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Abstract
Errors in the representation of clouds in convection-permitting numerical
weather prediction models can be introduced by different sources. These can
be the forcing and boundary conditions, the representation of orography, the
accuracy of the numerical schemes determining the evolution of humidity and
temperature, but large contributions are due to the parametrization of micro-
physics and the parametrization of processes in the surface and boundary layers.
These schemes typically contain several tunable parameters that are either not
physical or only crudely known, leading to model errors. Traditionally, the
numerical values of these model parameters are chosen by manual model tun-
ing. More objectively, they can be estimated from observations by the augmented
state approach during the data assimilation. Alternatively, in this work, we look
at the problem of parameter estimation through an artificial intelligence lens by
training two types of artificial neural network (ANN) to estimate several param-
eters of the one-dimensional modified shallow-water model as a function of
the observations or analysis of the atmospheric state. Through perfect model
experiments we show that Bayesian neural networks (BNNs) and Bayesian
approximations of point estimate neural networks (NNs) are able to estimate
model parameters and their relevant statistics. The estimation of parameters
combined with data assimilation for the state decreases the initial state errors
even when assimilating sparse and noisy observations. The sensitivity to the
number of ensemble members, observation coverage and neural network size
is shown. Additionally, we use the method of layer-wise relevance propagation
to gain insight into how the ANNs are learning and discover that they naturally
select only a few grid points that are subject to strong winds and rain to make
their predictions of chosen parameters.
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1 INTRODUCTION

In recent years machine learning (ML) has become
a subject of interest in various research fields within
atmospheric physics. Attempts to including ML in climate
and weather modelling range from using it to represent
sub-grid processes in global climate models (O’Gorman
and Dwyer, 2018; Rasp et al., 2018; Yuval and O’Gorman,
2020), through replacing data assimilation (DA) by an
artificial neural network (ANN) to emulate the ensemble
Kalman filter (EnKF; Härter and de Campos Velho, 2012),
to utilizing an ANN as a surrogate for the complete phys-
ical model (Brajard et al., 2020) or for the model error
(Farchi et al., 2021) during the DA. Bonavita and Laloy-
aux (2020) use ANNs to estimate model error tendencies
in the Integrated Forecasting System (IFS) of the European
Centre for Medium-Range Weather Forecasts (ECMWF)
and show that they are able to emulate the main outcomes
acquired by the weak-constraint four-dimensional vari-
ational (4D-Var) algorithm. Furthermore, computational
cost can be improved when including ML in the DA. For
example, Ruckstuhl et al. (2021) used a convolutional neu-
ral network (CNN) to show that a hybrid of a CNN and the
EnKF is able to decrease the analysis/background error,
equivalent to results obtained by the quadratic program-
ming ensembles (QPEns; Janjić et al., 2014), but with
a reduced computational cost compared to that of the
QPEns. Finally, ML approaches can also be improved with
DA methods by replacing the back-propagation during the
training with an adaptive EnKF (Trautner et al., 2020).

While there are many examples of using ML to enhance
the analysis/forecast of the model state, deep learning
for model parameter estimation is not well developed,
especially on the convective scale. In Yadav et al. (2020)
the coupling parameter of the two-level Lorenz’96 model
(Lorenz, 2005) is estimated as a function of the resolved,
large-scale state variable using a Gaussian Process (GP;
Rasmussen and Williams, 2006). The GP was compared to
two types of ANN and a simple linear regression and out-
performed the other methods in most of the experiments.
Similarly, DA has been successfully used in geosciences for
estimation of the state from sparse and noisy observations.
However, when parameters are jointly estimated with the
state, several problems arise. For example, parameters
are not directly observed and therefore updated through
cross-correlations which might not be accurate; parame-
ter values often need to be within certain bounds therefore
Gaussian assumptions of DA algorithms are not valid, and
finally, to use DA for parameter estimation, the stochas-
tic model for the parameters needs to be pre-specified to
restrict the spread in parameters (Ruckstuhl and Janjić,
2018; 2020). In this study, we investigate a possibility of
using DA for the state estimation while using ML for

parameter estimation in order to overcome some of the
problems of the augmented state approach for estimating
parameters from observations via DA.

Although ML algorithms show promising results in
idealized test cases, in their typical usage they come with
two major drawbacks. On the one hand, point estimate
ANNs typically do not provide an uncertainty with their
predictions, which makes it hard to ascribe a confidence
when using them in operational settings. On the other
hand, they are still seen as black boxes that do not provide
any insight into the functions they are trying to approx-
imate. To tackle the latter problem, Toms et al. (2020)
introduced layer-wise relevance propagation (LRP) to the
geosciences, which can be used to visualize how the ANN
makes its prediction. Labe and Barnes (2021) utilized this
method to disentangle relative influences on regional sur-
face temperatures of aerosols and greenhouse gases in the
atmosphere. The former drawback could be approached by
using stochastic ANNs instead of their widely used deter-
ministic counterpart. The goal of this study is threefold.
First, to estimate parameters of the convective-scale mod-
ified shallow-water model from sparse and noisy observa-
tions using ML and DA. Second, to compare the predic-
tions and statistics of stochastically trained Bayesian neu-
ral networks (BNNs) with an ensemble of deterministically
trained point estimate neural networks. And third, to visu-
alize the decision making of the ANNs by applying LRP.

The article is organized as follows. The model and the
DA for the state are described in Section 2. Section 3 intro-
duces two ML algorithms for parameter estimation, and
their use in combination with DA. This is followed by
an investigation of the performance of these two hybrid
algorithms in state and parameter space in Section 4. A
final discussion and some perspectives are presented in
Section 5.

2 DYNAMICAL MODEL AND
STATE ESTIMATION

2.1 Modified shallow-water model

For this study the same dynamical model, model param-
eters, and parameter bounds (Table 1) as in Ruckstuhl
and Janjić (2018) were used to conduct the experi-
ments. However, instead of using DA with an augmented
state approach for parameter estimation, we estimate
the parameters with ANNs. In the twin experiments pre-
sented in this study, the true state (nature run) of the
atmosphere is generated by the modified shallow-water
model (Würsch and Craig, 2014). Synthetic observations
are produced by adding random perturbations to the true
state. This model is computationally inexpensive but still
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862 LEGLER and JANJIĆ

T A B L E 1 Lower and upper bounds for the uniform
distributions of the model parameters

Parameter Lower bound Upper bound

𝛼 0.0003 0.001

𝜙c 899.7 899.9

hr 90.15 90.25

represents the key space- and time-scales of storm devel-
opments. It is based on the shallow-water equations for
the fluid velocity u and the fluid height h with a modifica-
tion of the geopotential𝜙 to include conditional instability.
Additionally, a variable for the rain r was added to mimic
nature. The equations are:

𝜕u
𝜕t

+ u𝜕u
𝜕x

+ 𝜕(𝜙 + c2r)
𝜕x

= 𝛽u + Du
𝜕2u
𝜕x2 , (1)

𝜙 =

{
𝜙c if h > hc,

gh otherwise,
(2)

𝜕r
𝜕t

+ u 𝜕r
𝜕x

= Dr
𝜕2r
𝜕x2 − 𝛼r

−

{
𝛿
𝜕u
𝜕x

if h > hr and 𝜕u
𝜕x

< 0,
0 otherwise,

(3)

𝜕h
𝜕t

+ 𝜕(uh)
𝜕x

= Dh
𝜕2h
𝜕x2 , (4)

where Du,Dr,Dh are diffusion constants,
c2 = g h0 is the gravity-wave speed for absolute fluid layer
h0(h0 < hc),
𝛿 is the production rate of rain, and 𝛼 is the removal rate of
rain.

Convection is triggered by adding a low-amplitude
noise source 𝛽u to the velocity at random locations at
every model time step. When the fluid height h exceeds
the threshold hc, which represents the level of free con-
vection, the geopotential is replaced by a lower constant
value 𝜙c. The gradient of the geopotential forces fluid to
the regions of lower geopotential, which then builds up the
fluid height in those regions. Once h reaches the thresh-
old hr, rain is produced by adding rainwater mass to the
geopotential. The removal of rain is mimicked by a lin-
ear relaxation towards zero. For the experimental set-up,
a one-dimensional grid of length 125 km with 250 grid
points was used, which yields a state vector of the form:

x =
⎡⎢⎢⎢⎣
u
h
r

⎤⎥⎥⎥⎦ ∈ R
750. (5)

T A B L E 2 Means and standard deviations for the
distributions of the observational errors

Variable Mean Standard deviation

u 0 0.001

h 0 0.02

r 0.001 1 × 10−7

The model parameters which were chosen to be
estimated are the rain removal rate 𝛼, the low constant
value for the geopotential𝜙c and the threshold for the fluid
height hr while the other parameters were known during
the experiments. All of the model parameters are global
(constant in space), therefore the resulting parameter vec-
tor is:

𝛉 =
⎡⎢⎢⎢⎣
𝛼

𝜙c

hr

⎤⎥⎥⎥⎦ ∈ R
3. (6)

Observations are generated from the nature run every
60 model time steps by adding a Gaussian error to u and
h and a lognormal error to the r variable to keep it posi-
tive. To simulate radar data, the values of u, h, and r are
only observed on the grid points where r > 0.005. Fur-
thermore, wind observations of 25% of the remaining grid
points are added. The model parameters for the nature run
are taken from uniform distributions and the size of one
model time step is Δt = 4. The upper and lower bounds
of the uniform distributions for the model parameters as
well as biases and standard deviations of the observational
errors are summarized in Tables 1 and 2 respectively.

2.2 Stochastic ensemble Kalman filter

Since the focus of this work is testing new algorithms for
parameter estimation, a simple stochastic EnKF (Evensen,
1994; 2003) will be utilized for all experiments. It is based
on the following cost function for each of the Nens ensem-
ble members:

J(xa,i
t ) = (xf,i

t − xa,i
t )TP−1

t (xf,i
t − xa,i

t )

+ (yi
t − Htxa,i

t )TR−1
t (yi

t − Htxa,i
t ), (7)

where i = 1...Nens denotes one ensemble member, xf/a,i
t are

the background and analysis states respectively, Rt is the
observation-error covariance matrix and Ht denotes the
observation operator which maps the model states to the
observation space. In this work we assume Ht to be linear.
{yi

t} represents an ensemble of observations acquired by
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LEGLER and JANJIĆ 863

perturbing the observation vector yt such that yi
t = yt − 𝝐i.

𝝐i is a perturbation taken from a distribution with a bias
and a standard deviation that represent the observation
error. The subscript t refers to the time when computation
of analysis is being carried out, which usually corresponds
to the time appropriate observations are available. For
the rest of this section, the subscript t will be omitted.
The forecast-error covariance matrix is generated with the
ensemble of background states:

P = (xf,i − xf)(xf,i − xf)T, (8)

where the overline denotes the average over the ensemble
members. Minimizing J for each ensemble member yields
the analysis ensemble:

xa,i = xf,i + PHT(HPHT + R)−1(yi − Hxf,i), (9)

with the Kalman gain K = PHT(HPHT + R)−1. In all
experiments exhibited in this study, Equation (9) was used
to estimate only the atmospheric state. Once the analy-
sis ensemble and corresponding parameters (Section 3)
are estimated, the nonlinear model (1)–(4) would be used
to obtain the forecast ensemble xf,i needed for the next
analysis computation.

3 ML FOR PARAMETER
ESTIMATION

The scientific objective of this study is to estimate three
model parameters of the modified shallow-water model
as a function of the atmospheric state consisting of
the atmospheric variables u, h, r using different types
of ANN.

3.1 Types and architecture of ANNs

Two types of ANN are utilized – a deep ensemble of point
estimate neural networks (NN) and a Bayesian neural net-
work (BNN). Both have an input size of 750 – three atmo-
spheric variables for each of the 250 grid points – and
an output size of three which corresponds to the three
global, unknown parameters that are required to be esti-
mated. The term point estimate neural network is used
in this work to refer to the standard type of neural net-
work which, given an input, predicts one deterministic
output. To quantify the uncertainty of the estimation pro-
duced by the NN, the method of deep ensembles from
Lakshminarayanan et al. (2017) is adopted. This is an easy
implementable approach, where an ensemble of neural
networks {NNk}

nNN
k=1 consisting of nNN members with the

T A B L E 3 Architecture and training specifics of the NN

Architecture

Type of layer
Size
(input× output)

Activation
function

Fully connected 750× 31 ReLU

Batch-norm 31× 31 None

Dropout (p= .5) 31× 31 None

Fully connected 31× 19 ReLU

Fully connected 19× 11 ReLU

Fully connected 11× 3 None

Training

Optimizer Adam

Mini-batch size 32

Number of epochs 150

same architecture but random initial weights is trained
independently. The definition of BNNs is not completely
consistent across the literature. We adopt its definition
from Jospin et al. (2020) as a type of ANN “...built by
introducing stochastic components into the network...”
and trained using Bayesian inference (MacKay, 1992).
Stochastic components can either be introduced as prob-
ability distributions over the activation functions or over
the weights, although for this study the latter approach
is utilized as this is the more common one. For a more
detailed account about the differences between NNs and
BNNs and how to utilize BNNs, we refer to Jospin et al.
(2020). For both ANNs (Tables 3 and 4), fully connected
layers were chosen with additional batch normalization
layers to accelerate the training (Ioffe and Szegedy, 2015).
For the NN, a dropout layer was added to reduce overfit-
ting (Labach et al., 2019) which was not necessary for the
BNN. The Rectified Linear Unit (ReLU) was used as the
activation function for all hidden layers of the NN. This
was not possible for the BNN as it resulted in the dying
ReLU problem (Lu et al., 2020) which is a widely known
phenomenon where ReLU neurons output 0 for all inputs.
To combat this, the LeakyReLU was utilized for all hidden
layers of the BNN. The activation functions are defined as:

ReLU(x) = max(0, x), (10)

LeakyReLU(x) = max(0, x) + 0.01 min(0, x). (11)

The numbers of neurons for the hidden layers were
optimized independently for the NN and the BNN and
therefore differ from each other.
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864 LEGLER and JANJIĆ

T A B L E 4 Architecture, stochastic model and training specifics of the BNN

Architecture

Type of layer Size (input× output) Activation function Stochastic Model

Batch-norm 750× 750 None Priors p(W (k,l)
i )  (0, 1)

Fully connected 750× 20 LeakyReLU Variational distributions q𝜙(W (k,l)
i )  (𝜇, 𝜎)

Fully connected 20× 20 LeakyReLU Training

Fully connected 20× 20 LeakyReLU Optimizer Adam

Fully connected 20× 3 None Mini-batch size 32

Number of epochs 3

3.2 Data generation and training

To generate the input–output pairs for the training,
validation, and test datasets, 100,000 sets of parameters
are taken randomly from the uniform distributions
specified in Table 1. For each set of parameters
Equations (1) to (4) are solved for 1,000 model time steps
with a time step discretization of Δt = 4. Snapshots in
time at t = 1,000 of the state vectors are used as the input
of the ANNs. The parameters used to generate those states
are the corresponding outputs after rescaling them to
[0,1]. From these 100,000 input–output pairs, 90% are used
for training, 5% for validation and hyperparameter tun-
ing during the training, and 5% for testing. Additionally,
the input samples are augmented during the training by
adding perturbations taken from distributions with means
and standard deviations corresponding to the observa-
tional error specified in Table 2. For each input sample,
three perturbed samples are added during the training,
resulting in a training size of 360,000. Augmenting the
training data by adding the observation error resulted in
a significant improvement of the validation loss during
the training and in a more realistic setting it might also
be necessary to augment the training data by adding a
model error. The NN is trained via stochastic gradient
descent. Since computing the exact Bayesian posterior of
the BNN is usually intractable, we utilize the optimiza-
tion method of stochastic variational inference (Hoffman
et al., 2013) where a set of variational distributions is
approximated to the exact Bayesian posteriors during the
training. A widely used default for the prior weights of
BNNs are normal distributions with mean 0 and stan-
dard deviation 𝜎 (Jospin et al., 2020). After evaluating the
trained weights of the point estimate neural networks,
it seemed appropriate to set 𝜎 = 1. To simplify training,
the variational distributions are initialized as normal dis-
tributions as well such that during the training only the
means and standard deviations have to be optimized. For
both ANNs an adaptable learning rate (Adaptive Moment
Estimation, Adam; Kingma and Ba, 2015) was chosen

with an initial value of 0.001. The NN is implemented
and trained using only the library PyTorch (Paszke et al.,
2019), while for the BNN the probabilistic programming
language Pyro (Bingham et al., 2019), which is built on
PyTorch, is used.

3.3 Combining DA and ML

All DA experiments presented in this study are conducted
as twin experiments. The atmospheric state and model
parameters of the nature run start from a sample taken
from the test data-set. The state is propagated forward
in time using the modified shallow water model while
the parameters are kept constant. The background ensem-
ble members start from different states. Whenever a DA
cycle is performed according to Equation (9) the model
parameters are estimated according to one of the following
set-ups.

1. True. The true values of the parameters are known and
used for the background state throughout all DA cycles.

2. Random. The true values of the parameters are not
known and picked randomly from a the uniform distri-
butions specified in Table 1.

3. NN. The parameters are estimated using the observa-
tions (DA cycle = 0) or the analysis (DA cycle > 0) as
input to an ensemble of NNs with 15 members trained
according to Section 3.2.

4. BNN0. The parameters are estimated using the obser-
vations (DA cycle = 0) or the analysis (DA cycle > 0) as
input to a BNN (BNN0) trained according to Section 3.2.

5. BNN0+BNNt. The parameters are estimated using the
observations as input to BNN0 (DA cycle= 0) or to BNNt
(DA cycle> 0) trained online according to Section 3.3.1.
The parameter estimates are then used as parame-

ters for the forward model simulations with the modified
shallow-water model for the next 60 model time steps
until the next DA cycle is performed, and parameters are
estimated again with the ML algorithm.
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LEGLER and JANJIĆ 865

3.3.1 Remarks

DA cycle = 0: For the first DA cycle, the observations
taken from the nature run are used as inputs for the ANNs.
If a variable is only partially observed, the unobserved
grid points are interpolated with a quadratic interpolation
for u and h. For r the unobserved grid points are simply
set to 0.

NN: At DA cycle > 0, each analysis ensemble mem-
ber xa,i

t is used as input for each NN ensemble member
resulting in 15 Nens parameter estimates. To obtain Nens
parameter vectors out of this ensemble, a beta distribu-
tion is fitted to the ensemble of parameter estimates. The
parameters for each state ensemble member is then taken
from this beta distribution. Instead of fitting a beta dis-
tribution, one could simply use the mean of the 15 NN
parameter estimates for each state analysis member. We
conducted the time evolution experiments in Section 4.3
for both methods (only beta is shown) for three different
NN ensemble sizes and found that the mean method and
small NN ensemble sizes resulted in poor RMSEs for the
rain while the RMSEs of u and h did not show a strong sen-
sitivity to the choice of distribution or the NN ensemble
size.

BNNt: This set-up is chosen to test the feasibility of
online training during the DA cycle with a realistic number
of forecast/analysis ensemble members. Since the training
size of BNNt is much smaller than that used for BNN0, it
is necessary to reduce the number of trainable weights for
BNNt. The first modification is to reduce the input size.
Experiments from Ruckstuhl and Janjić (2018) indicate
that the rain r and fluid height h are stronger correlated to
the parameters than the wind u. Hence, instead of using all
three atmospheric variables as the input, only r and h are
used. Since BNNt is trained from scratch at each DA cycle,
the input size can be left variable. This allows us to train
only on those grid points that are actually observed. Addi-
tionally, because we assume the true parameters to be con-
stant over the whole grid, it might not be necessary to use
all observed grid points as input. Therefore if more than 62
gridpoints (about 25% of the whole grid) are observed, only
those 62 grid points with the highest observed values for r
are used. We selected these features for the online training
after conducting various experiments with different sets
of input features while examining their performance. In
Equation (12), ()∗ refers to this reduced state. To further
reduce the number of learnable weights, the number of
neurons per hidden layer is decreased from 20 to 2. In total,
this results in a maximum of around 540 learnable weights.
The resulting input for the training is then given by(

Htxf,i
𝜏 + 𝝐i

)∗
(12)

with the observation operator Ht and i = 1, ...,Nens. The
ten previous points in time 𝜏 = t − 9, ..., t are used to
increase the training size from Nens to 10Nens. The labels
for these inputs are simply the model parameters 𝛉i

t−60
from the previous estimation where i refers to the ith
ensemble member and t − 60 to the time of the last
DA cycle. Noise corresponding to the observational error
specified in Table 2 was added during the training for
the same reasons as for the training from Section 3.2. The
stochastic model, optimizer, and mini-batch size are the
same as for BNN0, but nine training epochs were neces-
sary to reach a minimum in the validation loss, which
is most likely caused by the reduced training size. The
same online training was attempted with the NN which
resulted in poor parameter estimates. This was probably
caused by the point estimate NNs needed for large training
sets.

4 RESULTS

4.1 Diagnostics

Besides the standard diagnostic tools – Root Mean Squared
Error (RMSE), ensemble spread (spread), and Coefficient
of Determination (R2) – we utilize layer-wise relevance
propagation (LRP) in this study. LRP is a visualization tool,
which takes a trained ANN and an ANN input sample
as the input and produces a LRP heatmap as the output.
The LRP heatmap is a vector of the same size as the ANN
input and those entries with higher numerical values can
be interpreted as being more relevant for the ANN’s pre-
diction than the ones with lower values. This method has
been introduced first to the field of computer vision by
Bach et al. (2015) and the PyTorch implementation used in
this study is from Böhle et al. (2019). For an in-depth expla-
nation of the algorithm, we refer to Toms et al. (2020), who
recently introduced LRP to the geosciences. The under-
lying idea of LRP is to calculate a relevance for each
input pixel by taking a specific ANN output, which in this
case would be either 𝛼, 𝜙c or hr, and propagating it back
through the network according to a certain set of propaga-
tion rules. Applying LRP to the ANNs trained in this study
could thus give insight into which grid points and atmo-
spheric variables are most relevant for each of the three
parameters.

4.2 Performance

For the first performance evaluation, 500 samples from
the test dataset were used to estimate the parameters. For
these experiments we assume a fully observed grid and no
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866 LEGLER and JANJIĆ

F I G U R E 1 Output of NN (blue dots), BNN (red dots), and LR (green dots) against corresponding ground truths and ideal output
(black lines) of 500 samples

observation noise. Each output ensemble was averaged
and then plotted against its corresponding ground truth
(Figure 1). For these experiments no DA was used. Addi-
tionally, as a baseline model a simple linear regression
(LR) model was fitted to the same training data. As a
benchmark, the ideal output was plotted as well, which
corresponds to the black lines with slope 1. The BNN
outperformed the NN as well as the LR in all three
parameters while the LR had the lowest R2 scores for all
parameters (Tables 5 and 6). While the BNN had similar
R2 scores for the different parameters, the performances
of NN and LR varied greatly between them. For hr the
LR performed even worse than a baseline model which
would predict the average value of the parameter bounds
for all inputs. The scatter plot in Figure 1 emphasizes
that both ANNs slightly overestimate low parameter val-
ues while underestimating high ones, while the LR pre-
dicts values that are substantially out of bounds for all
parameters.

T A B L E 5 R2 of the parameter predictions plotted in
Figure 1 for NN, BNN and LR

Model 𝜶 𝝓c hr

NN 0.53 0.44 0.62

BNN 0.79 0.74 0.75

LR 0.41 0.26 −0.52

4.3 Time evolution

The remaining experiments presented in this section are
conducted according to Section 3.3 and, if not stated
otherwise, averaged over 100 individual experiments with
different ground truth values. Since NN and BNN0 are
trained on snapshots of model states from one point in
time, the question arises how they perform when using
states from later points in time as the input and com-
paring them with BNNt, which is constantly retrained
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LEGLER and JANJIĆ 867

T A B L E 6 Averaged error relative to the width of the bounds
from Table 1, in % of the parameter predictions plotted in Figure 1
for NN, BNN and LR

Model 𝜶 𝝓c hr

NN 16 18 14

BNN 9 11 10

LR 17 19 26

over time. If the predictive power of the former does not
significantly decrease, it would only be necessary to
train the ANNs once and they could then be used
to predict parameters whenever necessary; this would
be computationally cheap. In Figure 2 the parameter
RMSEs and parameter ensemble spreads of all ANNs
are plotted against time in DA cycles. The first DA
cycle (DA cycle = 0) starts after running the nature
run as well as all background state ensemble members
for 1,000 model time steps. The RMSE of the param-
eters is smallest at the beginning of the time evolu-
tion. After that, they grow for about 50 cycles and then
oscillate around a relatively constant value (Figure 2).
Although BNN0 outperforms the NN for the initial
estimate at DA cycle = 0, over time the RMSEs increase

a lot faster for BNN0 than for NN. For BNN0+BNNt, the
RMSEs also increase over time, but to a lesser extent
than the other methods. While the parameter spreads of
BNN0 and BNN0+BNNt increase, which is in accordance
with the increased RMSEs, the spreads of 𝛼 and hr of NN
decrease within the first few DA cycles (Figure 2). Addi-
tional experiments are conducted with the online-trained
BNN where the initial parameter estimates of BNN0 are
perturbed (Figure 2, orange) to check if BNNt still per-
forms better than the offline method when starting from
a worse initial estimate. We find that the initial RMSEs of
the parameters decrease if enough state ensemble mem-
bers are used (here 400). The sensitivity of BNNt to the
state ensemble size is further discussed in Section 4.5.

4.4 Distribution

Histograms of the parameter estimation of hr for one sin-
gle experiment were plotted for the NN as well as for
both BNN methods (Figure 3). Since this is only a single
experiment, the results shown here are not statistically sig-
nificant. However, they still illustrate the key differences
between the methods. To also investigate the change of the
distributions over time, a histogram for each method was

(a) (b)

(c) (d)

(e) (f)

F I G U R E 2 Time evolution of (a, c, e) RMSE and (b, d, f) ensemble spread of parameter estimates (a, b) 𝛼, 𝜙c and (e, f) hr against time
in DA cycles with 25 analysis ensemble members for NN (blue), BNN0 (purple), BNN0+BNNt (red), and with 400 ensemble members for
BNN0,pert+BNNt (orange) averaged over 100 experiments
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868 LEGLER and JANJIĆ

F I G U R E 3 Probability histograms of estimates of rain threshold hr from one single experiment for NN (left), BNN0 (middle), and
BNN0+BNNt (right) over time with 200 ensemble members

plotted from t= 0 (DA cycle= 0) to t= 240 (DA cycle= 4).
While the NN estimates are spread out over the whole
range, the estimates of the BNNs are close to Gaussian
distributions with the mean near the true value and a
small variance. Nonetheless, over time the prediction of
BNN0 spreads out and it loses its predictive power for DA
cycle ≥ 4. Since BNN0 starts predicting parameters that
lie greatly outside the bounds, it was necessary to map
the outliers to the bounds as otherwise the modified
shallow-water model could not run, which explains the
aggregations near the edges. Since this was not necessary
for the other two methods, the remaining experiments
were only conducted using NN and BNN0+BNNt.

4.5 Sensitivities

The sensitivity of the RMSE and ensemble spread of the
atmospheric variable and the model parameter estimates
to the number of state ensemble members (Figure 4) and
observation coverage (Figure 5) is studied for NN and
BNN0+BNNt to compare their performance and statistics

with the best (black) and worst (grey) case scenarios and
to investigate the capabilities of the ANNs under sparse
and noisy conditions. For all methods, 100 experiments
with 250 DA cycles each are conducted and averaged
over the last 100 DA cycles. As expected, the RMSEs of
the atmospheric variables decrease for all set-ups with an
increase in state ensemble members (Figure 4). The BNN
has lower RMSEs than the NN in all experiments and
achieves results close to the best-case scenario for u and h
for a large ensemble size of 400. However, the NN is more
beneficial to the RMSE/spread ratio than the BNN which
is likely due to the small parameter spread of the BNN.

The same experimental set-up using the augmented
state approach with the stochastic EnKF was studied and
displayed in Figure 8 (left column) of Ruckstuhl and Janjić
(2018). Although the numerical values of the state errors
are not directly comparable due to different implementa-
tions of the modified shallow-water model, we can com-
pare how close each method comes to the respective ideal
case (“true”). For u and h as well as for small ensemble
sizes in r, the augmented state approach exhibits RMSEs
which are very close to or even smaller than the case
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LEGLER and JANJIĆ 869

F I G U R E 4 RMSE (solid) and ensemble spread (dashed) of atmospheric variable estimates (upper row) and parameter estimates
(lower row) against analysis ensemble size averaged over last 100 DA cycles of 100 experiments

F I G U R E 5 RMSE (solid) and ensemble spread (dashed) of atmospheric variable estimates (upper row) and parameter estimates
(lower row) against observation coverage with 50 ensemble members averaged over last 100 DA cycles averaged over 100 experiments
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870 LEGLER and JANJIĆ

F I G U R E 6 RMSE (solid) and ensemble spread (dashed) of atmospheric variable estimates (upper row) and parameter estimates
(lower rew) against network size in neurons per hidden layer averaged over last 100 DA cycles of 100 experiments using BNN0+BNNt with
200 state ensemble members

without parameter error and outperforms both ANNs. For
larger ensemble sizes, the error reduction of BNN0+BNNt
is greater than that of the augmented state approach for r
and about the same for u and h. It should be noted that,
even though NN performs worse than BNN0+BNNt as well
as the augmented state approach in all experiments, its
computational cost during the DA cycle is cheaper than
that of the other two approaches.

The parameter estimates of the NN do not exhibit any
sensitivity to the state ensemble size, while the BNN’s
RMSEs as well as its spreads decrease with more ensem-
ble members. The sensitivity of the BNN can be explained
due to the ensemble size directly controlling the train-
ing size and more training data usually increases the
predictive capabilities of ANNs and leads to smaller epis-
temic uncertainties (Der Kiureghian and Ditlevsen, 2009).
The very small spreads for large ensemble sizes could
be a sign that the BNN is underfitting (Depeweg et al.,
2018) in these experiments due to the very small net-
work size of only two neurons per hidden layer and
might positively be influenced by increasing the neurons
of the hidden layers. To test this hypothesis, network size
sensitivity experiments are conducted in Figure 6. For
these results the same 100 experiments as before are

conducted with the state ensemble size set to 200 and
varied neurons per hidden layer. The parameter RMSEs
increase slightly with an increase in neurons, as does the
spread. The large spreads of the parameter estimates for
large network sizes indicate that in these cases the BNN
is overfitting (Depeweg et al., 2018). We hypothesize that
for each analysis ensemble size there is an optimal BNN
network size such that the over- and underfitting effects
are minimized. However, increasing the network size of
the BNN surprisingly has a positive effect on the rain r
where the RMSE decreases while its spread increases. The
velocity u and fluid height h on the other hand show no
sensitivity to the network size. Figure 6 indicates that not
only the accuracy of the parameter estimation but also
its spread is relevant for the state error and a slightly
overfitted BNN is preferable for the rain. This is probably
caused due to the fact that rain production in the modified
shallow-water model is largely controlled by the param-
eters estimated here which act as on–off switches. If the
parameter estimates are under-dispersive, there are a lot of
grid points where it is raining too early or too late, which
in turn results in higher RMSEs of the rain.

The NN and BNN0 are trained on the full grid,
but observations in real-life settings are usually sparse.
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LEGLER and JANJIĆ 871

Therefore, their sensitivity to the observation size was
investigated, which is here defined as the percentage of
observed grid points. Instead of observing only those grid
points whose rain values exceed a certain threshold (as in
the previous experiments), percentages corresponding to
the values of the x-axis in Figure 5 of random grid points
were observed. The RMSEs of the atmospheric variables,
especially those of u and h, show a strong sensitivity to
the observation size and decrease with more observations
available. The parameter RMSEs of the NN, on the other
hand, show almost no sensitivity while the parameter esti-
mate RMSEs of the BNN generally decrease with higher

T A B L E 7 LRP relevance (%) of each atmospheric
variable for each parameter with NN trained to estimate all
parameters mutually

Parameter u h r

𝛼 20 57 23

𝜙c 23 61 16

hr 21 63 16

T A B L E 8 LRP relevance (%) of each atmospheric
variable for each parameter with three individually trained
NNs

Parameter u h r

𝛼 16 59 25

𝜙c 19 44 37

hr 21 38 41

observation coverage. The sensitivity of the BNN could be
caused by the fact that we only train on the observed grid
points of h and r which exhibit the highest rain values.
If the most relevant grid points of the BNN are rainy grid
points, the chance of observing those is higher with more
observation coverage.

4.6 LRP

To investigate which atmospheric variables were most rel-
evant for each parameter estimation, LRP was applied to
all three parameters for 500 inputs and averaged. The LRP
algorithm described is utilized with the NN only since,
to the best of our knowledge, LRP has not been applied
to BNNs so far. The inputs used in these experiments
are observations taken from the true atmospheric state of
fully observed grids. The total relevances in Table 7 are
simply the LRP heatmap values of each parameter for a
certain atmospheric variable summed and divided by the
total sum of LRP heatmap values for that parameter. Even
though all experiments conducted so far indicate that r is
the most sensitive variable to the parameter estimation,
for the NN surprsingly h is the most relevant variable. To
check if this is simply due to the fact that the parame-
ters are predicted simultaneously, the same experiments
are repeated with three individually trained NNs, one for
each parameter. For this, three training and test datasets
are generated, each time keeping two of the parameters
constant while varying the parameter to be estimated. The
relevances for the individually trained NNs in Table 8 shift

(a) (b)

(c) (d)

(e) (f)

F I G U R E 7 Rescaled values (black) of (a, b) fluid velocity u, (c, d) height h and (e, f) rain r, and corresponding LRP values of parameter
hr (red) of (a, c, e) NN trained according to Section 3.2 and of (b, d, f) individually trained NN against all 250 grid points for a single
experiment
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872 LEGLER and JANJIĆ

from the height h towards the rain r for 𝜙c and hr where
h and r are now relatively balanced. For the rain removal
rate 𝛼, the relevance of h actually increased. To investigate
the spatial structure of the LRP relevances and their cor-
responding inputs, the heatmaps of a single experiment
are plotted for the parameter hr in Figure 7 with both NN
set-ups (for the wind velocity u the absolute values were
used for easier comparison). These indicate that the NN
which is trained to estimate all three parameters mutually
(Figure 7a, c, e) uses only a small number of grid points
to make its prediction, contrary to the heatmaps of the
individually trained NN (Figure 7b, d, f) whose relevances
are more spread out over the whole grid for h and r. The
heatmaps of u and r look similar to the input indicat-
ing that those grid points with strong winds and rain are
especially relevant for the NN. However the heatmap of
h looks very different from their input. If one plots the
LRP heatmap of h together with the rain (not shown), it
seems like the relevant grid points of h are the ones where
it is in fact raining. This would explain why simply inter-
polating the observations and using these to estimate the
parameters works well in DA cycle = 0 of Figure 2.

5 CONCLUSION

In this study two types of ANN are trained to estimate the
tunable model parameters of the convective-scale modi-
fied shallow-water model (Würsch and Craig, 2014). In the
perfect model experiments, the NN as well as the BNN
are able to decrease the state errors of the atmospheric
variables compared to the case were no parameter estima-
tion is applied. The largest reduction of the state error is
ultimately found for the rain r. Furthermore, the ANNs
investigated here provide tools to quantify the uncertainty
of the parameter estimation which increases the ensemble
spread of the state analysis and forecast while decreasing
their RMSEs. Interestingly, even though the rain exhibits
the largest sensitivity on the parameter estimation, the
LRP algorithm shows that the fluid height h was the most
relevant variable for the NN’s prediction. In summary, the
BNN produced more accurate estimates while needing less
training time and hyperparameter tuning.

In all experiments conducted in this study, the param-
eters of the nature run are kept constant in time and space.
Future work testing the ANNs’ ability to estimate local and
temporal parameters is therefore required. Furthermore,
the input to the ANNs utilized in this study are snapshots
of the grid at one point in time. Alternatively, one could
investigate the use of different features such as time series
of one or more grid points. By utilizing not only atmo-
spheric variables as input features but also “climatological
predicators”, such as latitude, longitude, time of the day

and month, (Bonavita and Laloyaux, 2020) show that the
the predictive abilities of the ANNs are greatly enhanced.
Providing the ANN with information on the geographical
location, diurnal cycle, and seasonal cycle during the train-
ing is an interesting approach which could have potential
benefits for the parameter estimation problem as well.

It should be noted that the training data, as well as the
observations, are generated by the same simplistic model
and it is not clear how well the ANNs’ predictive ability
translates to more complex models and real observations.
Before testing them in more realistic scenarios, it is nec-
essary to scale down their demand for large training sizes,
possibly by reducing the number of input features or num-
ber of hidden layers as demonstrated here. Indeed, the
LRP heatmaps show that, if all parameters are estimated
simultaneously, the NN makes use of only a few select grid
points and that certain atmospheric variables are more rel-
evant than others. Since the online method investigated
in this study is accurate but computationally expensive
while the offline method is computationally cheap but less
precise, it might be possible to have a hybrid approach of
both in a more realistic setting. It might not be necessary
to retrain at every DA cycle but instead train specialized
ANNs for certain seasons/locations/times of day. However,
this is an active area of research.

Application of machine learning methods to high-
dimensional problems is a challenging task. The idea pro-
posed here would require a large database of simulations
with different parameter values. Naturally some of these
experiments are done for tuning of the atmospheric mod-
els manually as currently done in practice. Next, one would
need to produce a stochastic model for parameters with
machine learning. With use of BNNs we do not specify
statistical properties a priori which could make training
easier; at least assuming some statistical properties a priori
might even be necessary for high-dimensional applica-
tions. In our approach, the combination with data assim-
ilation allows further online training of the network and
further improvements on a ML model. Additionally, when
training with a more realistic physical model, one might
need to take into account other sources of the model error
by either augmenting the training data, which would lead
to a larger dataset without having to generate more simula-
tions, or by incorporating the model-error covariance into
the loss function.

To improve the ANNs one could investigate not only
fully connected layers, as done in this study, but also
convolutional or recurrent layers or alternative kinds of
stochastic ANNs. Leinonen et al. (2021) successfully train a
stochastic generative adversarial network (GAN) to down-
scale time-evolving images of atmospheric fields from
low to high resolution. The conditional GAN trained
in Leinonen et al. (2021) consists of convolutional and
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LEGLER and JANJIĆ 873

recurrent layers and is able to predict images larger than
those it was trained on and can predict longer time series
than the sequences used for training. This reduces the
need for large training sizes and offers the possibility for
offline training. Furthermore, Gagne et al. (2020) suc-
cessfully trained conditional GANs to estimate stochastic
parametrizations of the Lorenz’96 model although further
studies are required to test if GANs are also suitable for
parameter estimations of convective-scale models.

In the studied test case, with perfect model assump-
tions and enough training data, the ANNs were able to esti-
mate the unknown model parameters and quantify their
uncertainty more accurately than a simple linear regres-
sion, even under sparse and noisy conditions. Including
the parameter estimates obtained from the ANNs in the
DA cycle resulted in reduced state errors and increased
ensemble spreads compared to the case without parameter
estimation and unknown parameters.
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