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Abstract

We present non-radiative, cosmological zoom-in simulations of galaxy-cluster formation with magnetic fields and
(anisotropic) thermal conduction of one massive galaxy cluster with Mvir∼ 2× 1015Me at z∼ 0. We run the
cluster on three resolution levels (1×, 10×, 25×), starting with an effective mass resolution of 2× 108Me,
subsequently increasing the particle number to reach 4× 106Me. The maximum spatial resolution obtained in the
simulations is limited by the gravitational softening reaching ò= 1.0 kpc at the highest resolution level, allowing
one to resolve the hierarchical assembly of the structures in fine detail. All simulations presented are carried out
with the SPMHD code GADGET3 with an updated SPMHD prescription. The primary focus of this paper is to
investigate magnetic field amplification in the intracluster medium. We show that the main amplification
mechanism is the small-scale turbulent dynamo in the limit of reconnection diffusion. In our two highest resolution
models we start to resolve the magnetic field amplification driven by the dynamo and we explicitly quantify this
with the magnetic power spectra and the curvature of the magnetic field lines, consistent with dynamo theory.
Furthermore, we investigate the ∇ ·B= 0 constraint within our simulations and show that we achieve comparable
results to state-of-the-art AMR or moving-mesh techniques, used in codes such as ENZO and AREPO. Our results
show for the first time in a cosmological simulation of a galaxy cluster that dynamo action can be resolved with
modern numerical Lagrangian magnetohydrodynamic methods, a study that is currently missing in the literature.

Unified Astronomy Thesaurus concepts: Galaxy clusters (584); Cosmic magnetic fields theory (321); Extragalactic
magnetic fields (507); Magnetohydrodynamical simulations (1966); Intracluster medium (858); Magnetic
fields (994)

1. Introduction

Magnetic fields are observed across all scales within the
universe, from the interstellar medium (ISM) on the scales of
molecular clouds (e.g., Heiles & Crutcher 2005; Crutcher 2012;
Clark et al. 2014, 2019; Hu et al. 2019; Sullivan et al. 2021) over
the large-scale field structure in galaxies (e.g., Basu & Roy 2013;
Beck & Krause 2005; Greaves et al. 2000; Jones et al. 2020;
Lacki & Beck 2013; Robishaw et al. 2008; Tabatabaei et al.
2008; Watson & Wyld 2001) to the intracluster medium (ICM;
e.g., Bonafede et al. 2009, 2010, 2013; Böhringer et al. 2016;
Clarke et al. 2001; Hu et al. 2020).

While there are significant differences in the structure of the
magnetic field within the ISM, the intergalactic medium, and
the ICM there seems to be some observational evidence that the
magnetic field strength within these very different components
is in the order of a few microgauss (see, e.g., Beck 2015;
Crutcher 2012; van Weeren et al. 2019; for reviews on
magnetic fields on galaxy, ISM, and ICM scales) and seems to
be correlated on galaxy and even galaxy-cluster scales.

Specifically, for galaxy clusters one can determine the
magnetic field strength from the Faraday rotation measurement
(RM) of radio galaxies that are located in the foreground and

background of the cluster of interest (e.g., Brentjens & de
Bruyn 2005; Burn 1966; Clarke 2004; Murgia et al. 2004; van
Weeren et al. 2019). The RM measurements of the Coma-
galaxy cluster are of the highest quality as they can be obtained
from measurements of the magnetic field from seven individual
radio galaxies located in the central part of the cluster (see
Bonafede et al. 2010, for the details). Additionally, the
magnetic field of the Coma cluster could be further constrained
over seven more radio galaxies detected around the location of
the infalling galaxy group NGC 4839 (Bonafede et al. 2013).
From these studies, one can derive a value on the order of a
few microgauss for the magnetic field in the Coma cluster.
However, the picture may change for cool-core clusters where
higher magnetic fields of the order of a few tens of microgauss
are observed (see van Weeren et al. 2019, for a more detailed
review of the observed magnetic field strengths in different
galaxy clusters). Specifically, Vogt & Enßlin (2003) point to a
cluster magnetic field of around 12 μG in the cluster Hydra as a
conservative estimate.
One can place a lower limit on the magnetic field strength in

galaxy clusters, which is given by the absence of inverse
Compton emission that should originate from photons that are
scattered on cosmic-ray electrons in the cluster environment.
This should infer a spectrum of hard X-ray emission, which
could clearly be distinguished from the background thermal
Bremsstrahlung spectra (e.g., Rephaeli 1979; Rephaeli et al.
1994; Sarazin & Kempner 2000). However, modeling the
inverse Compton emission is not straightforward (see van
Weeren et al. 2019, and references therein). Despite, the
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difficulty in the modeling the hard X-ray spectrum of inverse
Compton radiation, one can derive an upper limit from which
one can infer a lower limit on the magnetic field strength in
galaxy clusters ranging from 0.1–0.5 μG in the Coma cluster
(e.g., Rossetti & Molendi 2004), the Bullet-Cluster (e.g., Wik
et al. 2014) and Abell 2163 (e.g., Sugawara et al. 2009; Ota
et al. 2014).

While there seems to be some observational consensus on
the magnetic field strengths in galaxy clusters, the situation for
the origin of these magnetic fields is less clear. The underlying
problem is that the magnetic field amplification in the ICM is
supposedly driven by the turbulence that is injected by shocks
during the structure formation process (e.g., Miniati et al. 2001;
Iapichino & Brüggen 2012; Iapichino et al. 2013, 2017). The
involvement of ICM MHD turbulence makes this problem
particularly difficult to control, as turbulence is not well
understood in numerical simulations to begin with and is thus
even less as the driver of magnetic field amplification (e.g.,
Donnert et al. 2018, for a very detailed discussion of this
problem).

Despite the somewhat tedious process of understanding
turbulence in numerical simulations one can draw a two-sided
picture of the magnetization of the ICM. As already pointed out
in the classical picture of turbulent amplification of magnetic
fields in the ICM, the magnetic field could be amplified during
the structure formation process when the largest structures
(galaxy clusters) assemble in the universe. In this framework,
the idea is that the magnetic field is amplified due to turbulence
in the ICM driven by cosmic accretion that drives strong
shocks in the ICM. While previous research indicates the
presence of very strong shocks in the ICM, they are very rare
with a volume filling factor of less than 0.1% for shocks with a
Mach number larger than 10 (e.g., Miniati et al. 2001; Vazza
et al. 2011). This renders the ICM (on average) as a subsonic
medium, where the turbulent kinetic energy is orders of
magnitude smaller than the thermal energy. However, we note
that the total kinetic energy (bulk motion plus turbulence) is
typically in equipartition with the thermal component and the
galaxies can easily move at supersonic speed with respect to the
ICM. However, the argument is about the volume filling factor
of sub versus supersonic turbulence and since high Mach
number shocks are extremely rare (even in the outskirts of the
ICM) the ICM can be considered as formally subsonic. Hence,
magnetic field amplification in the ICM can be described
beautifully by the dynamo theory first developed by Kazantsev
and Kraichnan (Kazantsev 1968; Kraichnan & Nagarajan
1967), which has been further advanced by several authors
since then (e.g., Boldyrev & Cattaneo 2004; Kazantsev et al.
1985; Kulsrud & Anderson 1992; Kulsrud et al. 1997;
Ruzmaikin et al. 1988; Subramanian & Barrow 2002; Xu &
Lazarian 2020; Zel’dovich 1965, 1970, 1983).

This theory self-consistently describes the amplification of
magnetic fields via subsonic turbulence due to stretching,
twisting, and subsequent folding of magnetic field lines and can
be tested through means of the magnetic power spectrum and
the distribution of the curvature of magnetic field lines derived
from high-resolution numerical simulations (e.g., Schekochihin
et al. 2004; Porter et al. 2015). This theory has been widely
applied on scales of galaxies (e.g., Wang & Abel 2009;
Kotarba et al. 2009; Beck et al. 2012; Pakmor & Springel 2013;
Martin-Alvarez et al. 2020; Marinacci et al. 2015; Marinacci &
Vogelsberger 2016; Pakmor et al. 2017, 2020; Rieder &

Teyssier 2016, 2017a, 2017b; Steinwandel et al. 2019, 2020a,
2020b; Tricco et al. 2016). While the concept of turbulent
magnetic field amplification works well on galaxy scales, the
ideal application for this theoretical framework is magnetic
field amplification in the ICM due to the subsonic nature of
ICM turbulence.
Already in early numerical simulations of magnetic fields in

galaxy clusters it has been pointed out that the amplification
via the small-scale turbulent dynamo is quite likely without
showing direct evidence of the process (Dolag et al. 1999,
2001, 2002, 2005; Brüggen et al. 2005; Dubois & Teyssier
2008; Ryu et al. 2008; Vazza et al. 2014) and recently the first
efforts have been made to show direct evidence of an acting
small-scale-turbulent dynamo on the scales of galaxy clusters
in Eulerian codes (e.g., Vazza et al. 2018; Roh et al. 2019) by
directly comparing to the statistics, which is enforced by
dynamo theory and high-resolution numerical simulations of
the small-scale turbulent dynamo in the ICM regime (e.g.,
Schekochihin et al. 2004; Porter et al. 2015).
Generally, the idea of the small-scale turbulent dynamo is

that the magnetic field is generated on the scales of the
turbulent eddies and is thus of scale-free nature. That means the
stretching, twisting, and folding of field lines can occur on
parsec scales in the ISM or on megaparsec scales in the ICM
with a growth rate that is proportional to the eddy turnover time
with respect to the ambient medium. The field is then
propagated to larger scales via an inverse turbulence cascade
when the magnetic energy density reaches equipartition with
the turbulent energy density stored in the smallest eddies. This
process leads to an increase of the power stored in the magnetic
field on larger scales with a subsequent decrease on the largest
scales that is predicted by the evolution of the energy spectra in
Kazantsev–Kraichnan theory.
In this paper, we study the buildup of the magnetic field in

numerical simulations based on the theory of the small-scale
turbulent dynamo in the framework of a Lagrangian simulation
framework that is currently missing in the literature on
magnetic field amplification in galaxy clusters.
This paper is structured as follows. In Section 2, we discuss

the theoretical background that is needed to understand the
basics of the theory of small-scale turbulent dynamo. In
Section 3, we discuss the basics of the numerical algorithms we
use to carry out our simulations, including the handling of
nonideal MHD. In Section 4, we discuss the details of the
simulation suite along with the initial conditions and the
adopted naming conventions. In Section 5, we present the
results of the simulations and carry out the analysis that is
needed to study the turbulent dynamo in the ICM. In Section 6,
we summarize our findings, conclude our results, and comment
on model limitations and future work. Furthermore, we discuss
model variations in the Appendix.

2. Short Overview of Small-scale Turbulent Dynamo
Theory

Magnetic field amplification in the ICM is most likely driven
by turbulence that is injected during structure formation. The
idea is that tiny magnetic fields of which the origin is still under
debate (e.g., Biermann 1950; Demozzi et al. 2009; Matarrese
et al. 2005; Gnedin et al. 2000; Rees 1987, 1994, 2005, 2006)
are amplified to large-scale coherent fields via stretching,
twisting, and folding of magnetic field lines. This process
is limited by the magnetic tension force that makes every
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stretch-twist-fold process inherently more difficult and finally
saturates the dynamo when the turbulent kinetic energy in the
smallest eddies is in equipartition with the magnetic field
energy. Over the past 60 yr several authors have continuously
refined the theoretical understanding of turbulent magnetic field
amplification (e.g., Boldyrev & Cattaneo 2004; Kraichnan &
Nagarajan 1967; Kazantsev 1968; Kazantsev et al. 1985;
Kulsrud & Anderson 1992; Kulsrud et al. 1997; Ruzmaikin
et al. 1988; Subramanian & Barrow 2002; Zel’dovich 1965,
1970, 1983; Xu & Lazarian 2020, to just name a few). The
picture of turbulent dynamo amplification fits perfectly to the
use case of magnetic field amplification in galaxy clusters as
the ICM is very hot and therefore is characterized by the sub-
sonic turbulent energy cascade that is in very good agreement
with the Kolmogorov theory of turbulence (Kolmogorov 1941).

Every theory of magnetic field amplification starts with the
induction equation in the continuum limit of MHD:

( ) ( )h
¶
¶

=  ´  ´ + D
B

B B
t

, 1

where η is the magnetic diffusivity. A quite intuitive approach
toward an understanding of the magnetic field structure
developed by the small-scale turbulent dynamo can be derived
by statistically studying fluctuations in the velocity and
magnetic field. A general vector field can always be Fourier
decomposed. Thus, this means the velocity field can be written
as v= ∫d3kkvk× e i k· r and the magnetic field can be written as
B= ∫d3kkBk× e i k· r. The ultimate goal of the Fourier analysis
of these fluctuations is to derive the distribution of the power in
the magnetic field that is given via

( ) ( )òp
á ñ

=
B

E P k dk
8

. 2mag

2

M

One can find the time derivative of PM(k) (see Kulsrud &
Zweibel 2008, for the details of the derivation):

( ) ( ) ( ) ( ) ( )ò b
¶

¶
= -

P k

t
K k k M k dk k P k, 2 , 3M

0 0 0
2

M

which describes the time evolution of the magnetic power
spectrum as a function of structure function K and turbulent
resistivity β. The combination of Equation (2) and Equation (3)
yields

( )g=
dE

dt
E2 , 4

mag
mag

where γ denotes the growth rate of the dynamo. From this one
can straightforwardly see that the magnetic field strength is
increased by a factor of 2 as a function of the eddy turnover
time. This is consistent with the stretching, twisting, and
folding as it is assumed to occur on the small-scale turbulent
dynamo. Furthermore, it is worth noting that in this prescription
the growth rate is then directly correlated with the eddy
turnover rate of the smallest eddies and energy is carried to
larger scales by an inverse turbulent cascade. In the kinematic
regime, one can find PM(k) by solving
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⎛
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where lres is the resistivity. This differential equation can be
solved with standard methods and one obtains

( ) ( )µ gP k t e k, , 6M
t3 4 3 2

which directly indicates the exponential growth of modes with
k3/2. Therefore, the small-scale turbulent dynamo can be
clearly identified over the shape of the magnetic energy spectra.
However, in practice power spectra can be tricky to measure in
Lagrangian codes and we suggest also considering the imprint
of the dynamo on the magnetic tension force as a quantitative
prior to measuring dynamo action in numerical simulations as
previously suggested by various groups on galaxy and ICM
scales (e.g., Schekochihin et al. 2004; Vazza et al. 2018;
Steinwandel et al. 2019).

3. Numerical Method

We carry out the simulations presented in this paper with the
Tree-SPMHD-Code P-GADGET3, which is the developers’
version of the Tree-SPH-Code P-GADGET2 (Springel 2005).
We use a modern implementation of SPH, as presented in Beck
et al. (2016) that includes time-dependent artificial viscosity
and conduction and employs higher-order kernel functions,
given as the well-studied Wendland functions (Wendland
1995, 2004; Dehnen & Aly 2012). However, as thermal cond-
uction is very important in the ICM we do not use the time-
dependent artificial conduction implementation within the
simulations but rather use the physical conduction implementa-
tion first presented in Jubelgas et al. (2004) and later updated
by Arth et al. (2014) to a conjugate gradient solver for
improved convergence and stability of the scheme. The
conjugate gradient solver employed is similar to the one
developed in Petkova & Springel (2009) for use in galaxy
formation simulations that include direct radiative transfer. We
run all the simulations with physical conduction and 1/20 of
the canonical Spitzer value. This is motivated by a number of
research works that have adopted this value based on high-
resolution simulations of plasma instabilities, which in turn can
suppress the heat flux for thermal conduction (e.g., McCourt
et al. 2012; Berlok et al. 2021). However, we note that the exact
suppression factor of the Spitzer value is still heavily debated in
the literature. Nevertheless, we note that our value of 1/20 is
well within the limits of previous studies such as in Kannan
et al. (2017). Our version of P-GADGET3 further includes
magnetic fields and magnetic dissipation as presented in Dolag
& Stasyszyn (2009). While we will use isotropic thermal
conduction in our default runs in the main paper we carry out
some additional runs utilizing anisotropic thermal conduction
following the prescription in Arth et al. (2014). We note that
the usage of anisotropic thermal conduction increases the
computational cost of a simulation by roughly 20%. In the
following, we briefly discuss the specifics of the underlying
SPH equations.

3.1. Kernel Function and Density Estimate

The current SPH scheme implemented in our code is based
on the density-entropy formulation of SPH, which means that
we smooth the density field in the following fashion:

( ) ( )år = m W x h, , 7i
j

j ij ij i
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where hi is the smoothing length. The summation carried out in
Equation (7) is computed over the neighboring particles within
the kernel Wij(xij, hi):

( ) ( ) ( )=W x h
h

w q,
1

. 8ij ij i
i
3

In our simulations, the kernel function is used with 295
neighboring particles. The function w(q) is given by

( ) ( ) ( ) ( )
p

= - + + +w q q q q q
1365

64
1 1 8 25 32 , 96 2 3

for q< 1. For q> 1, we set w(q) to zero and it is known as the
Wendland C6 kernel function (Wendland 1995, 2004; Dehnen
& Aly 2012).

3.2. Equation of Motion in SPH and SPMHD

The equation of motion (EOM) for SPH can conveniently be
derived from a discrete Lagrangian as presented in Price (2012)
by using the physical principle of least action. This has the
distinct advantage that the derived formulation is conserving
energy, momentum, and angular momentum by construction.
This leads to the SPH formulation of the EOM in the pure
hydrodynamic case:
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A similar argument can be made for the SPMHD case leading
to the SPH formulation of the MHD EOM given as
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The presence of the magnetic field alters the EOM in several
ways. First, the presence of the magnetic field leads to an
additional pressure component, apart from the thermal pressure
within the fluid. This additional pressure component scales as
B2. The fact that the magnetic pressure component scales as B2

is crucial to establish pressure equipartition with the thermal
pressure relatively quickly. Second, the term on the left-hand
side of Equation (12) arises due to the divergence cleaning
constraint ∇ ·B= 0. This term is problematic because it breaks
the symmetry of the underlying Lagrangian in a way that the
system is no longer invariant under the rotation of the system.

Thus, from Noether’s theorem one can easily see that the
SPMHD equations do not strictly conserve angular momentum.

3.3. Formulation of the Induction Equation in Nonideal MHD
with Effective ηm

Furthermore, how the magnetic field is influenced by the
EOM it is not only interesting, but how the magnetic field itself
evolves with time is also interesting. The evolution of the
magnetic field is generally given by the induction equation that
takes the form:

( ) ( ) ( )h
¶
¶

=  ´ ´ +  ´  ´
B

v B B
t

, 13m

which can be reformulated as

( · ) ( · ) ( )h=  -  + D
B

B v B v B
d

dt
. 14m

To this day, most MHD simulations of galaxies or galaxy
clusters drop the last term of Equation (14) and very few
simulations include these terms (e.g., Kotarba et al. 2011;
Bonafede et al. 2011; Steinwandel et al. 2019, 2020a).
However, this term is crucial for modeling the plasma in an
accurate fashion5 and thus we include it in our cosmological
galaxy-cluster simulations. The parameter ηm is hereby an
effective diffusion parameter that is comprised of the contrib-
ution due to thermal conduction by ηCoulomb that is related to
the thermal conductivity σ and the turbulent diffusion
coefficient of the plasma ηturb. While the exact value of the
diffusion coefficient in the ICM is under debate and several
processes yield different limits (e.g., Strong et al. 2007; Lesch
& Hanasz 2003; Schlickeiser et al. 1987; Schuecker et al. 2004;
Maier et al. 2009; Rebusco et al. 2006) we use a moderate
value of∼ ηturb∼ 2× 1027 cm2 s−1. This is in good agreement
with the classical Spitzer model for the ICM (Spitzer 1956). For
a more detailed discussion on the choice of ηm we refer the
reader to Section 4.2 of Bonafede et al. (2011).
Following Dolag & Stasyszyn (2009) the diffusion term in

the induction equation takes the form

( )
( )

∣( )∣
· ( )å

h r
r
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r rt Ha

m
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i j
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m
2

where W is the kernel and Bi and Bj are the magnetic field
vectors at the positions ri and rj. Ha

2 is the internal scaling
applied in GADGET needed for correct unit conversion from the
comoving field B to the physical field B/a2. However, as the
magnetic field is dissipated this introduces an additional
entropy term for the thermal plasma, manifesting in the rate
of change of entropy:

( )
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∣( )∣
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Further implementation details can be found in Dolag &
Stasyszyn (2009).

5 Essentially, there are no dynamos that properly work without some form of
diffusion
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3.4. Thermal Conduction

Thermal conduction is believed to be a process of
importance in the ICM. We will briefly describe the physical
process as well as the numerical implementation of the process
into our simulation code for the isotropic and the anisotropic
cases. We note that while we run most of the simulations with
isotropic conduction in the presence of magnetic fields we run
one simulation with anisotropic conduction and show the
results in Appendix C. We note that at our adopted 5% of the
Spitzer value the difference between the isotropic case is only
marginal and we adopted isotropic thermal conduction to save
computational cost. We adopt thermal conduction in our
simulations, since we attempt a bottom-up approach for
modeling the ICM where we first want to study the plasma
astrophysical aspects of the ICM, including magnetic fields and
thermal anisotropic conduction (in this paper), as well as
anisotropic viscosity and cosmic rays (in follow-up work),
before we switch to more complex physical models for cooling,
star formation, and active galactic nuclei (AGN) feedback. This
approach is driven by first understanding first the plasma
astrophysics of the ICM before complicating the picture with
ad hoc subgrid models to study galaxy formation physics.

3.4.1. Isotropic Case

Thermal conduction is the physical process that describes
heat transfer via scattering of free electrons. Thus, in order to
properly work one needs a high ionization fraction of the
underlying plasma. In the ICM this is straightforwardly
achieved as the ICM has virial temperatures that can easily
reach 108 K. One can follow Spitzer (1956) to get the heat flux
as a function of the gradient of the temperature distribution via

( )k= - Q T , 17

where κ is the conduction coefficient. In the classical Spitzer
case, one makes the assumption of an idealized Lorentzian gas
for which one can find the canonical Spizter value given by

⎛
⎝

⎞
⎠

( ) ( )k
p

=
L

k T

m e Z
20

2

ln
, 18Sp

3 2
B e

5 2

e
1 2 4

where kB is the Boltzmann constant, me is the electron mass, Te
is the electron temperature, e is the elementary charge, Z is the
average number of protons in the plasma, and ln Λ is the
Coulomb logarithm. As the temperature of clusters is very high
the conduction coefficient shows a strong dependence on the
temperature one can infer a strong contribution of heat
conduction to the dynamical processes driven in the ICM. In
a realistic plasma one typically does not reach the Spitzer
regime and conduction is suppressed. This is strongly
dependent on the average number of protons present in the
plasma (see Spitzer & Härm 1953), which results in a
suppression factor of 0.3 (Spitzer 1956) under the assumption
of a primordial distribution of the gas, which is a good first-
order assumption for cosmological simulations. However, one
often applies the following parameterization of κ in cosmolo-
gical simulations:

⎜ ⎟
⎛
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m
1.31 , 19e e B

B e

e

1 2

which can be refactored to obtain
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where ne is the electron number density and λe is their mean
free path. From this one can directly see why the heat transport
is dominated by electrons or why the heat transport by protons
in the plasma is subdominant, as the conductivity scales with
the inverse mass. Thus, heat conduction is dominated by the
electron population of the plasma.6 We therefore neglect any
contribution of protons and furthermore make the assumption
that the Coulomb logarithm is constant with L =ln 37.8. This
picture is incomplete as for now we have assumed that the
length scale that is given via

∣ ∣
( )=


l

T

T
21T

is much larger than the mean free path of the electrons. Strictly
speaking one can only make this assumption for a higher
density plasma. However, in a lower density plasma such as the
ICM where the temperature gradient and the mean free path of
the electrons are roughly of the same order, transporting energy
by conduction is limited by the low number of interaction rates
in the plasma. Thus, we are in the conduction-saturation limit
of Cowie & McKee (1977), who computed the limited heat flux
for a low-density plasma

⎜ ⎟
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Now, one can interpolate between Equation (21) and
Equation (22) to obtain the total heat flux

∣ ∣
( )k

l
= -

+



Q
T

l

T

T4.2
. 23tot

T

This is equivalent to a renormalized conduction coefficient

( )k
k

l
=

+
Sp

l1 4.2
. 24

T

Therefore, one can finally formulate the rate of change of the
energy per unit mass:

· · ( ) ( )
r r

k= -  =  Q
du

dt
T

1 1
. 25

3.4.2. Anisotropic Case

In a magnetized plasma heat conduction is slightly more
complicated because as the electrons are charged particles their
scattering processes are influenced by the magnetic field
structure. While electrons can move freely alongside magnetic
field lines their motion perpendicular to the field lines is
suppressed; hence, the term anisotropic conduction. The
trajectory of electrons in the presence of magnetic fields is
well studied and they gyrate around magnetic field lines with

6 The inverse mass is sometimes referred to as the mobility when rescaled
with the mean free path of the particle.
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the Larmor frequency

( )w =
eB

m c
, 26g

e

where c is the speed of light. This affects the movement of the
electrons in the presence of magnetic fields as pointed out by
Frank-Kamenetskii (1967). Following Braginskii (1965) one
can subdivide the heat flux into three additive terms

( )∣∣ ∣∣k k k= -  -  - ´ ^ ^ LQ BT T T , 27

where the first two are referred to as the parallel and perpendicular
components and the last term is called the “Hall term.” We drop
this term as we will see that it will vanish once we start the
discretization of our numerical scheme. However, the remaining
contributions are extremely tedious to describe. To do so it is often
useful to introduce the so-called diffusion coefficients D that are
related to the conduction coefficient κ by k ~ Dn ke B. One can
now distinguish between two cases for the perpendicular diffusion
coefficient: (i) a diffusion coefficient that scales as B−2 and (ii) a
diffusion coefficient that scales with B−2.

In the former case, one can assume that the diffusion
coefficient D can be described as D≈ v2τ. Since electrons
can move freely along the field lines we get D||=D. On the
other hand, perpendicular to the field lines electrons can
only move by interchanging cyclotron frequencies so that

( )l w t»D̂ v g
2 2 and one can straightforwardly determine

that D⊥/D||∝ B−2 for ωgτ= 1. If the gyro-radius is of the
order of the mean free path, one finds the relation ∣∣ »D̂ D

( )w t+1 1 g
2 . For typical values of the ICM, one obtains

D⊥/D||≈ 10−28.
However, in practice, it is a bit more complicated because

the transport process perpendicular to the field lines interacts
with turbulent diffusion processes and possibly reconnection
diffusion events, which make the interaction highly nonlinear,
and experiments conducted in the laboratory indicate that the
scaling is rather of order B−1 than B−2 given by Bohm
diffusion (Guthrie et al. 1949).

Finally, we can write the heat flux in the case of anisotropic
thermal conduction as

·
∣ · ∣

( ) ( )k k q= -



 = - Q
B
B

T

T
T Tcos . 28

In practice, we split the conduction equation into two parts,
which results in the rate of change of the energy per unit mass
of the form

· [ ( ˆ · ) ˆ ( ( ˆ ) ˆ )] ( )∣∣
r

k k=   +  - ^B B B B
du

dt
T T T

1
. 29

3.4.3. Numerical Implementation

Now we need to discretize Equation (29) to obtain its
SPH formulation. First, we rewrite Equation (29) by factoring
( ˆ · ) ˆB BT , which yields

· [( )( ˆ · ) ˆ ] ( )∣∣
r

k k k=  -  + ^ ^B B
du

dt
T T

1
. 30

A straightforward way to solve this equation is to do an
operator split and solve for the divergence and the temperature
gradient in chained SPH loops. In practice, this has the

disadvantage that it increases the computational cost and leads
to increased noise in the solution as each loop will
independently add partition noise to the final result. Thus, this
is not the favored way of solving this problem. We will follow
the methodology derived in Petkova & Springel (2009), who
discretized a similar diffusion equation in the context of
radiative transfer. In the following, we will derive the discrete
form of the anisotropic conduction equation but only for the
first term. The reason for this is that the second term in
Equation (30) can be solved as described in Jubelgas et al.
(2004) or Steinwandel et al. (2020b) and thus we refer the
reader to those papers for a review of how to solve the second
term in SPH. The first term takes the discrete form of

⎛
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1st

,

We note that α and β represent the components of a tensor of
second order. We substitute the tensor components by

( ) ˆ ˆ∣∣k k= -ab a b^A B B , which yields
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Now we want to rewrite the second derivative present in
Equation (32). This can be achieved by using the following
identity for an arbitrary vector Y (e.g., Price 2012):

( )
·
∣ ∣
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We can use Equation (33) to rewrite the right-hand side of
Equation (32) to obtain
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Finally, we can write the integral on the right-hand side of
Equation (34) by the SPH sum over the neighbors to get
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where μ is the molecular weight and γ is the adiabatic index,
which we set to 5/3 in the whole simulation domain. We note
that we essentially recover the same scaling of the anisotropic
case with the temperature difference between SPH particles as
we know it from Jubelgas et al. (2004) and Steinwandel et al.
(2020b). The problem with Equation (35) is that there is a
precondition for actually solving this for the tensor Ai+Aj,
which needs to be positive definite to establish physical heat
flux from hot to cold. This is related to the fact that A scales
with the difference between κ|| and κ⊥, which can be negative
for strong anisotropies of the heat flux. Thus, technically the
heat flux can be negative and flow from cold to hot, which is
nonphysically. There are several methods to circumvent this.
First, one could essentially take the approach of flux-limited
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diffusion. Second, only do the anisotropic part if the tensor is
positive definite. Third, isotropize the tensor. We follow
Petkova & Springel (2009) and do the latter by adding an
artificial isotropic component to the heat flux tensor, which
yields ( ) ( )a a + -A A A 11 3 1 tr . We follow Petkova &
Springel (2009) and adopt α= 2/3. We note that we actually
do not do a discretization of the Hall term since in our
parameterization it is simply vanishing from the discretized
equations.

Finally, we solve the actual differential equation. We do this
by adopting the method from Petkova & Springel (2009) with
the so-called conjugate gradient method, which requires an
additional SPH loop but shows very accurate results in practice.
The conjugate gradient method is in principle a numerical
method used to solve a matrix inversion problem of the form

· ( )=C bx . 36

The method is implicit and iterates to a solution with a very
high convergence order. However, it is numerically unstable,
which means that it does not guarantee a solution for arbitrary
particle distributions. However, the underlying idea of a
conjugate gradient method is the following. The algorithm is
supposed to monotonically approach the solution of each
element of the inverted matrix by adopting a weight that is
dependent on the residual of the previous iterations based on a
good initial guess of the state of the physical system. In order
for this to work, C needs to be real, positive definite. However,
as we already use a correction to get an isotropic version of our
heat flux tensor we can assume that both of these assumptions
are valid. The final task that remains is to write Equation (35) in
the form of a conjugate gradient,

( ) ( )å= + -+ + +u u c u u, , 37i
n
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( )
∣ ∣

( ) ( )g m
r r

= -
- D

+ 
x

x
A Ac

k

m t
W

1
. 38ij

j

i j

ij

ij
i j i ij

B

T

2

This is the conjugate gradient version of our anisotropic
thermal conduction equation (the first term). We note that the
scheme can be numerically unstable. However, this can be
resolved by switching to a biconjugate method (BICGSTAB),
which applies convergence through a second direction
(geometrically speaking).

We note that there are a lot of similar implementations that
treat different parts of thermal conduction mostly in the realm
of galaxy-cluster formation (Ruderman et al. 2000; Dolag et al.
2004; Schekochihin et al. 2008; Rasera & Chandran 2008;
Parrish et al. 2009; Sharma et al. 2010; ZuHone et al. 2013;
Suzuki et al. 2013; Komarov et al. 2014; ZuHone et al. 2015;
Dubois & Commerćon 2016; Kannan et al. 2017; Yang &
Reynolds 2016).

4. Initial Conditions and Simulations

We run a suite of six non-radiative (without cooling and star
formation) cosmological zoom-in simulations of a galaxy
cluster with a target mass of M200∼ 2× 1015 Me to the target

redshift z= 0. We run the simulations at three different mass
resolutions, which we will refer to as 1×, 10×, and 25×. In this
naming convention, the leading number indicates 1, 10, or 25
times the mass resolution that is achieved in the Magneticum
high-resolution cosmological volume simulations (Hirschmann
et al. 2014). We choose this setup for the following reasons.
First, this allows us a detailed study of the plasma physics that
is acting within the ICM without being polluted by the
additional energy input of supernovae (SNe) or AGN. This
enables us to investigate the magnetic field amplification in the
ICM without the need to retune feedback parameters on the
different resolution levels and directly sets the origin of the
turbulence injected in the system to be driven by gravitational
forces only. Thus, we can link any amplification of the
magnetic field directly to the gravo-turbulence within the ICM
without considering turbulence driven by stellar or AGN
feedback. However, we will comment on the caveats of this in
Section 6 in greater detail. Second, previous studies of the
dynamo in the ICM that were obtained with the grid code ENZO
presented in Vazza et al. (2018) have been carried out with a
similar non-radiative setup, which allows for a pristine
comparison with their results.

4.1. Simulation Setup

The initial conditions for the cluster at hand are selected
from a lower resolution volume with a box size of 1.0 Gpc and
a base resolution of 10243 dark matter particles leading to a
particle resolution of around 108 Me. We use a Wilkinson
Microwave Anisotropy Probe 7 cosmology with Ω0= 0.24,
ΩΛ= 0.76, Ωbaryon= 0.04, h = 0.72, and σ8= 0.8. We select
the dark matter particles at z= 0 in cosmological volume at
base resolution and trace them back to a resolution-dependent
initial redshift using the code ZIC (Tormen et al. 1997). The
code allows for arbitrary shapes of the high-resolution regions
to avoid overhead by oversampling the high-resolution regions
when it is simply tied to a sphere or an ellipsoid. The initial
redshifts for the three resolution levels are as follows: zini= 70
(1×), 140 (10×), and 180 (25×).
The region that is selected for re-simulation is chosen to be

large enough to avoid pollution of the target halo at z= 0 by
lower resolution intruder particles that originate from the lower
resolution large-scale structure in the gigaparsec volume. For
each resolution level, one dark-matter-only test run has been
carried out to ensure the quality of the initial conditions in
which the gas particles have been coevolved as separate dark
matter species. As the mass resolution and the applied force
softening change on all of the three resolution levels, we sum
the basic simulation parameters in Table 1. We note that the
force softening in our lowest resolution run is 3.0 kpc which is
still smaller than the spatial resolution of the highest resolution
run of Vazza et al. (2018). In our highest resolution run, the
force softening is pushed to 1 kpc.
As we carry out all simulations in a non-radiative fashion we

need an initial seed field as this is the only possible origin of the
magnetic field in a scenario like this. For this, we choose a
default value of Bseed= 10−14 G (comoving). As we start our
simulations at different redshifts, this corresponds to a variation
in the physical seed field of · ( )= +B B z1init, ph seed init

2 for the
different resolutions, which we sum in Table 1. We note that
this is a rather conservative choice for the magnetic seed field
and other simulation groups often take larger values (e.g.,
Vazza et al. 2018).
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Furthermore, we will test different physical settings on our
10× model. For this purpose, we need to introduce naming
conventions and model variation parameters.

4.2. Naming Conventions and Model Variations

The MHD simulations with the abovementioned default
settings are referred to as 1×, 10×, and 25×. Throughout the
paper, we will make quite limited use of our hydrodynamics-
only models. Therefore, whenever we refer to one of the
hydrodynamics-only simulations we will explicitly label it as
the hydrodynamic realization of the model 1×, 10×, or 25×.
The focus of this work is magnetic field amplification in the
ICM and the hydrodynamics-only simulations are merely
reference simulations used for the comparison with the MHD
runs.7

Furthermore, we will test three important model variations
on the 10× run and introduce new naming conventions for the
specifics of the respective run. The three model variations are
as follows:

1. First, we will investigate the variation of the magnetic
seed field to a 10 times smaller and a 10 times higher
value than the value we chose in our default setting (for
10× this is 1.98× 10−10 G.), resulting in 1.98× 10−11

and 1.98× 10−9 G. These two simulations are labeled as
10×-low-seed and 10×-high-seed and will be the subject
of Appendix A.

2. Second, we will investigate how robust our results are on
the choice of the numerical diffusion parameter. Our
default setting for the diffusion parameter is∼ ηturb=
2× 1027 cm2 s−1 (Bonafede et al. 2011). In order to
understand the dependence of the magnetic field growth
on the diffusion parameter, we will also vary this to a
10 times lower value and a 10 times higher value of
ηturb= 2× 1026 and ≈2× 1028 cm2 s−1, respectively. For
these simulations, we introduce the naming conventions
10× low-eta and 10×-high-eta, which are the subject of
Appendix B.

3. Third, we will carry out one additional run with
anisotropic thermal conduction where we directly include

the magnetic field structure in our thermal conduction
solver via a biconjugate gradient solver (Arth et al. 2014).
All other simulations are carried out with physical, but
isotropic conduction, which is a potential caveat in the
MHD case. However, isotropic conduction is already
computationally expensive to solve and takes up roughly
15% of the computing time. Anisotropic conduction is
even more demanding in terms of computational cost and
the memory imprint of the code. Thus, we only carry out
one simulation labeled as 10×-ani with the effect of an
anisotropic physical conduction, which will be the subject
of Appendix C.

We show an overview of all the simulations with the physics
variations that we carried out in this work in Table 2.

5. Results

In this section, we present the results of our simulations.
First, we discuss the cosmological assembly of the structure in
terms of halo mass and will investigate the general impact of
the magnetic field on the structure formation process. This is
followed by a detailed investigation of the buildup of the
magnetic field from the initial redshift down to redshift z = 0.
Finally, we will briefly discuss the impact of the divergence
cleaning constraint on the structure of the ICM in our simulated
galaxy cluster.

5.1. Cosmological Assembly and General Cluster Properties

First, we briefly discuss the cosmological assembly of our
quintessential galaxy cluster to gauge that it reaches a halo
mass of aroundM200∼ 2× 1015 Me at redshift z = 0. We show
this in Figure 1 for our 1× resolution simulations with and
without magnetic field from redshift z = 4–0. The structure
itself starts to form at a much higher redshift and has already
assembled around∼2× 1013 Me by redshift z = 4, which is
around 1% of the mass that it will acquire by redshift z = 0.
The cluster undergoes very rapid growth between redshift z = 4
and 1.5 from∼2× 1013 to∼3× 1014 Me, which corresponds
to a growth rate of around 9.5× 1013 Me Gyr−1. After that, the
system transits into a phase of weaker growth until redshift
z = 0.8 in which it doubles its mass. This is followed by a
major merger at redshift z= 0.8 at which the system roughly
acquires another 30% of its total mass up to that point pushing
it just below the 1015 Me mark and then finally transits to the
regime of the continued growth of the system via smooth
accretion. This is followed by another major merger at redshift
z = 0.3. Past redshift z = 0.2, the system quietly assembles the
rest of its mass until it reaches a final mass of∼ 2× 1015 Me at
redshift z = 0. We note that the reference run without the
effects of the magnetic field (red line in Figure 1) follows the
MHD run very closely with an error below the 1%margin for
most of the evolution of the system. This gauges the expected
very weak effect of the presence of the magnetic field on the
large-scale assembly of the structure and shows that the
magnetic field does not alter the behavior of the cosmological
assembly of the structure. However, there is one exception to
this, which is the slight delay in the first major merger of the
system at around redshift z = 0.8, which slightly delays the
merger and could potentially originate from the fact that the
additional pressure component that is present as the magnetic
field within the system slows down the collapse of the baryons

Table 1
Overview of the Number of Particles, Mass Resolution, Gravitational Softening
Lengths, and Physical Field Strength of the Three Targeted Resolution Levels

Particle Numbers

1× 10× 25×
Gas particles Ng ∼ 1 × 106 ∼ 1 × 107 ∼ 3 × 107

Dark matter Ndm ∼ 1 × 107 ∼ 1 × 107 ∼ 3 × 107

Mass resolution [Me]

Gas particles mgas ∼ 1.4 × 108 ∼ 1.4 × 107 ∼ 5.6 × 106

Dark matter mdm ∼ 6.9 × 108 ∼ 6.9 × 107 ∼ 2.7 × 107

Gravitational softening [kpc]

Gas particles ògas 3.0 1.4 1.0
Dark matter òdm 3.0 1.4 1.0

Seed field (physical)

5.02 × 10−11 1.98 × 10−10 3.28 × 10−10

7 The hydrodynamics models are used as a sanity check for the MHD models
in terms of mass and the growth of the size of the objects (see Section 5.1).
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into the dark matter halo, which indirectly slows down the
assembly of the dark matter mass in the center of the halo.

5.2. Morphology of the Cluster

We start the evaluation of our results by visualizing the key
quantities of the cluster for our different runs in Figure 2. In the
top row we show the model 1×, in the middle row we show the
model 10×, and in the bottom row, we show the model 25×.
The panels on the left show the gas surface density, the panels
in the center show the temperature distribution of the cluster,
and the panels on the right show the magnetic field strength in
the three different models. The white dashed circle in the center
of each panel indicates the virial radius of the cluster. In the 1×
run we can see a clear lack of resolution, especially in the
cluster outskirts beyond the virial radius of the system. This
manifests as a vanishing substructure in the density distribution
compared to the higher resolution models 10× and 25×.
However, the largest difference between the 1× model and the
10× and 25× models can be seen in the temperature and
magnetic field distributions. Visually it appears that there is
more hot gas around 108 K in the virial radius for the two
higher resolution models 10× and 25×. Furthermore, we can

identify a clear trend of an increase in the magnetic field
strength within the virial radius by a factor of around 3 from the
1× model to the 10× and 25× models. In this context, we want
to note that the particles with the maximum field strength
within the simulation are located around the cluster center. For
the 1× simulation, the particle with the maximum field strength
has a value of ∼120 μG, for the 10× run we find∼180 μG, and
for the 25× run we find ∼240 μG. We note that there are very
few particles on each resolution level that have similar
magnetic field strength (it is around 10 particles for the 25×
simulation, which have a field beyond 100 μG). We will
discuss in Section 5.6 to which degree this behavior is driven
by our nonzero divergence in all the simulations. Despite the
slightly larger field strength in the runs 10× and 25× we want
to point out the increase of magnetic field line structures that
we can capture in the higher resolution runs 10× and 25×
compared to the 1× run.
Moreover, we gauge the assembly of the cluster as a function

of redshift for the run 25× for three different redshifts as shown
in Figure 3. We show the same quantities as in Figure 2. The
top row of Figure 3 shows the cluster at z= 2.331, the second
row shows the cluster at a redshift of z= 1.180, and the third
row is the same as the third row of Figure 2 showing the cluster
at redshift z= 0. One can see that the central density of the
cluster is continuously increasing as a function of redshift,
which occurs due to subsequent merger and accretion events.
We can see at redshift z= 2.331 that a massive structure is
about to fall in from the top right. At z= 1.180, we can see
smaller structures infalling from beyond the virial radius, which
show extended tails of stripped gas. At redshift z= 0, the
cluster evolves to a more relaxed state with a lower number of
infalling objects. There is also a clear evolution in the
temperature profiles, which we can see in the center panels
from top to bottom where the cluster gas is strongly heated
through its formation process down to redshift z= 0. The
magnetic field structure is of particular interest as it is apparent
from the evolution of the magnetic field on the right-hand side
of Figure 3 from top to bottom that we can find a fully
developed magnetic field with around a few microgauss already
at redshift z= 2.331, which seems visually to decrease but
occupies a larger volume as the system evolves toward redshift
z= 1.180. At redshift z= 0, we find a fully developed field
within the virial radius. Visually, the magnetic field amplifica-
tion seems to be correlated with the turbulence that is injected
via the structure formation process. We want to specifically
point out that the field is stronger at around redshifts z= 2 and
1 compared to the field strength at redshift z= 0.

Table 2
Overview of the Physics Variations Adopted throughout Our Different Simulations

Name Nonideal MHD η [cm2 s−1] Thermal Conduction Anisotropic Thermal Conduction κ/κs

1× ✓ 2 × 1027 ✓ × 0.05
10× ✓ 2 × 1027 ✓ × 0.05
25× ✓ 2 × 1027 ✓ × 0.05
1×-NO × L ✓ × 0.05
10×-NO × L ✓ × 0.05
25×-NO × L ✓ × 0.05
10×-low-seed ✓ 2 × 1027 ✓ × 0.05
10×-high-seed ✓ 2 × 1027 ✓ × 0.05
10×-low-eta ✓ 2 × 1026 ✓ × 0.05
10×-high-eta ✓ 2 × 1028 ✓ × 0.05
10×-ani ✓ 2 × 1027 ✓ ✓ 0.05

Figure 1. We show the accretion history of the clusters for the MHD case
(blue) and for the hydrodynamical (HD) case (red) for reference only for our
lowest resolution run to gauge that magnetic fields have a weak effect on the
structure formation process.
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5.3. Radial Evolution of the Cluster

Before we start the discussion on magnetic field amplifica-
tion via the turbulent dynamo in the ICM we want to briefly

report our results for radial profiles of central physical
quantities at redshift z= 0. In Figure 4, we show the radial
profiles out to a radius of 4 Mpc for the density (top left), the

Figure 2. We show the projections of density (left), temperature (center), and magnetic field (right) for our runs of 1× (top), 10× (center), and 25× (bottom) at
redshift z = 0. While the 10× and the 25× simulations show structural similarities, in the magnetic field and temperature structure, there are structural differences in
the run 1×. Moreover, the central magnetic field increases by a factor of around 2.5 from 1–25×.

10

The Astrophysical Journal, 933:131 (25pp), 2022 July 10 Steinwandel et al.



magnetic field (top right), the temperature (bottom left), and the
pressure (bottom right) for the runs 1× (blue), 10× (red), and
25× (magenta). For all quantities, we find declining profiles as

a function of the radius. As we are specifically interested in the
magnetic field evolution of the cluster we note the most
important findings regarding the radial trend of the magnetic

Figure 3. We show the projected density (left), temperature (center), and magnetic field (right) for three different points in time, at z ∼ 2 (top), z ∼ 1 (center), and
z ∼ 0 (bottom) for our 25× run. We can clearly see that we have a fully developed magnetic field structure by redshift z ∼ 2.
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field strength as a function of resolution. As the resolution
increases from 1–10× and finally to 25× we find an increase in
the central magnetic field from around 5 μG in the case of the
1× simulation over 9 μG in the 10× simulation to 14 μG in the
25× simulation. We compare our predicted magnetic field
profiles from our simulations to the best fit to a β model from
the observations of the magnetic field in the Coma-galaxy
cluster (gray line in the top left panel of Figure 4) and the best
fit obtained from 24 simulations of galaxy clusters at the same
resolution, and then our 1× run from the same parent dark
matter box from Bonafede et al. (2011) (black line in the top
panel of Figure 4). While our results for the 1× run are in good
agreement with respect to the central magnetic field value in the
cluster compared to Coma observations and the simulations of
Bonafede et al. (2011) our higher resolution models overpredict
the central magnetic field value roughly by a factor of 2.5. We
will investigate the origin of this behavior in greater detail in
Appendices A and B by varying the magnetic diffusion

constant and the initial seed-field strength. Even though our
higher resolution simulations predict a central magnetic field
strength that is higher than the observed values in the Coma
cluster we note that state-of-the-art simulations with Eulerian
gird codes typically predict values that just reach the
microgauss regime and are around the same factor too low
compared to observed values within the Coma cluster that
report central field strengths of around 7 μG (Bonafede et al.
2010). Moreover, we note that the cluster that we simulated is
not really a Coma-cluster analog as this is a system that is in
equilibrium at redshift z= 0 and the Coma cluster is not (e.g.,
Lyskova et al. 2019). Furthermore, as noted above we do not
vary the parameters of the seed field and diffusion constant,
which might impact the radial magnetic field distribution at
redshift z = 0. We chose to do this in our default simulation
runs to obtain pristine conditions for our study of the galactic
dynamo, which is the central subject of this paper. Last but not
least, the too high central field could also be related to our

Figure 4. We show radial profiles of the density (top left), volume-weighted magnetic field strength (top right), temperature (bottom left), and thermal pressure
(bottom right) for our three galaxy-cluster simulations 1× (blue), 10× (red), and 25× (magenta). For the magnetic field, we overplot the best fit from Bonafede et al.
(2011) (black line) and observations of the magnetic field within the Coma-galaxy cluster from Bonafede et al. (2010) (gray line).
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nonvanishing divergence of the field. We will discuss the
impact of the divergence cleaning constraint on the too high
central magnetic field strengths in Section 5.6.

5.4. Amplification of the Magnetic Field

We start the discussion of magnetic field amplification in our
galaxy-cluster zoom-in simulations by considering the time
evolution of the magnetic field within 1 virial radius (Rvir) from
redshift z = 04–0. We show this in Figure 5. The magnetic field
increases exponentially from the initial seed-field value
between redshift z = 4 and 2 to a sub-equipartition value of
around 0.05 μG in the 1× simulation. In the higher resolution
simulations 10× and 25× we find a very different shape of the
growth of the field as a function of redshift. Here, the magnetic
field in the cluster peaks at around redshift z= 2 at a value of a
few microgauss. From that point in time, the field decreases
toward redshift z = 0 and settles at around 1–2 μG within the
virial radius. This behavior is consistent with other cosmolo-
gical simulations of magnetic field amplification (see, e.g.,
Garaldi et al. 2021). While the exponential increase in the
magnetic field strength could potentially be related to magnetic
field amplification by a small-scale turbulent dynamo driven by
subsonic turbulence in the ICM, it is impossible to determine
this from the evolution of the magnetic field alone. However,
we can still estimate the growth rate of the magnetic field for
the different runs. Essentially, we find that all three models are
initially consistent with the exponential growth of the form

( · ) ( )gµB texp . 39

For the 1× run, we find that γ≈ 0.7 Gyr−1 while for the 10×
and 25× runs we find γ≈ 0.15 Gyr−1. The former growth rate
indicates unresolved dynamo action in the 1× simulation.
Furthermore, we note that the increase in the field we observe
toward higher redshift is roughly consistent with an increase in

the magnetic field toward higher redshift following the relation

( ) ( )= +=B B z1 , 40z
m

0

with a power-law index of around m = 0.5. This is in relatively
good agreement with the predictions made for SKA by Krause
et al. (2009). It is intrinsically complicated to identify dynamo
action in numerical simulations of galaxy and galaxy-cluster
formation. This is mainly due to the fact that the fundamentals
of dynamo theory are built on top of the theory of turbulence,
which is generally not very well understood in HD numerical
simulations. Generally, dynamos work by converting (turbu-
lent) kinetic energy into magnetic field energy on the scale of
small turbulent eddies. This process is saturated once
equipartition between turbulent kinetic energy and magnetic
field energy is reached. The magnetic field energy can then be
transported to the larger scales in the so-called inverse turbulent
cascade. However, the amplification of tiny magnetic seed
fields by turbulence competes with the dissipation of magnetic
fields on the smallest scales. Only if the interplay between the
dissipation of the magnetic field and transport of the magnetic
field alongside its amplification is modeled correctly, the
dynamo will transit from the linear growth regime, into the
nonlinear regime and finally saturate. The crux in achieving
this is to have enough resolution on small scales to capture
magnetic field amplification by turbulence but also enough
resolution on larger scales to model magnetic field transport
toward larger structures. This has been the subject of MHD
research in many Eulerian grid codes in recent years (e.g., Ryu
et al. 2008; Beresnyak & Miniati 2016; Schekochihin et al.
2004; Cho et al. 2009; Porter et al. 2015; Vazza et al. 2018) but
there is little to no work on magnetic field amplification in
Lagrangian methods. This paper is explicitly targeted to close
the gap between the state of research in studies of magnetic
field amplification within the ICM that has been put forward in
recent years with Eulerian codes. In the following, we will
present evidence of an acting small-scale turbulent dynamo in
the ICM of our simulated galaxy clusters and evaluate the
resolution dependence of the process by directly comparing it
to the dynamo theory that has been put forward by Kraichnan
& Nagarajan (1967) and Kazantsev (1968) and has been refined
by several authors since then (e.g., Zel’dovich 1983; Kazantsev
et al. 1985; Kulsrud & Anderson 1992; Kulsrud et al. 1997;
Subramanian & Barrow 2002; Xu & Lazarian 2020).
First, one can study the structure of the cluster in the density-

magnetic field phase space to gauge the dependence of the
magnetic field on its environment. We show this in Figure 6 for
our highest resolution simulation (25×) and two different
redshifts, redshift z= 0.3 (left) and redshift z= 0 (right). The
gas cells are selected within 1 Rvir around the center of the
cluster, which has been identified with the SUBFIND algorithm
(Springel et al. 2001; Dolag et al. 2009). The color code
indicates the cell mass and shows how much mass is contained
in each state in 1010 Me. We deliberately choose these two
points in time to distinguish between the linear and nonlinear
dynamo regimes at redshifts z= 0.0 and 0.3, respectively.
Within this time frame, the cluster transits from a turbulent
merging epoch toward a dynamically relaxed system. At both
redshifts, we can identify gas at low magnetic field strengths
and lower gas densities that are in good agreement with the

Figure 5. We show the time evolution of the total magnitude of the magnetic
field as a function of redshift. This indicates exponential growth of the
magnetic field early in the formation history of our galaxy-cluster simulations.
We indicate the different resolution levels with red (1×), blue (10×), and
magenta (25×). Bottom: we show the evolution of the magnetic field energy
for our cluster for all resolution levels and only find a very weak dependence on
the resolution.
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power-law scaling obtained from the flux-freezing regime of an
ideal MHD of an adiabatically collapsing system ( rµB

2
3). At

larger densities and higher magnetic fields, we can identify a
different scaling, specifically at redshift 0. We find excellent
agreement with the saturated dynamo regime with the scaling

rµB
1
2 in the framework of reconnection diffusion (see, e.g.,

Xu & Lazarian 2020). While the saturation regime is in very
good agreement with our redshift z= 0 results, this is not the
case at z= 0.3 when the system undergoes a merger event
followed by rapid smooth accretion of gas mass toward the
cluster center. While some gas at lower densities is still
following the saturation regime, there is a clear deviation in the
high-density tail, which is identifiable as flattening of the
scaling followed by a kink within the distribution at a density
around ne= 3× 10−3 cm−3. This could be evidence of rapid
diffusion of the magnetic field at the highest densities, which
would be in agreement with the recent theory proposed by Xu
& Lazarian (2020), who study the turbulent dynamo in the
framework of reconnection diffusion under gravo-turbulence in
cooling star-forming cores. While Xu & Lazarian (2020) point
out that the theory they develop could be of paramount
importance in the regime of the first star formation, it is
apparent that the idea of gravo-turbulence is of importance on
galaxy-cluster scales as well. Thus, first we want to point out
that the physical systems of a gravitational collapsing star-
forming core are quite different from the cosmological
assembly of a galaxy cluster. In a star-forming core, the idea
would be that cooling enhances the collapse as the heat
generated by the collapse can efficiently be radiated away. This
means, that the system is heavily driven out of equilibrium.
However, galaxy clusters are (to first order) virialized and thus
in equilibrium, especially if one considers non-radiative
simulations of clusters. There is one exception to this, which
is when the cluster is undergoing a merger process and the

merger remnant continues to accrete material that indirectly
mimics the situation for which Xu & Lazarian (2020) derive
their dynamo model. Xu & Lazarian (2020) derive the
following scaling for the nonlinear growth regime of the
dynamo under gravitational collapse:

( )
r

rµ -B
. 412

3

2
57

1
6

Xu & Lazarian (2020) compare their derived scaling to the
results of simulations of magnetic field amplification of first
star formation taken from Sur et al. (2012) and find good
agreement of their scaling relation with collapsing star-forming
structures. However, this is a scale-free problem and can easily
be tested in the framework of our cosmological galaxy-cluster
simulations.
Sur et al. (2012) point out that dynamo amplification under

gravitational collapse can better be quantified by evaluating
B/ρ2/3 than just by evaluating the phase space of magnetic
field strength and density in star formation simulations (they
simulate the gravitational collapse of a Bonnor–Ebert sphere).
However, the physics driving dynamo amplification in the
regime of star formation is quite similar to the formation
scenario of a galaxy cluster as it undergoes collapse in the dark
matter potential and one can directly test the linear growth
regime and the nonlinear growth regime discussed in Sur et al.
(2012) and Xu & Lazarian (2020), respectively, in the fashion
suggested by Sur et al. (2012) in the regime of the formation of
a massive galaxy cluster.
This is evaluated in Figure 7 where we show the average of

B/ρ2/3 as a function of the density in equal log bins for our 1×
(blue), 10× (red), and 25× (magenta) simulations for redshift
z= 0.3 (top) and z= 0 (bottom). In this context, we can
identify the linear growth regime as the monotonically

Figure 6. We show the evolution of the density-magnetic field strength phase space at redshift 0.3 (left) at which the system undergoes a heavy major merger and at
redshift z = 0 at which the system transits toward a relaxed state. We include all the gas within the virial radius Rvir. In both cases, we find excellent agreement with the
adiabatic compression limit (B ∝ ρ2/3, blue line) at low magnetic field strengths and lower densities. This can be associated with the gas that is falling toward the
center of the structure. However, in the regime of higher magnetic fields and higher densities, we find good agreement with the power-law scaling that is expected
from a saturated turbulent dynamo (B ∝ ρ1/2) at redshift 0, while there appears to be some deviation from the saturated dynamo at redshift z = 0.3, which could hint at
a nonlinear dynamo regime.
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increasing part as a function of density. For the 1× (lowest
resolution) simulation, we find a steeply decreasing part at high
densities indicating an unresolved nonlinear growth regime at
both redshifts of interest. While we find a similar situation for
redshift z= 0 in our two high-resolution simulations 10× and
25×, this is different at a higher redshift of z= 0.3 where we
can clearly identify the nonlinear growth regime of the dynamo
following the scaling of Xu & Lazarian (2020). We note that
the disagreement with Xu & Lazarian (2020) at redshift z= 0
can be explained by the fact that our cluster at hand is a
dynamically relaxed system at that time. At z= 0.3, however,
the system is strongly collapsing following a previous major
merger, providing the ideal conditions for magnetic field
amplification via the refined theory of Xu & Lazarian (2020).

Moreover, we can directly quantify how well our results
agree with the scalings derived by Xu & Lazarian (2020) by
directly fitting the relevant part shown in Figure 7
between 0.002 and 0.01 cm−3 with a function of the form

( )r a=B nlog log2 3 . We report the best-fit parameters for the
redshifts z= 0 and 0.3 in Table 3 for the runs 10× and 25×,
since these are the only resolution levels that exhibit the
reported behavior by Xu & Lazarian (2020). This confirms our
findings, that we are not able to reproduce the reported scaling
of Xu & Lazarian (2020) if the cluster is relaxed at redshift
z = 0, but the cluster can be fairly well characterized by the
theory of Xu & Lazarian (2020) when the cluster undergoes
heavy merging at around redshift z = 0.3. However, we note
that the 10× run is still overestimating the slope and only the
25× run is capable of reproducing a slope that is in good
agreement with the theory of reconnection diffusion under
gravitational collapse.
However, despite the agreement with Xu & Lazarian (2020)

we already saw the indication for this behavior shown in the
left panel of Figure 6 as the kink in the phase-space distribution
at a density of roughly ne 3× 10−3 cm−3, which one can
interpret as dissipation of magnetic field in high-density
regimes.
Apart from the density-magnetic field strength phase space,

there is another way of identifying the small-scale-turbulent
dynamo by evaluating the magnetic power spectra of the
simulations. This has become a standard test for identifying an
acting small-scale turbulent dynamo in numerical simulations,
specifically in the ISM (e.g., Balsara et al. 2004; Schekochihin
et al. 2004; Porter et al. 2015; Hennebelle & Iffrig 2014; Gent
et al. 2021) but has recently also become quite popular on the
scales of galaxies (e.g., Butsky et al. 2017; Martin-Alvarez et al.
2018, 2020; Pakmor et al. 2017; Rieder & Teyssier 2016, 2017a,
2017b; Steinwandel et al. 2019, 2020a) and galaxy clusters (e.g.,
Dubois & Teyssier 2008; Ryu et al. 2008; Vazza et al. 2018) for
studying the turbulent dynamo. We show the magnetic power
spectra for our three MHD simulations in Figure 8 for 1× (blue),
10× (red), and 25× (magenta). We note that these are simply the
redshift z= 0 power spectra. For each simulation, we calculated
the power spectra by binning the SPH data to a grid. The grid has
a resolution of 1283 and is represented by a cube with a side
length of 3× Rvir. The power on each scale is then computed by
evaluating the Fourier modes on the grid scale.
One can clearly see that there is excellent agreement between

the power spectra determined by this methodology and the
power-law slopes predicted by Kazantsev (1968) for the
simulations 10× and 25×. In these two simulations, we find
the best fit for the power-law slope between 1.2 and 1.5.
However, we note that there is some variation of this depending
on the exact resolution of the grid we adopt for the underlying
power spectrum. For the 1× run, we find a fit best-fit value for
the slope of around 0.9, which is much lower than the slope of
1.5 predicted by the theory of Kazantsev (1968), indicating that
the inverse cascade of the small-scale turbulent dynamo is only
poorly resolved in the 1× run. This is probably introduced by

Figure 7.We show the quantity B/ρ2/3 as a function of the density in equal log
bins to show the agreement of the theory of the turbulent dynamo under the
gravitational collapse derived by Xu & Lazarian (2020) with our cosmological
galaxy-cluster simulations at redshift z = 0.3 at which the cluster undergoes
gravitational collapse after a major merger(top). At redshift z = 0 when the
cluster is dynamically relaxed we find deviations from the above scaling. The
colors indicate our 1× (blue), 10× (red), and 25× (magenta) runs.

Table 3
Best-fit Values for α as Obtained by Our Simulations

Fitting Parameters

10× (z = 0) 25× (z = 0) 10× (z = 0.3) 25× (z = 0.3)
α −0.34 ± 0.02 −0.29 ± 0.03 −0.25 ± 0.03 −0.16 ± 0.02
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the lack of resolution we have in the outer parts of the cluster in
the 1× run compared to the 10× and 25× runs. Therefore, we
suggest that studies regarding the dynamo on the scales of the
ICM require a cell mass resolution of around 107 Me, which
corresponds to a spatial resolution of around 2 kpc. While we
generally find little difference between our 10× and 25×
models, we would advise future dynamo studies with
Lagrangian methods to adopt our 25× resolution for converged
results on the power spectra, which results in a mass resolution
of around 4× 106 and a spatial resolution of roughly 3 kpc.
This is roughly in line with the findings of Vazza et al. (2018)
for the grid code ENZO, who obtain self-consistent power
spectra for their two highest resolution runs. However, we note
that while the Kazantsev (1968) spectra are recovered they are
not converged and with increased resolution we find a shift of
the spectra to the right, indicating that the growth rate is still
increasing when we move from 10–25×. Additionally, we
would like to add a brief analysis based on the findings of
Schober et al. (2015), who present in their Table 1 some
scalings for the shape of the magnetic power spectra with under
resolved dynamo action. First, we derive the critical magnetic
Reynolds number, RMcrit, in our simulations for which we
generally find a value of around 1000, depending on the exact
numbers for gas density, magnetic field energy density, as well
as an estimate of the turbulent length scale and the turbulent
velocity. For our estimate, we assume a gas density of 0.01
cm−3, a magnetic field strength of 1 μG as well as a typical
response time of a cluster of a few tens of megayears, based on
the growth rate of the magnetic field. Furthermore, we assume
that typical velocities of turbulence are around 100 km s−1 and
the turbulence length scale in the ICM might be a few hundred

kiloparsecs. This yields (depending on the exact values plugged
in) an effective magnetic Reynolds number between 1000 and
10,000 in our highest resolution run. Compared to Table 1 in
Schober et al. (2015), this implies that we resolve the effective
magnetic Reynolds number for compressive, intermittent, and
compressible turbulence as outlined. Furthermore, we can
compute that labeled by Schober et al. (2015) as kå for which
we generally find a value between 0.05 and 0.1, again
dependent on the exact values of turbulence that one might
assume for the ICM. Hereby, we note that our highest
resolution runs roughly reproduce the peak value of the power
spectrum of that obtained out of Kolmogorov turbulence in
comparison to Table 1 in Schober et al. (2015) in the case of
PM> 1, further ensuring that we can resolve dynamo action
(not the growth rate) in simulations of massive galaxy clusters.
Furthermore, we investigate the power spectra at four earlier

times than redshift z= 0 for our 25× run. We show the results
in Figure 9 for z= 0 (black line), z= 0.3 (light black line),
z= 0.6 (gray line), z= 1.1 (light gray line), and z= 2.3 (very
light gray line). Essentially, we find similar results as in the
redshift z= 0 case with the difference that there is less power
stored in the magnetic field at higher redshift. Despite the lower
power in the magnetic field, we are still able to recover a power
spectrum that is in accordance with the theory of Kazantsev
(1968) already at redshift z∼ 1, after half of the cosmological
evolution of the cluster itself. However, we note an exception
to this at redshift z= 2.3 where we find more power in the
magnetic field compared to the lower redshift spectra. This is
roughly consistent with the peak in the time evolution of the
magnetic field strength at around redshift z= 2 and generally
also consistent with expectations for higher redshift clusters
(e.g., Krause et al. 2009).
Most studies on the turbulent dynamo on galaxy and galaxy-

cluster scales stop at the point where they achieve the scalings
predicted from the phase-space structure (see Figure 6) and the
power spectra (see Figures 8 and 9). Schekochihin et al. (2004)

Figure 8. We show the magnetic power spectra at redshift z = 0 for all three
resolution levels in blue (1×), red (10×), and magenta (25×) of our galaxy-
cluster zoom-in simulations. We see very good agreement with the predicted
slope from the dynamo theory by Kazantsev (1968) on large scales (golden
line) in our 10× and 25× resolution runs. However, we note that the 1× model
predicts a slightly steeper slope than the k3/2 slope from Kazantsev (1968),
which is supposedly related to a lack of resolution. Furthermore, we overplot
the k−5/3 and k−2 slopes for reference on smaller scales. We find a steeper slope
on smaller scales than predicted by these scaling, which is in accordance with
small-scale simulations of the turbulent dynamo (see, e.g., Schekochihin
et al. 2004; Porter et al. 2015).

Figure 9. We show the magnetic power spectra for four different redshifts of
our highest resolution run 25×. For all presented redshifts we find very good
agreement with the predicted slope from Kazantsev (1968) on larger scales
(gold line). We overplot the k−5/3 and k−2 slopes for reference on smaller
scales.
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pointed out quite early that the power spectra alone might not
suffice to clearly identify dynamo action. Thus, they suggest a
different (stronger scaling) based on the curvature of the
magnetic field lines given via
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We calculate this quantity as an additional output field in the
code on the fly. We show the relation of the magnetic field
strength as a function of the curvature of the field lines shown
in Figure 10 and note that while our calculations are slightly
too steep in the higher resolution models 10× and 25× we
recover the declining trend of the field strength with the
curvature following roughly =KB constant1 2 . Generally, this
is a good sign as this indicates that the increasing field strength
is counteracting the bending of field lines by magnetic tension.
Thus, the bending of field lines is suppressed by magnetic
tension and the dynamo saturates in the regime of a
few microgauss, as expected from the theory of small-scale-
turbulent dynamo. The fact that our results are too steep could
be related to our slightly too high magnetic field strengths in
the cluster center. Therefore, this could in our case be related to
some limitations of the model, which we will discuss in detail
in Section 6.2. Nevertheless, we raise two additional points
about the curvature. First, this relation is mainly inferred from
high-resolution plasma physics simulations without the pre-
sence of self-gravity. Thus, it is a priori not clear why a galaxy
cluster would exactly follow this relation as the gravitational

collapse of structure will add an additional imprint to the
curvature relation. Moreover, we note that this is not so
different from that of Vazza et al. (2018), who are the only
other group who ever checked this relation, where they also
find a slight deviation from the results of Schekochihin et al.
(2004). We strongly suspect that the gravitational collapse of
structure is responsible for the change in the magnetic
curvature relation. However, we cannot prove this statement
as this requires a detailed study of high-resolution plasma
physics simulations like those of Schekochihin et al. (2004),
which include the effect of self-gravity.

5.5. Probability Distribution Function of the Magnetic Field

Another aspect that is interesting when it comes to magnetic
fields in galaxy clusters is the probability distribution function
(PDF) of the field strength within the cluster. In this context,
there are two very important questions to answer. First, how
does the magnetic field distribution change with the resolution
of the simulation, and second, how does it change as a function
of time within the cluster region?
In Figure 11, we show the magnetic field PDF at redshift

z= 0 for our cluster at the three targeted resolution levels 1×
(blue), 10× (red), and 25× (magenta). In the lowest resolution
run at 1×, we can see that the magnetic field distribution peaks
at a low value between 10−5 and 10−4 μG, even at redshift
z = o and there is only a very small fraction of the volume that
reaches a magnetic field up to a few microgauss. This picture
changes in the higher resolution runs, where we can indicate a

Figure 10. We show the relation between magnetic field strength and magnetic
field line curvature for all of our simulation runs 1× (blue), 10× (red), and 25×
(magenta). We compare our results to the scaling derived from the high-
resolution idealized dynamo simulations of Schekochihin et al. (2004). We can
recover the decreasing trend following =KB constant1 2 (black line).
However, we find a tilt and a slightly steeper slope than expected in our
higher resolutions simulations for the models 10× and 25×.

Figure 11. We show the volume-weighted PDF of the density for all three
models, 1× (blue), 10× (red), and 25× (magenta), within the virial radius of our
simulated galaxy clusters. For the lowest resolution model 1×, there is a small
plateau around the microgauss regime. In the higher resolution runs at 10× and
25× this evolves toward an extended bump showing a strong magnetization of
around 20% of the governed volume of the system. There is a sharp drop in the
PDF for stronger magnetic field strengths above 10 μG. This indicates that only
very few gas cells govern the regime of extreme magnetic field strengths. It is
interesting to point out that at low resolution the PDF peaks at relatively lower
field strengths of around 10−9, indicating very inefficient dynamo amplification
at the lowest resolution level as the turbulence is not strong enough to
significantly amplify the field into the microgauss regime.
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small peak between 1 and 10 μG, which shows that roughly
10% of the clusters’ total volume reaches significant magnetic
field strengths that are in agreement with observed magnetic
fields in galaxy clusters.

Furthermore, we take the time evolution of the PDF of the
magnetic field into account by displaying a time sequence of
the PDF for our simulation 25× that is color coded against
cosmic time starting from an evolutionary state that marks
1 Gyr. We show this in Figure 12. Initially, the magnetic field
distribution peaks at a value below 10−4 μG, which is slightly
higher than our initial seed-field value for this run, due to
adiabatic compression of the gas during structure formation. At
later times, one can identify a clear shift in the PDF from low
magnetic field values to high magnetic field values where the
peak is shifted the farthest to the right after around 4 Gyr of
evolution, which is roughly consistent with the slight peak in
the mean magnetic field strength that we could observe for our
higher resolution runs shown in Figure 5 at around or slightly
before a redshift of z= 2. The peak shifts further to the left
again with decreasing redshift and peaks at a value of around
7 μG by redshift z= 0. Furthermore, we note that by comb-
ining Figures 11 and 12 the dynamo action can be identified by
a transition of the volume-weighted PDF that peaks around the
initial seed-field value; at high resolution, the field is redist-
ributed to higher field strengths in the microgauss regime by the
dynamo, while at low resolution the volume filling phase
remains at the seed-field value, even at redshift z = 0 due to
unresolved dynamo action.

5.6. Divergence Cleaning Constraint

Finally, we discuss the divergence constraint that is of
importance for MHD simulations with both particle and grid-
based methods. While in grid-based codes it is possible to

enforce the divergence constraint by using the constrained
transport (CT) scheme in which one computes the cell-centered
magnetic field from the electric field on the edges of each cell,
it is not yet clear whether this can be done similarly in particle
codes. Regarding a CT scheme, one should keep two
constraints in mind. First, strictly speaking with a CT scheme
one enforces that the numerical realization of a physical field is
divergence-free, not the actual physical field (i.e., the field is
divergence-free in the projected grid geometry). Second, and
more importantly, the divergence error of the magnetic field in
a simulation directly traces the accuracy of the integration of
the induction equation within the simulation. Thus, if present,
the nonzero divergence gives a direct estimate of the
integration error of the underlying integration scheme used
for the induction equation. This information is at least partially
lost in a CT scheme. While the first point is rather particular,
and strictly speaking, this is true for every numerical realization
of any physical system, the second one is rather important as it
effectively measures how well the numerical scheme is
handling the complexity of the MHD equations. As pointed
out above, it is not clear if such a scheme can be constructed
fully in Lagrangian code and thus particle codes (such as ours)
rely on divergence cleaning schemes to control the error
introduced by a nonzero divergence. In our simulations, we use
the eight-wave Powell et al. (1999) cleaning scheme.
In Figure 13, we show the column density (left), relative

divergence (middle), and the magnetic field (right) for our
simulation 25× at redshift z= 0. While we can see that the
high divergence regions track the regions with high magnetic
fields, the mean of the absolute value of the divergence stays
reasonably low. Nevertheless, we want to point out that the
nonzero divergence is the potential origin of the high central
magnetic fields that we observe in our higher resolution runs at
redshift z= 0, if we compare it to recent observations of
galaxy-cluster magnetic fields.
However, given the shape of our temperature and density

profiles observed in all clusters we believe it is more likely that
we simply operate in a regime of adiabatic compression rather
than magnetic field amplification in a spurious dynamo.
Furthermore, we investigate the divergence of the magnetic
field in the most massive structure within our simulations
within the virial radius Rvir as a function of the density. We
show our results in Figure 14 for redshift z= 0. In both Figures
discussed so far, we measure the divergence as the relative
divergence:

( · ) ( · ) ( ) =


B
B

B
h

, 44rel

where h is the smoothing length of the kernel in our
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in our simulation code, to obtain the most accurate description
of our divergence error within the simulations. We directly
write this data into our simulation snapshots. As can be seen
from Figure 14, our relative divergence error remains very low
for our 25× resolution simulations, with the bulk of our
particles showing a relative divergence error of around 10−9.
This is a very good result and shows that our code is capable of

Figure 12. We show a time evolution of the volume-weighted PDF of the
magnetic field starting after 1 Gyr of the evolution of the cluster for our highest
resolution run. Initially, we find a lot of the gas at very low field strengths
around 10−10 as this corresponds to the initial value of our physical field. The
dynamo action that is induced due to the turbulence introduced by structure
formation then amplifies the magnetic field as time progresses. This
redistributes the volume filling phase of the field to the higher magnetic field
regime, which is generated by the dynamo with decreasing redshift.
Furthermore, the PDF shows higher field values at redshift z ∼ 2 compared
to z ∼ 0.
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handling the divergence constraints in astrophysical MHD
simulations to a sufficient amount. However, we note that there
is an extended tail of the relative divergence error reaching up
toward 1 for single particles at very high densities. These also
trace the particles with the highest magnetic field in our
simulations showing a field strength of around 100 μG. This
fact could be related to the fact that our higher resolution
simulations predict slightly too high central magnetic fields
within the cluster. Still, given the distribution of the relative
divergence error in our simulations, we can rule out magnetic
monopoles as the primary amplification mechanism of the
magnetic field in our simulations.

Moreover, we want to gauge the evolution of the divergence
constraint as a function of time by showing the density-
divergence phase space for the three different redshifts shown
in Figure 15, ranging from redshift z = 2 over redshift z = 1 to
redshift z = 0 on the right. Finally, we note that the results for
the divergence of the magnetic field that we obtain in our
galaxy-cluster zoom-in simulations are excellent, even com-
pared to the results obtained with grid codes like ENZO,
RAMSES, and AREPO, which can, for example, be seen by
comparing our divergence-density phase space shown in
Figure 14 with the results obtained by Pakmor et al. (2020).
The origin of this is of our improved divergence constraint
compared to previous SPH simulations can be understood as
follows. First, all of our simulations are carried out in a non-
radiative fashion, which avoids the cooling-driven collapse of
high-density regions within the ICM into galaxies, which
typically would host the regions with the largest divergence in
the simulation domain. However, even compared to the non-
radiative simulations of Vazza et al. (2018) we obtain a result
that shows around an order of magnitude lower divergence in
the radial trend, which shows that our simple Powell-cleaning
scheme (Powell et al. 1999) is sufficient to capture the
emergence of the magnetic field in the ICM, at least in non-
radiative simulations. Moreover, we note that the divergence is
already heavily suppressed compared to older SPH simulations
just by adopting a modern form of SPH that makes use of the
higher-order kernel first discussed by Wendland (1995).

Essentially, one can imagine that the use of a higher-order
kernel in SPH is similar to increasing the convergence order of
the code while decreasing the spatial resolution.
Second, we derive the relative divergence of the magnetic

field in an SPH-like fashion in our simulation code following
Equation (45), which is the correct way of obtaining the
relative divergence in SPH simulations. If the divergence is
derived from the particle data alone by weighting it with the
smoothing length and normalizing it to the absolute value of
the magnetic field it can be heavily over- or underestimated,
depending on the exact averaging that is applied, which is
usually very sensitive to the outliers in the distribution.

Figure 13. The gas surface density can be visualized on the left, the divergence of the magnetic field (h denotes the smoothing length) in the center, and the magnetic
field strength on the right for our highest resolution simulation 25×. We note that our highest magnetic field strengths in the center are associated with the highest
divergence.

Figure 14. We show the density-divergence phase space color coded against
the mass in the bin each bin. Our simulations show excellent divergence
cleaning properties. We show the innermost 2 Mpc of the most massive
structure within our simulation. One can clearly see that the bulk of the material
shows excellent divergence cleaning properties with a relative divergence
between 10−11 and 10−5. However, we note that single particles reach very
high relative divergence around 10−1, while there are outliers reaching up to 1.
Despite this, the excellent relative divergence makes it very unlikely that the
magnetic field is solely amplified by magnetic monopoles.
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Deriving the divergence following Equation (45) is not prone
to outliers as it is a kernel-averaged quantity. Therefore, we
propose that in all particle-based methods the divergence
should always be calculated by Equation (45) to avoid
confusion in future SPMHD simulations and provide a cleaner
comparison to Eulerian codes that often calculate this quantity
by a finite-difference technique (e.g., Vazza et al. 2018).

6. Conclusions

6.1. Summary

We present SPMHD simulations of a massive galaxy cluster
with a total mass of M200∼ 1015 Me as a study of resolution on
three different resolution levels of 1× (∼108 Me per cell), 10×
(∼107 Me per cell), and 25× (∼4× 106 Me per cell). We
investigated the structure, morphology, and evolution of the
cluster, focused on the amplification of the magnetic field via
the small-scale turbulent dynamo and discussed the limitations.
The main conclusions of this work are the following:

1. With increasing resolution the central magnetic field
strength in the core of the cluster increases by a factor of
∼3 from the base resolution run at 1× toward the highest
resolution run at 25×. We note that this is higher than
results obtained with Eulerian methods (e.g., Vazza et al.
2018) and observations of the Coma-galaxy cluster (e.g.,
Bonafede et al. 2011), but is still not an unrealistic value
for cool-core clusters.

2. We find a steep exponential increase of the magnetic field
as a function of cosmic time that flattens at a sub-
equipartition value at around redshift z= 2 for our lowest
resolution simulation 1× from which it increases at a
slower rate as the cluster reaches redshift z= 0 with a
field that remains slightly below the microgauss regime.
In the higher resolution runs, 10× and 25×, we find that

the magnetic fields peak at around redshift z= 2 and the
fields saturate at a value of around ∼2 μG in our 10× and
25× models while it stays slightly at sub-equipartition in
our 1× model (when one compares the mean in the virial
radius at redshift z= 0).

3. The field increase toward higher redshift is consistent
with predictions for SKA from Krause et al. (2009).

4. We find strong evidence that the magnetic field is
amplified by the small-scale-turbulent dynamo in the
ICM, driven by turbulence introduced by mergers,
shocks, and cosmic accretion. For the first time, we were
thus able to unravel the nonlinear regime of the dynamo
driven by gravo-turbulence in agreement with the recent
theoretical model, developed by Xu & Lazarian (2020).
Furthermore, we show evidence of the dynamo by the
magnetic power spectra that take the form predicted by
Kazantsev (1968) and investigate the dependence
between magnetic field strength and field line curvature
and find good agreement with the results of Schekochihin
et al. (2004) and Vazza et al. (2018).

5. Finally, we analyzed the behavior of the divergence
constraint in our simulations and find that while the
divergence of the field increases with increasing resolu-
tion (which is the potential origin of our slightly too large
central magnetic field strengths in the cluster center) it is
in good agreement with results presented with state-of-
the-art moving-mesh codes like AREPO (e.g., Pakmor
et al. 2020) on galaxy scales and with state-of-the-art grid
codes like ENZO on cluster scales (e.g., Vazza et al.
2018).

6.2. Model Limitations

Finally, we want to briefly discuss the consequences of the
limitations of our modeling. First, we carry out the simulations
without the effects of cooling, star formation, and feedback.
This might be an important restriction as one could imagine
that the magnetic field is first amplified during the collapse of
halos to proto-galaxies and later via galactic dynamos in the
galaxies themselves, which could redistribute their intergalactic
magnetic field to the CGM and subsequently the ICM via
galactic outflows, driven by AGN and SNe. Specifically, the
lack of AGN feedback could be related to our too high central
magnetic field strengths in our higher resolution runs 10× and
25×. In that scenario, the high magnetic fields in the center
could efficiently support accretion toward a central SMBH,
centered in the brightest cluster galaxy that could have formed
under cooling in the center of the cluster. The accretion of
material and the subsequent outflow of material from the AGN
could efficiently transport the magnetic field outward and
contribute to the magnetization of the void regions surrounding
the cluster. Throughout all the simulations we carried out, we
build up an approximate microgauss magnetic field in the
cluster center. The redistribution of the magnetic fields from the
center to the outer parts of the cluster via AGN feedback could
also potentially help in decreasing the fast drop in the radial
profile of the magnetic field in the outer parts of the cluster.
However, the aim of our study is to investigate magnetic

field amplification in the ICM by the turbulent dynamo, driven
by turbulence injected via shocks during structure formation
processes. In order to understand how magnetic fields are
growing in a cosmological context on large scales, we

Figure 15.We show the time evolution of the mean value of the divergence for
all three resolution levels of our galaxy-cluster simulation with 1× (blue), 10×
(red), and 25× (magenta). We can clearly see that the divergence of the field
remains very low until the cluster starts to grow a significant field around
redshift z = 4. The divergence fluctuates around zero with peak values reaching
10−5, which is an excellent value compared to other galaxy-cluster zoom
simulations of the same kind (e.g., Vazza et al. 2018).
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deliberately ignored these effects and ran the simulations in a
non-radiative fashion.

Moreover, we did not discuss the origin of the magnetic field
in our simulations, for example, via the implementation of the
Biermann battery or other battery processes driven by
reionization (Garaldi et al. 2021). While the former could
provide an interesting scenario for a self-consistent treatment of
seed magnetic fields that are injected during the structure
formation process by an offset between pressure and density
gradient, the latter remains unimportant as long as we carry out
the simulations in a non-radiative fashion. However, while we
do not self-consistently implement a process like the Biermann
battery we tested different magnetic field strengths as the initial
seed for our 10× runs with an order of magnitude difference
and find very similar results. We discuss this in more detail in
Appendix A. Additionally, we note that while we run all the
simulations effectively in a nonideal MHD limit we adopted a
constant diffusion coefficient on all resolution scales. The
change in the diffusion coefficient could have a potential effect
on the magnetic field distribution, especially in the cluster
center where we find that the magnetic field strength is a factor
of 2.5 higher compared to observations of the Coma-galaxy
cluster. We test the impact of a varying diffusion coefficient by
increasing and decreasing by an order of magnitude in
Appendix B. Furthermore, although we run MHD simulations
we adopted isotropic conduction ignoring that magnetic fields
can alter the thermal transport process in an anisotropic fashion.
While we explicitly state this a caveat, we tested the impact of
anisotropic thermal conduction on basic cluster properties as
well as basic dynamo properties and found only little
differences when we include the effect for our 10× and 25×
simulations. We discuss some of our findings in Appendix C.

In addition, we also did not take into account other
nonthermal effects like cosmic-ray protons and cosmic-ray
electrons, which have a potentially important impact on the
magnetic field in terms of amplification and structure (Buck
et al. 2020; Butsky et al. 2020; Hopkins et al. 2020a, 2020b,
2020c, 2020d).
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request to the corresponding author.

Appendix A
Dependence on the Seed Field

The choice of the adopted seed field at high redshift is
somewhat random, and in fact, it is not our preferred choice of
initializing a magnetic field as we would much rather seed the
field by SNe. Generally, we think that the SN-seeding scenario
is physically better motivated than the choice of a pseudo-
random seed field. However, as the runs are adiabatic,
specifically to obtain a closer comparison to the work of Vazza
et al. (2018), we do not have cooling or star formation and
cannot use our SN-seeding approach that has been employed in
earlier work (e.g., Beck et al. 2012; Steinwandel et al.
2019, 2020a, 2020b). Nevertheless, we can investigate and
point out the key changes that we observe for a 10 times higher
and a 10 times lower initial magnetic seed field. First, we note
that the choice of the seed field only marginally affects the
magnetic field growth in most quantities. Thus, we are mostly
interested in the radial trend of the magnetic field, which we
find to be too high compared to the observations of Coma (see
Section 5.3). This is a known issue in Lagrangian methods
(e.g., Donnert et al. 2018, for a review) and it has often been
suspected that this is related to the nonzero divergence behavior
in Lagrangian methods. Second, we are also interested in the
magnetic field curvature relation as this represents the direct
imprint of the dynamo on the structure of the magnetic field
lines, while power spectra often take a very generic form and it
remains unclear what drives their power-law behavior, as we
discussed in Section 5.4. Therefore, these are the two quantities
we want to focus on here. We show the radial profiles for
density, magnetic field, temperature, and thermal pressure in
Figure 16. There are two notable changes in the magnetic field
structure that can be observed as the seed field is increased. The
magnetic field grows roughly by a factor of 2 in the very center
of the cluster with increasing seed field, while the variations in
the outskirts of the cluster are marginal but we still find a
slightly larger field. We note that while we find a relatively
strong field for our 10×-high-seed run with the higher seed
field but also note that we find the lowest temperature in the
cluster center for this run. The drop in the temperature in the
cluster center is from the adiabatic nature of this set of
simulations, possibly due to the absence of an AGN that
provides energy to heat the gas.
Therefore, we note that to increase the cluster temperature in

the center alone would yield a drop in the central field by
roughly half a dex.

8 https://docs.julialang.org
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In Figure 17, we show the curvature relation as a function of
the different seed fields and note that we find only very minor
changes compared to our default runs. Nevertheless, the run
with the higher magnetic seed-field strength, 10×-high-seed,
captures the slope of Schekochihin et al. (2004) better at larger
magnetic field line curvature.

Appendix B
Dependence on the Magnetic Diffusivity

Furthermore, we tested the dependence of our simulation
results by adopting different magnetic diffusivity constants ηm
in our nonideal MHD prescription by increasing and
decreasing the constant by a factor of 10. We show the radial
profiles that we obtain for these runs in Figure 18. The
differences are very minor, and in fact, they are contained
within the model scatter at the percent regime. This means
that if we run the exact same simulation on a different
machine or a different number of nodes, we obtain a similar
change in the radial magnetic field distribution as inferred
from the change in the diffusion coefficient. This could be
interpreted in the following way. The dynamo arises from the
interplay between magnetic field amplification and dissipation
(on small scales) or diffusion (to larger scales) of the magnetic
field. The marginal change that we see by changing the
diffusion coefficient tells us that the diffusion and dissipation
of the field are of numerical nature rather than physical, which
is consistent with other works that do not include the nonideal
MHD term to begin with (almost every other galaxy-cluster
simulation). However, there is an imprint of the change in the
diffusion coefficient, which is most apparent by considering
the curvature relation shown in Figure 19. Here, we can
clearly see that the magnetic field is redistributed from the
regime of smaller curvatures to larger ones, which essentially
forces the curvature relation to become less steep at higher
field line curvature.

Figure 16. Same as Figure 4 but for the runs 10× (red), 10×-low-seed
(orange), and 10×-high-seed (green) to demonstrate the effect of a variation in
the initial seed field on the evolution of the cluster.

Figure 17. Same as Figure 10 but for the runs 10× (red), 10×-low-seed
(orange), and 10×-high-seed (green) to demonstrate the effect of a variation in
the initial seed field on the evolution of the cluster.

Figure 18. Same as Figure 4 but for the runs 10× (red), 10×-low-eta (orange),
and 10×-high-eta (green) to demonstrate the effect of a variation in the
magnetic resistivity of the plasma.
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Appendix C
Dependence on the Conduction Model

Finally, we carry out one additional test on our 10× model,
which is the inclusion of anisotropic thermal conduction.
Generally, we note that the run with anisotropic thermal
conduction produces the largest field in the radial trend of all
the test runs (see Figure 20). However, this can be somewhat
understood by taking the temperature profile into account. We
can clearly see that the run 10×-ani shows the lowest
temperature in the cluster center and shows a consistent
increase in the magnetic field compared to the decrease in
temperature. Moreover, we find a very weak change in the
curvature relation by the inclusion of anisotropic thermal
conduction, which we show in Figure 21. As a side note, we

want to point out that these simulations are computationally
expensive because we carry them out with physical conduction.
The conduction module takes roughly 20% of the computing
time, which is a considerable computational effort.
In conclusion, we note that the origin of the large magnetic

fields in the center that are too high by a factor of 2.5 remains
an unresolved issue in particle codes. We carefully checked
that the divergence can almost be ruled out at this point as we
show almost two orders of magnitude better behavior compared
to similar simulations that report magnetic fields that are a
factor of 2 too low compared to observations in the Coma
cluster. Therefore, we need a more dedicated numerical study
of the origin of the larger fields in Lagrangian codes, which will
include model variations that include more physics, such as
Braginskii viscosity. Moreover, we need to test more in-depth
the diffusion of the field and whether it is introduced by the
cleaning scheme or the nonideal MHD prescription. This will
be the subject of future work.
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