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Abstract
Since the primary mode of respiratory virus transmis-
sion is person-to-person interaction, we are required 
to reconsider physical interaction patterns to mitigate 
the number of people infected with COVID-19. While 
research has shown that non-pharmaceutical interven-
tions (NPI) had an evident impact on national mobility 
patterns, we investigate the relative regional mobility 
behaviour to assess the effect of human movement on 
the spread of COVID-19. In particular, we explore the 
impact of human mobility and social connectivity de-
rived from Facebook activities on the weekly rate of new 
infections in Germany between 3 March and 22 June 
2020. Our results confirm that reduced social activity 
lowers the infection rate, accounting for regional and 
temporal patterns. The extent of social distancing, quan-
tified by the percentage of people staying put within a 
federal administrative district, has an overall negative 
effect on the incidence of infections. Additionally, our 
results show spatial infection patterns based on geo-
graphical as well as social distances.
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1  |   INTRODUCTION

The COVID-19 virus outbreak originating in mainland China leapt over to Europe and quickly 
evolved to a global pandemic in March 2020. Only through strict non-pharmaceutical interven-
tions (NPI) could most national health systems rapidly react to this new threat. In numerous 
scientific efforts, physical distancing measures were discovered to be the most effective interven-
tions (Prem et al., 2020) and found to be necessary maybe until 2022 (Kissler et al., 2020). The 
measures’ effectiveness emanates from researchers confirming that the main form of virus trans-
mission is person-to-person interaction (Chan et al., 2020). The virus can be spread by inhaling 
microscopic aerosol particles that contain COVID-19 and remain viable in the air with a half-life 
of about 1 h (Asadi et al., 2020) or direct contact through the exchange of virus-containing drop-
lets with infected individuals (Guan et al., 2020). Since also a high proportion of cases is asymp-
tomatic (Lavezzo et al., 2020) and gets infected by cases in the presymptomatic stage (Li et al., 
2020b), human mobility can explain the spread of COVID-19 to a considerable extent (Kraemer 
et al., 2020).

Stemming from the consequential need to account for contact patterns when investigating 
the spread of COVID-19, Oliver et al. (2020) list multiple possibilities of how one may utilise 
mobile phone data to do so. To enable this type of research, Facebook extended the Data for Good 
program to a broader audience of researchers and provided so-called Disease Prevention Maps 
for multiple countries (Maas et al., 2019). This database includes measurements on quantities 
like co-location, user counts and movement ranges on a regional level derived from information 
of more than 26 million Facebook users. Additionally, a measure for the social connectedness 
between geographical regions is supplied (Bailey et al., 2018). In various studies, this data source 
was employed to demonstrate how the impact of lockdown measures in Italy was more severe 
for municipalities with higher fiscal capacities (Bonaccorsi et al., 2020), quantify social and geo-
graphical spillover effects from relaxations of shelter-in-place orders (Holtz et al., 2020) and pre-
dict the number of infections on a granular spatiotemporal resolution using contact tracing data 
(Lorch et al., 2020).

This article uses the same data source to analyse how regional differences in mobility pat-
terns and friendship proximity affect the spread of COVID-19 in Germany. While NPIs, for 
example, the nationwide shutdown in Germany that started 22 March, had an evident im-
pact on national human mobility and ceased the exponential spread of the virus (Flaxman 
et al., 2020), the effect of the relative movement between regional districts was not yet fully 
assessed. So far, studies concerning human movements during the current pandemic are fo-
cused mainly on how the lockdown affected national human mobility (Galeazzi et al., 2020) 
or specific regions regarding their economic status (Bonaccorsi et al., 2020). To fill this gap, 
we derive covariates from the mobility data to quantify the overall dispersion of meeting 
patterns and compliance with social distancing. Through weekly standardisation of the co-
variates, we control for the dynamics therein, which are, in turn, driven by NPIs. As a result, 
our research enables a quantitative assessment of different mobility strategies relative to the 
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national average. Also, we infer positions of the federal administrative regions in a social 
space from the information on the relative friendship links among them using multidimen-
sional scaling (Cox & Cox, 2000). Subsequently, we relate the processed data to Germany’s 
weekly rate of local COVID-19 infections between 3 March and 22 June 2020. This time frame 
permits the analysis of the dynamic spread starting with the WHO declaring COVID-19 a 
pandemic (WHO, 2020).

We employ a spatiotemporal regression model for the ratio of local COVID-19 infections that 
takes autoregressive structures, age-  and gender-specific effects, contagion by nearby districts 
in the geographical and social space, as well as latent heterogeneities between the districts into 
account. Our method is closely related to the surveillance model introduced by Held et al. (2005). 
They extend generalised linear models to analyse surveillance data from epidemic outbreaks. 
This approach was expanded to handle multivariate surveillance data (Paul et al., 2008), control 
for seasonality and spatial heterogeneity (Held & Paul, 2012) and include neighbourhood in-
formation from social contact data (Meyer & Held, 2017). In contrast to this type of model, our 
model’s objective is to investigate the connection between mobility patterns, social connectivity 
and the spread of COVID-19 in an interpretable manner. While forecasting infections is undoubt-
edly a central objective in epidemic surveillance, this is not the main focus of our work (see also 
Held et al., 2017).

The rest of the article will be structured as follows: We discuss the data sources, its measures 
on social interaction as well as mobility in Section 2. In Section 3, we detail our proposed model-
ling approach. We propose an imputation model for missing onset dates and use a semiparamet-
ric spatiotemporal model to analyse the ratio of local COVID-19 infections with a specific disease 
onset date. The results of the analysis are presented in Section 4. Section 5 concludes the article.

2  |   DATA DESCRIPTION

2.1  |  Data on infections

Our application’s outcome of interest is the ratio of COVID-19 infections in a federal admin-
istrative district (NUTS-3 level), which we define as the quotient of the number of COVID-19 
infections over the corresponding population size. In Germany, there are n = 401 federal admin-
istrative districts (a complete list is given by the German Federal Statistical Office). At a higher 
hierarchical level, each federal district also belongs to a federal state (NUTS-1 level). In most 
figures, for example Figure 2, we colour-code the district-specific time series according to this 
allocation. If we refer to a specific district in the text, we generally specify the corresponding 
federal state in brackets.

Infection count: The Robert-Koch-Institute provides timely data on the daily number of 
COVID-19 infections in Germany for each federal district. We limit the present analysis to indi-
viduals between 15 and 59,years old due to the age structure in the Facebook population. Besides, 
the given surveillance counts are stratified by age group (15–35 and 36–59) and gender. For each 
entry, dates of symptom onset and reporting are given, although the onset date is partially miss-
ing. Our principal analysis is based on the disease onset date since it ensures more valid infor-
mation on the infection incidence (Günther et al., 2020). Imputation of the missing values is 
required (we present our method in Section 3.1). By yi,g,t we denote the observed (and partially 
imputed) counts of new onsets within district i, age/gender-group g and week t. For complete-
ness, we define with xi,g the corresponding indicator for the age/gender group.
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Population: We obtained district-, age- and gender-specific population data from the German 
Federal Statistical Office. To guarantee a consistent definition of age-groups, we categorised the data 
according to the two primary age groups according to which the infection data are reported, namely 
people between 15–35 and 36–59 years old. The corresponding time-constant covariate is denoted for 
age/gender-group g in district i by xi,g,pop.

The observed rates per 10.000 inhabitants ỹi,g,t =
10.000yi,g,t

xi,g
 are visualised in Figure 1 colour-coded 

according to the different states. For each week, we plot the rate of disease onsets that we par-
tially impute in case of missingness, as described in detail in the next section. Once the first 
peak of infections could be overcome, the cases in the aftermath are increasingly attributed to 
local outbreaks. Two districts, namely Guetersloh and Warendorf (North Rhine-Westphalia), ex-
perience a local outbreak in a meat factory during the last weeks of the observational period 
(Kottasová, 2020). This local outbreak encompasses 48% of all infections with disease onset in 
the week starting on 16 June.

2.2  |  Data on social activity during COVID-19

All data related to social activities during the COVID-19 pandemic are generated from approxi-
mately 10 million Facebook users in Germany, who enabled geolocation features in the Facebook 

F I G U R E  1   Observed Rate of Weekly Infections for each federal district. The colour of the lines indicate the 
federal state in which each district is located and the dates (mm:dd) are the first day of the corresponding week 
[Colour figure can be viewed at wileyonlinelibrary.com]
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app on their mobile devices. To abide by the privacy policies, the observations are anonymised 
through aggregation onto tile bing polygons, censoring if we observed not enough users in the 
spatial region, as well as randomisation using additional noise and spatial smoothing (Maas 
et al., 2019). We aggregate the polygons to the same spatial units for our application on which 
we have the infection data. We propose the following measures describing social interaction 
and mobility. All measurements are taken weekly, where we use simple averaging for quantities 
available at a more granular temporal resolution.

Co-location: Co-location in week t is measured by the probability pij,t of a random person 
from district i to be located in the same 0.6 km × 0.6 km square as another random person from 
district j (Iyer et al., 2020). These probabilities are then used to construct a district-wise quantity 
for the concentration of meeting patterns using the Gini index, which is given by: 

F I G U R E  2   (a) Gini indices for each district over time. (b) Standardised Gini indices for each district over 
time. (c) Percentages of people staying put for each district over time. (d) Standardised percentages of the people 
staying put. The colour of the lines indicate the state in which each district is located and the dates (mm:dd) are 
the first day of the corresponding week [Colour figure can be viewed at wileyonlinelibrary.com]
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If we were to observe the maximal value of 1 in xi,t,gini, all people within federal district i would only 
meet people (i.e. Facebook users) from only one further district. This behaviour is exemplary of ex-
tremely restricted mobility. Conversely, a lower value heuristically indicates dispersed meeting pat-
terns. Due to this intuitive interpretation, we opt for the Gini index as a measure of concentration. 
The Gini indices’ temporal paths for the 401 districts in Germany are depicted in Figure 2a. Overall, 
the meeting patterns become more concentrated on a few other districts as the crisis evolves. This 
behaviour contrasts rather dispersed practices before the pandemic. An upward trend is visible until 
the nationwide lockdown on 22nd of March, 2020.1 Thereupon, meeting patterns continue to be 
overall condensed, although the indices slowly decline. To enable a meaningful comparison between 
the respective estimates in the regression setting of Section 3, we standardise the Gini indices per 
week. The standardised covariate x̃i,t,gini is shown in Figure 2b and given by 

where �̂t,gini =
1

n

∑n
j=1 xj,t,gini and �̂t,gini =

�
1

n − 1

∑n
j=1 (xj,t,gini − �̂t,gini)

2.

Percentage staying put: Besides the relative attribution of co-location probabilities to other 
districts, we investigate a measure that expresses how people (Facebook users) comply with so-
cial distancing. We quantify this concept by the covariate xi,t,sp, which is defined as the aver-
age percentage of people in district i staying put during week t. Respective data were collected 
using geolocation traces of mobile devices and users are defined to be staying put, if they are 
only observed in one 0.6 km × 0.6 km square throughout a day (Facebook, 2020). In Figure 2c, 
clear break-points are visible, giving evidence of the temporary lockdown that started between 
17 and 24 March. During the following weeks, the observed values gradually level off around 
pre-lockdown values. We also observe some peaks in the weeks starting on 7 and 28 April, which 
could be traced back to the different mobility behaviour during national holidays, namely Good 
Friday on 10 April and Labour Day on 1 May 2020.

Similarly to the treatment of the Gini index, we standardise the percentages in the regression 
setting. While the visual impression from Figure 2c insinuates that the dynamics of people staying 
put are similar between districts, the standardised paths, given in Figure 2d, reveal local differences 
between them. For instance, the early look-down in Bavaria resulted in a substantial relative increase 
of the respective districts between the 10th and 17th of March, see the yellow-green lines.

Friendship distance: Spatial distance is found to be strongly associated with the spread be-
tween regions (Kang et al., 2020). Beyond the geographical proximity, Cho et al. (2011) argued that 
friendship ties explain specifically long-distance mobility, which is fundamental for understanding 
the early spread of the pandemic (Chinazzi et al., 2020). To accommodate this possible line of infec-
tion, we include a measure for the strength of friendship ties between the districts of Germany. More 
precisely, we employ the social connectedness index proposed by Bailey et al. (2018), which is based 

xi,t,gini =

∑
m,l≠ i

�pim,t − pil,t�

2(n − 1)
∑
j≠ i

pij,t
.

 1In Bavaria, the lockdown started already on 16 March 2020.

(1)x̃i,t,gini =
xi,t,gini − �̂t,gini

�̂t,gini
,
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on an anonymised snapshot of all active Facebook users and their friendship networks from April 
2020. For the administrative district i and j, the time-invariant measure xij,soc is given by: 

In a note, Kuchler et al. (2021) uncover high correlations between the social connectedness indices 
and the spread of COVID-19. This index is further processed to provide a spatial allocation based on 
social instead of Euclidean distances. To do so, we first transform social connectedness to social dis-
tance dsoc by taking the reciprocal of connectedness, that is, dij,soc =

1

xij,soc. Consecutively, we process 
these distances to coordinates using multidimensional scaling (Cox & Cox, 2000). In our application, 
this procedure’s result is a two-dimensional representation of each district’s location in the network 
defined through Equation (2) that is only identifiable up to the scale and rotation. Using Procrustes 
analysis, we map the rotation of the inferred coordinates in the friendship space to be most similar 
to the geographical coordinates (Cox & Cox, 2008). Technical details on both procedures are given 
in Annex A. The outcome of the algorithm for each district i is denoted by xi,soc and gives the geo-
coordinates in the friendship space as shown in Figure 3. Robust connectivity within federal states 
and neighbouring districts are visible in the friendship coordinates. We also observe that the capital, 
Berlin, is situated in the very centre, reflecting its unique and highly connected position. One can 
also detect a persisting corridor between districts located in former East- and West Germany. Next 

(2)xij,soc =
#{Friendship Ties between users in district i and j}

#{Users in district i}#{Users in district j}
∀ i, j ∈ {1,…,n}.

F I G U R E  3   (a) Coordinates representing the friendship distances. The colour of the points indicates the 
state in which each district is located. (b) Map representing the colour legend. The thick black lines represent 
borders between federal states, while the thinner grey borders separate federal districts [Colour figure can be 
viewed at wileyonlinelibrary.com]
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to the social coordinates, we incorporated each district’s geographical coordinates xi,coord, that is, the 
longitude and latitude of each districts centroid, in our application.

3  |   MODELLING

We start by proposing a model to impute missing dates of the disease onset. Subsequently, these 
partially imputed infection data are modelled with a negative binomial regression.

3.1  |  Imputation model

We can see in Figure 4 that approximately 30% of the onset dates are missing. To still make use 
of all available information, we propose to impute missing disease onset dates under the assump-
tion of missingness at random. This allows for unbiased findings which are not guaranteed when 
using a complete case analysis (Little & Rubin, 2002). In particular, we leverage the fact that the 
chronologically later reporting date is available for all cases. Thereby, the problem of imputing the 
date of disease onset for a single infection is reduced to imputing the time between onset of disease 
and its reporting through a positive test, which we call test delay. Following Günther et al. (2020), 
we use the subset of all data without any missing disease onset dates to fit a distributional regres-
sion model for this test delay. In the next step, we predict all distributional parameters under this 
model for all cases with a missing disease onset date and sample the missing onset date.

F I G U R E  4   Count of missing and observed disease onset dates per reporting week [Colour figure can be 
viewed at wileyonlinelibrary.com]
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To fit the imputation model, we first disaggregate the given surveillance counts to the pa-
tient level. For each complete case l, the data include the age/gender group indicator (xl,g), an 
indicator whether the reporting date was during a weekend (xl,weekend), and the state (xl,state) and 
district (xl,district) where it was observed. Regarding the temporal information of each infection, 
we are given the date of disease onset (tl,o) and its reporting (tl,r). For complete-case data, the test 
delay is then given by dl = tl,r − tl,o. As regressors in the imputation model, we include dummy 
covariates xl = (xl,g , xl,weekend, xl,state, xl,district) and the metric covariate tl,r itself to account for 
changing testing strategies, for example, during the early spread the test capacities were limited 
and patients needed to wait longer for a test to be conducted. We assume that dl is a realisation of 
random variable Dl, which follows a negative binomial model: 

where �(Dl | xl, tl,r) = �l and Var(Dl | xl, tl,r) = �l + �l�
2
l
 holds. A discrete-valued distribution ap-

pears most suitable since the patient-level data are available daily, making the test delay inherently 
discrete. As indicated in Equation (3), we model the location and scale parameters of the distribution 
by separate linear predictors. Note that the linear predictors are defined by 𝜂𝜇 = 𝜃⊤𝜇xl + f𝜇(tl,r) and 
𝜂𝜎 = 𝜃⊤𝜎 xl + f𝜎(tl,r) for the corresponding distributional parameters and that the linearity only refers 
to linearity in the coefficients not in the covariates. Therefore, the model lies within the family of 
generalised additive models for location, scale and shape (Rigby & Stasinopoulos, 2005). While all 
components of xl have a log-linear effect, we parameterise the trend effect of the reporting date tl,r 
by nonlinear penalised splines (see Eilers & Marx, 1996 for details). The district-specific effects are 
assumed to be Gaussian. After having obtained the estimates, we calculate �𝜇 l̃ = exp{�𝜃

⊤

𝜇xl̃ +
�f 𝜇(tl̃,r)} 

and �𝜎 l̃ = exp{�𝜃
⊤

𝜎 xl̃ +
�f 𝜎(tl̃,r)} for all observations ̃l with missing disease onset. We can now simulate 

dl̃ from Equation (3) to acquire a full data set by setting tl̃,o = tl̃,r − dl̃. Through aggregation from the 
daily patient-level data to the infection counts per district i and age/gender group g with disease onset 
in week t, denoted by yi,g,t, we build a single partially imputed data set. This procedure is repeated K 
times to represent the uncertainty associated with the missing information of all disease onsets.

3.2  |  Infection model

To model the rate of infections with partially imputed data, we apply a negative binomial 
‘observation-driven’ model for count data including the population as an offset term (Cox, 1981). 
By doing so, we assume 

where xi,g,u = (u, xi,g , xi,g,pop, x̃i,u,gini, x̃i,u,sp, xi,coord, xi,soc, ỹi,g,t−1) are the covariates at arbitrary week 
u specified in Section 2 and  denotes the set of age/gender groups used from the data. Furthermore, 
let T be the final week of data we use in the analysis. We assume in Equation (4) that the random 
variable Yi,g,t follows a negative binomial distribution conditional on xi,g,t−1, ai and bi to compensate 
overdispersion in the observed counts.

Aligned with models for the spread of infectious diseases (Held et al., 2005), we decompose 
�i,g,t into an endemic and epidemic component: 

(3)Dl | xl, tl,r ∼ NB
(
𝜇l = exp

{
𝜃⊤𝜇xl + f𝜇(tl,r)

}
, 𝜎l = exp

{
𝜃⊤𝜎 xl + f𝜎(tl,r)

})
,

(4)Yi,g,t | xi,g,t−1, ai, bi ∼ NB(�i,g,t , �), ∀ i ∈ {1,…, 401}, g ∈ , and t = 2,…, T ,

(5)
�i,g,t = exp

{
�ENDi,g,t + �EPIi,g,t

}
,

D
ow

nloaded from
 https://academ

ic.oup.com
/jrsssa/article/185/1/400/7068431 by guest on 20 February 2024



      |  409FRITZ and KAUERMANN

where each part is parameterised as follows: 

We include a first-order autoregressive term of this rate, since path dependencies and self-exciting 
behaviour are common with infectious diseases and should therefore be accounted for Held et al. 
(2005). In addition, we transform the respective term by h(x) = log(x + c) to bypass problems with 
absorbing states of the implied counting process when ỹi,g,t−1 = 0. The value c  ∈  (0, 1] is estimated 
from the data. More general types of these autoregressive models are proposed by Zeger and Qaqish 
(1988).

As is evident from Equation (5), we constitute that both the epidemic and endemic compo-
nents have a multiplicative effect on the observed infection rates. As an alternative, Held et al. 
(2005) replace the log link by an identity link, although Fokianos et al. (2020) argue for the log-
arithmic link implied in Equation (5) if additional covariates are available. They further derive 
theoretical properties, such as ergodicity, in the case of Poisson-distributed target variables under 
the condition 𝜃AR(1) < 1.

Time-varying effects: For the endemic part (7), the temporal trend is reflected by piece-
wise constant fixed effects separately for each week, �t. By means of group-specific covariates we 
control for gender- and age-related effects and their interaction, �gen, �age and �age:gen (Walter & 
Mcgregor, 2020). The principal covariates, Gini Index and Percentage Staying Put, are modelled 
by piecewise constants in each week for maximal flexibility. To account for the stylised fact, that 
the incubation period, that is, the time between being infected and symptom onset, for COVID-19 
is around 5 days (Li et al., 2020a), we lag the information on Gini Index and Percentage Staying 
Put by one week as indicated in Equation (7).

Isotropic smooth effects: The bivariate functions fcoord(xi,coord) and fsoc(xi,soc) display the 
effects of geographical coordinates and social coordinates on the incidence rate. To properly in-
corporate xi,coord and xi,soc in our regression framework, we propose the usage of isotropic splines. 
These kind of flexible functions were proposed by Duchon (1977) to model multiple covariates 
by a multivariate term as an alternative to anisotropic tensor products. Isotropic smoothers have 
the property of giving the identical predictions of the response under arbitrary rotation and re-
flection of the respective covariates (Wood, 2017). This characteristic is commonly reasonable 
when working with geographical coordinates xi,coord and in accordance with the uniqueness of 
the multidimensional scaling results, thus also for xi,soc. With respect to the form of the smooth 
terms, we follow Wood (2003) and use a low-rank approximation of the thin-plate splines intro-
duced in Duchon (1977). To obtain a smooth fit, we impose a penalty that is controlled by �soc and 
�coord for the respective isotropic splines.

Random effects: Because super spreader events such as carnival sessions (Streeck et  al., 
2020) or local outbreaks in major slaughterhouses (Dyal et  al., 2020) lead to unobserved het-
erogeneities, our model comprises two district-specific Gaussian random effects. The random 
effect ai governs long-term heterogeneities, while short-term dependencies, that is, sudden lo-
cally confined outbreaks as visible in the last week of Figure 1, are captured by bi. We assume 
a = (a1, …, an)

⊤ ∼ N(0, In𝜏
2
a) and b = (b1, …, bn)

⊤ ∼ N(0, In𝜏
2
b
). Relying on the duality 

(6)�EPIi,g,t = �AR(1) log(ỹi,g,t−1 + c)

(7)
�ENDi,g,t = �t+�gen�(xi,gen=

‘‘Male’’)+�age�(xi,age=
‘‘36−59’’)

+�age:gen�(xi,gen=
‘‘Male’’) ⋅�(xi,age=

‘‘36−59’’)+�t,ginixi,t−1,gini
+�t,spxi,t−1,sp+ fcoord(xi,coord)+ fsoc(xi,soc)+ai+bi�(t=T)+ log(xi,g,pop).
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between semiparametric regression and random effects (Ruppert et al., 2003), we can equiva-
lently write the random effects as semiparametric terms. Hence we may replace ai and bi by 
fa(i) = (a1, …, an)

⊤Xa and fb(i) = (b1, …, bn)
⊤Xb, respectively, and introduce a ridge penalty 

for each coefficient vector. In this context, the design matrices Xa and Xb each consist of n dummy 
variables indicating to which district a specific observation refers. As a result of this reformula-
tion, we can estimate the additional parameters �a and �b as tuning parameters in semiparamet-
ric regression (see Annex B for further information).

Modelling rates via count regression: Effectively, we model the rate of infections by in-
cluding the term log(xi,g,pop) as an offset in Equation (7) since the infections rates Ỹ i,g,t relate to 
the counts through Yi,g,t = Ỹ i,g,txi,g,pop via (note the slight abuse of notation as we here do not re-
gard the infection rate among 10.000 inhabitants but the percentage of people infected with a dis-
ease onset in a specific week). As a byproduct, we implicitly assume that the entire population is 
susceptible, which is reasonable when considering the low prevalence of COVID-19 in Germany 
during the first wave. However, the model is still applicable in the later stages of the pandemic by 
replacing this offset with the number of susceptible inhabitants in each region.

3.3  |  Estimation

At first, we propose an estimation procedure for the imputation model from Section 3.1. Given a 
partially imputed data set, we specify how to get estimates for the infection model from Section 
3.2. Finally, the multiple imputation scheme combining both approaches is presented. Generally, 
we carry out all computations conditional on the observations in t = 1, that is, the week between 
the 3rd and 9th of March.

Imputation model: We get estimates for the imputation model through maximising the like-
lihood function resulting from Equation (3). As mentioned in Section 3.2, we can rewrite all 
random effects as smooth terms and penalise this likelihood to obtain smooth functions. By re-
peatedly updating the estimators through a backfitting algorithm, we optimise this objective (see 
Rigby & Stasinopoulos, 2005 for details). This procedure is readily implemented in the software 
package gamlss (Stasinopoulos et al., 2020).

Infection model: The infection model is characterised by the parameters c and θ, relating 
to the log-transformation of the autoregressive component and all other parameters. Given a 
partially imputed data set, we first consider θ to be a nuisance parameter and find c via a profile 
likelihood approach. Here the profile likelihood is given by 

where (c, �) is the joint likelihood resulting from Equation (4) and ̂�(c) is the maximum likelihood 
estimator of θ for a fixed value of c. For any c, we can find �̂(c) by carrying out the estimation as ex-
plained in Annex B, hence it is straightforward to evaluate Profile(c). Building on this result, we use 
standard optimisation software, that is, the optimise routine within the software environment R 
(R Core Team, 2020), to obtain ĉ = argmaxc Profile(c). In the consecutive step, we fix c at ĉ  to get �̂ 
again by following Annex B.

Multiple imputation: Since information on the onset of symptoms is missing for ap-
proximately 30% of the cases, we proposed an imputation model in Section 3.1 to generate K 
partially imputed data sets. To correct the uncertainty quantification of the infection model 
for this multiple imputation procedure, we use the Rubin’s rule. At first, we sample K imputed 

Profile(c) =max
�

(c, �) = (c, �̂(c)),
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data sets according to Section 3.1. Let �̂(k) = (�̂(k), ĉ) be the resulting estimator from the two-
stage maximum profile likelihood procedure explained in the previous paragraph given the 
partially imputed data set from the kth imputation step. By V̂ (k) we denote the corresponding 
variance estimate that results from Bayesian large sample properties (Wood, 2013). We then 
average the coefficients over all K iterations to obtain �̂MI =

1

K

∑K
k=1 �̂(k) and estimate its 

variance through: 

where its components are given by 

In our application, setting K = 20 proved to be sufficient since the estimates of different imputed data 
sets varied only marginally.

4  |   RESULTS

We only report the findings of the infection model detailed in Section 3.2. A detailed analysis of 
the imputation model as well as a robustness check for the infection model can be found in the 
Supplementary Material.

4.1  |  Temporal effect

To start, the estimate of �t is shown in Figure 5. The progression of the weekly estimates con-
firms generally decreasing infection rates over time. Due to the standardisation employed for the 
principal covariates in the analysis, the temporal trend can be interpreted as the log-transformed 
expected infection rate of female individuals aged between 15 and 35 in a district where the 
standardised Gini Index and Percentage Staying Put are zero. Since observing a zero in the stand-
ardised covariates translates to the mean observed values where we observed most information, 
the standard errors are also extremely narrow.

4.2  |  Sociodemographic and epidemic effects

The linear time-constant estimates are given in Table 1 and exhibit in general a negative effect on 
male patients compared to female patients, 3% in the younger and 9.6% in the older age cohort.2 

V̂ar(�̂MI) = V + (1 + K−1)B,

V =
1

K

K∑

k=1

�V (k)

B =
1

K−1

K∑

k=1

(�𝜗(k)−�𝜗MI)(�𝜗(k)−�𝜗MI)
⊤.

 2One can derive these percentages by computing the expected multiplicative change that results from alternating the 
prediction from one to another demographic group. For instance, exp{0.03} ≈ 0.97, which is equivalent to a 3% decrease, 
is the multiplicative change ceteris paribus between females and males both aged between 15 and 35.
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According to its partial effect, we also predict that the older age group has a lower infection rate 
than the younger group encompassing individuals aged between 15 and 35, for men 9.7% and 
women 3.1%. The autocorrelation coefficient �AR(1) expresses that one more infection among 
10.000 inhabitants in a district during the past week almost doubles the predicted infections for 
the present week. This dominant finding confirms strong path dependencies in the data. In this 
context, we need to remark that the coefficients are partial effects that condition on all other 

F I G U R E  5   Estimate of temporal effect �t. The 95% confidence interval accompanies the estimates, and the 
shown dates (mm:dd) on the x-axis are the first days of the corresponding weeks

T A B L E  1   Estimates of linear time-constant effects

Covariable
Estimate  
(standard error)

exp{Estimate} 
(standard error)

Male −0.03 0.97

(0.015) (0.014)

A35–A59 −0.031 0.969

(0.014) (0.013)

Male: A35–A59 −0.071 0.931

(0.02) ( 0.017)

log(ỹi,g,t−1 + c) 0.623 1.865

(0.009) (0.031)

Notes The reference group are female individuals aged between 15 and 35. By use of the delta rule, we approximated the 
standard errors of the transformed coefficients in the third row. The value c is estimated at 0.499 with a standard error of 0.027.
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covariates used in the model. Therefore, a positive coefficient of a dummy variable does not nec-
essarily translate to the same finding in the raw numbers.

4.3  |  Mobility effects

The time-varying estimates regarding the relative mobility pattern are displayed in Figure 
6. Overall, the estimated effects of the measures proposed in Section 2.2 on the rate of local 
COVID-19 infections are negative. In regards to relative importance, both variables rank simi-
larly during the lockdown period that persists until early May. Subsequently, the Gini Index in a 
region gains weight, while the effect of People Staying Put becomes more volatile. The temporal 
changes of the respective estimates illustrate nonlinearities, which would not have been suffi-
ciently captured by linear effects.

Gini index of co-location: Given all other covariates, Figure 6a suggests that inhabitants 
with meeting patterns that are centred around a few other districts entail reduced infection 
rates for a specific district. This tendency is only suspended in the week starting on March 17th 
during the early lockdown in Bavaria. The corresponding estimate is positive and significant. 
Right after the national lockdown on 22 March 2020, is ordered, the effect is not significantly 
different from zero for one week (03–24). The estimated effects remain low but negative until 
the German government introduces compulsory masks in public areas on 22 April (Mitze et al., 
2020). Thereupon, the effect has a clear downwards tendency. Once policymakers slowly lift the 
lockdown measures, the estimate declines further until its maximum in the penultimate week 
of our observational period. This development may be viewed as evidence that a more focused 
attribution of co-location probabilities in a district becomes more crucial over time.

F I G U R E  6   (a) Time-varying effects of the Gini index �̂t,gini. (b) Time-varying effects of the Percentage of 
People Staying Put �̂t,sp. The 95% confidence interval accompanies the estimates, and the shown dates (mm:dd) 
on the x-axis are the first days of the corresponding weeks
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Percentage staying put: Suppose the percentage of inhabitants in a district staying put is 
large relative to the national tendency. In that case, we expect the incidence of infections through-
out the lockdown period to be lower. We deduce this result from the largely negative estimates 
in Figure 6b for the weeks between 10 March and 12 May. Once the orders are relaxed, on the 
other hand, the standard errors of the respective covariate become relatively large, and the effect 
vanishes in the final week of the study. A possible explanation for this phenomenon is that when 
daily infections decline, most diseases are related to local outbreaks (as already mentioned in 
Section 2). These breakouts, in turn, cannot be associated with the percentage of people staying 
put. One exception to this finding is the estimate in the week starting on 26 May, where we en-
counter a significant positive effect.

4.4  |  Spatial and social connectedness effects

In our model specification, we incorporate the friendship coordinates and geographical coordi-
nates as two spatial effects. In combination with the two unstructured latent variables, we can 
disentangle separate influences on the local infection rates of spatial and friendship proximity as 
well as short- and long-term district-specific deviations from it.

Spatial effects: Let us start with the smooth spatial effect in Figure 7. Overall, the geograph-
ical effects within federal states, indicated by the black borders in Figure 7, are mostly hetero-
geneous. To give some examples, an almost uniformly augmented risk of infections is estimated 
in Baden-Württemberg and Thuringia. At the same time, we remark a negative spatial effect in 
Germany’s northern districts, that is, Schleswig Holstein and Mecklenburg Western Pomerania. 
On the other hand, the fit for districts in North Rhine-Westphalia varies between positive, nega-
tive and no effect.

We visualise the result of the friendship coordinates in two manners. One may plot the smooth 
bivariate function in the friendship space, Figure 8a, or map the smooth fit on the geographical 
space, Figure 8b. The re-mapping allows for sharp edges in the geographical coordinates. Broadly, 
the fit differentiates between districts allocated in former East Germany (corresponding in Figure 
8a to MDS coordinates located in the first quadrant) and former West Germany. We observe that 
the predicted infections are ceteris paribus lower if a district is situated in former East Germany. 
Districts allocated in the second and fourth quadrant of Figure 8a (mainly including districts 
from the states Bavaria, North Rhine-Westphalia and parts of Lower Saxony) are negatively af-
fected by social proximity. Figure 8b demonstrates how the partial effects sometimes change 
abruptly between large cities and neighbouring districts. For instance, Berlin’s central position 
is unrelated to the infection rates compared to the negative effect evaluated in Brandenburg. We 
observe a similar phenomenon for Hamburg when contrasting its partial effect with surrounding 
districts in Schleswig Holstein and Lower Saxony.

Unobserved heterogeneity effect: In Figure 9, the posterior modes of both random effects 
evince strong heterogeneities between districts and underpin local differences in the spread of 
COVID-19. Noticeable estimates of the long-term random effects, Figure 9a, reflect early out-
breaks in the districts Greiz (Thuringia) and Coesfeld (North Rhine-Westphalia). Some estimates 
may also be related to heterogeneous testing practices between the districts.

We can trace back most high estimates of the short-term random effect to locally confined out-
breaks, for instance, Guethersloh and Warendorf (North Rhine-Westphalia). As already stated in 
Section 2 the proportion of infections attributed to these local events rises once the general level 
of new cases declines. This result is supported by the different scales of the two types of random 
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effects and apparent in the estimates �𝜏a = 0.2 < �𝜏b = 0.585. Therefore, the posterior modes of 
the short-term effects exhibit higher variances and are larger in absolute terms than the long-
term effects.

4.5  |  Model assessment

We compare various alternative model specifications to check the robustness of our conclusions. 
In particular, we estimate separate models, adding dummy covariates for each state and leaving 
out one of the spatial terms, the Gini index, the Percentage of People Staying Put, all Facebook-
related covariates and random effects. For this endeavour, we utilise the corrected Akaike infor-
mation criterion (cAIC) introduced by Wood et al. (2016) since the effective degrees of freedom 
need to adjusted for the additionally estimated variance components if random effects are in-
cluded (we average the respective values over the results of all imputed data sets). The results 
in Table 2 support the appropriateness of our final model since the corresponding cAIV value is 
the lowest. Besides, the change in the cAIC value to the model (4), denoted by ΔcAIC, permits 

F I G U R E  7   Estimated smooth spatial effect fcoord. The thick black lines represent borders between federal 
states, while the thinner grey borders separate federal districts. Through arrows, we highlight selected states 
mentioned in the text [Colour figure can be viewed at wileyonlinelibrary.com]
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an evaluation of the variable importance of each eliminated covariate. We can conclude from 
Table 2 that the exclusion of the Gini Index induces the highest loss in cAIC value. Concerning 
the different types of distances, the friendship distance is more important than the geographical 
distance.

For further validation, we plot one draw of the randomised quantile residuals in Figure 10a. 
Dunn and Smyth (1996) proposed this type of residual based on the result that evaluating the 
cumulative distribution function at all observed values of yi,g,t under the estimated parameters 
should yield uniformly distributed random variables. Transforming these uniform values by the 
quantile function of the standard normal gives the quantile residuals. To obtain continuous re-
siduals, the values are randomised since the negative binomial distribution in Equation (4) has 
discrete support. On average, the empirical quantiles are close to the theoretical expectations 
and do not indicate problems regarding the statistical fit. At the right tail of the distribution, 
38 (out of 24.060) observations exhibit higher deviations from the normal quantiles, which we 
coloured in red. The underlying counts are mainly credited to local outbreaks that could not 
be completely captured by the random effects, namely Coesfeld (Thuringia), Cuxhaven (Lower 
Saxony), Aichach-Friedberg (Bavaria), Guetersloh and Warendorf (North Rhine-Westphalia). 
Additionally, we assess the predictions of the final model through plotting the predicted in-
fections against the observed infections, Figure 10b, and a rootogram proposed by Kleiber and 

F I G U R E  8   (a) Coordinates of the districts in the friendship space with the smooth partial effect of fsoc in  
the background. We only show the predictions in the range of observed values. (b) Coordinates of the districts 
in the geometric space with the smooth partial effect of fsoc again shown in the background for each district. 
The thick black lines represent borders between federal states, while the thinner grey borders separate federal 
districts. Through arrows, we highlight selected states mentioned in the text [Colour figure can be viewed at 
wileyonlinelibrary.com]
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F I G U R E  9   (a) Maximum posterior modes of the long-term random effects ai. (b) Maximum posterior 
modes of the short-term random effects bi. The thick black lines represent borders between federal states, while 
the thinner grey borders separate federal districts. Through arrows, we highlight selected districts mentioned in 
the text [Colour figure can be viewed at wileyonlinelibrary.com]

T A B L E  2   Alternative model specifications with resulting corrected Akaike information criterion (cAIC) 
value and change in corrected AIC value when compared to our model from Section 3

Model description
cAIC  
(Model)

ΔcAIC 
(Model)

Our model 86694 –

With state effect 86694.79 0.790

Without geographical distance 86699.42 5.422

Without friendship distance 86701.26 7.262

Without Age:Gender interaction 86707.34 13.336

Without percentage staying put 86732.46 38.461

Without Gini index 86974.32 280.319

Without Facebook covariates 87033.87 339.867

Without long-term effect 87452.62 758.620

Without short-term effect 87900.03 1206.034

Without long- and short-term effect 88624.38 1930.382
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Zeileis (2016), Figure 10c. Both visualisations confirm a strong fit of the presented model and 
proof that the model can sufficiently capture the observed counts of infected individuals. Due to 
the multiple imputation scheme specified in Sections 3.1 and 3.3, we carry the model assessment 
out for each imputation separately and report the averaged results.

5  |   CONCLUSION

In this writing, our contributions are twofold. First, we used state-of-the-art regression models 
to quantify the importance of human mobility for understanding the spread of COVID-19 on a 
local level accounting for their temporal dynamic, latent effects and other covariates. Concerning 
the relative importance, the Gini index of meeting probability attribution proved to be a primary 

F I G U R E  1 0   (a) QQ Plot of randomised quantile residuals, observations with a distance larger than 1 to the 
theoretically expected values are drawn in red. (b) Scatter plot of the observed and predicted infection count, 
for the x and y-axis, we used a log(· + 1) scale. The dotted grey line is the best-case scenario of the prediction 
and has intercept 0 and slope 1. (c) Rootogram comparing the observed and expected counts. The grey barplot 
specifies the observed counts, while the red line gives the expected values under Equation (4) [Colour figure can 
be viewed at wileyonlinelibrary.com]
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driver of the infection rates. Second, we used methods from multivariate statistics to derive 
friendship coordinates for the federal districts in Germany. Consecutively, we coupled the result 
with a regression model via isotropic splines and, thereby, revealed a perpetual clustering of 
communities in former East- and West Germany that remains existent for COVID-19 infections 
because the social geographical system proves to be an essential regressor in our application. 
Moreover, our findings enable an evaluation of the district-wise policies undertaken between 
March and June 2020. The results corroborate the usefulness of interventions limiting trans-
district movements and concentrating meeting patterns. Especially during the last weeks of this 
study, local lockdowns could mitigate further national outbreaks.

Still, we need to address some limitations of our work, which require additional investigation. 
The data sources for the infection data include all individuals in Germany that tested positive on 
COVID-19. During the peak phase in March, these tests were mainly carried out with patients 
who showed symptoms or had contact with an infected individual. Due to an unknown dark 
figure of infected persons missing in the public records (Lavezzo et al., 2020), the observed data 
are a proxy for the current epidemiological situation. To control for this possible bias, further 
research on the prevalence of COVID-19 in Germany and the representability of the official sta-
tistics of the real infection occurrence akin to the REACT Study in England (Riley et al., 2021) 
would be necessary.

Even with these caveats, the combination of infection, mobility and connectivity data can 
serve for a fruitful application of other methods as well. Contrasting our approach, one may 
tackle the regression task in Section 3 by incorporating the spatial dependencies directly in the 
correlation structure, as is done in the literature on spatial econometric models (LeSage & Pace, 
2009). We could also employ novel clustering algorithms that naturally exploit different proxim-
ity dimensions, such as the geographical and social space, to identify similar districts while tak-
ing into account spatial dependencies (D’Urso & Vitale, 2020; D’Urso et al., 2019). Furthermore, 
the research questions posed in this article would greatly benefit from an examination through 
the lens of analytical sociology (Hedström & Bearman, 2011). Nevertheless, this type of analysis 
usually necessitates individual-level data, which are not readily available. Therefore, we can only 
verify some of the theoretical results of Block et al. (2020) on the macro scale, which does not 
necessarily translate to the micro scale (Stadtfeld, 2018). Therefore, additional empirical work on 
the implications of individual behaviour on the spread of COVID-19 is still needed. Nevertheless, 
our work can give valuable pointers in that regard contingent on the assumption that the corre-
sponding district average adequately represents the mobility patterns of an individual.

6  |   DATA AND CODE AVAILABILITY

Facebook collected the anonymised mobility and connectivity data. We cannot share the raw 
data due to a data agreement. Still, we are allowed to provide all data aggregated onto the level 
of federal districts. To guarantee the replicability of our results, we make the complete code to 
obtain the results from this article available online. We also supply a visualisation of the entire 
pipeline of our analysis in the Supplementary Material for transparency.
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APPENDIX A

A. MULTIDIMENSIONAL SCALING AND PROCRUSTES ANALYSIS
In order to determine the information given in the pairwise social connectedness indices 
xsoc = (xij,soc)i,j=1,…,n for explaining the spread of COVID-19 in Germany, we use techniques 
from multivariate statistics (Cox & Cox, 2000). Thereby, we can derive a low-dimensional rep-
resentation of the network on the actor level and guarantee interpretable as well as transpar-
ent results. More specifically, we apply metric multidimensional scaling (MDS) to represent 
dissimilarity matrices in a lower-dimensional geometric space that preserves the dissimilari-
ties through Euclidean distances (Borg et al., 2013). To illustrate the application of this algo-
rithm, one can think of MDS as a technique to reverse-engineer geographical coordinates that 
are unique up to scale and rotation from distances between cities (Young & Householder, 
1938).

At first, we transform the similarities expressed by the counts of friendship ties between the 
districts xsoc to dissimilarities. In our application, the measure of dissimilarity is given by 
dsoc = ( 1

xij,soc
)i≠j=1,…,n and dii,soc = 0. While this dissimilarity matrix is symmetric and nonnega-

tive, there is no general guarantee that the entries of dsoc are Euclidean. Therefore, we add the 
constant c to the off-diagonal elements to ensure that the distances between the found coordi-
nates are Euclidean (Cailliez, 1983; Mardia, 1978). In order to estimate these p-dimensional co-
ordinates xi,soc = (xi,1, …, xi,p) ∀ i = 1, …, n from the dissimilarity matrix dsoc, the objective is 
to minimise the squared error between the pairwise entries of dsoc and the Euclidean distances 
calculated with the respective coordinates: 

in our case we set p = 2. See Cox and Cox (2000) and Borg et al. (2013) for methods to find 
x such that Equation (A1) holds, which are implemented in the R-package stats (R Core 
Team, 2020).

Since arbitrary transformations, rotations and reflections of any coordinates that optimise (A1), 
represented by xsoc = (x1,soc, …, xn,soc), are equally valid, we further process the solution to guaran-
tee uniqueness and an intuitive understanding of the result. To achieve this goal, we use Procrustes 
Analysis (Cox & Cox, 2008) and find an optimal solution xsoc to Equation (A1) that is also most similar 
to the geographical coordinates xcoord = (x1,coord, …, xn,coord) given in Figure 8. As a measure of sim-
ilarity between the matrices xsoc and xcoord, commonly R2 =

∑n
i=1 (xi,soc − xi,coord)

⊤(xi,soc − xi,coord) 
is used. Furthermore, we can parameterise the desired class of functions that transform an accord-
ing to Equation (A1) optimal solution xsoc,i to x̃soc,i by: 

where ρ is scalar determining the dilation,  an orthogonal matrix defining the rotation and reflec-
tion, and b a two-dimensional vector for a possible translation. From an optimisation point of view, 
we now have to find ρ, , and b such that the resulting R2 is minimised, which we can do in closed 
form (see Cox & Cox, 2000). This type of transformation is implemented in the R-package vegan 
(Oksanen et al., 2020) and does not change the estimates or inference because we apply isotropic 
smooth terms.

(A1)xsoc =
�
x⊤1,soc,…, x⊤n,soc

�
= argmin

x̃∈ℝp×n

�
�

i≠j

(dij,soc+c−‖x̃i− x̃j‖2)
�1∕2

,

(A2)x̃soc,i = 𝜌⊤xsoc,i + b,
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B. ESTIMATION OF θ GIVEN c AND COMPLETE DATA
From Equation (4), we construct a likelihood for each district and age/gender group tuple. 
Combining these separate contributions under independence leads to a joint logarithmic likeli-
hood given by: 

note that ϕ is the dispersion parameter of the negative binomial distribution and that the likelihood 
of the imputation model from Equation (3) in Section 3.1 has the same form with �−1 = �l. Suppose 
we plug �i,g,t as defined in Equation (5) into (B1) and fix the value of c. In that case, we observe that 
the result is a function of θ and resembles the likelihood of a generalised additive model with negative 
binomial distributed target variables and denote the likelihood by ℓ(θ|c) (Ruppert et al., 2003). To obtain 
a smooth fit of θ, we extend this function by an additive penalisation component: 

where 𝜏 =
(
𝜏a, 𝜏b, 𝜏coord, 𝜏soc

)⊤
 are smoothing parameters weighting the term-specific penalties 

S =
(
Sa, Sb, Scoord, Ssoc

)⊤. The choice of these penalties differs between the random effects and bi-
variate spacial effects. For the random effects, we follow Ruppert et al. (2003) and define Sa and Sb 
through ridge penalties, hence, for instance, Sa =

∑2
i=1 a

2
i
. In the case of the isotropic semiparamet-

ric terms, we chose the penalty terms in accordance with Duchon (1977). Here, Scoord penalises the 
roughness of the bivariate function fcoord(xi,coord) = fcoord(xi,coord,1, xi,coord,2), where xi,coord,p denotes 
the pth dimension of xi,coord ∀ p ∈ {1, 2}, in our application the longitude and latitude of district i. 
Given this notation, we can state the functional form of the penalty term: 

Besides we ensure identifiability of all smooth effects by incorporating a sum-to-zero constraint per 
term, which translates to 

∑n
i=1 fcoord(xi,coord) = 0 for fcoord( ⋅ ) (Wood, 2017).

To maximise (B2) in terms of θ and τ, we follow the nested optimisation approach of Wood 
(2011). Hence, we find �̂  in an outer iteration and ̂� consecutively in an inner iteration. Generally, 
the validity of this procedure rests on the finding that �̂ is the posterior mode of θ|y under the as-
sumption that θ follows a zero-mean normal prior with improper variance (Kimeldorf & Wahba, 
1970). Viewing θ as random coefficients enables us to estimate all smoothing parameters τ via 
restricted maximum likelihood estimation. More specifically, we set up f(y, θ|c) given ℓ(θ|c) and 
f(θ). Through integrating θ out of f(y, θ|c) by deploying a Laplace approximation we obtain an 
approximate REML criterion, which is a function of τ and ϕ, the dispersion parameter from 
Equation (B1). Maximising the derived function in terms of these parameters gives �̂  and �̂ (see 
Wood, 2011 for additional details). Given the tuning parameters, we consecutively find �̂ through 
standard penalised iterative re-weighted least squares estimates (PIRLS, Wood, 2017) in the inner 
iteration. We repeat this iterative scheme until convergence to obtain �̂ and �̂  given a fixed value 
of c. A scalable implementation of this routine that we used is available in the software package 
mgcv (Wood, 2017).

(B1)�(�, c) ∝

n∑

i=1

∑

g∈

T∑

t=1

log

(
Γ(� + yi,g,t)

yi,g,t !Γ(yi,g,t)

)
+ � log

(
�

� + �i,g,t

)
+ yi,g,t log

(
�i,g,t

� + �i,g,t

)
,

(B2)�p(𝜃|c) = �(𝜃|c) − 𝜏⊤S,

Scoord=∫

�2

�2xcoord,1
fcoord(xcoord)

2+2
�2

�xcoord,1�xcoord,2
fcoord(xcoord)

2

+
�2

�2xcoord,2
fcoord(xcoord)

2 dxcoord,1 dxcoord,2.
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