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Abstract
Local ensemble transform Kalman filters (LETKFs) allow explicit calculation of the
Kalman gain, and by this the contribution of individual observations to the analysis
field. Though this is a known feature, the information on the analysis contribution
of individual observations (partial analysis increment) has not been used as sys-
tematic diagnostic up to now despite providing valuable information. In this study,
we demonstrate three potential applications based on partial analysis increments in
the regional modelling system of Deutscher Wetterdienst and propose their use for
optimising LETKF data assimilation systems, in particular with respect to satellite
data assimilation and localisation. While exact calculation of partial analysis incre-
ments would require saving the large, five-dimensional ensemble weight matrix in
the analysis step, it is possible to compute an approximation from standard LETKF
output. We calculate the Kalman gain based on ensemble analysis perturbations,
which is an approximation in the case of localisation. However, this only introduces
minor errors, as the localisation function changes very gradually among nearby
grid points. On the other hand, the influence of observations always depends on
the presence of other observations and settings for the observation error and for
localisation. However, the influence of observations behaves approximately linearly,
meaning that the assimilation of other observations primarily decreases the mag-
nitude of the influence, but it does not change the overall structure of the partial
analysis increments. This means that the calculation of partial analysis increments
can be used as an efficient diagnostic to investigate the three-dimensional influ-
ence of observations in the assimilation system. Furthermore, the diagnostic can
be used to detect whether the influence of additional experimental observations is
in accordance with other observations without conducting computationally expen-
sive single-observation experiments. Last but not least, the calculation can be used
to approximate the influence an observation would have when applying different
assimilation settings.
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1 INTRODUCTION

Ensemble data assimilation systems such as the local
ensemble transform Kalman filter (LETKF; Hunt
et al., 2007) have become a well-established approach for
regional, convection-permitting numerical weather pre-
diction (NWP) models as they are both computationally
efficient and include flow-dependent estimates of error
covariances. This is, for example, reflected in the oper-
ational implementation of an LETKF data assimilation
system in the regional NWP system of Deutscher
Wetterdienst in 2017 (Schraff et al., 2016). Due to com-
putational restrictions, the ensemble size is, however,
usually restricted to about 20–250 members, which intro-
duces spurious correlations and the need for covariance
localisation (Necker et al., 2020a; Necker et al., 2020b).
Furthermore, the LETKF minimises the cost function
locally in observation space, which introduces difficul-
ties for the assimilation of non-local satellite observations
that provide vertically integrated information on atmo-
spheric constituents emitting or scattering radiation.
Nonlinearity, non-Gaussianity, systematic model defi-
ciencies in the representation of hydrometeors and their
radiative properties (Geiss et al., 2021), as well as signif-
icant uncertainty of radiative transfer models in cloudy
situations (Scheck et al., 2018) add further complexity
to the assimilation of cloud-affected satellite observa-
tions in convection-permitting assimilation systems (Hu
et al., 2022). Nevertheless, these observations provide
potentially very valuable information for convective-scale
data assimilation (Gustafsson et al., 2018; Schroettle
et al., 2020) and their assimilation is therefore a very
active area of research (Zhang et al., 2016; Okamoto, 2017;
Scheck et al., 2020). To overcome these difficulties for
the assimilation of cloud-affected satellite radiance obser-
vations, several studies (e.g, Schomburg et al., 2015;
Scheck et al., 2020; Bauer et al., 2010) conducted
single-observations experiments to better understand
the influence of such observations in data assimilation
systems. Such experiments, however, require running a
full, computationally expensive data assimilation exper-
iment for the assimilation of just one observation or a
very limited number of spatially well-separated observa-
tions that do not influence each other in the assimilation
process. In this article, we propose a significantly more
efficient approach for investigating the three-dimensional
analysis influence of individual observations (partial
analysis increment [PAI]) based on available LETKF
analysis ensemble perturbations. This new diagnostic
for PAIs related to a single observation allows one to
approximate the contribution of individual observations
to the analysis or the contribution that an observa-
tion would have with modified assimilation settings

(e.g, modified assigned localisation scale or observation
error).

The strength of the diagnostic is that it allows for inves-
tigating the three-dimensional structure of the analysis
contribution of one observation directly in model space.
By that it is possible to detect where observations draw
the analysis into opposite directions, which is especially
interesting with respect to the assimilation of novel obser-
vations. Though detrimental observation influence is part
of the statistical nature of the data assimilation (especially
when the model state is already very close to the truth), pat-
terns or large values of detrimental observation influence
in the analysis may be an indication for suboptimal data
assimilation related to, for example, spurious correlations
or wrong localisation settings. Other existing diagnostics,
such as observation influence (Cardinali et al., 2004; Liu
et al., 2009) focus on the relative contribution of obser-
vations to the analysis as dimensionless scalar quantities.
Furthermore, several studies used ensemble forecast sen-
sitivity to observations (EFSO; Kalnay et al., 2012; Sommer
and Weissmann, 2014; Sommer and Weissmann, 2016;
Kotsuki et al., 2019) to approximate forecast observa-
tion impact of individual observations in a computation-
ally cheap way, without running multiple experiments.
Though, in principle, PAIs are included in the derivation
of EFSO (cf. Ota et al., 2013; Hotta et al., 2017a.), the focus
in these EFSO studies is mainly on the statistical contribu-
tion of observations to the reduction of forecast error with
usual lead times of the order of hours. The PAI diagnos-
tic is limited to the investigation of analysis influence, but
it has the advantage that it avoids inaccuracies related to
the linearity assumption of the forecast evolution, issues
with localisation of the forecast error, and the verification
of the forecast error (Necker et al., 2018.), in contrast to
EFSO. The objective of this study is to show that the PAI
diagnostic can be used as an economical alternative to sin-
gle observation experiments and as a diagnostic to evaluate
and even optimise the data assimilation system. Moreover,
the derivation of PAI is given in detail with a special focus
on the approximations that have to be made to apply it to
a near-operational LETKF data assimilation system.

The remainder of this article is structured as fol-
lows: Section 2 presents the detailed derivation of the
PAI methodology, as well as a description of the mod-
elling and assimilation system, the experimental set-up,
and the applied metrics. In Section 3, we illustrate PAI
results for several examples and discuss the effect of
the approximations by comparison of PAI results with
the analysis influence in single-observation experiments.
Section 4 presents three potential applications of the PAI
diagnostic; namely, the analysis of the contribution of
different observations to analysis fields, the detection of
detrimental observation influence, and the optimisation
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742 DIEFENBACH et al.

of assimilation settings. Finally, conclusions are provided
in Section 5.

2 METHOD AND DATA

In this study, we employ the Kilometre-scale Ensemble
Data Assimilation (KENDA) system of Deutscher Wetter-
dienst (Schraff et al., 2016). The KENDA system comprises
an LETKF assimilation scheme, after Hunt et al. (2007),
that is coupled with a non-hydrostatic regional NWP
model (in this study the COSMO model (consortium for
small scale modelling)). The LETKF provides the analysis
ensemble in a computationally efficient way by transform-
ing the problem from high-dimensional model space into
low-dimensional ensemble space and by computing the
analysis locally on a reduced analysis grid. The localisa-
tion not only makes the method more efficient but is also
necessary to mitigate spurious correlations and increase
the degrees of freedom of the analysis. In the following
we will derive the mathematical formulation for PAI from
the LETKF equations and describe the approximations
that are involved. In the derivation, we will use the same
notation as in Hunt et al. (2007).

2.1 PAI formulation

Before getting to the the PAI formulation for LETKF sys-
tems, we start with the general form of the sequential
analysis equation, where the analysis xa is produced by
a statistical combination of the background xb and the
observations yo (Kalnay, 2003):

xa = xb + K(yo −H(xb)). (1)

H denotes the nonlinear observation operator, which
transforms a vector from n-dimensional model space into
p-dimensional observation space. The term K is often
referred to as the Kalman gain matrix. The analysis incre-
ment is defined as the difference between the analysis and
the background:

𝛿x = xa − xb = K(yo − yb), (2)

where (yo − yb) is called the innovation vector or back-
ground departure, with yb = H(xb) being the model equiv-
alent of the observations. From this expression it becomes
clear that K is a matrix of dimension n × p that deter-
mines the weight of the correction and transforms back
from observation space to model space. Assuming that
K is known, the formulation of PAI is straight-forward
from Equation (2). The PAI that is related to one single

observation yo,𝑗 is then defined as

𝛿x
𝑗

= K
𝑗

(yo − yb)𝑗 , (3)

where the index 𝑗 is used to indicate that only the 𝑗-th
column of K and the 𝑗-th row of the innovation vector
are considered. The sum over all PAIs equals the total
increment; that is,

p∑

𝑗=1
𝛿x

𝑗

= 𝛿x. (4)

Similarly, it is possible to calculate PAIs for subsets of
observations, which is simply the sum of all partial analysis
increments of all observations in the subset.

However, in practice, this formulation cannot be used
directly since in the LETKF the analysis is carried out in
ensemble space and K is never calculated explicitly. It is
possible, though, to express K in terms of standard LETKF
output data products as

K = (k − 1)−1XaYT
a R−1

, (5)

where Xa and Ya are the ensemble analysis perturbation
matrices in model space and observation space respec-
tively and k is the number of ensemble members. This
formulation of K has been used before in the context of
observation influence by other studies, such as, Kalnay
et al. (2012) or Hotta et al. (2017a), and can also be found in
Gustafsson et al. (2018). In the study of Kalnay et al. (2012),
the derivation of Equation (5) assumes a linear observation
operator H. In the following, we will derive Equation (5)
from the LETKF equations for a nonlinear H, using the
linear approximation in ensemble space (Hunt et al., 2007)
that is also employed for the computation of the analysis.

The LETKF approximates the background and analy-
sis uncertainty by an ensemble and computes the analysis
ensemble mean xa as an optimal linear combination of the
background ensemble members. The analysis equation for
the LETKF is (cf. Hunt et al., 2007, eq. 22):

xa = xb + Xbwa, (6)

where wa is the weight vector that minimises the
LETKF-cost function in ensemble space. The overbars
indicate the ensemble mean. The n × k matrix Xb is the
background ensemble perturbation matrix. Column i of
Xb is defined as xb,i − xb; that is, the deviation of one
ensemble member i from the ensemble mean. From Hunt
et al. (2007) we know that

wa = ̃PaYT
b R−1(yo − yb), (7)
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DIEFENBACH et al. 743

where ̃Pa is the analysis error covariance matrix in ensem-
ble space, Yb is the background ensemble perturbation
matrix transformed into observation space (with dimen-
sions p × k) and R is the observation error covariance
matrix.

The individual ensemble members xa,i are distributed
around the ensemble mean such that their spread reflects
the uncertainty of the analysis in ensemble space ( ̃Pa),
which can be computed explicitly. The weight vectors for
the individual ensemble members wa,i are chosen as the
symmetric square root of ̃Pa:

̃Pa = (k − 1)−1WaWT
a , (8)

with Wa being the ensemble weight perturbation matrix
in ensemble space, with columns wa,i − wa. Hence, the
individual ensemble members are given as

xa,i = xb + Xb(Wa,i + wa). (9)

Taking the difference between Equation (6) and
Equation (9) shows that the analysis ensemble
perturbations are given as

Xa = XbWa. (10)

If we now insert Equations (7), (8) and (10) into
Equation (6) we get

xa = xb + (k − 1)−1 XaWT
a YT

b R−1(yo − yb). (11)

Instead of linearising H around the ensemble mean,
which would involve a large p × n Jacobian matrix, Hunt
et al. (2007) make a linear approximation in ensemble
space to relate perturbations in model state to observations
space:

H(xb + Xbw) ≈ yb + Ybw (12)

(cf. Hunt et al., 2007, eq. 18). Using the same assumption,

ya,i − ya = H(xb + Xbwa,i) −H(xb + Xbwa)
= Yb(wa,i − wa), (13)

and hence Ya = YbWa. Inserting this into Equation (11)
yields the desired expression for K as given in Equation (5):

xa = xb + (k − 1)−1XaYT
a R−1(yo − yb). (14)

In this context, it should be noted that the linear approx-
imation in Equation (12) leads to a suboptimal analysis
in case of nonlinear observation operators. The PAI diag-
nostic described here, however, is consistent with the
assumption of the LETKF and, therefore, reflects the

actual analysis increment (apart from the approximation
related to localisation discussed later herein).

So far, we have ignored the effects of localisation even
though it is a crucial part of the LETKF. Localisation
means that the analysis is carried out independently for
the individual model grid points (or on a reduced grid
as in KENDA). This is achieved by considering only the
observations in a certain region around the location of the
respective grid point for the analysis weight calculation.
To achieve a smooth and physically consistent analysis,
neighbouring analysis points should largely use the same
set of observations and the influence of distant observa-
tions is reduced gradually. In a mathematical sense, this
means that the elements of R−1 are multiplied by a weight-
ing factor, which is equal to one at the location of the
analysis and decays to zero after a certain radius. Reducing
elements of R−1 means increasing the assumed observa-
tion error and thus giving less weight to the respective
observation. The weighting function used in the LETKF is
the Gaspari–Cohn function, which is a Gaussian-shaped
curve that decays to zero after the so-called cut-off radius.
The cut-off radius is defined as r = 2𝓁

√
10
3

, where 𝓁 is
called the localisation length scale. For the PAI diagnostic,
localisation has two implications:

1. The analysis in the LETKF is computed using a
localised R. Thus, for a diagonal R, which is used in the
KENDA system and throughout this study, the localised
version of the Kalman gain from Equation (5) can be
written as follows:

Kloc = (k − 1)−1XaYT
a R−1◦𝜌, (15)

where 𝜌 is a matrix of Gaspari–Cohn factors and ◦ is the
Schur product. We would like to note here that it is also
possible to calculate PAI in case of a non-diagonal R.

2. As mentioned before, the analysis is carried out inde-
pendently for every model grid point. This means that
also the model equivalents Ya and weight vectors Wa
will change from one grid point to another, as also
will the Kalman gain. In practice, however, Ya and
Wa are not stored entirely as output data since they
are not required any more after the analysis has been
computed. In fact, the five-dimensional field Wa (with
three spatial dimensions of the reduced analysis grid
and two ensemble dimensions) is not stored at all,
because in the KENDA set-up this would take the same
effort and disk space as writing out about 60 additional
three-dimensional variables. The analysis model equiv-
alents for an observation are not stored for every grid
point that is within the localisation cut-off radius of the
observation, but only at the grid point that is closest
to the nominal position of the observation. Also, for

 1477870x, 2023, 752, D
ow

nloaded from
 https://rm

ets.onlinelibrary.w
iley.com

/doi/10.1002/qj.4419 by C
ochrane G

erm
any, W

iley O
nline L

ibrary on [08/03/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



744 DIEFENBACH et al.

non-local observations, like satellite radiance, there is
a nominal position that is used for the localisation. In
this study, we will demonstrate that up to the locali-
sation length scale it is a reasonable approximation to
use the available Ya at the nominal observation loca-
tion to compute the Kalman gain at nearby grid points.
This works since the weights of the LETKF by design
only vary gradually from one grid point to another, and
with this also the model equivalents. The errors related
to this approximation could be avoided by storing the
full Ya, or Wa at every model grid point, but this would
require significant additional disk space and would
only be feasible for short experiments. In contrast, with
the approximation, the PAI diagnostic can be applied to
the standard output of the operational system, namely
the full analysis ensemble and the model equivalents
in observation space at the nominal positions of the
observations.

Additionally, we want to point out that the PAI
diagnostic allows for computationally cheap sensitiv-
ity experiments by modifying the localisation scale or
assigned observation error R used to compute K. The
result yields an approximation to the influence that an
observation would have with modified settings of the
localisation length or the assigned observation error. This
is an approximation, since with a varying localisation or
R the analysis products Xa and Ya would also change.
However, we will demonstrate that the PAI results from
non-localised LETKF experiments with retrospective
localisation in the PAI calculation are a useful first-order
approximation for PAI in assimilation experiments with
direct localisation (Section 4.3).

2.2 Description of the data assimilation
system

The configuration of the KENDA simulations used in
this study closely follows that of Scheck et al. (2020).
The KENDA system consists of an LETKF assimila-
tion scheme that is coupled with the COSMO regional
NWP in this study. Our experiments have 40 ensemble
members, and we use version 5.2 of the non-hydrostatic
NWP model COSMO in its limited-area configuration
(COSMO-DE). COSMO was operational at Deutscher Wet-
terdienst until April 2021. The COSMO-DE domain is
depicted in Figure 1 (grey box). It reaches from 44.7◦ to
56.5◦ N and from 1.0◦ to 19.4◦ E and comprises Germany
and parts of its neighbouring countries. The numerical
grid consists of 421 × 461 columns, resulting in a hor-
izontal grid spacing of 2.8 km. In the vertical, COSMO
has 50 hybrid layers, which are terrain following in the

lower atmosphere and flat at higher levels. The model
top is at 22 km. Deep convection is resolved explicitly in
the model, whereas shallow convection is parametrised.
The lateral boundary conditions are interpolated from the
ICON-EU model with a 7 km horizontal grid spacing and
parametrised convection. For more details about the model
set-up, the reader is referred to Scheck et al. (2020) (cf.
Section 3.1 and 3.2 therein).

2.3 Experimental set-up

To validate the methodology and to illustrate potential
applications, three different types of experiments were
performed: (1) single-observation experiments for visi-
ble satellite observations, (2) single-observation experi-
ments for visible satellite observations with collocated
radiosonde observations, and (3) single-observation exper-
iments for visible satellite observations with collocated
radiosonde observations using vertical localisation. This
set of experiments was chosen as we primarily want to
investigate the influence of novel satellite observations.
Radiosonde observations are used as a reference and to
investigate how the influence of the satellite observations
is modified if additional observations are assimilated. The
last type of experiment is used to evaluate the PAI approx-
imation for modified assimilation settings. However, it
should be noted that these observation types only serve as
an example and that the PAI diagnostic is not restricted
to specific observation types. For the experiments, analysis
ensembles were computed for four different cases, namely
29 May 2016, at 1100 UTC and 1700 UTC and 5 June
2016, at 1100 UTC and 1700 UTC. These cases are within a
highly convective period that included extreme precipita-
tion events and a high number of consecutive severe thun-
derstorms over Germany. The synoptic situation in this
period has been studied extensively by, for example, Keil
et al. (2019), Bachmann et al. (2020), and Piper et al. (2016).
For each of the cases, background forecasts were initialised
at 1000 UTC and 1600 UTC from a reference cycling exper-
iment where only conventional observations were assim-
ilated (i.e, SYNOP stations, radiosondes, wind profilers,
and aircraft). A single cycle with an assimilation window
of 1 hour was computed for each of the experiments. Infla-
tion methods were switched on in the reference cycling
experiment but switched off for the last analysis step.
The experimental set-up closely follows the experimental
set-up of the single-observation experiments from Scheck
et al. (2020).

2.3.1 Single-observation experiments (VIS)

In these experiments, visible satellite radiances of the
0.6 μm wavelength channel (REFL) were assimilated.
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F I G U R E 1 SEVIRI (Spinning Enhanced Visible Infrared Imager) images at the four different dates of the experiments. The grey box
indicates the model domain, and the numbered red dots indicate the observation locations [Colour figure can be viewed at
wileyonlinelibrary.com]

The fast, look-up table based method of Scheck et al. (2016)
and an approximation accounting for three-dimensional
radiative transfer effects (Scheck et al., 2018) were used
to generate model equivalents. The horizontal localisa-
tion length scale was set to 25 km, resulting in a cut-off
radius of ∼90 km. The observation locations (shown in
Figure 1) were chosen such that, with the given locali-
sation length scale, the influences of the different mea-
surements do not overlap. As we are only interested in
the analysis influence, it is therefore possible to conduct
multiple single-observation experiments in one model run.
In total, we have 29 single-observations experiments dis-
tributed over the four time points. In contrast to thermal
infrared channels, the visible channel considered here is
sensitive to clouds at all heights and there is no peak
in the weighting function that could be used for vertical
localisation. Therefore, no vertical localisation was applied
and the nominal height of all satellite observations was
set to 500 hPa (Scheck et al., 2020). Consequently, each
of the satellite observations influences the whole atmo-
spheric column within the horizontal cut-off radius. Only

individual satellite pixels were assimilated. The resulting
analysis departures are verified against spatio-temporally
close radiosonde observations that are not actively assimi-
lated in this experiment. This experiment is used to verify
the PAI diagnostic by comparing the computed partial
increments with the increment obtained from the LETKF
(xa − xb). Apart from the approximations in the PAI
diagnostic due to localisation both increments should be
identical.

2.3.2 Combined experiments (RASO + VIS)

These experiments use the same set-up as those just
described, but with the assimilation of additional
nearby radiosonde observations. That means we have 29
radiosonde profiles that are assimilated with a localisa-
tion length scale of 25 km in the horizontal and with a
constant vertical localisation length scale of 0.3 in loga-
rithmic pressure coordinates; that is, log(p) = 0.3; where
p is the pressure in pascals. Each of the profiles consists
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746 DIEFENBACH et al.

of ∼30 measurements of temperature (T), horizontal wind
(U) and (V), and relative humidity (RH) distributed at
different heights. This experiment shows how the influ-
ence of the satellite observations changes if additional
observations are assimilated.

2.3.3 Combined and localised experiments
(RASO + VISLOC)

These experiments use the same experimental set-up as
the combined experiment, but the satellite observations
are localised in the vertical using the Gaspari–Cohn func-
tion with a constant localisation length scale of 0.3 (in
logarithmic pressure coordinates). The nominal positions
of all satellite observations in the experiment are set to
p = 500 hPa. This experiment is used to investigate the fea-
sibility of retrospective localisation of the RASO + VIS
experiment in the PAI diagnostic.

2.3.4 Metrics and notation

For the experimental evaluation we use three different
metrics: (1) the differences between the computed PAIs
and the increments as obtained from the LETKF; (2)
statistics of PAIs (mean, standard deviation, and absolute
mean); and (3) errors of the model state with respect to the
radiosonde measurements; that is, negative background
and analysis departures or, in the case of Figures 9 and 12,
absolute values of departures. We will assign the following
sub- and superscripts to PAI in order to specify it correctly:

PAIy→x
exp , (16)

where y represents the measured variable, that is, y ∈
[T,U,V ,RH,REFL] (REFL is the observed visible satellite
radiance and the other variables are the radiosonde mea-
surements), x stands for the model variable for which the
PAI is computed, and exp ∈ [VIS,RASO + VIS,RASO +
VISLOC] indicates the associated experiment.

We evaluate the error e of the model state based on
the absolute value of the difference between independent
radiosonde observations and model equivalents:

ev = |H(xv) − yo|, (17)

where v ∈ [a, b] indicates whether the deviation from the
radiosonde measurement is computed from the back-
ground or the analysis. It should be noted that the differ-
ence in Equation (17) also contains a contribution from the
radiosonde observation error. But as the radiosonde obser-
vation error is the same for the background and analysis
departure and usually uncorrelated with model error, the

error reduction by data assimilation can be approximated
as:

Δe = ea − eb. (18)

A negativeΔe indicates a reduction of the error and hence
a beneficial impact of assimilated observations. For all the
experiments, the results are evaluated up to 200 hPa.

For the optimisation of vertical localisation of satellite
observations, we define a cost function J that consists of
the sum of the radiosonde analysis departures:

J(𝓁, p) =
∑

(H(xa) − yRASO
o )2, (19)

where 𝓁 corresponds to the vertical localisation length
scale and p to the pressure level around which the
Gaspari–Cohn function is centered. With Equation (6),
this can be expanded to

J(𝓁, p) =
∑

(H(xb + 𝜌(𝓁, p) ⋅ K(yo − yb)) − yRASO
o )2. (20)

More details about the optimisation are provided in
Section 4.3.

3 ILLUSTRATION OF PAI

Throughout this study, we will illustrate the PAI diagnos-
tic exemplarily with temperature increments, as the main
characteristics of the diagnostic are similar for all model
variables. Increments on variables other than the tempera-
ture are only shown in Section 4.1, where we demonstrate
how to analyse the influence of observations on different
model variables.

3.1 Effect of approximating PAI
with analysis perturbations

Figure 2 shows the horizontal analysis temperature incre-
ment at model level 23, corresponding to a mean pressure
of around 500 hPa from a single-observation experiment
(VIS) that assimilated one satellite reflectance observation
in the centre of the domain (Figure 2b) and the corre-
sponding PAI of this observation (Figure 2a). The compar-
ison demonstrates that the PAI calculation is able to repro-
duce both the structure and the magnitude of the analysis
increment with the exception of small differences at larger
distances, close to the localisation cut-off radius. These
small differences are due to the approximation described
in Section 2: Instead of the LETKF weights at every model
grid point, the PAI calculation is based on the weights
at the point of the observation expressed by the analysis
perturbations to avoid the need of storing additional
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F I G U R E 2 Temperature increments for one VIS-Experiment (at location number 1 in Figure 1) (a) The computed partial analysis
increment at one model level at ∼500 hPa. The shading indicates the magnitude of the temperature increment, the dashed circle indicates
localisation length scale, and the solid circle the cut-off radius. (b) Same as (a), but showing the increment as obtained from the local
ensemble transform Kalman filter run. (c) Vertical profile of the increments at the observation location (red dot in the upper panels). (d)
Increments as a function of horizontal distance from the observation, the white dashed line in the upper panel indicates the horizontal cut
through the domain shown here; the dashed and solid vertical lines indicate localisation length scale and cut-off radius respectively [Colour
figure can be viewed at wileyonlinelibrary.com]

quantities and for the sake of computational efficiency. In
the presence of localisation, the LETKF weights gradually
change from one grid point to the next one, leading to a
deviation of PAI from the analysis increment with increas-
ing distance from the observations. This difference can
also be seen in the comparison of the PAI and the analy-
sis difference as a function of horizontal distance from the
observation in Figure 2d. However, the LETKF weights, by
design, only change very gradually from one grid point to
the next one. This means that the differences of the effi-
ciently approximated PAI and the analysis increment are
fairly small and avoiding these small differences does not
seem to justify the additional storage of LETKF weights. In
the vertical, the calculated PAI perfectly matches the anal-
ysis increment (except for very small rounding errors) as
no vertical localisation was used for the assimilation of the
satellite observation (Figure 2c).

Besides the example shown in Figure 2, we calculated
further single-observation experiments for 29 reflectance
observations. Figure 3 shows a comparison between
the absolute analysis increment and the absolute differ-
ence of the analysis increment minus the computed PAI
as a function of distance from the observation for all
single-observation experiments. On average, the difference
of PAI and the analysis increment is less than 17% up to the
localisation length scale of 25 km and increases to about
40% at twice the localisation length scale.

3.2 Relation of PAI with the increment
from single-observation experiments

The PAI of an observation from an experiment assimilat-
ing many other observations is, by nature, not the same as
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F I G U R E 3 Binned averages of the temperature increments
as a function of horizontal distance from the observation. The
averages are taken over all 29 observation locations in the
VIS-Experiment at one model level at ∼500 hPa. The grey dots show
the absolute analysis increment as it is obtained from the local
ensemble transform Kalman filter (LETKF) run (xa,VIS − xb). The
black triangles show the absolute difference between the LETKF
analysis increments and the computed partial analysis increments
(PAIs). The red dashed line shows the relative difference in per cent
between PAI and the LETKF increment. The black dashed line
indicates the localisation length scale, and the dotted line indicates
the cut-off radius. Values to the right of the cut-off radius come
from neighbouring single-observation experiments. Deviations
between the computed PAI and the LETKF increment are due to
approximations in the PAI diagnostic [Colour figure can be viewed
at wileyonlinelibrary.com]

the respective analysis increment in a single-observation
experiment. The presence of other assimilated observa-
tions decreases the weight of an individual observation
compared with the single-observation experiment. In the
case of multiple observations with equal observation errors
assimilated at the same location, the weight of every assim-
ilated observation will decrease by the following factor
with the addition of a further observation:

𝛼

n+1

𝛼

n = n
n + 1

, (21)

where 𝛼n+1 is the weight of observations in case of n + 1
observations and 𝛼

n is the weight of observations in the
case of n observations. Figure 4 shows this effect for up
to 40 assimilated observations. The number 40 reflects the
local degrees of freedom of the 40-member LETKF system
and, therefore, the order of magnitude of observations that
can be assimilated within the localisation scale. Assimilat-
ing two observations instead of one decreases the weight
by a factor of 0.67. With more assimilated observations, the
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F I G U R E 4 Relative decrease of weights for assimilating one
additional observation as a function of the number of the other
assimilated observations with the assumption that all observations
are at the same location and have the same observation error

factor gradually increases to 0.91 for 10 observations and
0.98 for 40 observations. This means that adding an addi-
tional observation in a comprehensive data assimilation
with many assimilated observations only has a marginal
effect on the weight of the other assimilated observations.

It is important to keep this effect of modified weights
in mind when interpreting PAI results. However, the addi-
tion of other observations only reduces the weight of an
observation; it does not change the overall structure of the
influence of an observation. Figure 5a shows an example
of the temperature PAI of a satellite reflectance observa-
tion in an experiment assimilating this observation and
additionally a full radiosonde profile (two wind compo-
nents, temperature, and humidity at 39 levels; that is, 156
additional observations, RASO + VIS) and the analysis
increment in a single-observation experiment with only
the satellite observation (VIS). As expected, PAI is smaller
than the increment in the single-observation experiment,
but both exhibit a similar structure.

Figure 5b shows the corresponding mean absolute
PAI and single-observation analysis increment averaged
over all 29 assimilated satellite observations. On aver-
age, the magnitude of the single-observation analysis
increment is roughly 30–50% higher than the correspond-
ing PAI in the experiments with radiosonde observations
in addition. The structure of the profile, however, is
very similar, with largest values of increments and PAIs
in the lowest and highest part of the profile. This
near-linear behaviour of the influence demonstrates that
both PAI and single-observation experiments are useful
approaches to investigate the three-dimensional influence
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F I G U R E 5 (a) Vertical profile of the temperature increment at a single-observation location (profile 20 in Figure 1) (b) Vertical profile
of the mean absolute temperature increment at the observation location; the mean is taken over all profiles from all 29 observation locations,
and there are 30 bins in the vertical. The solid line shows the increment for the VIS-Experiment, where only satellite observations were
assimilated. The dashed line shows the PAI of the satellite in the RASO + VIS-Experiment

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6

200

400

600

800

Temperature Increment (K)

P
re

s
s
u

re
(h

P
a
)

T

U

V

RH

REFL

F I G U R E 6 Vertical profile of different partial temperature
increments from all measured variables in the RASO + VIS-
Experiment for one profile (profile 20 in Figure 1). The sum of all
partial increments of different observations equals the total
temperature increment [Colour figure can be viewed at
wileyonlinelibrary.com]

of observations. The calculation of PAI, however, is com-
putationally much more efficient. And, furthermore, PAI
reflects the influence in the presence of other assimi-
lated observations, which is usually the primary quantity
of interest, whereas single-observation experiments reveal
the influence in the absence of other observations.

Figure 6 shows an example of the contribution
of different observations to the temperature incre-
ment (temperature PAI) as a function of pressure in
the RASO + VIS experiment. As expected, radiosonde

temperature observations exhibit the largest temperature
PAI throughout most of the atmosphere. The satellite
observation, however, also leads to a significant temper-
ature increment in the boundary layer, which is likely
related to the correlation of cloudiness and surface
insolation.

Information such as the relative magnitude of incre-
ments and the strength of the downweighting effect
through the assimilation of other variables cannot be
retrieved from single-observation experiments alone. A
statistical analysis of the PAI-estimated increments on
different variables will be discussed further in the next
section in the context of potential applications of the diag-
nostic.

4 POTENTIAL APPLICATIONS

4.1 Analysing the influence
of observations on different model variables

The PAI diagnostic allows for analysing the influence of
individual observations as well as the statistical contribu-
tion of observation types to changes in different variables.
Especially with regard to operational data assimilation,
general information about the relative magnitude of incre-
ments is useful to evaluate the effectiveness of the assim-
ilation. Moreover, statistics of PAI can be used to anal-
yse trends (systematic increments) introduced by certain
observation types. In particular, for novel observations,
such as, for example, satellite reflectance, it is important
to monitor that the observations do not cause systematic
changes in the model climatology as cooling/warming
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F I G U R E 7 (a) Vertical profiles of the relative absolute partial analysis increment (PAI) contributions in per cent for the assimilated
satellite observations averaged over all 29 profiles in the RASO + VIS-Experiment for model variables T, U, and relative humidity (RH). The
normalisation is done with respect to the total absolute increments (xa,RASO+VIS − xb) of the the respective model variables. (b–d) Vertical
profiles for different model variables T, U, and RH but this time the solid lines indicate the mean satellite PAI reflecting systematic effects
and the dashed lines indicate the standard deviations of the respective satellite PAIs reflecting their magnitudes [Colour figure can be viewed
at wileyonlinelibrary.com]

or drying/wetting at certain levels. Though similar
information can be gained from single-observation exper-
iments or EFSO, the PAI diagnostic can be considered as
either an economical alternative or an economical addi-
tion to such measures that is also capable of identifying
systematic non-local effects, such as, for example, the sys-
tematic influence of the satellite observations on various
vertical levels. The statistical analysis about the performed
RASO+VIS experiments is shown in Table 1 and Figure 7.
Similar to Scheck et al. (2020), this analysis shows that,
in general, the data assimilation of the visible satellite
observations yields results with physically plausible inter-
pretations.

Averaged over all assimilated satellite observations,
the temperature PAI of satellite observations is about 5%
of the total temperature increment above 750 hPa and
increases gradually below to about 14% at the lowermost
level (Figure 7a). The relative contribution of the satellite
to the wind increment is overall of a similar magnitude and
structure as for the temperature increment, but with a less
pronounced maximum at lower levels. In absolute terms,
however, the satellite wind PAI is highest at upper levels,
given increasing wind speed with height (dashed line in
Figure 7c). For RH, the satellite also contributes to about
5% of the total increment above 550 hPa, but to 10–15% of

the total increment below 550 hPa (Figure 7a). As humid-
ity only has a marginal effect on satellite reflectance in
the visible range, the humidity PAI of the satellite observa-
tions is likely the result of correlations of cloudiness with
humidity at the level of the cloud and beneath.

Averaged over the vertical profile, the satellite obser-
vations contribute about 7% of the total increment in RH
and roughly 5% of the temperature and wind increments
(Table 1). This is remarkable given that only 0.9% of all
assimilated observations are from the satellite and nei-
ther wind, temperature, nor humidity have a pronounced
direct influence on satellite reflectance in the visible range.
Whether these increments also pull the analysis in the
right direction will be investigated further in the subse-
quent section. The largest relative PAIs of satellite obser-
vations are found for cloud water (13.9%) and cloud ice
contents (8.7%), which directly influence reflectance in the
solar channels. Furthermore, a comparably large PAI of
the satellite observations of 7.6% occurs for vertical veloc-
ity that is linked to convection, and thereby to convective
clouds. For radiosonde observations, Table 1 shows that
direct observations of wind components, temperature, and
RH contribute about 60% to the increment of the respec-
tive variable. The relative PAI of an observed variable on
other variables is in the range 10–15%.
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T A B L E 1 Relative absolute PAI contributions in % for all
assimilated observations averaged over all profiles in the
RASO+VIS-Experiment for the model variables temperature (T),
zonal wind (U), meridional wind (V), relative humidity (RH),
vertical velocity (WZ), specific humidity (Q), cloud ice (QI) and
cloud water mixing ration (CLWMR). The normalization is done
with respect to the total absolute increments (xa,RASO+VIS − xb) of
the the respective model variables.

Model variable/
Observation T U V RH REFL

T 65.5 9.2 11.0 9.6 4.7

U 13.1 58.1 14.6 9.2 5.0

V 14.1 12.9 59.5 9.2 4.3

RH 12.5 9.4 11.5 59.5 7.1

WZ 28.3 19.6 28.7 15.8 7.6

Q 52.0 14.4 11.7 13.6 8.3

QI 28.5 24.2 21.4 17.2 8.7

CLWMR 23.2 15.8 29.4 17.7 13.9

4.2 Detecting detrimental observation
influence

For the assimilation of novel observation types, it is impor-
tant to investigate if the assimilation of such new obser-
vations has a beneficial or detrimental influence on the
model state. In this study we verify the first guess and
analysis states against the observed radiosonde profiles as
described in Section 2.3.4. Though detrimental analysis
increments are part of the statistical nature of the data
assimilation (Gelaro et al., 2010), extended or systematic
patterns of detrimental influence indicate potential flaws
in the data assimilation system and may provide guidance
for optimising assimilation settings; for example, assigned
observation error or localisation parameters.

As the influence of individual observations is often
blurred in cycled experiments with many observations,
previous studies used single-observation experiments that
assimilated only a few observations separated by suffi-
ciently large distance to avoid an interaction of the obser-
vations (e.g, Schomburg et al., 2015, Scheck et al., 2020).
In their study, Scheck et al. (2020) conclude from
single-observation experiments that the assimilation of
visible satellite reflectance is able to reduce errors in the
model state in their selected cases but that the effec-
tiveness of this process is limited due to ambiguity of
the observations, spurious correlations, or nonlinearity
of the observations operator. In this section, we demon-
strate that similar information can be gained by the PAI
diagnostic and the considerable effort for carrying out
additional single-observation experiments can be avoided.

For this, we present PAI results as well as the analy-
sis increments of single-observation experiments for two
cases. Case 1 (profile 20 in Figure 1) corresponds to the
same single-observation experiment as case 1 in Scheck
et al. (2020). Our case 2, which corresponds to profile 13 in
Figure 1, is not the same as case 2 in Scheck et al. (2020).

Figure 8 shows the estimated error of background
and analysis model states with respect to the radiosonde
observations for the two cases. In each of the two pan-
els of Figure 8 the blue line indicates the error of the
background model state with respect to the radiosonde
observations (negative background departure), the red line
indicates the error of the analysis model state obtained
in the single-observation experiment (VIS) with respect
to the RASO measurement, and the green line shows the
negative background departure plus the satellite PAI from
the RASO + VIS-Experiment. The sum of the background
departure and the satellite PAI reflects the approximated
contribution from the satellite to the analysis departure in
the RASO + VIS-Experiment.

In case 1 (Figure 8a), the analysis is at nearly all lev-
els closer to the radiosonde observation than the back-
ground, indicating a beneficial influence of the satellite
observation in the single-observation experiment. Simi-
lar information can be gained by the computationally
much cheaper PAI diagnostic that does not require addi-
tional experiments. The satellite PAI is usually smaller
than the single-observation increment given the presence
of other assimilated observations. However, the satellite
PAI nearly always points in the same direction as the anal-
ysis increment and also indicates a beneficial influence
of the satellite throughout this vertical profile. In case 2
(Figure 8b), both the PAI and the single-observation exper-
iment indicate a beneficial influence of the satellite obser-
vation around 900 and 300 hPa, whereas there is indication
for deterioration at 240 hPa.

Figure 9 shows a scatter plot comparing the computed
impact of the satellite measurements on the model state
Δe in the combined experiment (RASO + VIS, y-axis)
and in the single-observation experiment (VIS, x-axis)
for all assimilation experiments at all radiosonde obser-
vation levels. The results of the satellite impact in the
RASO + VIS-Experiment were obtained from the PAI
diagnostic. Negative values of Δe indicate that the satel-
lite observation draws the model temperature closer to
the radiosonde observation (beneficial impact) and posi-
tive values indicate a detrimental impact. Overall, there is
a clear correlation of beneficial and detrimental impacts
from the two approaches. The slope of the linear fit is close
to 0.5, indicating that the impact in the single-observation
experiment is about twice as large. Most importantly, both
approaches indicated the most beneficial and most detri-
mental impact at the same locations. The largest beneficial
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F I G U R E 8 Vertical profiles of the estimated error of the model state with respect to the radiosonde measurements. (a) Profile of case 1
with highest error reduction in the boundary layer. (b) Profile of case 2, minor corrections but also some deterioration in the upper
atmosphere. In both panels: (blue) background minus observation (green) analysis minus observation computed with PAIREFL→T

RASO+VIS from the
RASO + VIS-Experiment (red) analysis minus observation from the VIS-Experiment [Colour figure can be viewed at wileyonlinelibrary.com]

impact occurs at profile 20 at low levels and profile 29 in
the midtroposphere. The largest detrimental values occur
at upper levels for profiles 13, 19, and 20 as well as at low
levels for profiles 22, 25, and 29. As in previous studies,
the results of Figure 9 show that there is a large number
of observations with detrimental influence on the analysis.
This, on the one hand, is related to the analysis verification
with radiosonde observations and, on the other hand, to
the statistical nature of the data assimilation system. Addi-
tionally, we want to mention that this application has a lot
in common with 0h-EFSO from (Hotta et al., 2017a), as
0h-EFSO reflects the partial analysis increment projected
onto a specific norm (e.g. total energy). This illustrates that
the PAI diagnostic can be used to identify potential detri-
mental effects that should be investigated in more detail
with other diagnostics or by additionally approximating
assimilation settings such as, for example, the localisation
scale with the PAI diagnostic. The latter option will be
discussed further in the subsequent section.

4.3 Optimising localisation

In the last section, we discussed that PAIs can be used
to detect detrimental observation influence caused by
suboptimal assimilation settings. Additionally, the PAI
diagnostic can be used to approximate the influence
of observations assimilated with modified settings for
localisation or the assigned observation error without
rerunning the assimilation cycle. To demonstrate this,
we retrospectively localised the satellite PAI from the
RASO + VIS-Experiments vertically with a localisation
scale of 0.3 centred at 500 hPa and conducted assimilation
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F I G U R E 9 Scatter plot comparing the impact of the satellite
measurements on the temperature in the single-observation
experiment (ΔeVIS, x-axis) versus in the combined experiment
(ΔeREFL→T

RASO+VIS, y-axis). The impact is measured by the change in the
temperature errors due the assimilated reflectances. The dots
indicate all radiosonde observation levels of all profiles. The colour
shading indicates the pressure level. The errors are measured with
respect to the radiosonde observations. The number labels indicate
the profile number as shown in Figure 1 [Colour figure can be
viewed at wileyonlinelibrary.com]

experiments with a corresponding localisation for satel-
lite observations (RASO + VISloc). Figure 10 shows that
vertical localisation strongly reduces the influence of satel-
lite observations at lower and upper levels as expected.
Furthermore, Figure 10 demonstrates that PAI with retro-
spective localisation (red line) is a good approximation of
PAI in the RASO + VISloc experiment with localisation
for satellite observations (green line). Only minor differ-
ences occur between the retrospective localisation in the
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F I G U R E 10 The blue line indicates the vertical profile of
satellite temperature partial analysis increment (PAI) from the
RASO + VIS-Experiment without localisation for satellite
observations, the red line is the corresponding PAI profile from the
experiment RASO + VISLOC with localisation for satellite
observations and the green line is the corresponding profile of
satellite PAI with retrospective localisation in the PAI calculation
from the RASO + VIS-Experiment [Colour figure can be viewed at
wileyonlinelibrary.com]

PAI calculation and the localisation in the assimilation
system.

This means that, with the retrospective vertical
localisation, it is possible to approximate optimal locali-
sation settings in a computationally cheap manner. The
concept is to define a cost function based on the anal-
ysis departures of observations that are not assimilated
and minimise this function iteratively with respect to
the localisation settings. The cost function J is defined
in Equation (19). In our study, we used the analysis
departures of passive radiosondes and the satellite PAIs
computed in the VIS-Experiment to demonstrate the con-
cept. For localisation with the Gaspari–Cohn function,
the localisation length scale and the height at which the
Gaspari–Cohn function is centred can be optimised. In
Figure 11, the cost function was computed for all pro-
files in the VIS-Experiment. For the iterative optimisation
with respect to localisation length scale 𝓁 and cloud
height p, we find that the optimal 𝓁 = 0.4 and the optimal
p = 800 hPa. Compared with no vertical localisation of the
satellite, the optimal localisation with the Gaspari–Cohn
function improves the analysis departure statistics by 1.5%
(red dot in Figure 11).

As with Figure 9, Figure 12 shows how the analy-
sis increment from the satellite single-observation experi-
ments and the corresponding satellite PAIs draw towards
the radiosonde observations. The underlying light-grey
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F I G U R E 11 Contour plot of the cost function J as defined in
Equation 19 as a function of localisation length scale (x-axis) and
centring height of the Gaspari–Cohn function (y-axis). J is
computed iteratively with retrospective localisation. The J
computed with no vertical localisation is set to 1 [Colour figure can
be viewed at wileyonlinelibrary.com]

dots are the previously shown results without localisa-
tion, and the coloured dots are the results with retro-
spective vertical localisation with the computed optimal
localisation settings. Detrimental effects mainly occurred
in the boundary layer and at high levels without local-
isation. The localisation reduces large positive values in
the upper atmospheric layers. The largest negative (ben-
eficial) values, which are linked to increments in the
boundary layer, are only slightly modified. This illus-
trates that the PAI diagnostic can be used for efficiently
testing various localisation approaches without rerun-
ning the assimilation experiments. However, it should
be noted that the optimised satellite localisation in this
study was derived from a small sample size for illus-
trating the concept. Deriving general conclusions for the
localisation of satellite reflectance will require longer
experiments that are planned for future studies. Fur-
thermore, it should be noted that, in the case of the
VIS-Experiment, PAIs are equal to the respective total
analysis increments, as no other observations are assim-
ilated and the observations are at distances larger than
the horizontal localisation radius. Nevertheless, we illus-
trated this approach as it would equally be applicable in an
experiment assimilating the full observing system, where
PAIs would identify the individual influence of individ-
ual observations and thereby serve as basis for optimising
localisation. For our example, we also tested construct-
ing a cost function based on assimilated radiosondes in
the RASO + VIS-Experiment but achieved no meaning-
ful results. Thus, we think that independent (passive)
observations are required for optimising localisation. The
implementation of this approach in a near-operation data
assimilation system may also need to account for specific
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the non-localised satellite PAIs from the RASO + VIS-Experiment
[Colour figure can be viewed at wileyonlinelibrary.com]

system settings, such as adaptive inflation or localisation.
Moreover, we expect that the results of the optimisation
also depend on the region and the synoptic situation that
is considered. In contrast to our experiments, covariance
inflation is typically used in a near-operational set-up
to counter overconfidence of the analysis and give more
weight to the observations. The implementation of infla-
tion in the PAI computation depends on the inflation tech-
nique that is used; for example, prior or posterior inflation.

5 CONCLUSIONS

This study proposes to use PAIs as a diagnostic for LETKF
data assimilation systems. The exact computation of these
increments would require large amounts of additional out-
put from the LETKF in the form of the five-dimensional
weight matrix that is not available in operational set-ups.
However, the results presented here demonstrate that PAI
can be approximated efficiently using ensemble analysis
perturbations available from the standard LETKF out-
put. We demonstrate that using analysis perturbations
instead of ensemble weights only introduces very minor
errors at larger distances from the observations. Further-
more, we analyse the difference of observation influence
in single-observation experiments with cloud-affected
satellite observations in the visible spectrum and PAI
in experiments that assimilate both radiosondes and
satellite observations. The influence of an observation
is decreased by the presence of other assimilated obser-
vations, but we demonstrate that this effect primarily
leads to a reduced influence and does not change the

structure of the influence significantly. This means that
both single-observation experiments and PAI can be used
to investigate the influence of promising additional obser-
vations such as, for example, satellite radiances. The PAI
approach, however, is computationally much more effi-
cient and has the advantage that it directly reflects the
influence of observations in the presence of other assimi-
lated observations, which is usually the primary quantity
of interest.

Additionally, the study illustrates and discusses three
potential applications of PAIs as a diagnostic method.
First, we show that PAI can be used to analyse the con-
tribution of different observations to the analysis. In con-
trast to other scalar diagnostics for observation influence,
PAI describes the full three-dimensional influence on the
analysis state. This means that non-local effects of obser-
vations can also be analysed as well as their effect on other
variables besides the observed quantity. We illustrate this
approach based on experiments that assimilated experi-
mental satellite observations and radiosondes, where it can
be seen that satellite observations also contribute to, for
example, model temperature, in particular in the atmo-
spheric boundary layer. Besides the use of the diagnostic
for investigating the detailed effects of novel experimental
observations shown here, the diagnostic also appears valu-
able for monitoring more complex operational assimila-
tion systems with multiple observations types. In contrast
to a monitoring based on departures and increments in
observations space, this would also allow detection of, for
example, non-local trends introduced by some observation
types (e.g. systematic drying/wetting in some regions). The
PAI diagnostic therefore offers a computationally inexpen-
sive approach for monitoring and analysing operational
data assimilation systems.

Second, we show that PAI can be used to detect where
different observations draw the analysis in opposite direc-
tions as an indicator for suboptimal assimilation settings
or erroneous observations. The approach is validated with
single-observation experiments that show good overall
agreement with the PAI diagnostic. Our study primarily
focuses on the effect of the experimental satellite obser-
vations and determines where their influence is in the
same or the opposite direction to radiosondes. The same
approach, however, could be used in an operational system
to automatically detect large discrepancies between the
influence of different observations or observation types.

Last but not least, we show that PAI can also be
used to approximate the influence that observations
would have with modified assimilation settings with the
example of a modified vertical localisation scale for the
satellite observations. This approach includes a second
approximation that is the modification of the influence
of other observations. The comparison with additional
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experiments with modified localisation scale, however,
again shows that the approximation only has a compar-
atively minor effect. For the experiments conducted, we
show that vertical localisation removes the largest oppos-
ing influence of satellite and radiosondes observations that
is likely due to spurious ensemble covariances. However,
this comes at the cost of also removing beneficial (corre-
sponding) influences in some regions. How to optimally
treat vertical localisation for cloud-affected satellite obser-
vations is subject of other ongoing research projects, but
the PAI diagnostic provides an efficient tool to investi-
gate various potential approaches without the need for
additional experiments for every configuration. Further-
more, it could be used to objectively optimise the localisa-
tion length scale based on the minimisation of opposing
influences in a larger dataset, similar to the approach of
Hotta et al. (2017b) for optimising the observation error
covariance matrix. We did not discuss covariance infla-
tion, although it is another major tuning parameter in
data assimilation systems and should be subject to further
research in this context. We expect that the computation
of PAI can be extended to take into account inflation; the
details, however, will depend on the inflation technique
that is used in the data assimilation system. In principle,
PAI can indicate cases where observations have very small
influence and might, therefore, also give an indication of
regions with too little ensemble spread. Hence, the PAI
diagnostic could provide a basis also for the investigation
of adaptive inflation methods.
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Bučánek, A., Mile, M., Hamdi, R., Lindskog, M., Barkmeijer, J.,
Dahlbom, M., Macpherson, B., Ballard, S., Inverarity, G., Carley,
J., Alexander, C., Dowell, D., Liu, S., Ikuta, Y. and Fujita, T. (2018)
Survey of data assimilation methods for convective-scale numer-
ical weather prediction at operational centres. Quarterly Journal
of the Royal Meteorological Society, 144, 1218–1256. https://doi.
org/10.1002/qj.3179.

Hotta, D., Chen, T.-C., Kalnay, E., Ota, Y. and Miyoshi, T. (2017a)
Proactive QC: a fully flow-dependent quality control scheme
based on EFSO. Monthly Weather Review, 145, 3331–3354
https://journals.ametsoc.org/view/journals/mwre/145/8/mwr-
d-16-0290.1.xml.

Hotta, D., Kalnay, E., Ota, Y. and Miyoshi, T. (2017b) EFSR: ensem-
ble forecast sensitivity to observation error covariance. Monthly
Weather Review, 145, 5015–5031 https://journals.ametsoc.org/
view/journals/mwre/145/12/mwr-d-17-0122.1.xml.

 1477870x, 2023, 752, D
ow

nloaded from
 https://rm

ets.onlinelibrary.w
iley.com

/doi/10.1002/qj.4419 by C
ochrane G

erm
any, W

iley O
nline L

ibrary on [08/03/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://orcid.org/0000-0003-0396-4748
https://orcid.org/0000-0003-0396-4748
https://orcid.org/0000-0003-0396-4748
https://orcid.org/0000-0002-7431-8164
https://orcid.org/0000-0002-7431-8164
https://orcid.org/0000-0003-2736-4309
https://orcid.org/0000-0003-2736-4309
https://orcid.org/0000-0003-1539-7197
https://orcid.org/0000-0003-1539-7197
https://orcid.org/0000-0003-1539-7197
https://orcid.org/0000-0003-4073-1791
https://orcid.org/0000-0003-4073-1791
https://orcid.org/0000-0003-4073-1791
https://journals.ametsoc.org/view/journals/mwre/148/1/mwr&hyphen;d&hyphen;19&hyphen;0045.1.xml
https://journals.ametsoc.org/view/journals/mwre/148/1/mwr&hyphen;d&hyphen;19&hyphen;0045.1.xml
https://doi.org/10.1256/qj.03.205
https://doi.org/10.1256/qj.03.205
https://acp.copernicus.org/articles/21/12273/2021/
https://acp.copernicus.org/articles/21/12273/2021/
https://journals.ametsoc.org/view/journals/mwre/138/11/2010mw
https://journals.ametsoc.org/view/journals/mwre/138/11/2010mw
https://doi.org/10.1002/qj.3179
https://doi.org/10.1002/qj.3179
https://journals.ametsoc.org/view/journals/mwre/145/8/mwr-d-1
https://journals.ametsoc.org/view/journals/mwre/145/8/mwr-d-1
https://journals.ametsoc.org/view/journals/mwre/145/12/mwr-d-17-0122.1.xml
https://journals.ametsoc.org/view/journals/mwre/145/12/mwr-d-17-0122.1.xml


756 DIEFENBACH et al.

Hu, G., Dance, S.L., Bannister, R.N., Chipilski, H., Guillet, O.,
Macpherson, B., Weissmann, M. and Yussouf, N. (2022)
Progress, challenges and future steps in data assimilation for
convection-permitting numerical weather prediction: report on
the virtual meeting held on 10 and November 12, 2021. Atmo-
spheric Science Letters, 24(1), e1130. https://doi.org/10.1002/asl.
1130.

Hunt, B.R., Kostelich, E.J. and Szunyogh, I. (2007) Efficient
data assimilation for spatiotemporal chaos: a local ensemble
transform Kalman filter. Physica D: Nonlinear Phenomena, 230,
112–126. https://doi.org/10.1016/j.physd.2006.11.008.

Kalnay, E. (2003) Atmospheric Modeling, Data Assimilation and Pre-
dictability. Cambridge: Cambridge University Press. https://doi.
org/10.1017/CBO9780511802270.

Kalnay, E., Ota, Y., Miyoshi, T. and Liu, J. (2012) A simpler for-
mulation of forecast sensitivity to observations: application to
ensemble Kalman filters. Tellus A: Dynamic Meteorology and
Oceanography, 64, 1. https://doi.org/10.3402/tellusa.v64i0.18462

Keil, C., Baur, F., Bachmann, K., Rasp, S., Schneider, L. and Barthlott,
C. (2019) Relative contribution of soil moisture, boundary-layer
and microphysical perturbations on convective predictability in
different weather regimes. Quarterly Journal of the Royal Meteoro-
logical Society, 145, 3102–3115. https://doi.org/10.1002/qj.3607.

Kotsuki, S., Kurosawa, K. and Miyoshi, T. (2019) On the prop-
erties of ensemble forecast sensitivity to observations. Quar-
terly Journal of the Royal Meteorological Society, 145, 1897–1914
https:/doi/abs/10.1002/qj.3534.

Liu, J., Kalnay, E., Miyoshi, T. and Cardinali, C. (2009) Analysis sensi-
tivity calculation in an ensemble Kalman filter. Quarterly Journal
of the Royal Meteorological Society, 135, 1842–1851. https://doi.
org/10.1002/qj.511.

Necker, T., Geiss, S., Weissmann, M., Ruiz, J., Miyoshi, T.
and Lien, G.-Y. (2020a) A convective-scale 1,000-member
ensemble simulation and potential applications. Quarterly
Journal of the Royal Meteorological Society, 146, 1423–1442
https:/doi/abs/10.1002/qj.3744.

Necker, T., Weissmann, M., Ruckstuhl, Y., Anderson, J. and
Miyoshi, T. (2020b) Sampling error correction evaluated using
a convective-scale 1000-member ensemble. Monthly Weather
Review, 148, 1229–1249 https://journals.ametsoc.org/view/
journals/mwre/148/3/mwr-d-19-0154.1.xml.

Necker, T., Weissmann, M. and Sommer, M. (2018) The importance
of appropriate verification metrics for the assessment of observa-
tion impact in a convection-permitting modelling system. Quar-
terly Journal of the Royal Meteorological Society, 144, 1667–1680
https:/doi/abs/10.1002/qj.3390.

Okamoto, K. (2017) Evaluation of IR radiance simulation for
all-sky assimilation of himawari-8/AHI in a mesoscale NWP sys-
tem. Quarterly Journal of the Royal Meteorological Society, 143,
1517–1527. https:/doi/abs/10.1002/qj.3022.

Ota, Y., Derber, J.C., Kalnay, E. and Miyoshi, T. (2013)
Ensemble-based observation impact estimates using the NCEP
GFS. Tellus A: Dynamic Meteorology and Oceanography, 65,
20038. https://doi.org/10.3402/tellusa.v65i0.20038.

Piper, D., Kunz, M., Ehmele, F., Mohr, S., Mühr, B., Kron, A. and
Daniell, J. (2016) Exceptional sequence of severe thunderstorms
and related flash floods in May and June 2016 in Germany – Part

1: meteorological background. Natural Hazards and Earth System
Sciences, 16, 2835–2850. https://nhess.copernicus.org/articles/
16/2835/2016/.

Scheck, L., Frerebeau, P., Buras-Schnell, R. and Mayer, B. (2016)
A fast radiative transfer method for the simulation of visi-
ble satellite imagery. Journal of Quantitative Spectroscopy and
Radiative Transfer, 175, 54–67 https://www.sciencedirect.com/
science/article/pii/S0022407316.

Scheck, L., Weissmann, M. and Bach, L. (2020) Assimilating visible
satellite images for convective-scale numerical weather predic-
tion: a case-study. Quarterly Journal of the Royal Meteorological
Society, nil, 3165–3186. https://doi.org/10.1002/qj.3840.

Scheck, L., Weissmann, M. and Mayer, B. (2018) Efficient methods to
account for cloud-top inclination and cloud overlap in synthetic
visible satellite images. Journal of Atmospheric and Oceanic Tech-
nology, 35, 665–685 https://journals.ametsoc.org/view/journals/
atot/35/3/jtech-d-17-0057.1.xml.

Schomburg, A., Schraff, C. and Potthast, R. (2015) A con-
cept for the assimilation of satellite cloud information in an
ensemble kalman filter: single-observation experiments. Quar-
terly Journal of the Royal Meteorological Society, 141, 893–908
https:/doi/abs/10.1002/qj.2407.

Schraff, C., Reich, H., Rhodin, A., Schomburg, A., Stephan, K., Per-
iáñez, A. and Potthast, R. (2016) Kilometre-scale ensemble data
assimilation for the cosmo model (KENDA). Quarterly Journal of
the Royal Meteorological Society, 142, 1453–1472. https://doi.org/
10.1002/qj.2748.

Schroettle, J., Weissmann, M., Scheck, L. and Hutt, A. (2020) Assim-
ilating visible and infrared radiances in idealized simulations
of deep convection. Monthly Weather Review, 148, 4357–4375
https://journals.ametsoc.org/view/journals/mwre/148/11/
MWR-D-20-0002.1.xml.

Sommer, M. and Weissmann, M. (2014) Observation impact in
a convective-scale localized ensemble transform Kalman fil-
ter. Quarterly Journal of the Royal Meteorological Society, 140,
2672–2679. https://doi.org/10.1002/qj.2343.

Sommer, M. and Weissmann, M. (2016) Ensemble-based approxima-
tion of observation impact using an observation-based verifica-
tion metric. Tellus A: Dynamic Meteorology and Oceanography,
68, 27885. https://doi.org/10.3402/tellusa.v68.27885.

Zhang, F., Minamide, M. and Clothiaux, E.E. (2016) Potential
impacts of assimilating all-sky infrared satellite radiances from
GOES-R on convection-permitting analysis and prediction of
tropical cyclones. Geophysical Research Letters, 43, 2954–2963
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2016G
L068468.

How to cite this article: Diefenbach, T., Craig, G.,
Keil, C., Scheck, L. & Weissmann, M. (2023) Partial
analysis increments as diagnostic for LETKF data
assimilation systems. Quarterly Journal of the Royal
Meteorological Society, 149(752), 740–756. Available
from: https://doi.org/10.1002/qj.4419

 1477870x, 2023, 752, D
ow

nloaded from
 https://rm

ets.onlinelibrary.w
iley.com

/doi/10.1002/qj.4419 by C
ochrane G

erm
any, W

iley O
nline L

ibrary on [08/03/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://doi.org/10.1002/asl.1130
https://doi.org/10.1002/asl.1130
https://doi.org/10.1016/j.physd.2006.11.008
https://doi.org/10.1017/CBO9780511802270
https://doi.org/10.1017/CBO9780511802270
https://doi.org/10.3402/tellusa.v64i0.18462
https://doi.org/10.1002/qj.3607
https://doi.org/10.1002/qj.511
https://doi.org/10.1002/qj.511
https://journals.ametsoc.org/view/journals/mwre/148/3/mwr-d-1
https://journals.ametsoc.org/view/journals/mwre/148/3/mwr-d-1
https://doi.org/10.3402/tellusa.v65i0.20038
https://nhess.copernicus.org/articles/16/2835/2016/
https://nhess.copernicus.org/articles/16/2835/2016/
https://www.sciencedirect.com/science/article/pii/S0022407316
https://www.sciencedirect.com/science/article/pii/S0022407316
https://doi.org/10.1002/qj.3840
https://journals.ametsoc.org/view/journals/atot/35/3/jtech-d-
https://journals.ametsoc.org/view/journals/atot/35/3/jtech-d-
https://doi.org/10.1002/qj.2748
https://doi.org/10.1002/qj.2748
https://journals.ametsoc.org/view/journals/mwre/148/11/MWR-D-
https://journals.ametsoc.org/view/journals/mwre/148/11/MWR-D-
https://doi.org/10.1002/qj.2343
https://doi.org/10.3402/tellusa.v68.27885

	Partial analysis increments as diagnostic for LETKF data assimilation systems 
	1 INTRODUCTION
	2 METHOD AND DATA
	2.1 PAI formulation
	2.2 Description of the data assimilation system
	2.3 Experimental set-up
	2.3.1 Single-observation experiments (VIS)
	2.3.2 Combined experiments (RASO + VIS)
	2.3.3 Combined and localised experiments (RASO + VISLOC)
	2.3.4 Metrics and notation


	3 ILLUSTRATION OF PAI
	3.1 Effect of approximating PAI with analysis perturbations
	3.2 Relation of PAI with the increment from single-observation experiments

	4 POTENTIAL APPLICATIONS
	4.1 Analysing the influence of observations on different model variables
	4.2 Detecting detrimental observation influence
	4.3 Optimising localisation

	5 CONCLUSIONS

	AUTHOR CONTRIBUTIONS
	ACKNOWLEDGEMENTS
	ORCID
	REFERENCES

