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Abstract. Generative models allow for the creation of highly realistic
artificial samples, opening up promising applications in medical imaging.
In this work, we propose a multi-stage encoder-based approach to invert
the generator of a generative adversarial network (GAN) for high reso-
lution chest radiographs. This gives direct access to its implicitly formed
latent space, makes generative models more accessible to researchers,
and enables to apply generative techniques to actual patient’s images.
We investigate various applications for this embedding, including image
compression, disentanglement in the encoded dataset, guided image ma-
nipulation, and creation of stylized samples. We find that this type of
GAN inversion is a promising research direction in the domain of chest
radiograph modeling and opens up new ways to combine realistic X-ray
sample synthesis with radiological image analysis.

Keywords: generative modeling · latent space disentanglement · repre-
sentation learning.

1 Introduction

The public release of large datasets for chest radiographs has led to substantial
progress in the automated analysis of thoracic X-ray imaging [19, 30, 40]. This
availability of large amounts of data facilitates fitting complex generative models
with various applications. For example, [15,34] propose an algorithm that creates
deceptively real synthetic chest X-ray samples based on generative adversarial
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Fig. 1: ChestX-ray14 [40] samples (top) and their full resolution reconstructions
(bottom) from our latent embedding by a GAN-based generator [34].

networks (GANs [13]). In this likelihood-free approach, a generator G is tasked
to synthesize fake data from randomly distributed noise z ∈ Z in an adversarial
setting, while a discriminator network serves as a counterpart that needs to
distinguish between the real and fake data.

Previously, GANs were applied in the context of chest radiography as a gen-
erative augmentation method to increase the performance of classifiers for un-
derrepresented pathologies [15,37]. Other applications of generative methods in
this domain involve bone suppression [14, 25] and creation of disease saliency
maps for abnormal samples [38].

The implicitly formed latent space Z by GAN-based approaches has been
proven to encode disentangled features of the training data with a semantic
meaning [12,16,22,35]. A standard GAN model formulation, however, does not
allow to access the encoded information.

One remedy for obtaining this latent code is by inverting G and directly
projecting data into Z. A possible taxonomy [4, 42] of the GAN inversion topic
divides approaches into three groups: 1) Learning-based variants employ an en-
coder to approximate the embedding [29, 32, 39, 41]. 2) Optimization-based ap-
proaches iteratively optimize the latent code z ∈ Z for a given target image
directly [1, 2, 7, 28]. 3) Hybrid approaches combine the previously mentioned
strategies and make use of the encoding as well as the optimization [3]. In the
domain of medical imaging, [31] focuses on adjustable mammogram generation
via embeddings in the latent space for tumor inpainting. In [11], an inverted
GAN assists in converting abdominal computed tomography scans to magnetic
resonance images and vice versa. In contrast, [33] apply the reverted generation
process as a proxy to increase output probabilities in various target classes for
explaining deep black-box classifiers.

Our Contribution In this paper, we propose a novel multi-stage hybrid approach
with bootstrapped pre-training for aligning the encoder directly to the distribu-
tion of the generator to map thoracic X-ray images into Z. Moreover, we elab-
orate on practical applications and implications of this implicitly created em-
bedding space in the domain of chest radiography on a full dataset scale. This
includes the aspect of image compression (cf. Figure 1), disentangled encoding
in the latent space, and the ability to perform image manipulations beyond syn-
thetic sample generation. Our method allows us to, e.g., model the course of



GAN Inversion for High Resolution Chest Radiographs 3

thorax or lung diseases on the actual radiographs on real-world patient data, or
create stylized or similar samples for a given target chest X-ray image using the
reverse encoding.

2 Methods

In GANs, the generator defines a mapping G : Z → X , where X is an arbitrary
data space and Z forms the latent space. In contrast to most X , the latent
space is considered as smooth and implicitly encodes rich disentangled semantic
features in a low-dimensional manifold with dim(Z) ≪ dim(X ). However, due
to the nature of GAN training and the non-invertibility of neural networks, the
mapping from X to Z is unknown. This problem can also be portrayed as

z∗ = argmin
z∈Z

L(G(z),x) , (1)

where z∗ minimizes a pre-defined criterion L : X × X → R such as the mean
squared error (MSE) for z ∈ Z and x ∈ X . In this work, we employ a three-stage
hybrid approach to estimate the ideal latent code z∗ (cf. Figure 2).

Stage 1: Bootstrapped Training As a first step, we use an encoder E : X → Z to
approximate the inversion of G. To account for the limited availability of training
data, we propose to exploit the generation capabilities of G by sampling z from
a pre-defined distribution pz (e.g., standard normal distribution) and producing
new x = G(z). This composition allows for training E on the latent code directly
and on a theoretically infinite amount of data. [5] also show that z already
represents compositional properties of x and a strong image prior is formed by
the regressor. We define the objective for one weight update of E with a batch

pz

∼

z G E ẑ

Lboot

Stage 1

x E G x̂

Ldata

Stage 2

x E ẑ G x̂

Ldata

Stage 3

Fig. 2: Overview of our three-stage hybrid inversion approach. The red color sym-
bolizes the part of the architecture with trainable parameters. The pre-training
phase (Stage 1, left) learns a latent code representation of artificial samples. In
Stage 2 (middle) the encoder E is finetuned with real data samples x. Lastly,
each estimated ẑ = E(x) is iteratively refined with frozen network components
(right).
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size of B as

Lboot =
1

B

B∑
i=1

|zi − E(G(zi))| (2)

with | · | being the l1 norm and zi ∼ pz. We hypothesize that this bootstrapped
form of pre-training leads to a better generalization of E as the generator is also
able to generate meaningful edge- and out-of-distribution samples.

Stage 2: Dataset Training In the second stage of our approach, E is finetuned
on real data observations x ∈ X using the loss Ldata, a criterion for the distance
of x and x̂ = G(E(x)). More specifically, since X is assumed to reside in the
image domain, we employ multiple losses as in [1, 39] that account for various
levels of similarity: LMOCO minimizes the angle of feature embeddings produced
by a contrastive network C for true and predicted observations x and x̂. It is
defined as

LMOCO = 1− C(x)⊺C(x̂) . (3)

Following [39], C is a ResNet-50 [18] trained on Image-net [8] with MOCOv2
[6, 17]. To enforce perceptual similarity, LLPIPS [43] is chosen, which compares
weight-scaled activations of x and x̂ in hidden layers of a pre-trained VGG16 [36]
network, i.e. it aligns deep features of original and reconstruction. Lastly, LMSE

serves as a measure for the pixel-wise distance. We combine these losses into

Ldata = λMSELMSE + λLPIPSLLPIPS + λMOCOLMOCO , (4)

where the regularization parameters λ· ∈ R+ are used to weigh the different
losses.

Stage 3: Iterative Optimization The area of interest in medical imaging is often
only a small part of the full image. To further enhance the quality of the inversion,
we utilize gradient-based per sample optimization of (1) to obtain a latent code
close to z∗ for selected images. Here, z = E(x) and Eq. (1) is used as objective
function with Ldata as criterion. Note that this optimization only involves z as
trainable parameter.

3 Experiments

The basis for our experiments is the ChestX-ray14 dataset [40] with over 100k
images in 1024×1024 pixel resolution of 30k patients and 14 labeled pathologies.
We build on the work of [34], which provides a progressive growing generator [20]
for the generation of synthetic chest radiographs as G with dim(Z) = 512 and
pz = N (0, I). E utilizes ConvNext-small [26] as a backbone, where we replace
the last layer with a fully connected layer, whose output dimension matches the
dimension of the latent space. Stage 1 is trained with a batch size of 64 and
500k batch updates. E is then finetuned for 15 epochs on the dataset in stage 2.
Both stages use the Adam [24] optimizer with learning rates of 5e−5 and 1e−5,
respectively. Iterative optimization is done with 3000 iterations.
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Fig. 3: Reconstruction capabilities of E. The four examples show the original im-
age (left column) as well as the reconstruction from z estimated by E (central
column) and after iterative optimization (right column). In each case, the bot-
tom row visualizes the residual from the original with purple being a zero value
and brighter values correspond to larger errors.

3.1 Image Compression and Quality of Reconstruction

One of the main criteria for a successful inversion is the reconstruction quality
from the obtained z. In the best-case scenario, E and G enforce a cycle con-
sistency [9, 44], i.e., a perfect inversion. In Figure 3 different examples from the
test set are depicted. The inversion process captures the majority of key image
features, while the iterative optimization results in smaller residuals compared
to the single encoder pass. Quantitatively, this evaluates to an increase of the
structural similarity index measure from 0.813 to 0.825 and a peak signal-to-noise
ratio from 22.28 to 23.95 on the test dataset. The reconstruction is bounded by
the capacity of G and as stated in [34], the synthetic samples lack some details of
image annotations and external medical devices like chest tubes or pacemakers.
We observe that these artifacts are simply missing in the reconstructed image. In
this application, GAN inversion can be understood as a special form of compres-
sion as the high-resolution input is condensed into a semantic 512-dimensional
vector, which is ≈ 0.05% of its original size. While compression requires addi-
tional expert knowledge to assure that all relevant information of the original
images is retained in Z, the ad-hoc identification of spurious features is another
application of the inversion method and allows medical laypersons to quickly
identify abnormalities in the data.

3.2 Disentanglement in Latent Space

Mapping a complex and sparse X to the latent Z results in a smooth and highly
semantic representation [35], which allows for further disentanglement analysis
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Fig. 4: UMAP embedding (point clouds) of the test set’s latent code. Selected
samples show key characteristics of various clusters.

of the radiograph’s features. In particular, grouping distinctive features becomes
feasible in this low-dimensional space. We use the non-linear UMAP [27] to
further condense the latent code and apply density-based clustering (DBSCAN,
[10]) to isolate groups, resulting in Figure 4. Visual exploration suggests that
most variation of the data stems from the sex of patients as well as the image
contrast, signal intensity, and the patient’s posture. These attributes mostly
form coherent clusters. An analysis of the reduced embedding based on certain
pathologies proves difficult, as these are often high-frequency features with low
importance for the image reconstruction and account only for minimal variation
in Z.

3.3 Guided Image Manipulation

Disentangled semantics in Z allow manipulating explicit features of an individual
image x. We investigate the technique of InterFaceGAN [35] for facial editing
applied to our use case. Based on a pre-specified target attribute, a support
vector machine (SVM) with a linear kernel is trained to separate the latent
codes of the dataset, which were obtained by E. The normal vector n of the
resulting hyperplane then serves as interpolation axis and allows to generate
new latent codes znew along the direction of most class diversity: znew = z+αn,
where α ∈ R is a scaling factor. By increasing α, the chosen target attribute in
the generated image from znew will be more pronounced and vice versa, while
other features of the image remain unchanged. Figure 5 exemplarily explores
the manipulation of a patient’s sex, pleural effusion, and atelectasis. We observe
that conditions with a large impact on the full image, such as atelectasis, pleural
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Original Synthesized images

(a) Changing sex from female to male

(b) Decreasing pleural effusion

(c) Decreasing atelectasis

Fig. 5: Manipulation of given radiographs based on sex (top), pleural effusion
(middle) and atelectasis (bottom). Starting from the original image (left), an
interpolation along n shows the desired change.

effusion, or cardiomegaly, are suitable for this type of manipulation. Diseases on
smaller scales such as lung nodules, on the other hand, are not well captured by
the latent embedding and are thus more challenging to manipulate.

3.4 Proximity sampling

Aside from guided image manipulation, the latent embedding of a radiograph
can also be used to synthesize new samples with the style and core features of
its original image. This can be achieved by sampling new latent vectors in the
proximity of the targeted z and reconstructing an image from the sample with
G as depicted in Figure 6. Random samples in the close neighborhood of the
original image show minor variations of key features. The further the distance,
the more variation is observed in the generated output image.

4 Outlook and Conclusion

While producing highly realistic samples, resulting images of our inversion pro-
cess miss medical devices and often fine-grained details that are crucial for di-
agnosing pathologies. A potential solution to this could be a different backbone
architecture such as current state-of-the-art style-based architectures [21–23] in-
stead of relying on PGAN [20] as in [34]. These GAN variants do not rely on a
parametric space assumption, but learn a representation W of Z using a non-
linear map and allow the extension to W+ with layer-specific latent codes in
the subsequent inversion task. This results in additional out-of-distribution gen-
eralizability for better reconstruction quality and style mixing [42]. Utilizing
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Fig. 6: Generating various samples in the neighborhood of one example scan
(left). The right grid shows samples with a growing Euclidean distance to the
original.

W contributes to enhanced linear separability with respect to certain key fea-
tures and promotes disentanglement [22], which in turn could be decisive for our
classifier-based image traversing on pathologies. It could also be beneficial for
future research to enlarge the training data by, e.g., incorporating the CheXpert
database [19].

In this paper, we examined the capability and opportunities of GAN in-
version in the context of chest radiographs. We employed a multi-stage hybrid
procedure, which utilizes both an encoder and an iterative optimization to map
high-resolution images to latent code. Furthermore, we have shown that GAN
inversion can be used to explore the implicit latent representation of chest X-ray
images, and have demonstrated applications such as data compression, disen-
tanglement in the latent space, guided image manipulation, and synthesizing of
stylized samples.
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