Augsburg. 

A limitation of the study was that for IL-6 we only had data from 
1433 participants aged between 54 and 75 years. Comparison of the data 
sets showed that the participants differed in some aspects, however, the 
associations for fibrinogen, hs-CRP, SAA and adiponectin did not change 
much in the subsample analyses, except for a larger CI. The exposure 
data were modelled at the home address of each participant in the 
KORA-S4 study and therefore do not cover other locations where par-
ticipants may have been during the study period. Furthermore, the 
differences in time period between the sampling campaign of KORA-S4 
and the exposure measurement is a limitation of this study. However, 
several studies have reported that the spatial variation of air pollution 
levels remains stable over long time periods (Cesaroni et al., 2012; 
Eeftens et al., 2011; Gulliver et al., 2011). Moreover, sensitivity analyses 
in a previous multi-centre study, including data from KORA, showed 
that associations were similar to the results of the main analysis when 
using back-extrapolated and time-varying exposures (Wolf et al., 2021). 
We are aware of the fact that we conducted multiple statistical tests, 
given we estimated the association of five blood-biomarkers with eight 
exposures. We investigated several air pollutants in our analyses as they 

represent different sources of air pollution and point towards specific 
properties of the aerosol. Due to the large number of statistical tests, we 
cannot rule out the possibility that some associations may have occurred 
by chance. For this reason, also considering that air pollutions param-
eters show correlations, we considered as actual effects only those pat-
terns that were strongly consistent in different tests. 

5. Conclusions 

In conclusion, our study suggests that long-term exposure to ambient 
air pollutants, specifically to fine and ultrafine particles, at the home 
address is positively associated with higher levels of pro-inflammatory 
biomarkers and lower levels of adiponectin. Our results highlight the 
role of fine and ultrafine particles within the complex mixture of 
ambient air pollution and the need for regulation, especially to protect 
the most vulnerable groups of the population. 
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