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In magnetic resonance imaging (MRI), the perception of substandard image quality may prompt 
repetition of the respective image acquisition protocol. Subsequently selecting the preferred 
high‑quality image data from a series of acquisitions can be challenging. An automated workflow 
may facilitate and improve this selection. We therefore aimed to investigate the applicability of 
an automated image quality assessment for the prediction of the subjectively preferred image 
acquisition. Our analysis included data from 11,347 participants with whole‑body MRI examinations 
performed as part of the ongoing prospective multi‑center German National Cohort (NAKO) study. 
Trained radiologic technologists repeated any of the twelve examination protocols due to induced 
setup errors and/or subjectively unsatisfactory image quality and chose a preferred acquisition from 
the resultant series. Up to 11 quantitative image quality parameters were automatically derived 
from all acquisitions. Regularized regression and standard estimates of diagnostic accuracy were 
calculated. Controlling for setup variations in 2342 series of two or more acquisitions, technologists 
preferred the repetition over the initial acquisition in 1116 of 1396 series in which the initial setup 
was retained (79.9%, range across protocols: 73–100%). Image quality parameters then commonly 
showed statistically significant differences between chosen and discarded acquisitions. In regularized 
regression across all protocols, ‘structured noise maximum’ was the strongest predictor for the 
technologists’ choice, followed by ‘N/2 ghosting average’. Combinations of the automatically 
derived parameters provided an area under the ROC curve between 0.51 and 0.74 for the prediction 
of the technologists’ choice. It is concluded that automated image quality assessment can, despite 
considerable performance differences between protocols and anatomical regions, contribute 
substantially to identifying the subjective preference in a series of MRI acquisitions and thus provide 
effective decision support to readers.
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Abbreviations
AUC   Area under the curve
CI  Confidence interval
FHS  Framingham heart study
fMRI  Functional MRI
MESA  Multi-ethnic study of arteriosclerosis
MR  Magnetic resonance
MRI  Magnetic resonance imaging
NAKO  German National Cohort / NAKO Health Study
OR  Odds ratio
ROC  Receiver operating characteristic
RF  Radiofrequency (coil)
SHIP  Study of Health in Pomerania
UKBB  UK Biobank
SNR  Signal-to-noise ratio
SOP  Standard operating procedure
UQI  Universal quality index

Whole-body magnetic resonance imaging (MR, MRI) is a key imaging technique in population-based cohort 
studies, due to its excellent spatial resolution and soft-tissue contrast, its capacity for standardization, and the 
absence of ionizing radiation. Several studies rely on this imaging modality to generate comprehensive data 
repositories that can provide insights into general health and are a valuable resource for radiomics. These studies 
include the German National Cohort (NAKO or NAKO Health Study), the UK Biobank (UKBB), the Multi-
Ethnic Study of Arteriosclerosis (MESA), the Framingham Heart Study (FHS), and the Study of Health in 
Pomerania (SHIP)1,2.

Standardized image acquisition and reproducible image quality are crucial in such studies to ensure consist-
ent post-processing, including automated segmentation and feature extraction. MRI protocol repetitions pose a 
particular challenge to these objectives from a quality control standpoint due to their variable origins and pres-
entations. Repeating MRI protocols is generally considered in case of an unsatisfactory initial image acquisition, 
whose quality could have been degraded for multiple reasons. Examples include, depending on the protocol in 
question: an improper hardware or software setup, blurring from bulk patient or organ motion, synchronization 
failures such as mis-triggering in the cardiac cycle, susceptibility and off-resonance artifacts, fat–water shift and 
swaps, anatomic coverage issues, or premature scan abortions. In a sufficiently large cohort study, these and other 
different quality impairments will inevitably occur, and their appearance will be multifaceted. So will be their 
possible remedies, if these can be determined. For quality control and imaging optimization, it is essential to 
deduce the root cause of quality-impaired image acquisitions, and, if the protocol was repeated, to understand 
the quality differences within the series of acquisitions.

The current workflow in most studies and clinical departments involves a visual assessment of all images by 
radiologic technologists or radiologists during or directly after acquisition. Based upon this subjective expert 
assessment, the respective protocol may then be repeated, possibly with updated instructions given to the subject 
if appropriate. The preferred image data is then chosen based on subjective assessment. This approach can be 
time-consuming and therefore costly, especially for large cohort studies. It also lacks standardization, is likely 

Partner Site Munich Heart Alliance, Munich, Germany. 5Fraunhofer Institute for Digital Medicine MEVIS, 
Bremen, Germany. 6Institute for Clinical Epidemiology and Biometry, University of Würzburg, Würzburg, 
Germany. 7Institute of Social Medicine, Epidemiology and Health Economics, Charité – Universitätsmedizin 
Berlin, Berlin, Germany. 8State Institute of Health, Bavarian Health and Food Safety Authority, Erlangen, 
Germany. 9Institute for Medical Informatics, Biometry and Epidemiology, University Hospital Essen, University 
of Duisburg-Essen, Essen, Germany. 10Institute for Prevention and Cancer Epidemiology, Medical Center – 
University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany. 11Institute for Community 
Medicine, University Medicine Greifswald, Greifswald, Germany. 12Division of Clinical Epidemiology and 
Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany. 13Division of Preventive 
Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg, 
Germany. 14Department of Diagnostic and Interventional Radiology, University Hospital Augsburg, University 
of Augsburg, Augsburg, Germany. 15Molecular Epidemiology Research Group, Max-Delbrueck-Center for 
Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany. 16Biobank Technology Platform, 
Max-Delbrueck-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany. 17Charité 
– Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 
Berlin, Germany. 18Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrück Center for Molecular Medicine in the 
Helmholtz Association (MDC), Berlin, Germany. 19German Centre for Cardiovascular Research (DZHK), Partner 
Site Berlin, Berlin, Germany. 20Department of Cardiology and Nephrology, HELIOS Hospital Berlin-Buch, Berlin, 
Germany. 21Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital 
Essen, University of Duisburg-Essen, Essen, Germany. 22German Centre for Cardiovascular Research (DZHK), 
Partner Site Greifswald, University Medicine Greifswald, Greifswald, Germany. 23Institute of Diagnostic Radiology 
and Neuroradiology, University Medicine Greifswald, Greifswald, Germany. 24Division of Medical Physics, 
Department of Diagnostic and Interventional Radiology, Medical Center – University of Freiburg, Faculty of 
Medicine, University of Freiburg, Freiburg, Germany. 25Department of Diagnostic and Interventional Radiology, 
Heidelberg University Hospital, Heidelberg, Germany. *email: christopher.schlett@uniklinik-freiburg.de



3

Vol.:(0123456789)

Scientific Reports |        (2023) 13:22745  | https://doi.org/10.1038/s41598-023-49569-1

www.nature.com/scientificreports/

error-prone, and may further discomfort among participants or patients due to prolonged examinations. Com-
puterized tools for quality control and decision support in MRI are well-suited to improve on this approach and 
address its shortcomings. However, existing solutions generally have a narrower focus by being confined to a 
specific MRI protocol, anatomical domain, or artifact type. A conceptually broader automated image quality 
assessment using quantitative parameters has already demonstrated the ability to predict the need for repeating 
an acquisition, based on the radiologic technologists’ visual assessment in the NAKO as a  reference3. The chal-
lenge remains to automatically choose the preferred of multiple image acquisitions in a subsequent step using a 
comparably unrestricted approach.

Recognizing this opportunity, we primarily aimed to identify quantitative image quality parameters that can 
differentiate between acquisitions that were preferred and chosen by human readers as opposed to those that 
were discarded – yielding a prediction tool suitable for automation. A secondary objective was to learn whether 
MRI protocol repetitions in the NAKO improved the perceived image quality.

Methods and materials
Study design and population
Our project was designed as a post-hoc analysis of data from the NAKO Health Study. The NAKO is an ongoing, 
prospective, multicenter, population-based cohort study conducted by a network of 25 institutions at 18 regional 
examination sites in Germany. Its main objective is to investigate risk factors for the development of common 
chronic diseases such as cancer, diabetes, cardiovascular, neurodegenerative/psychiatric, respiratory, and infec-
tious  diseases4,5. The baseline assessment was conducted between 2014 and 2019, and 205,415 participants from 
the general population aged 19 to 74 years were enrolled. They received various medical and psychological 
assessments, including interviews, questionnaires, and physical examinations. Of these participants, 30,861 were 
also enrolled in the NAKO MRI study, conducted at five dedicated imaging centers. For our study, we consid-
ered all available data at the time of investigation, which comprised examinations from 11,347 participants up 
to December 31, 2016. This excludes examination aborts before the first MRI protocol was fully recorded or if 
participants withdrew consent.

The NAKO Use and Access Committee approved this study based on the participants’ informed consent, 
accordance with the aims of the NAKO Health Study, and ethical approval from the Ethics Committee of the 
Medical Faculty of the University of Heidelberg (S-843/2020). This study conformed to the ethical guidelines of 
the 1964 Declaration of Helsinki and its later amendments.

MR imaging
MRI was performed with 3T whole-body MR scanners (MAGNETOM Skyra, Siemens Healthcare, Erlangen, 
Germany) running an identical software version. The baseline examination program consisted of a whole-body 
scan with twelve protocols from four focus groups (neurodegenerative, cardiovascular, thoracoabdominal, and 
musculoskeletal) without intravenous contrast agent application (Fig. 1). A detailed description of the rationale, 
design, and technical background of the NAKO MRI study has been provided  previously1. All image acquisitions 
were performed following a standard operating procedure (SOP) by radiologic technologists who were specifi-
cally trained and certified for the NAKO MRI study. The technologists were instructed to repeat a protocol if 
anatomic coverage did not meet the SOP, if severe image artifacts occurred, or if the image quality was unsatis-
factory for other reasons. Participants were given detailed information about the scanning procedure and were 
instructed to move as little as possible and to follow breathing instructions.

In our analysis, we controlled for setup changes between acquisitions to obtain a subsample in which the 
repetitions were performed under identical technical conditions as the initial acquisitions. The following technical 
parameters were considered: radiofrequency (RF) coil configuration (variations in RF coils and in the selection 
of receive RF coil elements), field of view size, slice position (field of view shifted along the x/y/z axis of the 
participant), and slice orientation (field of view rotated or angled differently).

Automated image quality assessment and choosing a preferred acquisition
After general data management and basic automated quality control, including verification of data complete-
ness, conformance to predefined protocol parameters, and data uniqueness, all image series entered a processing 
pipeline to calculate two to eleven image(-based) quality parameters as previously reported (number varying 
between protocols)3. The results from this automated image quality assessment could be visualized through a 
web-based thin client that presented the image series along with the corresponding parameter values. The assess-
ment comprised a universal quality index (‘UQI’) for general quality inspection, image sharpness, global and 
local signal-to-noise ratio (‘SNR’ and ‘specific SNR’), maximum and average estimates for structured image noise, 
maximum and average estimates of Nyquist ghosting levels (‘N/2 ghosting’), functional MRI (fMRI) signal drift 
and variation (‘variation over time’), and a geometric ratio between foreground and background (‘foreground 
ratio’). The universal quality index provides a crude, non-specific indication of image quality by considering 
original, noise-filtered, and edge-filtered image versions to calculate a score that increases with image noise 
and decreases with image  blur3. If a protocol was repeated, the technologists defined the acquisition that they 
considered to be of better image quality through the thin client, as per SOP going solely by subjective image 
impression as long as the field of view was set correctly (Fig. 2). Only the chosen acquisition was then added to 
the main database for general use.

Visual image quality rating
In the NAKO MRI study, board-certified radiologists performed a visual image quality rating for image 
stacks from chosen acquisitions as published  previously1. The rating adhered to a detailed criteria catalog that 
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considered anatomical coverage and differentiable structures along with a diverse range of potential artifacts, such 
as susceptibility, off-resonance, fat–water shift and swaps, banding, pulsation, and others. Scores were assigned 
according to a 3-point Likert scale: (1) ‘excellent’ image quality not impaired by artifacts, images appropriate 
for data post-processing; (2) ’good’ image quality with limited impairment by artifacts, images still appropriate 
for data post-processing; (3) ‘poor’ image quality due to artifacts or insufficient coverage, images generally not 
appropriate for post-processing. The protocols used for functional or quantitative imaging (Resting State EPI 
BOLD, MOLLI SAX, and Multiecho 3D VIBE) were not rated. The criteria catalog is shown in Supplemental 
Material Table S1. For our analysis, we examined the differences in quantitative image quality parameters between 
the visual quality ratings while, in the same manner as described above, controlling for setup changes between 
initial acquisitions and repetitions.

Statistics
Data on participants, acquisitions, and repetitions are presented as counts and percentages.

Given repetitions with the same setup as the initial acquisition, the mean differences in image quality param-
eters between discarded acquisitions and chosen acquisitions were assessed by paired t-tests or signed rank tests 
after testing for normality using Shapiro–Wilk tests. The mean differences in image quality parameters between 
the ordinal visual quality ratings were assessed by Kruskal–Wallis tests and limited to parameters that were avail-
able for > 70% of the acquisitions in the relevant subsample (‘UQI’, ‘SNR’, ‘sharpness’, and ‘foreground ratio’) to 
achieve sufficient statistical power.

Figure 1.  Example images from a female participant for each of the twelve protocols that were used in the 
baseline whole-body examination of the NAKO MRI study. Rows from top to bottom: neurodegenerative, 
cardiovacular, thoracoabdominal, and musculoskeletal focus group.
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Associations of single image quality parameters with outcome chosen vs. discarded were evaluated by logistic 
regression models providing odds ratios (OR) with corresponding 95% confidence intervals (CI) per standard 
deviation of image quality parameters. To investigate the effect of inter-individual variation, generalized linear 
mixed models with logit link and random intercept per participant were calculated.

Figure 2.  Examples of discarded (left) and chosen (right) acquisitions from four different protocols. (a) 
2D FLAIR (considerable vs. no bulk patient motion), (b) MRA 3D SPACE STIR (considerable vs. moderate 
breathing motion), (c) Cine SSFP SAX (mistriggering vs. correct electrocardiographic gating), (d) T1w 3D 
VIBE DIXON (with vs. without fat–water swap artifact in the liver). The images in each pair were acquired with 
identical setups and taken from identical participants. In the NAKO MRI study, protocols were repeated if the 
initial acquisition did not meet the SOP, if severe image artifacts occurred, or if the image quality was otherwise 
unsatisfactory to the examining radiologic technologist.
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Discriminative performance of the combined set of image quality parameters to distinguish between chosen 
and discarded acquisitions was assessed by regularized logistic regression with an elastic net penalty and hyper-
parameters computed by fivefold cross-validation. We calculated three models with alpha values corresponding to 
LASSO regression, ridge regression, and a balanced blend thereof (Elastic Net Regression). All models were run 
on 1000 bootstrap samples of the data to quantify the relative importance of the respective image quality param-
eters by their selection frequency over all samples. Area under the Receiver Operating Characteristic (ROC) 
curve (AUC) served as the measure of discriminative performance.

Analyses were conducted for all protocols combined, as well as stratified by protocol. P-values < 0.05 were 
considered to indicate statistical significance. SAS version 9.4 and R version 4.1 were used for all analyses.

Results
In 1,359 (12.0%) of the 11,347 participants, one or more initial acquisitions of a protocol were followed by at 
least one repetition. With these included, 135,845 acquisitions were performed, of which 134,239 (98.8%) were 
initial acquisitions and 1606 (1.2%) were repetitions. Most repetitions were limited to one with 1558 (1.2%) first 
repetitions, 46 (0.03%) second repetitions, and 2 (0.001%) third repetitions. Table 1 details repetition frequencies 
on a per-protocol level. Of all repetitions, 807 (50.2%) retained the setup of their respective initial acquisition 
with no changes to RF coil configuration, FOV size, slice position, or slice orientation. These parameters were 
changed in 81 (5.0%), 53 (3.3%), 791 (49.3%), and 203 (12.6%) repetitions.

The technologists were asked to choose a preferred acquisition for 2,342 series of initial acquisitions and 
repetitions. This is more than the underlying 1,558 initial acquisitions shown in Table 1 due to the individual 
assessment of the three orientations 2Ch, 3Ch, and 4Ch in the Cine SSFP LAX protocol used for cardiac imag-
ing. The sample size decreased to 1,396 (59.6%) when limited to repetitions that retained the initial setup. For 
this particular subsample, the technologists chose the repetition over the initial acquisition in 1,116 (79.9%) 
instances, with a range of 73%-100% across protocols (Table 2). Considering all acquisitions without controlling 
for setup variations, this share increased to 90.4%.

Prediction of the technologists’ choice based on the quantitative image quality parameters
In an analysis limited to series where all repetitions retained the setup of the initial acquisition, the quantitative 
image quality parameters largely showed significant differences between chosen and discarded acquisitions when 
considering all protocols (Table 3). Only the parameter ‘UQI’ did not differentiate with statistical significance 
for this subsample, for which the parameters ‘drift’ and ‘variation over time’ were not tested due to insufficient 
sample size. Testing stratified by protocol revealed that differences were predominantly significant for protocols 
from the neurodegenerative and cardiac focus groups, which were also the ones with the largest sample sizes.

In logistic regression, the single image quality parameters showed varying associations with the outcome cho-
sen vs. discarded (Table 4). The highest observed OR was 2.53 (p = 0.23) for ‘sharpness’ in the MOLLI protocol. 
In generalized linear mixed models, an effect of inter-individual variation could not be established (variance of 
random effects equal to zero).

In regularized regression of the combined set of image quality parameters with the outcome chosen vs. dis-
carded (Table 5), the discriminative performance was low if considering all protocols (excluding the parameter 
‘specific SNR’ to minimize missing data) with an AUC of 0.58 (95% CI 0.56, 0.61) for LASSO regression as well 
as Elastic Net regression, and a similarly low AUC of 0.59 (95% CI 0.56, 0.61) for ridge regression. Stratified by 
protocol, however, the AUC varied considerably between 0.51 and 0.74, with the best discriminative perfor-
mance for two protocols from the neurodegenerative focus group; T1w 3D MPRAGE with AUC 0.74 (95% CI 
0.64, 0.82) and 2D FLAIR with AUC 0.73 (95% CI 0.68, 0.78), again identical for LASSO regression and Elastic 

Table 1.  Overview of repetitions by protocol. Columns two to five (all, 1st, 2nd, and 3rd repetitions) consider 
repetitions regardless of setup changes.

Protocol All repetitions 1st repetitions 2nd repetitions 3rd repetitions

Repetitions with an identical setup 
as the initial acquisition (% of all 
repetitions)

All 1606 1558 46 2 807 (50.2)

T1w 3D MPRAGE 114 114 87 (76.3)

2D FLAIR 335 326 9 191 (57.0)

Resting State EPI BOLD 7 7 1 (14.3)

MRA 3D SPACE STIR 51 51 20 (39.2)

Cine SSFP LAX 417 392 23 2 322 (77.2)

Cine SSFP SAX 115 115 63 (54.8)

MOLLI SAX 11 11 6 (54.5)

T2w HASTE 83 82 1 30 (36.1)

T1w 3D VIBE Dixon 98 94 4 53 (54.1)

Multiecho 3D VIBE 225 216 9 30 (13.3)

PDw FS 3D SPACE 117 117 2 (1.7)

T2w 2D FSE 33 33 2 (6.1)
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Table 2.  The summed series of initial acquisitions and repetitions the radiologic technologists assessed to 
choose a preferred acquisition; overall (n = 2342) and limited to repetitions that retained the initial setup 
(n = 1396). Repetitions were preferably chosen over initial acquisitions across all protocols (range: 73–100%).

Protocol
Series of initial acquisitions 
and repetitions, overall

Series of initial acquisitions and repetitions, limited 
to repetitions that retained the initial setup

Repetition chosen 
of the column to the 
left (%)

All 2342 1396 1116 (79.9)

T1w 3D MPRAGE 114 87 81 (93.1)

2D FLAIR 326 191 174 (91.1)

Resting State EPI BOLD 7 1 1 (100)

MRA 3D SPACE STIR 51 20 17 (85.0)

Cine SSFP LAX 2Ch 392 303 222 (73.3)

Cine SSFP LAX 3Ch 392 306 224 (73.2)

Cine SSFP LAX 4Ch 392 305 236 (77.4)

Cine SSFP SAX 115 63 53 (84.1)

MOLLI SAX 11 6 6 (100)

T2w HASTE 82 29 26 (89.7)

T1w 3D VIBE Dixon 94 52 47 (90.4)

Multiecho 3D VIBE 216 29 25 (86.2)

PDw FS 3D SPACE 117 2 2 (100)

T2w 2D FSE 33 2 2 (100)

Table 3.  Statistical significances of the absolute differences in image quality parameters between chosen and 
discarded acquisitions from zero. P-values (upper row) and number of comparisons (lower row) are from a 
paired t-test or signed rank test depending on normality. Note that this table considers only repetitions that 
retained the setup of the initial acquisition, and compares only initial acquisitions to repetitions, not repetitions 
to repetitions – therefore and because, for technical reasons, the quantitative image quality parameters were 
not derived from every acquisition, the number of comparisons may differ from the underlying series of initial 
acquisitions and repetitions shown in Table 1. Bold denotes statistical significance at p < 0.05. NA not available.

Protocol UQI Sharpness SNR
Specific 
SNR

Structured 
noise max

Structured 
noise avg

N/2 ghosting 
max

N/2 ghosting 
avg Drift

Variation 
over time

Foreground 
ratio

All 0.86
1396

 < 0.001
1396

0.003
1374

 < 0.001
281

 < 0.001
796

 < 0.001
796

 < 0.001
808

 < 0.001
808

-
1

-
1

0.04
1374

T1w 3D MPRAGE 0.002
87

 < 0.001
87

 < 0.001
87

0.83
87

0.001
87

 < 0.001
87

0.17
87

0.06
87 NA NA 0.18

87

2D FLAIR  < 0.001
191

 < 0.001
191

 < 0.001
191

 < 0.001
191

 < 0.001
191

 < 0.001
191

 < 0.001
191

 < 0.001
191 NA NA  < 0.001

191

Resting state EPI BOLD -
1

-
1

-
1

-
1

-
1

-
1

-
1

-
1

-
1

-
1

-
1

MRA 3D SPACE STIR 0.79
20

0.93
20 NA NA NA NA NA NA NA NA NA

Cine SSFP LAX 2Ch 0.24
303

0.16
303

0.90
303 NA 0.47

14
0.47
14

0.50
16

0.50
16 NA NA 0.90

303

Cine SSFP LAX 3Ch 0.32
306

 < 0.001
306

0.004
306 NA  < 0.001

264
 < 0.001
264

 < 0.001
267

 < 0.001
267 NA NA 0.002

306

Cine SSFP LAX 4Ch 0.08
305

 < 0.001
305

0.67
305 NA 0.30

71
0.30
71

0.88
79

0.88
79 NA NA 0.65

305

Cine SSFP SAX 0.01
63

0.008
63

0.42
63 NA 0.04

59
0.03
59

0.07
59

0.006
59 NA NA 0.49

63

MOLLI 0.15
6

0.03
6

0.64
6 NA -

2
-
2

-
1

-
1 NA NA 0.37

6

T2w HASTE 0.60
29

0.39
29

0.70
29 NA 0.33

29
0.71
29

0.18
29

0.48
29 NA NA 0.03

29

T1w 3D VIBE DIXON 0.04
52

0.15
52

0.38
52 NA 0.14

52
0.76
52

0.06
52

0.96
52 NA NA 0.14

52

Multiecho 3D VIBE 0.001
29

0.25
29

0.12
29 NA 0.93

24
0.76
24

0.66
24

0.18
24 NA NA 0.03

29

PDw FS 3D SPACE -
2

-
2 NA NA NA NA NA NA NA NA NA

T2w 2D FSE -
2

-
2

-
2

-
2

-
2

-
2

-
2

-
2 NA NA -

2
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Net regression and only slightly different for ridge regression (Fig. 3, Supplemental Material Fig. S1). Selection 
frequencies across all protocols on 1000 bootstrap samples (again excluding ‘specific SNR’) showed that the most 
relevant parameter for distinguishing chosen and discarded acquisitions was the maximum value of ‘structured 
noise’, followed by the average of ‘N/2 ghosting’. The strongest predictors also differed across the individual 
protocols (Fig. 4, Supplemental Material: Fig. S2).

Table 4.  Associations of single image quality parameters with the outcome ‘chosen vs. discarded acquisition’. 
Odds ratios (OR) with corresponding 95% confidence interval (CI) and p-value taken from a logistic 
regression model. ORs are given per standard deviation of the image quality parameter per protocol. The 
protocols Resting State EPI BOLD, PDw FS 3D SPACE, and T2w 2D FSE as well as the parameters ‘drift’ and 
‘variation over time’ had an insufficient sample size for inclusion.

Protocol

UQI Sharpness SNR Specific SNR

OR CI p-value OR CI p-value OR CI p-value OR CI p-value

All 1 [0.93, 1.07] 0.93 1.04 [0.97, 1.12] 0.27 1.03 [0.96, 1.11] 0.39 1.16 [0.98, 1.37] 0.08

T1w 3D 
MPRAGE 0.8 [0.57, 1.08] 0.15 1.74 [1.26, 2.44] 0.001 1.6 [1.17, 2.22] 0.004 1.11 [0.82, 1.52] 0.49

2D FLAIR 0.89 [0.73, 1.09] 0.27 1.37 [1.12, 1.7] 0.003 2.52 [1.98, 3.27]  < 0.001 1.9 [1.52, 2.4] 0

Resting State 
EPI BOLD NA NA NA NA NA NA NA NA NA NA NA NA

MRA 3D 
SPACE STIR 1.04 [0.55, 2.01] 0.9 1.1 [0.58, 2.1] 0.77 NA NA NA NA NA NA

Cine SSFP 
LAX 2Ch 0.98 [0.84, 1.15] 0.84 1.01 [0.86, 1.19] 0.89 0.97 [0.82, 1.13] 0.68 NA NA NA

Cine SSFP 
LAX 3Ch 0.99 [0.84, 1.16] 0.87 1.1 [0.94, 1.29] 0.24 1.24 [1.05, 1.47] 0.01 NA NA NA

Cine SSFP 
LAX 4Ch 1.02 [0.87, 1.2] 0.82 1.08 [0.92, 1.27] 0.32 1 [0.85, 1.17] 0.96 NA NA NA

Cine SSFP 
SAX 1.06 [0.74, 1.51] 0.76 1.15 [0.81, 1.64] 0.45 1.09 [0.77, 1.57] 0.63 NA NA NA

MOLLI 1.7 [0.5, 8.58] 0.42 2.53 [0.69, 18.46] 0.23 1.15 [0.34, 4.23] 0.81 NA NA NA

T2w HASTE 1.01 [0.68, 1.49] 0.97 1.03 [0.7, 1.53] 0.87 0.98 [0.67, 1.45] 0.93 NA NA NA

T1w 3D VIBE 
DIXON 1 [0.59, 1.7] 0.99 1.01 [0.6, 1.72] 0.96 1.05 [0.62, 1.77] 0.87 NA NA NA

Multiecho 3D 
VIBE 0.79 [0.43, 1.34] 0.39 1.05 [0.62, 1.78] 0.87 0.94 [0.55, 1.58] 0.80 NA NA NA

PDw FS 3D 
SPACE NA NA NA NA NA NA NA NA NA NA NA NA

T2w 2D FSE NA NA NA NA NA NA NA NA NA NA NA NA

Protocol

Structured noise max Structured noise avg N/2 ghosting max N/2 ghosting avg Foreground ratio

OR CI p-value OR CI p-value OR CI p-value OR CI p-value OR CI p-value

All 0.77 [0.7, 0.85]  < 0.001 0.81 [0.73, 0.89]  < 0.001 0.84 [0.76, 0.93]  < 0.001 0.8 [0.72, 0.88]  < 0.001 1 [0.93, 1.08] 0.92

T1w 3D 
MPRAGE 0.69 [0.5, 0.94] 0.02 0.73 [0.53, 0.99] 0.047 0.86 [0.64, 1.16] 0.33 0.9 [0.66, 1.21] 0.49 0.9 [0.66, 1.21] 0.49

2D FLAIR 0.55 [0.44, 0.69]  < 0.001 0.55 [0.43, 0.68]  < 0.001 0.54 [0.43, 0.67]  < 0.001 0.58 [0.46, 0.72]  < 0.001 1.07 [0.87, 1.31] 0.52

Resting State 
EPI BOLD NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA

MRA 3D 
SPACE STIR NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA

Cine SSFP 
LAX 2Ch 0.89 [0.48, 1.6] 0.69 0.89 [0.48, 1.6] 0.69 0.64 [0.34, 1.12] 0.13 0.64 [0.34, 1.12] 0.13 0.98 [0.83, 1.15] 0.77

Cine SSFP 
LAX 3Ch 0.75 [0.63, 0.89] 0.001 0.75 [0.63, 0.89] 0.001 0.77 [0.64, 0.91] 0.003 0.77 [0.64, 0.91] 0.003 1.09 [0.93, 1.29] 0.27

Cine SSFP 
LAX 4Ch 0.93 [0.68, 1.27] 0.66 0.93 [0.68, 1.27] 0.66 0.84 [0.61, 1.12] 0.24 0.84 [0.61, 1.12] 0.24 1.03 [0.88, 1.21] 0.71

Cine SSFP 
SAX 0.73 [0.5, 1.06] 0.10 0.77 [0.52, 1.1] 0.16 0.83 [0.57, 1.19] 0.32 0.81 [0.56, 1.16] 0.25 1 [0.7, 1.43] 0.99

MOLLI NA NA NA NA NA NA NA NA NA NA NA NA 1.18 [0.35, 4.19] 0.79

T2w HASTE 1.17 [0.79, 1.74] 0.44 1.03 [0.7, 1.53] 0.87 1.23 [0.84, 1.85] 0.29 1.08 [0.73, 1.6] 0.70 0.96 [0.65, 1.42] 0.85

T1w 3D VIBE 
DIXON 0.82 [0.47, 1.38] 0.46 0.88 [0.51, 1.49] 0.64 0.89 [0.52, 1.51] 0.67 0.93 [0.55, 1.57] 0.78 0.94 [0.55, 1.58] 0.80

Multiecho 3D 
VIBE 0.92 [0.51, 1.63] 0.77 0.96 [0.54, 1.71] 0.90 0.95 [0.53, 1.67] 0.84 1.04 [0.58, 1.87] 0.90 0.93 [0.55, 1.57] 0.78

PDw FS 3D 
SPACE NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA

T2w 2D FSE NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
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Table 5.  AUC with 95% CI from regularized regression of the combined set of image quality parameters 
with the outcome ‘chosen vs. discarded acquisition’. The given values correspond to mean AUC and respective 
percentiles from the distribution over all bootstrap samples or individual protocols. Three protocols had 
an insufficient sample size for inclusion: Resting State EPI BOLD, PDw FS 3D SPACE, and T2w 2D FSE. 
*To minimize skewing towards protocols from the neurodegenerative focus group due to missing data, the 
parameter ‘specific SNR’ was excluded from potential predictors.

Protocol LASSO Elastic net Ridge

All protocols 0.69 [0.64, 0.73] 0.69 [0.64, 0.73] 0.67 [0.63, 0.72]

All protocols (’specific SNR’ excluded)* 0.58 [0.56, 0.61] 0.58 [0.56, 0.61] 0.59 [0.56, 0.61]

T1w 3D MPRAGE 0.74 [0.64, 0.82] 0.74 [0.64, 0.82] 0.71 [0.62, 0.79]

2D FLAIR 0.73 [0.68, 0.78] 0.73 [0.68, 0.78] 0.72 [0.67, 0.77]

Resting State EPI BOLD NA NA NA

MRA 3D SPACE STIR 0.51 [0.50, 0.71] 0.51 [0.50, 0.72] 0.52 [0.50, 0.72]

Cine SSFP LAX 2Ch 0.57 [0.50, 0.86] 0.57 [0.50, 0.87] 0.58 [0.50, 0.86]

Cine SSFP LAX 3Ch 0.60 [0.55, 0.64] 0.60 [0.55, 0.64] 0.60 [0.56, 0.64]

Cine SSFP LAX 4Ch 0.60 [0.47, 0.70] 0.60 [0.50, 0.70] 0.60 [0.45, 0.69]

Cine SSFP SAX 0.63 [0.50, 0.74] 0.63 [0.50, 0.74] 0.63 [0.50, 0.72]

MOLLI 0.68 [0.50, 1.00] 0.69 [0.50, 1.00] 0.71 [0.50, 1.00]

T2w HASTE 0.53 [0.50, 0.78] 0.53 [0.50, 0.79] 0.53 [0.50, 0.78]

T1w 3D VIBE DIXON 0.62 [0.50, 0.72] 0.61 [0.50, 0.72] 0.61 [0.50, 0.71]

Multiecho 3D VIBE 0.54 [0.50, 0.83] 0.54 [0.50, 0.83] 0.54 [0.50, 0.82]

PDw FS 3D SPACE NA NA NA

T2w 2D FSE NA NA NA

Figure 3.  ROC curves from regularized regression of the combined set of image quality parameters with the 
outcome ‘chosen vs. discarded acquisition’ for two protocol examples: (a) T1w 3D MPRAGE (above-average 
performance), (b) Cine SSFP LAX 4Ch (below-average performance). AUC with 95% CI corresponds to 
mean AUC and respective percentiles from the distribution over all bootstrap samples. Left to right: LASSO 
regression, Elastic net regression, ridge regression.
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Differences in the quantitative image quality parameters between visual quality ratings
In the analyzed subsample of chosen acquisitions, visual quality ratings were available for 97.2% of the cor-
responding image stacks. Across all protocols, the radiologists rated 71.8% of the image stacks as ‘excellent’, 
22.5% as ‘good’, and 5.7% as ‘poor’. The prevalence of the ‘poor’ rating ranged from 0 to 14.3% across protocols. 
Significance differences between the visual quality ratings were observed for the parameters ‘UQI’, ‘sharpness’, 
and ‘foreground ratio’, leading to decreased values of ‘UQI’ and ‘sharpness’ in lower rated and increased values 

Figure 4.  Variable selection frequencies from regularized regression with the outcome ‘chosen vs. discarded 
acquisition: (a) across all protocols on 1000 bootstrap samples*, (b) for T1w 3D MPRAGE (above-average 
performance), (c) for Cine SSFP LAX 4Ch (below-average performance). Left: LASSO regression, right: Elastic 
Net regression. As there is no variable selection in ridge regression, all selection frequencies are 100% (therefore 
not shown). *To minimize skewing towards protocols from the neurodegenerative focus group due to missing 
data, the parameter ‘specific SNR’ was excluded from potential predictors.
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of ‘foreground ratio’ in higher rated acquisitions. No significant differences were observed for ‘SNR’ (Fig. 5). The 
AUC for identifying ‘poor’ acquisitions from the combined parameters ranged from 0.61 (protocol: Cine SSFP 
LAX 2Ch) to 0.98 (protocol: T1w 3D MPRAGE).

Discussion
Our analysis of the NAKO MRI study, comprising 11,347 whole-body examinations with 135,845 acquisitions 
using twelve protocols, showed that 134,239 (98.8%) were initial acquisitions and 1606 (1.2%) were repetitions. In 
a subsample limited to repetitions that retained the initial setup, radiologic technologists comparatively assessed 
1396 series of initial acquisitions and repetitions to determine the highest-quality images, and by a rate of 79.9% 
chose a repetition. An automated image quality assessment demonstrated varying classification abilities for this 
task, with areas under the receiver operating characteristic curve (AUC) between 0.51 and 0.74, depending on 
parameter selection and protocol.

Existing approaches for the automation of quality control in MRI have a narrower focus by being confined 
to a specific MRI protocol, anatomical domain, or artifact type: Esteban et al. trained a random forests clas-
sifier on 1101 T1w brains scans of a multi-site dataset to predict a binary quality label (‘accept’ or ‘exclude’) 
from 14 image quality  metrics6. Alexander-Bloch et al. used an estimate of microscopic head motion on fMRI 
time series as a proxy measure for motion during a preceding same-subject T1w  acquisition7. Earlier studies 
on the mitigation of motion artifacts used optical tracking systems to measure and also prospectively correct 
microscopic head  motion8. Ahmad et al. recently adapted a convolutional neural network to classify diffusion-
weighted brain images into artifactual and non-artifactual based on motion-induced signal dropout, interslice 
instability, ghosting, chemical shift, and  susceptibility9. Aside from neuroimaging, Tarroni et al. developed an 

Figure 5.  Box plots and p-values from Kruskal–Wallis tests for quantitative image quality parameters grouped 
by visual quality ratings of the image stacks from chosen acquisitions. The visual quality rating followed 
objective criteria to assign a score based on a 3-point Likert scale (1: ‘excellent’, 2: ‘good’, 3: ‘poor’). Each plot 
considers all protocols for which the respective parameter was calculated. UQI universal quality index, SNR 
signal-to-noise ratio.
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extensive quality control pipeline for cardiac cine short-axis stacks from the UK Biobank considering heart 
coverage, inter-slice motion, and image  contrast10,11. Other published approaches, while notably effective for a 
specific task, were similarly restricted. In our previous investigation of automated image quality assessment in 
the NAKO MRI study, we used a broader approach and found that the eleven parameters also used in the present 
study distinguished initial acquisitions that were seen necessary to repeat from those that were not with varying 
performance between protocols: Using different parameter combinations not narrowed to a specific artifact type 
(for a subsample again limited to acquisitions that were not associated with subsequent setup changes), the AUC 
ranged from 0.58 to 0.99, or up to 0.89 after removal of a debatable  outlier3. The discriminative performance in 
that previous investigation was highest for protocols from the neurodegenerative focus group. Our current study 
extends this broad approach to the differentiation of chosen and discarded acquisitions on an intra-participant 
level. The overall slightly lower performance suggests less pronounced image quality differences in these rela-
tive to repeated and not repeated initial acquisitions that were compared on an inter-participant level. This is 
supported by the possibility that improvements in the same participant were not necessarily achieved, whereas 
initial acquisitions only qualified for repetition if they were noticeably different from the overall set of high-
quality acquisitions. It is, however, somewhat contradicted by the 79.9% choice rate for repetitions, which does 
suggest obvious quality differences. But this rate may also be partially biased by the choice procedure, which 
was unblinded to the acquisition order (initial or repetition) as well as the quality parameters, even if those were 
not to be considered as per SOP. The performance of the regression models may have been better if chosen and 
discarded acquisitions with setup changes (such as variations in RF coils) and presumably starker image quality 
differences had been included. Yet for these, the choice was not one of preference but of adherence to the SOP 
and an automatic image quality assessment for decision support therefore inconsequential.

The discriminative performance of our approach varied considerably between the protocols, and different 
parameters or their combinations worked superiorly on some protocols compared to others. While the distinct 
physical properties of each parameter and their relevance for a certain protocol will be partly responsible for 
this, there are additional factors contributing to performance variations: In certain protocols, especially those 
with a cardiovascular focus, the diagnostically relevant image region is substantially smaller than the overall 
field of view. A parameter that is averaged across the entire three- or four-dimensional image stack may then, 
while technically correct, give a skewed representation of the images’ usability. Examples for the Cine SSFP SAX 
and LAX protocols are the presence of cardiac motion artifacts that typically arise from ineffective electrocar-
diographic gating (‘mistriggering’) or banding artifacts from off-resonance effects. The reverse may also apply: 
Low-quality image areas can degrade a parameter score without significantly degrading the images’ usability. 
For instance, in a T1w 3D MPRAGE protocol, organ motion artifacts from swallowing will negatively influence 
the overall image sharpness without affecting the depiction of intracranial structures. A solution to this problem 
could be the regional localization of image quality parameters through the implementation of bounding boxes 
for areas of interest or through organ segmentations. A similar point was made by Esteban et al.6. To preserve the 
automatic workflow, however, this would necessitate the automatic creation of such delineations. Appropriate 
segmentation algorithms are already available and continuously improving with further advances in machine 
 learning12–14. Our approach could also be complemented by other automatic quality assessment techniques that 
assess the images’ metadata, perform cross-correlations between protocols, or investigate recreated k-spaces. In 
the detection of cardiac motion artifacts, for example, a k-space approach tested on UK Biobank data achieved 
an excellent classification performance with an AUC of 0.8915. Implemented into scan assistant software, by 
itself or as one element of a wider quality control pipeline, such an enhanced approach would likely optimize 
throughput in large cohort studies, screening programs, or clinical imaging by minimizing the need for human 
intervention. The accompanying image quality harmonization would benefit downstream post-processing algo-
rithms that rely on consistently high image quality for segmentation tasks or computer-aided diagnosis. In its 
current form, however, our approach is best applicable to the protocols T1w 3D MPRAGE and 2D FLAIR based 
on their respective AUC values in the regression models and has considerably less value outside neuroimaging. If 
it can be augmented with the additional techniques described above, further usability seems plausible especially 
for protocols employed in cardiac imaging, which showed the next highest AUC values in the present study. 
Nonetheless, it may have to be discarded completely for some protocols.

A strength of this study is that it draws from a large database of MRI examinations that were performed in 
a highly controlled setting. The following image quality assessment was strictly standardized through its auto-
mated methodology, independent of specialized hardware such as phantoms or sensors, and not constricted to a 
specific MRI protocol or artifact type. A limitation is the aforementioned bias resulting from unblinded choices. 
Another important limitation is that we were unable to measure the differences in quality parameters between 
chosen and discarded acquisitions against the intra-participant intra-protocol variabilities in multiple satisfactory 
acquisitions since repeated measurements were only performed after an unsatisfactory initial acquisition and 
only one was then chosen. A further limitation is that the radiologic technologists were able to brief participants 
before performing a repetition: By reminding them to follow breathing instructions, cease motion, or otherwise 
better comply with the examination, the technologists introduced a selection bias and put the repetitions to an 
advantage, as was their responsibility to optimize imaging. Independent from these limitations, we showed that 
several quantitative image quality parameters also differed statistically significantly in mean values between the 
‘poor’, ‘good’, and ‘excellent’ visual quality ratings assigned by board-certified radiologists, providing further 
evidence of an association between the parameters and the visual quality impression as evaluated with objective 
criteria. Our statistical analysis is constrained by the use of a diagnostic prediction model on a known dataset, 
as opposed to a prognostic prediction model on unknown data. The weak points listed above could be addressed 
by conducting further examinations in a blinded and controlled manner. The subsample analysis of repetitions 
without setup changes was restricted by particularly low counts for the protocols Resting State EPI BOLD 
(n = 1), PDw FS 3D SPACE (n = 2), T2 2D FSE (n = 2), and MOLLI SAX (n = 6), which meant the exclusion of 
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the first three. A constraint inherent to the image quality parameters is interdependences between individual 
and compound parameters, such as ‘noise’ and ‘signal-to-noise ratio’. Lastly, as was the case in our previous 
study, the ability of this automated image quality assessment to generalize on clinical data with inherently less 
standardization has yet to be validated.

In conclusion, our approach for automated image quality assessment can, despite varying accuracy for dif-
ferent protocols and anatomical regions, contribute substantially to identifying the subjective preference in a 
series of MRI acquisitions and thus provide effective decision support to readers in large-scale imaging studies 
and potentially in clinical imaging.
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