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Children and adolescents could benefit from the use of predictive tools that facilitate personalized diagnoses,
prognoses, and treatment selection. Such tools have not yet been deployed using traditional statistical methods,
potentially due to the limitations of the paradigm and the need to leverage large amounts of digital data. This
review will suggest that a machine learning approach could address these challenges and is designed to introduce
new readers to the background, methods, and results in the field. A rationale is first introduced followed by an
outline of fundamental elements of machine learning approaches. To provide an overview of the use of the
techniques in child and adolescent literature, a scoping review of broad trends is then presented. Selected studies
are also highlighted in order to draw attention to research areas that are closest to translation and studies that
exhibit a high degree of experimental innovation. Limitations to the research, and machine learning approaches
generally, are outlined in the penultimate section highlighting issues related to sample sizes, validation, clinical
utility, and ethical challenges. Finally, future directions are discussed that could enhance the possibility of
clinical implementation and address specific questions relevant to the child and adolescent psychiatry. The
review gives a broad overview of the machine learning paradigm in order to highlight the benefits of a shift in
perspective towards practically oriented statistical solutions that aim to improve clinical care of children and
adolescents. Keywords: Machine learning; ADHD; autism spectrum disorders; depression; psychosis; artificial
intelligence.

Introduction
During childhood and adolescence, an estimated
15% of individuals will be diagnosed with autism
spectrum disorder, attention deficit hyperactivity
disorder, anxiety disorders, depression, and
schizophrenia (Dalsgaard et al., 2020). Such diag-
noses can be preceded by untreated periods of
developmental disruption that are connected with
poorer long-term outcomes (Dawson & Bernier,
2013; McGorry & Mei, 2018), and for some condi-
tions, premorbid risk states characterized by sub-
threshold symptoms that impair functioning and can
evolve into an illness during early adulthood (Fusar-
Poli et al., 2013). These challenges have the capacity
to impact on critical neurodevelopmental windows
(Marin, 2016) in addition to altering social, psycho-
logical, and educational trajectories that increase
risk of longer-term impairment. Facilitating the
earliest detection of illness, providing accurate diag-
noses, estimating prognostic courses, and predicting
optimal treatments is thus critical to long-term
health outcomes (Correll et al., 2018; Marin, 2016;
McGorry, Ratheesh, & O’Donoghue, 2018).

Research in psychiatry and clinical psychology has
provided a wealth of information based on groups of
individuals that has, for example, facilitated earlier
detection of disorders (McGorry & Mei, 2018),

informed diagnostic categories (McPartland, Rei-
chow, & Volkmar, 2012), generated treatment guide-
lines (Hollon et al., 2014), and highlighted potential
biological mechanisms of illness (Insel & Cuthbert,
2015; Kapur, Phillips, & Insel, 2012). For example,
an adolescent with depressive symptoms may be
given a diagnosis of depression, they may be
informed that individuals with the same diagnosis
remit ~50% of the time without treatment (Vitiello,
2011), and they could be prescribed antidepressants
or cognitive behavioral therapy (CBT) with a group-
based remission possibility of 65% (Cox et al., 2014).
This information is somewhat helpful, but in these
cases where a diagnosis cannot accurately define an
outcome or treatment plan (Hyman, 2010; Rød-
gaard, Jensen, Vergnes, Souli�eres, & Mottron,
2019; Vitiello, 2011), the patient and treating team
would benefit from personalized approaches that
deliver individualized risk estimates (Box 1).

Without accurate recommendations for each indi-
vidual, the possibility of longer-term impairment
increases along with the personal, societal, and
economic cost of delayed diagnoses (Dawson &
Bernier, 2013; Maenner et al., 2020), repeated
clinical interactions, and trial-and-error treatment
strategies (Chekroud et al., 2016). While there is a
large body of research that has investigated associ-
ations between clinically relevant targets (e.g., poor
outcomes) and psychological, social, and biological
variables, the aims have largely been explanatory
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(Yarkoni & Westfall, 2017) and none of the statistical
models (e.g., regression equations) are routinely
used in clinical care to deliver individualized risk
that we are aware of. This is different to some other
medical fields where simple equations can be used to
predict outcomes on the basis of a small set of
predictive variables, such as the Framingham score
to estimate cardiovascular risk (e.g., using age,
cholesterol, smoking status, and blood pressure)
(Wilson et al., 1998).

Given the complexity and heterogeneity of psychi-
atric disorders it is perhaps understandable that
simple risk calculators like the Framingham equa-
tion are not clinically used (Uddin, Wang, &
Woodbury-Smith, 2019), especially due to the
absence of objective biomarkers or a mechanistic
understanding of psychiatric diagnoses (Abi-
Dargham & Horga, 2016; Insel & Cuthbert, 2015;
Kapur et al., 2012). However, what is increasingly
difficult to understand is why an era characterized
by digital data storage, high speed connectivity, large
computational resources, and the widespread use of
artificial intelligence in nonmedical fields (Jordan &
Mitchell, 2015; LeCun, Bengio, & Hinton, 2015) has
had a limited impact on the use of predictive
algorithms in psychiatry to-date. This is especially
the case with the emergence of massive repositories
from primary care services in the form of electronic
health records (EHR) and diagnostic data (e.g.,
magnetic resonance imaging; MRI) in addition to
increasing collection of data from video, audio, smart
phones, social media, clinical questionnaires, geno-
mics, other -omics data, electrophysiology, neu-
roimaging, and many other sources (Russ et al.,
2019b; Sim, 2019; Topol, 2019). These data sources

could be used to harness the hypothesized biologi-
cal, psychological, social, and environmental contri-
butions to diagnoses, prognoses, and treatment
predictions in psychiatry by reconsidering the dom-
inant statistical paradigm and enhancing it with a
translational machine learning approach.

P-value testing and group-based thinking
Psychiatric research mostly uses a frequentist, infer-
ential statistical paradigm to design experiments
and make conclusions about data (Bzdok, Altman, &
Krzywinski, 2018; Bzdok, Engemann, & Thirion,
2020). Group-based effects are commonly the target
(e.g., differences and associations) and conclusions
are made on the basis of p-values indicating the
probability of obtaining the result in the absence of a
true effect, by calculating a statistical model under
assumptions of null-hypothesis significance testing
(Nuzzo, 2014). A traditional scientific method is
assumed that aims to carefully design highly con-
trolled experiments to sample from a population
targeted for inference, select variables based on
precise hypotheses, use statistical models to deter-
mine significance and interpret variables, and make
conclusions on the basis of whether the results
potentially occurred by chance or not (Naci & Ioan-
nidis, 2015). By using such a paradigm, researchers
make conclusions about whether a hypothesized
effect occurs in the inferred population of cases—for
example, whether trauma is associated with depres-
sion or whether CBT is appropriate to treat it. Within
this paradigm, average risks are compared between
groups.

Recently, the dominant analytic paradigm has
been questioned in light of a reproducibility crisis
that has highlighted multiple limitations (Ioannidis,
2005; Schooler, 2014). An established fact that has
been revisited in this controversy is that p-values do
not assess replicability or reproducibility (Goodman,
1992; Goodman, Fanelli, & Ioannidis, 2016; Nuzzo,
2014), which has contributed to a reevaluation of
research practices, such as: the use of pretest
probability estimates (Ioannidis, 2005), wider use
of confidence intervals (Cumming, 2014), and pre-
registration of analysis plans (Nuzzo, 2014). How-
ever, even in the presence of such important
changes, the remaining paradigm itself may still
lend itself towards research that does not contribute
to translational aims by producing results with
clinically meaningless effect sizes (e.g., differences
between groups; Abi-Dargham & Horga, 2016; Ioan-
nidis, 2016), excessively controlling samples so that
they no longer resemble real-world circumstances
(Naci & Ioannidis, 2015), falsely identifying predic-
tive variables on the basis of their significance (Lo,
Chernoff, Zheng, & Lo, 2015), and making question-
able inferences from group averages to individuals
(Fisher, Medaglia, & Jeronimus, 2018). Ultimately,
significance testing does not directly measure

Box 1 Case example

Picture a clinician seeing a 16-year-old whose
school performance has decreased, they are
estranged from their friends, they are sad most
days, and they are experiencing some mild para-
noid symptoms regarding classmates talking
about them behind their back. Major depressive
disorder arises as a differential, but the clinician
is concerned about the possibility of a psychosis
prodrome. Group-based research suggests that
mild paranoia is common in depressed adoles-
cents with a history of trauma and within groups
of individuals there is a low possibility of psy-
chosis (Bird et al., 2021) and the clinician refers
them to a depression clinic. However, the adoles-
cent ultimately experiences a psychotic episode
with subsequently poor social and symptomatic
outcomes. On hearing of this outcome, the clin-
ician wonders why years of research has not
produced objective tools to turn the group-based
risk estimate into something that could have been
used for their individual patient.
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generalizability from the sample under investigation
to new cases, or predictive accuracy, and these are
required if we want to practically use the statistical
model to make a decision (Bzdok et al., 2020).

Machine learning for medicine
In order to use traditional group-based approaches
for prediction at an individual level, statistical mod-
els are commonly validated in external samples and
this has led to tools such as the Framingham risk
equation mentioned above. However, due to limita-
tions of these models, the medical field is investing in
other techniques (Esteva et al., 2019; Rajkomar,
Dean, & Kohane, 2019; Topol, 2019; Yu, Beam, &
Kohane, 2018) that combine existing knowledge and
practices with the complementary and overlapping
paradigm of machine learning (Breiman, 2001;
Bzdok et al., 2018).

The origins of this paradigm can be traced back to
research using early computers to simulate the
functioning of neurons, which was conducted by
early interdisciplinary pioneers in psychology, neu-
roscience, and computer science, such as Frank
Rosenblatt (Rosenblatt, 1958). Historically, the idea
was to model basic neuronal operations by encoding
a computer with statistical functions that could
autonomously update their coefficients based on
data input in order to classify new examples—in this
case, the recognition of shape patterns (e.g., squares
or triangles) from a sensor array that mimicked the
retina of the eye. As such, the ‘machine’ was able to
‘learn’ from incoming ‘features’ of the shapes by
using ‘pattern recognition’ in order to classify exam-
ples shown to it (see glossary in Table 1 for descrip-
tions of machine learning terminology used in this
review).

When employed by Rosenblatt and others, the use
of statistics within machine learning was different
from the dominant frequentist paradigm in psychol-
ogy because it was focused on algorithmic
approaches that facilitated learning from examples
to achieve a practical goal of prediction rather than
the use of statistical models and p-value testing. It
was also different from standard practices of com-
puting that involved programming preconceived
rules into a computer to reach deterministic out-
comes. In this way, machine learning was a semi-
autonomous, probabilistic middle-road between
statistics and computer science that created hopes
of achieving human-level abilities (i.e., artificial
intelligence). The central ideas can be distilled down
to automatically selecting data, learning parameters,
making limited assumptions, using simulation to
assess and enhance performance, and making prob-
abilistic predictions to drive specific decisions. His-
torically, the accuracy, generalizability to new cases,
practical utility, and applicability to single examples
(e.g., patients) was the main end goal rather than
finding significant differences between group means

or statistical associations (Bzdok et al., 2018; Bzdok
& Ioannidis, 2019; Yarkoni & Westfall, 2017).

The machine learning paradigm fell in and out of
favor in the ensuing years, but now is a part of our

Table 1 Glossary of machine learning terms used in this
review

Accuracy The fraction of correctly predicted cases in
reference to all cases

Cross-
validation

An internal validation resampling technique
used to empirically assess the accuracy
and generalizability of statistical models,
usually for a specific outcome

Feature
engineering

Modification of variables in order to
enhance predictions (e.g., through data
dimensionality reduction)

Feature
selection

The selection of optimal variables without
their modification

Generalizability Algorithm performance on new data that
can be assessed with internal validity (e.g.,
using cross-validation techniques) or
external validity (e.g., validating the
models on data from a different study, time
period, or geographic location). Also
includes the assessment of model bias
towards certain dominant groups (e.g.,
Western European groups).

Hyperparameter A modifiable setting of an algorithm that can
be altered to obtain optimal prediction
accuracy and generalizability

Information
leakage

When information about test subjects is
included in the training sample, usually by
conducting procedures outside of a cross-
validation cycle that necessitate the use of
all subjects in the sample (e.g., selection of
variables or control of covariates).
Assessment of generalizability is
undermined and accuracy estimates are
invalid.

Overfitting Fitting a model to noise and idiosyncratic
attributes of a training sample resulting in
low levels of test accuracy and lowering
generalizability potential.

Sensitivity The proportion of affected cases with a
positive test result in reference to all
affected cases.

Specificity The proportion of nonaffected cases with a
negative test result in reference to all
nonaffected cases.

Supervised
learning

When the target outcome is known for all
cases and predictive algorithms seek to
first classify the known outcomes and then
to predict them in new cases.

Testing Within an internal validation procedure
such as cross-validation, testing is the
application of trained models or pipelines
without modification to held-out data that
has not been used in the creation of the
models.

Training The statistical procedures usually
conducted within a cross-validation
routine that involve fitting a model to a
dataset (e.g., for prediction).

Unsupervised
learning

When the target outcomes or subgroups are
not known and an exploratory approach is
used to learn natural groupings of cases.

Labels The predictive target used in supervised
learning, that is, assigned to each case,
such as diagnoses or prognostic outcomes.

© 2022 The Authors. Journal of Child Psychology and Psychiatry published by John Wiley & Sons Ltd on behalf of Association for
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daily lives because increases in computing power
and algorithm advances led to performance gains
that exceeded the use of traditional statistical
approaches or rule-based, deterministic program-
ming across a diverse array of fields (Jordan &
Mitchell, 2015; Topol, 2019). Within this context, an
old question has been revived about whether the
same techniques can be used in medical contexts
(Wilson et al., 1998) to improve predictions and
create computer algorithms for diagnoses, prog-
noses, and treatment selection purposes (for an
early example of computer-aided decision making
in pediatrics see Barness, Tunnessen, Worley, Sim-
mons, & Ringe, 1974). Across medicine, the use of
machine learning techniques now exhibits exponen-
tial growth as the methods are tested for their ability
to assist in decision-making across the lifespan in
diverse specialties (Topol, 2019) with promising
results (Esteva et al., 2019; Rajkomar et al., 2019;
Topol, 2019; Yu et al., 2018).

The machine learning paradigm in medicine is
particularly well suited for digital data, that is,
difficult to analyze with simple regression equations
or decision rules—for example, EHRs, medical
images (e.g., CAT, MRI, cellular pathology, derma-
tology), or genomics (Esteva et al., 2019; Hosny,
Parmar, Quackenbush, Schwartz, & Aerts, 2018;
Rajkomar et al., 2019; Topol, 2019; Yu et al., 2018).
However, even in cases where simple clinical data is
collected (e.g., from a questionnaire) machine learn-
ing could assist in finding maximally predictive
patterns, especially when existing knowledge is not
sufficient to derive a clinically useful regression
equation, the predictive target is new, or mechanistic
understanding is insufficient. As such, it is a
paradigm that is well-suited to the field of clinical
psychology and psychiatry because it is not only a
field with limited mechanistic insight (Abi-Dargham
& Horga, 2016; Insel & Cuthbert, 2015; Kapur et al.,
2012), but it is also one that attempts to find
patterns in digital data sources (e.g., imaging or
genetics) in order to ultimately assist with clinical
care.

Translational machine learning fundamentals
The following section introduces key concepts and
methods in machine learning in order to define
machine learning objectives, introduce common
techniques, discuss the use of statistical pipelines,
emphasize the importance of algorithm optimization,
and highlight the critical importance of validation
and generalizability. For further information, there
are a number of primers and reviews for medicine
generally (Esteva et al., 2019; Rajkomar et al., 2019;
Topol, 2019; Yu et al., 2018) and specifically for
psychiatry (Bzdok & Ioannidis, 2019; Bzdok &
Meyer-Lindenberg, 2018; Dwyer, Falkai, & Kout-
souleris, 2018; Russ et al., 2019a; Rutledge, Chek-
roud, & Huys, 2019; Shatte, Hutchinson, & Teague,

2019), psychology (Yarkoni & Westfall, 2017), neu-
rodevelopmental disorders (Uddin et al., 2019), and
radiology (Hosny et al., 2018; Moore, Slonimsky,
Long, Sze, & Iyer, 2019). There are also textbooks
that expand on the topics covered below (Hastie,
Tibshirani, & Friedman, 2009; James, Witten,
Hastie, & Tibshirani, 2015).

Machine learning objectives

Data can be analyzed based on two main machine
learning objectives. Supervised learning is the focus
of this review and is when the ‘labels’ (e.g., the
assignment of a predictive target to a case, such as a
specific diagnosis or prognosis) are known and
algorithms are optimized to find patterns in the data
that separate cases; it is called ‘supervised’ learning
because the labels are provided like a teacher would
supervise students. Conversely, unsupervised learn-
ing, which is discussed as a future direction at the
end of this article, is when labels are unknown and
the algorithms are used to autonomously find pat-
terns that separate the cases into clusters—for
example, the simplest approach is the k-means
method. There are also other techniques that will
not be a focus of this review because they are
currently infrequently used in psychiatry, such as
semisupervised learning and reinforcement learning
(Jordan & Mitchell, 2015).

Feature engineering

A traditional approach to building a predictive sta-
tistical tool (e.g., using logistic regression or Cox
models) is to define a restricted set of variables based
on hypotheses where the number of predictors is
much less than the number of observations (e.g., 20
observations per variable; Ogundimu, Altman, &
Collins, 2016). The variables are entered into a table
and a linear model is fit to the data. Sometimes
interaction or polynomial terms are added in order to
better model the fit between the data and the
outcome (e.g., transition to psychosis) or data are
transformed in order to satisfy statistical assump-
tions (e.g., log transformation). This approach has
produced such tools as the Framingham risk score
for cardiovascular disease as described above.

In addition to hypothesis-driven techniques that
define variable subsets, exploratory techniques can
be used. For example, a simple technique, that is
used across statistics and machine learning fields is
to select subsets of the data using procedures that
are similar to step-wise regression (Chandrashekar
& Sahin, 2014; Kohavi & John, 1997). Another
approach, which is essential to many machine
learning studies, is to reduce the dimensionality of
the data using techniques that preserve the variance
(e.g., the differences between cases), such as princi-
pal components analysis (PCA; Hotelling, 1933),
exploratory matrix factorization techniques (Lee &

© 2022 The Authors. Journal of Child Psychology and Psychiatry published by John Wiley & Sons Ltd on behalf of Association for
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Seung, 1999), and other more specialized dimen-
sionality reduction methods (Zhang, Yan, & Lades,
1997). Such techniques are shared across different
fields, including psychology, engineering, and com-
puter science. Within a machine learning context,
when the explanatory variables are modified it is
called ‘feature engineering’, including standardiza-
tion (e.g., Z-scoring), adding interaction terms, per-
forming subset selection, dimensionality reduction,
or any other technique that modifies the original
data or creates new variables.

Classification and regression

While reducing the number of predictors using
selection or reduction is effective, a defining feature
of machine learning is that algorithms have been
created that directly address the core limitations of
traditional methods (Hastie et al., 2009). For exam-
ple, a problem with standard regression techniques
(e.g., least squares regression as a simple example) is
that as the number of predictors approaches the
number of observations the model will perfectly fit to
the sample (Hastie et al., 2009). Another way to
describe this is by stating that there will be no ‘bias’,
defined by a difference between the estimated values
from the model fit and the true values, but high
model ‘variance’ because minor differences in the
sample will result in changes to the coefficients of the
model (Figure 1). This ‘overfitting’ to the sample
results in poor predictions in new cases and rules
within traditional statistics attempt to prevent it by
restricting the p to n ratio as described above
(Ogundimu et al., 2016).

Another approach is to directly address the bias-
variance problem within an algorithm. By introduc-
ing a mathematical constraint on how the coeffi-
cients of the regression are calculated, analyses can
be conducted where p variables approximate n cases
or even when p > n. This constraint is called regu-
larization, which can decrease the coefficients of
variables in an equation in order to automatically
attenuate the possibility of overfitting (Hastie et al.,
2009; Yarkoni & Westfall, 2017). The most common
forms of regularization for regression are the ridge
and the lasso approaches (Tibshirani, 1996), with
the latter being able to shrink coefficients to exactly
zero in order to act as an automatic ‘feature selec-
tion’ technique that is also highly interpretable. The
amount of this shrinkage is defined by a ‘hyperpa-
rameter’ (i.e., a parameter that modifies other
parameters, which in this case are the coefficients)
that can be set by the experimenter or automatically
detected in order to produce a model that balances
bias error and variance.

Regularization, and the use of hyperparameters to
balance the bias-variance tradeoff, are also used by
many other algorithms. For supervised learning,
these approaches are commonly classification meth-
ods, such as regularized logistic regression (L2- or
L1-regularized versions) or support vector machine
(SVM) techniques that were developed simultane-
ously in the fields of computer science and engineer-
ing (Boser, Guyon, & Vapnik, 1992). The SVM is
especially important because it has been highly
effective in previous research and is widely used in
psychiatry. It aims to maximize a margin between
groups in order to define a boundary (e.g., between
good and poor outcomes) on the basis of individual
cases called ‘support vectors’ (Figure 2). The
strength of the SVM is that the margin can be
modified by a hyperparameter that has the effect of
allowing more or less misclassification of weighted
cases in addition to modifying the coefficients (usu-
ally with L2-regularization). In similarity to the ridge
or lasso regression, this has the effect of balancing
the bias-variance tradeoff and has been very effec-
tive.

There are a wide range of machine learning algo-
rithms that have been developed from multiple
intersecting fields of statistics, engineering, and
computer science. Some of these are similar to the
regularized regression above in that they are devel-
opments to existing statistical techniques (e.g.,
decision trees developing into random forest algo-
rithms), others have grown over time within special-
ized machine learning fields (e.g., neural network
algorithms), and there are methods that have devel-
oped based on intersections between fields (e.g.,
boosting techniques where multiple decisions are
combined together). Two subfields that will be
important for the future of psychiatry are deep
learning (Box 2) and computer perception including

Figure 1 Machine learning approaches aim to balance bias and
variance associated with the prediction error. When bias is high
(i.e., the model does not fit the data) then the variance (i.e., the
stability of the model to changes of input data) will be low.
When bias is low (i.e., when the model perfectly fits the data),
then the variance will be high because minor changes in the
input data will result in changes to the model or algorithm.
Algorithms attempt to find the optimal fit to balance these two
extremes without constraining the entered data using a
variety of techniques, such as automatic feature selection,
dimensionality reduction, or regularization to constrain the
coefficients

© 2022 The Authors. Journal of Child Psychology and Psychiatry published by John Wiley & Sons Ltd on behalf of Association for
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computer vision and natural language processing
(Box 3).

Regardless of the specific method, machine learn-
ing techniques are unified by their use of computers
to find maximally predictive patterns, usually within
large amounts of data, and directly addressing the
bias-variance tradeoff rather than accepting the
limitations of traditional methods. They are useful
because rather than constraining the experimental
design and data many of the techniques attempt to
constrain algorithms and use iterative optimization
algorithms to find the most predictive solutions. As
will be outlined later in this review, there are
limitations to this approach, but thus far, the
additional tools have been effective to make sense
of large bodies of data for the purposes of prediction.

Pipelines

Having a toolkit of feature engineering approaches
and pattern recognition algorithms is helpful for
predictions, but the challenge is often in combining
approaches with data preparation methods to
achieve a predictive goal. Machine learning is mostly
still guided by expert knowledge regarding the data
domain that is being investigated (except for deep
learning, see Box 2), which means that specific
preparations of the data are required and these are
usually linked together in analysis chains (Figure 2).
For example, after devising a hypothesis and select-
ing initial data, the first link in a machine learning
chain is often to clean, scale, impute, transform, or
perform other basic operations (as would be done in
standard analyses before analysis). The data may
then be forwarded to a dimensionality reduction
algorithm (e.g., PCA) before being analyzed with a
more specific classification algorithm to determine
the classes of each individual (e.g., an SVM).

A further addition to machine learning pipelines is
the ability to combine the predictions of individual
models together in ensemble learning procedures
before calculating a final decision (Polikar, 2006).
Ensemble learning differs from traditional
approaches where one statistical model is used to

predict an outcome (e.g., the Framingham risk
equation) and can improve predictive accuracy by
increasing diversity of predictions—for example,
models from different statistical algorithms or data
types can be combined together into committees that
ultimately decide on a prediction, which is concep-
tually similar to the way that committees of individ-
uals like medical experts come to a decision. These
techniques are used to enhance the stability and
accuracy of predictions.

Within the context of machine learning pipelines, it
is important note that a fundamental attribute of
machine learning is the ability to optimize any step
in a pipeline (or the entire pipeline) for optimal
predictive accuracy. For example, instead of reduc-
ing the data to a number of dimensions using PCA
that is defined by statistical rules-of-thumb (e.g.,
knee-point detection), the number of components
can be automatically chosen based on their ability to
predict outcomes in individuals. As described above,
for machine learning-specific algorithms (e.g., SVM),
hyperparameters can also be tuned to ultimately
modify the number of features selected, degree of
error allowed, or the amount of nonlinearity (Boser
et al., 1992; Cortes & Vapnik, 1995). While some of
these techniques are also used in traditional statis-
tics, the learning field is more focused on this this
capacity to autonomously and flexibly optimize ele-
ments of a pipeline to maximize predictive capacity
(Bzdok & Ioannidis, 2019; Yarkoni & Westfall, 2017).

Cross-validation

Given the power of machine learning approaches to
find optimal solutions in data using advanced algo-
rithms that consist of multiple pipeline steps, the
possibility of severe overfitting is high. As such,
empirically testing and reporting the performance of
algorithm pipelines in unseen tests cases and con-
texts is a fundamental component (Poldrack, Huck-
ins, & Varoquaux, 2020; Varoquaux, 2018;
Varoquaux et al., 2017).

Machine learning approaches assess, and ulti-
mately aim to enhance, generalizability by using

Figure 2 A simple analysis chain in machine learning. (A) Data is acquired with multiple variables (V1–V4); (B) the data are reduced using
PCA into components with their associated weights for each individual depicted here (i.e., how much an individual fits the pattern
represented by the component); (C) the components are forwarded to a SVM algorithm that finds a decision boundary separating the
classes using an iterative learning approach. When the pipeline is embedded in a cross-validation framework (Figure 3), the number of
components retained in the PCA and additional settings of the SVM can be optimized to balance bias and variance

© 2022 The Authors. Journal of Child Psychology and Psychiatry published by John Wiley & Sons Ltd on behalf of Association for
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cross-validation approaches (i.e., ‘internal valida-
tion’) that leverage computer resources to simulate
the circumstance of constructing a predictive algo-
rithm and applying it to new data (Figure 3). A basic
form of cross-validation could involve splitting a
sample into two segments and applying a model built
in one part to the other to assess its accuracy.
However, in practice the methods employ repeated
resampling procedures to test multiple subsets of

data in order to increase the accuracy of the valida-
tion (Varoquaux, 2018; Varoquaux et al., 2017). It is
important to note that cross-validation differs from
other resampling techniques, such as bootstrapping,
because it involves validating the statistical model or
pipeline in a held-out sample (e.g., predicting out-
come in individuals that are not included in the
creation of the model) rather than repetitively apply-
ing the algorithm to the same sample with minor
variations (e.g., resampling with replacement).

The simplest, but least accurate (Varoquaux,
2018), cross-validation technique is to leave one test
subject out, fit an algorithm with the remaining data
(called ‘training’), and then apply the algorithm
without modification to the left-out test case in a
process called ‘leave-one-out’ cross-validation. There
are multiple variations of such strategies that mostly
consist of variations to the number of cases in each
left-out subset of cases (called a ‘fold’). The com-
monest approach is the k-fold where the data is first
randomly separated into a predefined number of
folds (e.g., 5 or 10). Each fold is then used as a
testing sample while the rest of the data is used for
training an algorithm and the average accuracy or
other performance measure is calculated across test
folds (Figure 3). Other variations involve leaving out
a specific group as a fold instead of a random subset
of the data, such as a hospital site in a multisite
consortium, in order to determine if the models
generalize to members of such groups. Cross-

Box 2 Deep learning

One subfield of machine learning that is often
used to achieve the extreme of a hypothesis-free,
unbiased feature engineering approach is deep
learning. This family of techniques is particularly
suited to problems where there is no existing
knowledge or when re-evaluation of feature
spaces is required (Esteva et al., 2019; LeCun
et al., 2015). At a basic level, analysis chains of
interconnected equations decompose raw data
into layers of abstract features that together
identify patterns using parts-based representa-
tions (e.g., parts of a face or tumor). For example,
the first layer of an image analysis chain may
identify simple lines, the second layer may be
shapes, and the third layer could be more com-
plete objects. The number of layers indicates the
depth of the learning process (i.e., at what level of
abstraction that the machine learns to achieve the
goal). The statistical innovation in deep learning
was to interconnect equations across layers of
abstract data representations and allow the
manipulation of weights associated with each
connection (Esteva et al., 2019), which implies
that the parameters of each linear equation are
dependent on many others and the entire network
can be trained to learn patterns. Thousands of
hyperparameters can be tuned in this way given
enough computational power, which offers a very
high degree of autonomy that can be harnessed
effectively to increase predictive accuracy but also
increases the chances of finding spurious results.
Deep learning approaches can package easily
accessible pipelines elements that are usually
conducted within conventional machine learning
analyses (see Figure 2) into cohesive predictive
framework (e.g., feature selection, dimensionality
reduction, or ensemble building). In child and
adolescent psychiatry, deep learning is currently
being trialed in such fields as: neuroimaging
based on the hypothesis that existing data pre-
processing techniques (e.g., structural or func-
tional data preparation) are restricting predictive
accuracy (Riaz, Asad, Alonso, & Slabaugh, 2020),
for EHR where there are huge corpuses of data
with limited structure (Miotto, Li, Kidd, & Dudley,
2016), and for speech (Eni et al., 2020) and video
(Li et al., 2020) recordings.

Box 3 Machine vision and natural language processing

A long-standing aim in artificial intelligence fields
has been to create tools that can be used to
interpret visual scenes (e.g., photos and video)
and to process language (e.g., spoken and written)
(Rosenblatt, 1958). Such tools are important for
the future of psychiatry because diagnoses often
involve speech and behavioral assessments (e.g.,
in autism spectrum diagnoses). Historically, the
methods used in these fields are no different to
the simple analysis chains described in the main
text of this article (Turk & Pentland, 1991), but
more recently deep learning has become domi-
nant due to the availability of extremely large
databases (e.g., YouTube or images on the web)
and huge computing resources (LeCun et al.,
2015). Early examples in the child and adolescent
psychiatry field are where trained models (e.g.,
from YouTube) have been used to identify behav-
ioral differences in autism using raw video files
(Cook et al., 2019; Li et al., 2020; Preetham et al.,
2017) and advances in speech recognition have
been trialed to predict psychosis onset (Corcoran
et al., 2018). Such advances are likely to continue
as the field broadens and tools become easier to
use, but are currently limited.

© 2022 The Authors. Journal of Child Psychology and Psychiatry published by John Wiley & Sons Ltd on behalf of Association for
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validation techniques are highly flexible in this way
and can assess multiple forms of generalizability
(e.g., generalization to different regions, cultures, or
genders) with the only rule being that individuals
within the test folds must not be involved in the
creation of the models—because this would under-
mine the simulation of testing accuracy in new data.

Nested cross-validation especially has been highly
effective in optimizing algorithm pipelines and
hyperparameters for maximal generalizability, while
reducing the possibility of overfitting (i.e., balancing
the bias-variance tradeoff Filzmoser, Liebmann, &
Varmuza, 2009; Koutsouleris et al., 2018). This
technique involves embedding a cross-validation
routine inside another cross-validation cycle. Doing
so allows models to be optimized on the test data of
an inner cycle in order to learn the most generaliz-
able patterns in unseen cases before applying these
test-optimized analysis chains to the completely
held-out individuals of the outer cross-validation
loop. In general, nested cross-validation should be a
standard for the field unless massive samples are
used that can adequately sample the real population
(e.g., for deep learning using EHR).

External validation and clinical utility

Internal cross-validation is necessary, but it does not
obviate the need to further test generalizability if an
algorithm will be used clinically. Generalizability can
be assessed in terms of whether the models are
accurate within single sites and samples (e.g., hos-
pitals) or across multiple sites at a local (e.g., same
city), national, or international levels in diverse
samples that are representative of the demographic

and clinical heterogeneity of the populations tar-
geted by the statistical tool (Figure 3). As outlined in
other reviews (Dwyer et al., 2018), a hierarchy of
generalizability needs to be considered for any study
that claims to have translational potential contain-
ing: internal validation within one site, internal
validation with multiple sites, leave-site analyses
within one study, external validation in a separate
study, and ultimately prospective validation. It is
also increasingly becoming important to actively test
for model biases by validating against samples from
different countries, ethnic groups, and genders. The
current standard for strong generalizability claims is
to validate the algorithms in a separate sample that
has been collected as part of a different study (i.e., to
provide evidence of external validation), but regula-
tory approvals for the use of medical algorithms are
likely to be based on prospective validation proce-
dures involving multisite randomized clinical trials
that assess generalizability and clinical utility.

Clinical utility is a relatively neglected element of
translational machine learning that considers
whether the tool could practically be implemented
in clinical care (e.g., whether the technology is
available), whether it adds value to existing prac-
tices, how much value it adds given the incidence of
the condition, whether the results can be interpreted
by the clinical team, and the cost-benefit ratio of
implementing the tool in care (Fusar-Poli, Hijazi,
Stahl, & Steyerberg, 2018; Poldrack et al., 2020). In
addition to the accuracy of an algorithm, its clinical
utility can first be determined using net benefit
analyses based on the relative harms of false-positive
or false-negative results when considering the inci-
dence of the disorder (Fusar-Poli et al., 2018).

(A) (B)

Figure 3 Generalizability and clinical utility of translational machine learning. (A) Translational machine learning pipelines should be
evaluated based on their generalizability and clinical utility. (B) Cross-validation can be used to simulate generalizability in order to build
and optimize models that are most likely to generalize. A k-fold cross-validation is depicted that involves dividing the sample into test
folds. One test fold is held out, an analysis chain (e.g., Figure 2) is applied to the remainder of the sample and then the analysis chain is
applied without modification to the held-out individuals to test whether it successfully predicts the outcome in each individual

© 2022 The Authors. Journal of Child Psychology and Psychiatry published by John Wiley & Sons Ltd on behalf of Association for
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However, even if a tool demonstrates a high accu-
racy, is generalizable, has a high degree of benefit to
routine procedures, and is cost effective, recent
attempts at deployment in medicine emphasize the
need to work with clinical teams in order to deter-
mine how to integrate it into clinical workflows that
are often variable between treating teams and across
time (Beede et al., 2020; Gulshan et al., 2016). One
element of the need for high clinical utility is the need
for trustworthy predictions from interpretable mod-
els that evidence how the predictions were made. As
such, a field of considerable interest currently is
interpretable machine learning because it uses
additional statistical techniques in order to make
the sometimes opaque model predictions more
transparent at an individual patient level (e.g.,
demonstrating why the patient was predicted to
have a good or poor outcome on the basis of the
data; Molnar, 2020; Murdoch, Singh, Kumbier,
Abbasi-Asl, & Yu, 2019). Such concerns are expected
to become more relevant as algorithms are clinically
deployed, leading to calls for human-centered learn-
ing systems (Beede et al., 2020; Gulshan et al.,
2016).

Analysis example

An example of an analysis pipeline that has been
useful in psychiatry for neuroimaging may involve
such steps as entering brain maps into a chain
involving scaling, PCA, and then the use of an SVM
to predict an outcome (Koutsouleris et al., 2021).
This pipeline would be embedded within a nested
cross-validation design consisting of an inner
training-testing cycle that optimizes hyperparame-
ters for prediction in held-out test samples. For each
fold in the cross-validation cycles, the entire analysis
pipeline is conducted on the training data, the best
models are chosen on the basis of their ability to
generalize to new cases, and then these models are
applied without modification to the held-out individ-
uals in the test folds in order to ultimately assess
model performance accuracy. Once the training
process is completed, the models can then be flexibly
applied to other data, built into an online prognostic
tool (www.proniapredictors.eu), or transferred to
other sites for the further assessment of generaliz-
ability or the use in other conditions.

Machine learning in child & adolescent
psychiatry
To provide a broad overview of machine learning
research and to identify focus articles for further
discussion, four scoping reviews in child and ado-
lescent psychiatry were conducted (PRISMA guide-
lines; PubMed/Web of Science; Appendix S1)
focusing on autism, attention-deficit hyperactivity
disorder, early psychosis and psychosis risk, and
depression (Table 2). Abstracts were excluded if

they did not refer to machine learning, if they did
not include a specific machine learning statistical
technique, if they did not specify the data type that
was used in the study, if the target was not
specified, if they were not specifically focused on
children or adolescents, or if a mental illness
diagnosis or outcome was not specified. A total of
3,095 studies were screened of which 441 were
retained after filtering (250, autism; 108, ADHD;
37, psychosis; 46, depression). Long-form confer-
ence abstracts from engineering fields (e.g., IEEE
conferences) were retained in order to include pilot
studies using experimental cutting-edge methods,
with a total of 78 long-form conference abstracts
included (51 of all autism studies (20%); 19 of all
ADHD studies (18%); 7 of all depression studies
(15%); 1 psychosis study (2%)). The clinical targets
of the machine learning analyses (e.g., diagnoses,
prognoses, or treatment selection) and the data type
investigated (e.g., questionnaires, video, or MRI)
were quantified for each study (Table 2). Selected
studies in the domains of diagnosis, prognosis, and
treatment selection were then discussed in order to
provide example of the use of machine learning and
also to assess the potential for the results to be
clinically translated.

Broad research trends

Results demonstrated expected exponential
increases in publication reflective of the increasing
popularity of the field (Figure 4; Table 2). The high-
est number of publications was identified for autism.
Diagnoses were a particular focus in autism and
ADHD (74%), whereas early detection, prognoses,
and symptom characterization were the main focus
of psychosis (46%) and depression (44%). A wide
range of data types were used, but with a particular
focus on questionnaires, neuroimaging, EEG, and
video and motion tracking in autism specifically.

Diagnosis

Child and adolescent diagnostic assessments can be
laborious and highly specialized, which has the
potential to lead to treatment delays during critical
developmental windows and the possibility of misdi-
agnosis (Abbas, Garberson, Liu-Mayo, Glover, &
Wall, 2020). Diagnostic machine learning techniques
have thus been proposed for almost 30 years
(Cohen, Sudhalter, Landon-Jimenez, & Keogh,
1993) with the aim to reduce the assessment burden
(e.g., reduce time to make a diagnosis), especially in
the fields of autism and ADHD (Table 2). While
neuroimaging has generated the most research,
questionnaire-based assessments have offered more
possibility of translation because of higher evidence
of generalizability. An exciting array of research also
suggests that the future of autism spectrum diagno-
sis could involve the use of diverse digital data.
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Early machine learning approaches aimed at pro-
viding clinical support by learning diagnostic pat-
terns in autism spectrum disorder from diagnostic

assessment batteries that assess atypical behavioral
and socio-emotional patterns (Cohen et al., 1993),
which has been more recently revived (Wall, Kos-
micki, Deluca, Harstad, & Fusaro, 2012) and applied
to screening questionnaires (Achenie et al., 2019;
Bone et al., 2016; Duda, Ma, Haber, & Wall, 2016a;
Maenner, Yeargin-Allsopp, Van Naarden Braun,
Christensen, & Schieve, 2016). Generalizability has
been assessed in terms of multisite cross-validation
(Abbas, Garberson, Glover, & Wall, 2018), external
validation in other samples (Duda, Kosmicki, & Wall,
2014; Tariq et al., 2018), and differential diagnostic
validation (Duda et al., 2016a), in addition to the
study of gender, ethnicity, and education biases
(Achenie et al., 2019) and the effects of cultural
context (Tariq et al., 2019; Wingfield et al., 2020).
Early detection has also been a focus (Abbas, Gar-
berson, Glover, & Wall, 2017), which is also facili-
tated by the construction of parsimonious parental
questionnaires using machine learning techniques
(Abbas et al., 2018; Ben-Sasson, Robins, & Yom-Tov,
2018; Duda et al., 2016a).

On the basis of external validation and generaliz-
ability demonstrated in previous studies (Abbas
et al., 2017, 2018, 2020; Duda, Haber, Daniels, &
Wall, 2017; Duda et al., 2014, 2016a; Kosmicki,
Sochat, Duda, & Wall, 2015; Tariq et al., 2018,
2019; Wall et al., 2012; Washington et al., 2020), a
diagnostic assessment tool for autism have been
developed that has recently received marketing
approval from the Federal Drug Administration

Table 2 Types of machine learning studies divided by diagnosis

Autism ADHD Psychosis Depression Chi Sq.(df) p* Phi

Clinical targeta

Early detection 18 (7.2) 0 (0.0) 8 (21.6) 5 (10.9) 21.27 (8) <.001 0.22
Diagnoses 185 (74.0) 91 (84.3) 13 (35.1) 12 (26.1) 73.05 (8) <.001 0.41
Differential diagnoses 10 (4.0) 9 (8.3) 0 (0.0) 2 (4.3) 5.22 (8) n.s 0.11
Severity/Symptoms 25 (10.0) 3 (2.8) 1 (2.7) 20 (43.5) 59.35 (8) <.001 0.37
Prognoses 1 (0.4) 0 (0.0) 17 (45.9) 4 (8.7) 149.06 (8) <.001 0.58
Treatment 7 (2.8) 3 (2.8) 3 (8.1) 2 (4.3) 3.02 (8) n.s 0.08
Subgroup definition 13 (5.2) 2 (1.9) 0 (0.0) 3 (6.5) 4.44 (8) n.s 0.1
Data Modalitya

EHR 7 (2.8) 1 (0.9) 3 (8.1) 3 (6.5) 6.50 (8) n.s 0.12
Questionnaires 33 (13.2) 12 (11.1) 9 (24.3) 18 (39.1) 23.18 (8) <.001 0.23
Cognitive Testing 3 (1.2) 9 (8.3) 6 (16.2) 1 (2.2) 23.34 (8) <.001 0.23
Neuroimaging 89 (35.6) 60 (55.6) 24 (64.9) 15 (32.6) 21.80 (8) <.001 0.22
EEG 22 (8.8) 20 (18.5) 1 (2.7) 1 (2.2) 14.46 (8) <.001 0.18
Omics & Biochemistry 27 (10.8) 4 (3.7) 3 (8.1) 2 (4.3) 6.08 (8) n.s 0.12
Speech 15 (6.0) 0 (0.0) 1 (2.7) 3 (6.5) 7.38 (8) n.s 0.13
Video & Tracking 46 (18.4) 2 (1.9) 0 (0.0) 2 (4.3) 29.04 (8) <.001 0.26
Wearables 9 (3.6) 6 (5.6) 0 (0.0) 2 (4.3) 2.40 (8) n.s 0.07
Computer games 4 (1.6) 3 (2.8) 0 (0.0) 0 (0.0) 2.32 (8) n.s 0.07
Virtual Reality 4 (1.6) 1 (0.9) 0 (0.0) 0 (0.0) 1.48 (8) n.s 0.06
Robot Interactions 9 (3.6) 0 (0.0) 0 (0.0) 0 (0.0) 7.02 (8) n.s 0.13
Social Networks 1 (0.4) 0 (0.0) 1 (2.7) 2 (4.3) 9.09 (8) n.s 0.14
External Validation
External validation 13 (5.2) 5 (4.6) 3 (8.1) 0 (0.0) 3.32 (8) n.s 0.09

Phi, Phi coefficient of effect size for nonparameteric tests; EHR, electronic heath records; EEG, electroencephalogram; Neuroimaging
includes all MRI modalities in addition to functional near infrared spectroscopy (fNIRS)
*Only p-values significant at a false-discovery rate of p <.05 shown.
aAll Clinical Targets and Data Modalities were counted resulting in studies being counted multiple times for each category.

Figure 4 Machine learning publications in child and adolescent
psychiatry. A main exponential trend is depicted for all diagnostic
groups, that is, driven by studies in autism. The most active period
has been in the last 5 years
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(FDA) through the De Novo premarket review path-
way for low- to moderate-risk devices (called Cognoa;
www.cognoa.com). This approval was obtained on
the basis of a (yet unpublished) multisite, prospec-
tive, double-blinded, cohort study conducted at 14
sites within the United States. The study involved the
use of machine learning in combination with a
mobile app that collects data from questionnaire
items asked to the caregivers, manages uploaded
video rated by manufacturer-trained and certified
specialists, and provides a health care provider
portal in order for clinicians to answer further
questions in addition to providing reports. In a
sample of 425 patients (18-months to 5 years) with
concerns for developmental delay, the software
based medical device was able to match diagnoses
made by specialists for 32% of the sample and
demonstrated an accuracy of 89% (98% sensitivity,
79% specificity). This approval demonstrates a first
translation of machine learning models with ques-
tionnaire measures to assist in early diagnosis,
which has the potential to improve outcomes and
to access diagnostic procedures from a home envi-
ronment.

Rather than creating better questionnaire batter-
ies, other highly experimental autism research has
attempted to more directly mimic the diagnostic
pattern recognition employed by a human clinician
by using machine learning techniques on data
generated by digital sensors, audio, and video for
reviews see Fusaroli, Lambrechts, Bang, Bowler, &
Gaigg, 2017; Hyde et al., 2019; Jaliaawala & Khan,
2020; Kanchanamala & Sagar, 2019; Koumpouros &
Kafazis, 2019. For example, classifications of eye
movements (Frazier et al., 2016, 2018; Liu, Li, & Yi,
2016), speech (Fusaroli et al., 2017; Nakai, Takigu-
chi, Matsui, Yamaoka, & Takada, 2017), body
movements (Vabalas, Gowen, Poliakoff, Casson,
2019; Vabalas, Gowen, Poliakoff, & Casson, 2020;
Zhao et al., 2019), emotional expression (Jarraya,
Masmoudi, & Hammami, 2020), and social interac-
tions (Georgescu et al., 2019) have been studied in
engineering and computing fields. These attributes
are often measured by established technology (e.g.,
actigraphy) using standard machine learning pipeli-
nes, but preliminary studies have also combined
these with new technology such as virtual reality
(Alca~niz Raya, Chicchi Giglioli, et al., 2020; Alca~niz
Raya, Mar�ın-Morales, et al., 2020; Raya et al., 2020;
Yang et al., 2017). Deep learning techniques have
also been used with raw video files of children to
classify behaviors (Cook, Mandal, Berry, & Johnson,
2019; Li et al., 2020; Preetham, George, George, &
Verma, 2017).

While behavioral pattern identification is clearly a
clinically useful target for diagnosis, proportionately
more research overall has been directed towards the
study of MRI where machine learning techniques
have been employed widely in order to discover
atypical patterns (e.g., autism spectrum and ADHD)

with the ultimate aim to translate the models into
useful diagnostic tools. A benefit of MRI is that the
data are standardized into formats that allow
databases to be built and shared. For example, the
majority of studies included in the scoping review
were from the open-access database Autism Imaging
Data Exchange (ABIDE) database (for other reviews
see Moon, Hwang, Kana, Torous, & Kim, 2019;
Pagnozzi, Conti, Calderoni, Fripp, & Rose, 2018;
Wolfers et al., 2019) or the ADHD-200 public
database (Brown et al., 2012).

Studies suggest that MRI may be useful for early
recognition, diagnosis, and differential diagnoses.
For autism spectrum disorder, classification accu-
racies are commonly reported at 70% or above since
the earliest studies (Ecker, Marquand, et al., 2010;
Ecker, Rocha-Rego, et al., 2010; Jiao et al., 2010;
Moon et al., 2019; Razi, Othman, &Wahab, 2015). In
ADHD, a recent review that also included EEG
measurements (Pulini, Kerr, Loo, & Lenartowicz,
2019) reported classification accuracies in the range
of 60%–80%, but noted decreased accuracy in larger
samples suggestive of experimental bias. Recent
research has also employed deep learning tech-
niques (Riaz, Asad, Alonso, & Slabaugh, 2018,
2020) with interesting studies have used data aug-
mentation methods to overcome sample size limita-
tions (Cicek, Ozmen, & Akan, 2019; Zhu & Chang,
2019). Early autism spectrum diagnoses from MRI in
infancy has also been suggested in preliminary
research (Jin, Wee, Shi, Thung, Ni, et al., 2015;
Jin, Wee, Shi, Thung, Yap, et al., 2015; Shen et al.,
2017, 2018) and differential diagnostic classifiers
that display clinical utility by demonstrating speci-
ficity have also been developed for autism spectrum
(Kushki et al., 2019; Rabany et al., 2019; Sutoko
et al., 2019; Yassin et al., 2020) and ADHD (Diler
et al., 2007; Duda et al., 2017; Duda, Ma, Haber, &
Wall, 2016b; Faedda et al., 2016; Studerus et al.,
2018).

A limitation of imaging findings is that external
validation and the broader assessment of generaliz-
ability (e.g., cultural or gender differences) has not
been as extensive as for questionnaire measures in
autism. Exceptions to this are examples of multisite
assessment procedures have been used in autism
(Bhaumik, Pradhan, Das, & Bhaumik, 2018; Niu
et al., 2020; Wang, Xiao, &Wu, 2019) and there are a
small number of studies that have used external
validation samples either testing on different ABIDE
releases or on in-house datasets (Alvarez-Jimenez,
M�unera-Garz�on, Zuluaga, Velasco, & Romero, 2020;
Bernas, Aldenkamp, & Zinger, 2018; Jahedi,
Nasamran, Faires, Fan, & M€uller, 2017; Plitt, Bar-
nes, & Martin, 2015; Sadeghi et al., 2017; Shen
et al., 2018). In ADHD, external validation has been
conducted in a minority of studies (Cai, Chen,
Szegletes, Supekar, & Menon, 2015; Yoo, Kim, Kim,
& Jeong, 2019). Generalizability has also been
further assessed in terms of gender (Calderoni
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et al., 2012; Chaddad, Desrosiers, & Toews, 2017)
and intelligence differences (Calderoni et al., 2012).
These studies demonstrate a promising ability for
neuroimaging to follow the lead of questionnaire
measures in being clinically translated.

Prognosis

Examples of prognostic predictive machine learning
in child and adolescent psychiatry can be found in
the early psychosis and depression fields. Psychosis
is investigated as part of early intervention initiatives
(Correll et al., 2018; McGorry & Mei, 2018; McGorry
et al., 2018) that aim to identify individuals at
clinical high risk of a psychotic episode, mainly
defined by delusions and hallucinations. There is
currently no clinical method to identify transition
cases and doing so has the possibility of ameliorat-
ing, or potentially preventing, the full transition to a
severe illness through therapy and behavioral inter-
vention (McGorry & Mei, 2018). For depression, the
main prognostic target is suicidal symptoms and
behaviors. Providing accurate and generalizable
tools to predict these outcomes in individuals would
have major implications to practice that could
impact individuals’ lives.

Machine learning for the clinical high-risk state
has generated substantial prognostic research, as
reviewed recent meta-analyses (Sanfelici, Dwyer,
Antonucci, & Koutsouleris, 2020). Prognostic stud-
ies thus far (i.e., transition to psychosis or poor
functioning) have used questionnaire measures
(Koutsouleris et al., 2018, 2021), MRI (Gothelf
et al., 2011; Koutsouleris et al., 2015, 2018), EEG
(Ramyead et al., 2016), and biological measures
such as lipids (Amminger et al., 2015). The use of the
array of audio, video, and sensors is less prominent
in the psychosis field, but notable innovative
research has used Facebook messages to predict
relapses (Birnbaum et al., 2019). In a recent meta-
analysis of the psychosis high-risk area (Sanfelici
et al., 2020), an average accuracy of 73% was
demonstrated for prognostic predictions and sensi-
tivity was noted to be 10% higher than using
traditional statistical techniques (i.e., Cox regres-
sion). While additional studies assessing model
generalizability, biases, and external validation are
required, the psychosis prediction field is thus
primed for robust external validation studies and
prospective trials that are currently underway in
order to facilitate clinical translation.

Prediction of depressive symptoms has a long
history in the field with cross-validated neural net-
work studies dating back to 1994 from questionnaire
data (Kashani, Nair, Rao, Nair, & Reid, 1996; Wong
& Whitaker, 1994). Early illness detection machine
learning studies with large samples have also been
conducted using questionnaires (McKenzie et al.,
2011) and MRI using smaller samples for the
prediction of future symptoms (Bertocci et al.,

2016; Foland-Ross et al., 2015; Koutsouleris et al.,
2018). However, the main focus in depression has
been specifically on suicidality due to a strong
clinical need. Suicide predictions have been con-
ducted mainly using questionnaires (Hardt, Herke, &
Schier, 2011) often in large samples (>30,000)
(Walsh, Ribeiro, & Franklin, 2018), in subgroups
such as medical students (Marcon et al., 2020) and
minority groups (Smith, Wang, Carter, Fox, & Hoo-
ley, 2020), and when using robust nested cross-
validation schemes (Miche et al., 2020). Other work
has used speech processing methods (see Box 3) to
identify self-injurious text (Franz, Nook, Mair, &
Nock, 2020), demonstrating promisingly high accu-
racies in predicting suicidality (e.g., area under the
curve of >0.80; Miche et al., 2020). However, as
outlined in a recent meta-analysis across age-groups
(Belsher et al., 2019), the accuracies belie a positive
predictive value that was on average 0.01 (i.e., a 1%
chance that a positive prediction will result in
suicide) and this challenges the value of introducing
such tools into clinical care.

Treatment prediction

In the context of treatment outcome variability with
pharmaceutical and psychotherapeutic options, bet-
ter matching optimal treatments to patients is
important and could avoid trial-and-error strategies
(Chekroud et al., 2021). Despite this, machine
learning studies are relatively limited across age-
groups—for a recent review see Chekroud et al.
(2021). In child and adolescent psychiatry, this
research gap is particularly pronounced, but with
some notable exceptions. In ADHD, initial studies
have been conducted to predict methylphenidate
symptom remission using clinical and demographic
data (Wong et al., 2017) and sleep side-effects (Yoo
et al., 2020) using multiple data types (cognition,
genetics, and neuroimaging) with high accuracies
(>80%). In other conditions, interesting analyses of
EHRs for the prediction of treatment failure in a
sample of 638 children with early onset psychosis
has also been conducted demonstrating the possi-
bility of using measures that are automatically
collected as part of normal clinical routine (Downs
et al., 2019). For autism, new machine learning
protocols have also been trialed during robot-
assisted therapies (Di Nuovo, Conti, Trubia, Buono,
& di Nuovo, 2018; Rudovic, Zhang, Schuller, &
Picard, 2019) and using augmented reality devices
paired with machine learning enhancements (Voss
et al., 2019).

Summary and limitations
Reviewing the field of translational machine learning
in child and adolescent psychiatry reveals increasing
attempts to assist with diagnoses, prognoses, and
treatment selection with new approaches and data
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sources. While traditional data types are used most
widely, such as questionnaires and neuroimaging,
the field demonstrates emerging use of a variety of
increasingly available data types that harness mul-
tilevel clinical information (e.g., data from sensors
now commonly available on smartphones, video, and
audio). A tool for autism diagnoses has already been
FDA approved, which joins the growing array of
approvals for artificial intelligence tools across var-
ious fields in medicine (Topol, 2019). When com-
bined with the exponential rise in publications in the
field more broadly, such regulatory applications
suggest that implementation might be closer than
once thought. The prospect of these tools being
clinically used highlights the need to understand the
methods used to produce the models as described
above, but also to acknowledge limitations.

Sample size and representativeness

Sample size cannot be assumed to match the
requirements set out in traditional statistical pre-
diction approaches related to events-per-variable
(Ogundimu et al., 2016), which often necessitate
feature set reduction using a priori hypothesis-
driven approaches (Fusar-Poli et al., 2019). These
approaches were designed for simple statistical
models, such as a Cox regression (Ogundimu et al.,
2016), rather considering their regularized forms
discussed above or most other machine learning
algorithms. In machine learning, defining optimal
sample sizes for later generalizability is still an open
question (Fusar-Poli et al., 2018; Poldrack et al.,
2020) that will ultimately be linked to the specific
methods used and will most likely be evaluated
empirically using simulation approaches.

In the absence of simple rules-of-thumb from
inferential statistics, internal validation is conducted
in order to avoid overfitting induced by optimized
model pipelines and to empirically assess whether a
model will generalize to new cases. However, the
procedure is only as good as the representativeness
of the sample that it was used in. For example, if the
sample originates from a single site (e.g., one hospi-
tal), or contains a homogeneous subgroup of care-
fully selected cases, then the possibility of overfitting
to the characteristics of this sample are high. Meta-
analyses and simulation studies have consistently
demonstrated that circumstances with small (e.g.,
<200 cases; Poldrack et al., 2020) or unrepresenta-
tive samples result in inflated predictive accuracy
despite cross-validation (Kambeitz et al., 2015; San-
felici et al., 2020; Schnack & Kahn, 2016; Varo-
quaux, 2018) and also overfitting (Cawley & Talbot,
2010). This is especially important for deep learning
(Box 2) where optimal cross-validation schemes (e.g.,
k-fold) sometimes cannot be conducted due to com-
puter processing demands. Within this review,
inflated internal validation estimates were seen
across highly experimental, pilot studies using new

data types (e.g., raw video) that report unrealistically
high accuracies (e.g., >90% and up to 100% accu-
racy) and are also most likely present when using
established data types such as questionnaires (San-
felici et al., 2020) and neuroimaging (Pulini et al.,
2019).

When reading the machine learning literature,
researchers need to be aware of the limitations of
unrepresentative samples, which are commonly also
of a small size (n < 200), but ultimately the answer to
the number of individuals required depends on the
rationale, aims, methods, data, and conclusions of
the study. If the study is experimental (e.g., human-
robot interactions; Rudovic et al., 2019), or claims of
generalizability are minimal, then the number of
subjects can be limited to display proof-of-concept
results that could be used to design a larger study.
Discouraging this research would also prevent inno-
vation in the field towards solutions that might be
ultimately the most promising. Whereas, if there are
more extended claims of generalizability or clinical
utility then it is necessary to note meta-analytic
relationships with sample size in the field and more
carefully consider internal validation, external vali-
dation, biases, and generalizability across different
contexts.

Internal and external validation considerations

Internal validation using cross-validation is the
standard used for preventing overfitting in machine
learning. However, the robustness and quality of
internal cross-validation needs to be considered in
order to assess the possibility of external validation
and ultimately translation. The most common mis-
take in internal cross-validation within psychiatry is
when features are chosen on the basis of the target
variable using traditional methods in the sample
(e.g., t-tests) and then they are used separately in a
cross-validation procedure for predictive purposes—
for example, choosing brain regions or questionnaire
items on the basis of initial pair-wise comparisons
and then forwarding only these variables to a cross-
validated machine learning pipeline. This ‘double-
dipping’ is an example of severe information leakage
between the training and test samples, which results
in invalid and overfitted results. Widespread circu-
larity in conclusions due to this problem and others
has been reported in the child and adolescent
neuroimaging field (Pulini et al., 2019), and is likely
across other data domains, thus requiring caution
when assessing results that have only been inter-
nally validated. For this reason and others, some
journals (e.g., Lancet Psychiatry) will not accept
results that only contain internal validation
approaches and require external validation.

A second consideration is to assess the internal
cross-validation procedure itself. Research has
demonstrated that leave-one-case-out cross-
validation results in inflated estimates of the true
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generalizability to new cases (Varoquaux et al.,
2017). While k-fold cross-validation can reduce this
possibility, there is a need for designs that can
provide uncertainty measurements for individual
predictions in order to determine stability (e.g.,
standard deviation of accuracy estimates). For this
reason, there is a need to apply such schemes as
repeated (and preferably nested) designs in order to
more thoroughly test the predictive capacity and
provide accurate central tendency measures (i.e.,
mean or median) in addition to measures of vari-
ance. Studies using leave-one-site-out designs
within a repeated, nested cross-validation are an
example of where study-specific internal cross-
validation can provide enhanced estimates of gener-
alizability because they simulate the process of
applying a model within a new context. Validation
hierarchies can be used to assess studies in this
regard (Dwyer et al., 2018).

Despite the cross-validation design, the gold-
standard is still external validation in an indepen-
dent study where the same models are applied to
new individuals. Within this context, it still remains
important to assess the degree of generalizability
across samples that the results will deliver. External
validation in another highly similar, unrepresenta-
tive sample that is very close in geographic or
cultural proximity to the discovery sample obviously
limits translational claims that go beyond these
samples to the general population. Whereas, if the
external validation sample is from a different cul-
tural context that contains multiple sites (e.g., in a
consortium study), then the level of generalizability
can be judged higher. Ultimately, as demonstrated
from this review, multisite prospective clinical trials
will most likely be required for regulatory approval
(e.g., the Cognoa diagnostic tool for autism; www.
cognoa.com).

Clinical utility

The scoping review demonstrated a publication bias
towards brain measures measured with MRI and
EEG. While these techniques are used in clinical
practice and could be part of the future of transla-
tional machine learning (Walter et al., 2019), there
are implementation challenges, such as cost, clinical
access, and patient burden. Since there are less
burdensome alternatives (e.g., questionnaires), com-
bined approaches may be most beneficial (Kout-
souleris et al., 2021). A good example highlighting
this point is in the first machine learning competition
in the field of neuroimaging that aimed to classify
individuals with ADHD. While multiple strategies
produced promising classification accuracies, the
winning strategy overall simply used demographic
details and intelligence measures (Brown et al.,
2012). In reflection of a real-life clinical workflow
that only conducts burdensome new tests if they are
clinically indicated (e.g., a brain scan if a tumor is

suspected), these findings highlight the potential
importance of sequential clinical pipelines that only
suggest a new test if it is statistically indicated for
each individual (Koutsouleris et al., 2021). Future
directions in the area of clinical utility could also
involve assessments that are easy to conduct and
occur in the home environment (Abbas et al., 2020)
and are specifically tailored to children and adoles-
cents (e.g., with video game play; Aggarwal, Saluja,
Gambhir, Gupta, & Satia, 2020). Net-benefit analy-
ses would also be beneficial (Fusar-Poli et al., 2018)
in addition to more comprehensive assessments of
implementation challenges (Beede et al., 2020).

Ethical concerns

As detailed in other reviews (Cath, 2018; Cohen,
Amarasingham, Shah, Xie, & Lo, 2014; Price &
Cohen, 2019), there are major ethical concerns with
model translation that need to be considered. A
central issue is related to bias in translational
science against specific ethnic, cultural, or gender
groups due to a lack of diversity included in training
samples or appropriate assessments of algorithm
bias (Cahan, Hernandez-Boussard, Thadaney-
Israni, & Rubin, 2019). If the machine learns from
the majority groups of a population then it will
potentially make mistakes with minority groups,
which should be investigated and then mitigated or
transparently described before model deployment. In
medicine, machine learning biases have been
demonstrated for ethnicity in critical studies high-
lighting negative real-world consequences (Ober-
meyer, Powers, Vogeli, & Mullainathan, 2019) and
also for gender (Cirillo et al., 2020). Within this
context, however, it is important to also note that
biases need to be considered for any predictive tool
or study, as demonstrated by ethically questionable
biases in the Framingham risk score (Gijsberts et al.,
2015), in precision genomics (Martin et al., 2019),
and in neuroimaging (Crossley et al., 2019). As such,
it is essential that biases are considered carefully in
any science that claims to have translational poten-
tial and especially in highly translational fields, such
as machine learning. A second major issue concerns
prognoses and whether it is ethical to provide
predictions given the possible iatrogenic effects of
the prediction especially for psychiatric conditions
(Martinez-Martin, Dunn, & Roberts, 2018). When
combined, continued investment in ethical oversight
and governance needs to be considered for psychi-
atry as much as for other fields of medicine where
artificial intelligence solutions are closer to wide-
spread deployment.

Future directions for prediction
The question of whether machine learning will make
changes to medical care has been around since the
beginnings of the techniques (Shortliffe, 1993) and it
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remains an open question now. However, this review
has demonstrated that this future may be closer
than once thought (Topol, 2019). To facilitate the
continued success of the approach, future research
could involve addressing the limitations above to
facilitate collaborative research and to invest in
machine learning research directions with specific
relevance to child and adolescent psychiatry.

Programs and platforms

Standard statistical tools that do not involve com-
puter programming skills (e.g., SPSS) cannot be
used for many machine learning tasks and most
research to-date has been produced using program-
ming languages. Multiple toolboxes exist for the
major programming languages used by researchers,
such as scikit-learn for Python (https://scikit-learn.
org/), caret for R (https://cran.r-project.org/web/
packages/caret/index.html), or the Machine Learn-
ing Package for MATLAB (https://www.mathworks.
com/solutions/machine-learning.html), in addition
to deep-learning specific tools such as Keras
(https://keras.io/). These tools make it easier to
flexibly and creatively implement machine learning
approaches, in addition to providing a community of
similar users and facilitate code transparency. How-
ever, the limitation of the packages for new research-
ers to the field, or those with little coding experience,
is that the flexibility of the code can lead to errors in
pipeline development and can hinder model sharing
with researchers who have no coding experience—
that is, to enable external validation in another
sample.

To facilitate machine learning analyses that do not
require coding experience and provide standardized
pipelines, there are tools that have been specifically
developed for the psychiatric field, such as PRoNTO
(Schrouff et al., 2013) and NeuroMiner (https://
github.com/neurominer-git). These tools provide
graphical user interfaces that allow users to enter
data and design an analysis (i.e., in similarity to
SPSS). In addition, a deep learning tool developed by
psychiatric researchers that reduces the burden of
programming is PHOTON (https://photon-ai.com/).
The benefit of using psychiatric machine learning
software is that they are better tailored to some of the
main questions encountered; but in addition, they
increase the transparency and reproducibility of
analyses because the basic pipelines and operations
(e.g., establishing cross-validation pipelines) have
been established.

Once algorithms have been created using pro-
gramming languages or software with graphical user
interfaces, they need to be made available to other
researchers in order to apply them to their own data.
In the case of machine learning models, this is
sometimes challenging because there can be thou-
sands of models from cross-validation schemes
representing analysis pipelines that convert dense

data to meaningful predictions (He et al., 2019). By
combining the software tools with online platforms
for model sharing and application (e.g., see www.
proniapredictors.eu or https://photon-ai.com/),
future research would benefit from allowing wide-
spread generalizability testing required for clinical
application and ultimately clinical deployment.

Data aggregation and federated analyses

Future machine learning analysis will increasingly
rely on data sharing through aggregation and feder-
ated analyses. Firstly, data sharing needs to increase
in order to enhance sample sizes, representativeness
of the population, and generalizability testing using
both internal and external validation. For example,
aggregated databases outlined in this review (e.g.,
ADHD-200 or ABIDE) have enabled a community of
analysts from across disciplines to contribute a large
amount of research and test the generalizability of
models across study sites. Specifically, 25% (n = 22)
of all neuroimaging studies in autism were from the
ABIDE cohort and 58% (n = 35) of ADHD imaging
studies were from the ADHD-200 repository that has
continued to grow with additional sites since it was
first released (Brown et al., 2012). In cases where the
data cannot be shared, funded initiatives to facilitate
realistic collaboration between studies and consortia
will be required—ideally across different countries
(e.g., the SCZ-AMP NIMH initiative)(Woods, Choi, &
Mamah, 2021). These efforts could involve central-
ized data aggregation across modalities or alterna-
tively could leverage existing software to conduct de-
centralized federated analyses where data from sep-
arate studies is stored locally and models are built
either in a cloud (e.g., ViPAR; Carter et al., 2015) or
they are built locally and then only the model
parameters are combined (e.g., DataShield; Wolfson
et al., 2010). To support these efforts, further
investment needs to occur in software development
to enhance the pre-existing solutions and build
towards more widespread adoption.

Transdiagnostic and interdisciplinary analyses

A notable aspect of the review was the recognition
that cross-talk between disciplines would be highly
recommended. For example, although an ADHD
diagnosis is partially based on behavioral criteria
questionnaire reduction techniques, wearables, and
video or movement assessments were not found to be
widely studied and could be imported from autism
research. Prognostic predictions are also limited in
both ADHD and autism fields despite a great need,
thus methods could be taken from the psychosis and
depression literature where multimodal assessment
techniques are used to predict outcomes. Similarly,
the prediction of symptoms is critical across fields,
but is most often investigated in depression and
these methods could be transferred. A substantially
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missing area generally across domains was in the
field of treatment selection and outcomes, which
requires further work given the vital importance of
providing more personalized treatment recommen-
dations. All fields can also learn from the productiv-
ity of releasing large public databases and
encouraging their use through competitions (e.g.,
ADHD-200 and ABIDE).

Multimodal analyses and diagnostic chains

An exciting vision of a future machine learning
procedure could involve multiple sequential steps
that implement cost-effective sequences of clinical
and biological assessments to maximize predictive
power and clinical utility (Abbas et al., 2020; Kout-
souleris et al., 2021). There are a small number of
child and adolescent studies that have enhanced
MRI predictions with additional modalities such as
genetic data (Yoo et al., 2019), questionnaires and
cognition (Farzi, Kianian, & Rastkhadive, 2017), and
genetics, questionnaires, and cognition (Yoo et al.,
2020). Ultimately, it is notable that the only tool in
child and adolescent psychiatry that has been
approved by the FDA involves the aggregation of
data from multiple assessments (Abbas et al., 2020).
Further research in this area could help to move the
field further towards translation.

Normative modeling, unsupervised learning, and
transfer learning

In terms of machine learning methods, one notable
area that could receive more attention specifically for
child and adolescent psychiatry is the field of
normative modeling (Marquand, Rezek, Buitelaar,
& Beckmann, 2016). This machine learning tech-
nique maps deviations from normal development in
order to characterize abnormality in much the same
way as a growth chart. As such, it is possible to chart
brain age, for example, and then determine how an
individual differs from the normative age trajectory
(i.e., to estimate ‘brain age’ in addition to chronolog-
ical age). Similarly, unsupervised learning research
is currently limited despite it having success in other
medical fields to identify subgroups of adults based
on brain patterns (Chand et al., 2020), clinical data
(Dwyer et al., 2020), and multimodal data (Luo et al.,
2020). Further research needs to be conducted, for
example, to build on research in children that has
been conducted to identify behavioral phenotypes of
autism in order to address questions related to
diagnostic heterogeneity (Stevens et al., 2017,
2019). A critical effort also needs to be made in
investigating whether models from adults could be
used in children and adolescents in order to leverage
model development across the lifespan (this is
known as transfer learning; Pan & Yang, 2009).
Transfer learning would also be recommended
across diagnoses in order to determine whether the

field could capitalize on combining datasets for
specific problems (e.g., prognoses).

Conclusions
Translational machine learning for psychiatry is a
paradigm that attempts to turn data into actionable
clinical information using computers. The algorith-
mic approaches are designed to produce optimally
generalizable predictions from data that range in
structure from hypothesis-driven feature sets based
on questionnaire measures to unstructured EHR
notes or biological data. In child and adolescent
psychiatry, the techniques are increasingly being
used for diagnoses, prognoses, and treatment selec-
tion purposes, with one tool having received FDA-
approval. Pilot research also gives a perspective into
the future of practice through the use of data from
video, audio, virtual reality, game play, and even
human-robot interactions. Caution regarding the
translational potential is required until gold-
standard levels of validation are achieved and ethical
issues are addressed, which could be facilitated
through further collaboration between groups of
researchers who aim to use the statistical
approaches for prediction to directly assist in clinical
care (Box 4). Despite the specific techniques
employed, the paradigm is likely to have a lasting
impact on a field that is only beginning to turn

Box 4 Revisiting the case example

Picture a clinician seeing the same adolescent
from the Box 1 case example who may have been
at risk for psychosis. Instead of turning to the
literature or guidelines to understand the group-
based risk profile, the clinician is aware of algo-
rithmic tools that can be used as decision aides.
They then conduct a gender-specific screening
test on a tablet involving a small number of
questions. Prior to the assessment the adolescent
and their family has also completed short ques-
tionnaires on their smartphones. During the
clinician’s regular clinical assessment, the data
is automatically combined and analyzed using
machine learning algorithms in real-time to pro-
duce an intuitive report that quantifies the ado-
lescent’s risk for psychosis with margins of
uncertainty, suggests further assessments to
increase the certainty of predictions, and indi-
cates successful therapeutic options based on
their specific profile. The clinician then integrates
this information with their broader assessment,
incorporates it into their clinical report, and is
ultimately able to develop a targeted clinical plan
that is tailored to the delay and prevention of a
possible transition to psychosis.
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statistical associations into actionable clinical deci-
sions for individual patients.

Supporting information
Additional supporting information may be found online
in the Supporting Information section at the end of the
article:

Appendix S1. Search terms for the scoping review.
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Key points

� Providing personalized recommendations for children and adolescents could be critical to their development.
� Traditional statistical techniques have not been translated clinically to facilitate changes in clinical care.
� Machine learning approaches may help to provide individualized recommendations for diagnoses,

prognoses, and treatments.
� The approaches are characterized by flexible algorithm pipelines that address limitations of traditional

statistical approaches and aim to provide the most accurate and generalizable fit to the data.
� Machine learning research is currently exponentially rising in child and adolescent psychiatry using a wide

range of data types.
� Specific studies demonstrate the potential of the techniques to lead to translation, with one machine

learning tool being approved by national medical regulators to be used for autism.
� Limitations of the techniques need to be considered and future directions would benefit from collaborative

research endeavors.
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